

DATABASE THEORY

Lecture 15: Datalog Evaluation (2)

Sebastian Rudolph

Computational Logic Group

Slides based on Material of Markus Krötzsch and David Carral

TU Dresden, 14h June 2021

Review: Datalog Evaluation

A rule-based recursive query language

```
father(alice, bob)

mother(alice, carla)

Parent(x, y) \leftarrow father(x, y)

Parent(x, y) \leftarrow mother(x, y)

SameGeneration(x, x)

SameGeneration(x, y) \leftarrow Parent(x, v) \land Parent(y, w) \land SameGeneration(v, w)
```

Perfect static optimisation for Datalog is undecidable

Datalog queries can be evaluated bottom-up or top-down

Simplest practical bottom-up technique: semi-naive evaluation

Semi-Naive Evaluation: Example

$$\begin{array}{ll} e(1,2) & e(2,3) & e(3,4) & e(4,5) \\ (R1) & \mathsf{T}(x,y) \leftarrow e(x,y) \\ (R2.1) & \mathsf{T}(x,z) \leftarrow \Delta_\mathsf{T}^i(x,y) \wedge \mathsf{T}^i(y,z) \\ R2.2') & \mathsf{T}(x,z) \leftarrow \mathsf{T}^{i-1}(x,y) \wedge \Delta_\mathsf{T}^i(y,z) \end{array}$$

How many body matches do we need to iterate over?

$$\begin{split} T^0_P &= \emptyset & \text{initialisation} \\ T^1_P &= \{\mathsf{T}(1,2),\mathsf{T}(2,3),\mathsf{T}(3,4),\mathsf{T}(4,5)\} & 4 \times (R1) \\ T^2_P &= T^1_P \cup \{\mathsf{T}(1,3),\mathsf{T}(2,4),\mathsf{T}(3,5)\} & 3 \times (R2.1) \\ T^3_P &= T^2_P \cup \{\mathsf{T}(1,4),\mathsf{T}(2,5),\mathsf{T}(1,5)\} & 3 \times (R2.1), 2 \times (R2.2') \\ T^4_P &= T^3_P &= T^\infty_P & 1 \times (R2.1), 1 \times (R2.2') \end{split}$$

In total, we considered 14 matches to derive 11 facts

Sebastian Rudolph, 14h June 2021

Semi-Naive Evaluation: Full Definition

In general, a rule of the form

 $\mathsf{H}(\vec{x}) \leftarrow \mathsf{e}_1(\vec{y}_1) \land \ldots \land \mathsf{e}_n(\vec{y}_n) \land \mathsf{I}_1(\vec{z}_1) \land \mathsf{I}_2(\vec{z}_2) \land \ldots \land \mathsf{I}_m(\vec{z}_m)$

is transformed into *m* rules

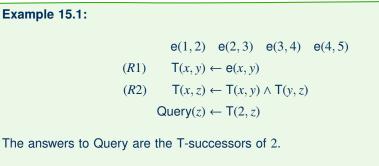
$$\begin{split} \mathsf{H}(\vec{x}) &\leftarrow \mathsf{e}_{1}(\vec{y}_{1}) \wedge \ldots \wedge \mathsf{e}_{n}(\vec{y}_{n}) \wedge \Delta^{i}_{\mathsf{l}_{1}}(\vec{z}_{1}) \wedge \mathsf{l}^{i}_{2}(\vec{z}_{2}) \wedge \ldots \wedge \mathsf{l}^{i}_{m}(\vec{z}_{m}) \\ \mathsf{H}(\vec{x}) &\leftarrow \mathsf{e}_{1}(\vec{y}_{1}) \wedge \ldots \wedge \mathsf{e}_{n}(\vec{y}_{n}) \wedge \mathsf{l}^{i-1}_{1}(\vec{z}_{1}) \wedge \Delta^{i}_{\mathsf{l}_{2}}(\vec{z}_{2}) \wedge \ldots \wedge \mathsf{l}^{i}_{m}(\vec{z}_{m}) \\ & \dots \\ \mathsf{H}(\vec{x}) \leftarrow \mathsf{e}_{1}(\vec{y}_{1}) \wedge \ldots \wedge \mathsf{e}_{n}(\vec{y}_{n}) \wedge \mathsf{l}^{i-1}_{1}(\vec{z}_{1}) \wedge \mathsf{l}^{i-1}_{2}(\vec{z}_{2}) \wedge \ldots \wedge \Delta^{i}_{\mathsf{l}_{m}}(\vec{z}_{m}) \end{split}$$

Advantages and disadvantages:

- Huge improvement over naive evaluation
- Some redundant computations remain (see example)
- Some overhead for implementation (store level of entailments)

Top-Down Evaluation

Idea: we may not need to compute all derivations to answer a particular query



However, bottom-up computation would also produce facts like T(1, 4), which are neither directly nor indirectly relevant for computing the query result.

Assumption

Assumption: For all techniques presented in this lecture, we assume that the given Datalog program is safe.

- This is without loss of generality (as shown in exercise).
- One can avoid this by adding more cases to algorithms.

Query-Subquery (QSQ)

QSQ is a technique for organising top-down Datalog query evaluation

Main principles:

- Apply backward chaining/resolution: start with query, find rules that can derive query, evaluate body atoms of those rules (subqueries) recursively
- Evaluate intermediate results "set-at-a-time" (using relational algebra on tables)
- Evaluate queries in a "data-driven" way, where operations are applied only to newly computed intermediate results (similar to idea in semi-naive evaluation)
- "Push" variable bindings (constants) from heads (queries) into bodies (subqueries)
- "Pass" variable bindings (constants) "sideways" from one body atom to the next Details can be realised in several ways.

Sebastian Rudolph, 14h June 2021

Adornments

To guide evaluation, we distinguish free and bound parameters in a predicate.

Example 15.2: If we want to derive atom T(2, z) from the rule $T(x, z) \leftarrow T(x, y) \land T(y, z)$, then *x* will be bound to 2, while *z* is free.

We use adornments to denote the free/bound parameters in predicates.

Example 15.3:

$$\mathsf{T}^{bf}(x,z) \leftarrow \mathsf{T}^{bf}(x,y) \wedge \mathsf{T}^{bf}(y,z)$$

- since x is bound in the head, it is also bound in the first atom
- any match for the first atom binds *y*, so *y* is bound when evaluating the second atom (in left-to-right evaluation)

Adornments: Examples

The adornment of the head of a rule determines the adornments of the body atoms:

$$\begin{split} \mathsf{R}^{bbb}(x,y,z) &\leftarrow \mathsf{R}^{bbf}(x,y,v) \land \mathsf{R}^{bbb}(x,v,z) \\ \mathsf{R}^{fbf}(x,y,z) &\leftarrow \mathsf{R}^{fbf}(x,y,v) \land \mathsf{R}^{bbf}(x,v,z) \end{split}$$

The order of body predicates affects the adornment:

$$\begin{split} \mathsf{S}^{\textit{ff}}(x,y,z) &\leftarrow \mathsf{T}^{\textit{ff}}(x,v) \land \mathsf{T}^{\textit{ff}}(y,w) \land \mathsf{R}^{\textit{bbf}}(v,w,z) \\ \mathsf{S}^{\textit{ff}}(x,y,z) &\leftarrow \mathsf{R}^{\textit{ff}}(v,w,z) \land \mathsf{T}^{\textit{fb}}(x,v) \land \mathsf{T}^{\textit{fb}}(y,w) \end{split}$$

 \rightsquigarrow For optimisation, some orders might be better than others

Auxiliary Relations for QSQ

To control evaluation, we store intermediate results in auxiliary relations.

When we "call" a rule with a head where some variables are bound, we need to provide the bindings as input \sim for adorned relation \mathbb{R}^{α} , we use an auxiliary relation input^{α}_R \sim arity of input^{α}_B = number of *b* in α

The result of calling a rule should be the "completed" input, with values for the unbound variables added

 \rightarrow for adorned relation R^{α} , we use an auxiliary relation output^{α}_R

 \rightsquigarrow arity of output^{α}_R = arity of R (= length of α)

Auxiliary Relations for QSQ (2)

When evaluating body atoms from left to right, we use supplementary relations \sup_i

 \rightsquigarrow bindings required to evaluate rest of rule after the *i*th body atom

 \rightsquigarrow the first set of bindings sup $_0$ comes from input_B^{\alpha}

 \rightsquigarrow the last set of bindings sup_n go to output^{α}_B

- $\sup_0[x]$ is copied from $\operatorname{input}_T^{bf}[x]$ (with some exceptions, see exercise)
- $\sup_{1}[x, y]$ is obtained by joining tables $\sup_{0}[x]$ and $\operatorname{output}_{T}^{bf}[x, y]$
- $\sup_{2}[x, z]$ is obtained by joining tables $\sup_{1}[x, y]$ and $\operatorname{output}_{T}^{bf}[y, z]$
- output^{*bf*}_T[x, z] is copied from sup₂[x, z]

(we use "named" notation like [x, y] to suggest what to join on; the relations are the same)

QSQ Evaluation

The set of all auxiliary relations is called a QSQ template (for the given set of adorned rules)

General evaluation:

- · add new tuples to auxiliary relations until reaching a fixed point
- evaluation of a rule can proceed as sketched on previous slide
- in addition, whenever new tuples are added to a sup relation that feeds into an IDB atom, the input relation of this atom is extended to include all binding given by sup (may trigger subquery evaluation)
- ightarrow there are many strategies for implementing this general scheme

Notation:

• for an EDB atom *A*, we write A^{I} for table that consists of all matches for *A* in the database

Recursive QSQ

Recursive QSQ (QSQR) takes a "depth-first" approach to QSQ

Evaluation of single rule in QSQR:

Given: adorned rule r with head predicate R^{α} ; current values of all QSQ relations

- (1) Copy tuples input^{α} (that unify with rule head) to sup^r
- (2) For each body atom A_1, \ldots, A_n , do:
 - If A_i is an EDB atom, compute \sup_i^r as projection of $\sup_{i=1}^r \bowtie A_i^I$
 - If A_i is an IDB atom with adorned predicate S^{β} :
 - (a) Add new bindings from $\sup_{i=1}^{r}$, combined with constants in A_i , to $\operatorname{input}_{S}^{\beta}$
 - (b) If input_S^{\beta} changed, recursively evaluate all rules with head predicate S^{β}
 - (c) Compute $\sup_{i=1}^{r} \bowtie \operatorname{output}_{S}^{\beta}$

(3) Add tuples in $\sup_{n=1}^{r}$ to $\operatorname{output}_{\mathsf{B}}^{\alpha}$

QSQR Algorithm

Evaluation of query in QSQR:

Given: a Datalog program *P* and a conjunctive query $q[\vec{x}]$ (possibly with constants)

- (1) Create an adorned program P^a :
 - Turn the query $q[\vec{x}]$ into an adorned rule Query $f^{f...f}(\vec{x}) \leftarrow q[\vec{x}]$
 - Recursively create adorned rules from rules in *P* for all adorned predicates in *P^a*.
- (2) Initialise all auxiliary relations to empty sets.
- (3) Evaluate the rule Query^{ff...f}(x) ← q[x].
 Repeat until no new tuples are added to any QSQ relation.
- (4) Return output^{*ff...f*}_{Query}.

QSQR Transformation: Example

Predicates S (same generation), p (parent), h (human)

$$\begin{split} \mathsf{S}(x,x) &\leftarrow \mathsf{h}(x) \\ \mathsf{S}(x,y) &\leftarrow \mathsf{p}(x,w) \land \mathsf{S}(v,w) \land \mathsf{p}(y,v) \end{split}$$

with query S(1, x). \rightarrow Query rule: Query(x) \leftarrow S(1, x)

Transformed rules:

Query^f(x)
$$\leftarrow S^{bf}(1, x)$$

 $S^{bf}(x, x) \leftarrow h(x)$
 $S^{bf}(x, y) \leftarrow p(x, w) \land S^{fb}(v, w) \land p(y, v)$
 $S^{fb}(x, x) \leftarrow h(x)$
 $S^{fb}(x, y) \leftarrow p(x, w) \land S^{fb}(v, w) \land p(y, v)$

Database Theory

Magic

QSQ(R) is a goal directed procedure: it tries to derive results for a specific query.

Semi-naive evaluation is not goal directed: it computes all entailed facts.

Can a bottom-up technique be goal-directed? \rightsquigarrow yes, by magic

Magic Sets

- "Simulation" of QSQ by Datalog rules
- Can be evaluated bottom up, e.g., with semi-naive evaluation
- The "magic sets" are the sets of tuples stored in the auxiliary relations
- · Several other variants of the method exist

Magic Sets as Simulation of QSQ

Idea: the information flow in QSQ(R) mainly uses join and projection \sim can we just implement this in Datalog?

Example 15.5: The QSQ information flow $\mathsf{T}^{bf}(x,z) \leftarrow \mathsf{T}^{bf}(x,y) \wedge \mathsf{T}^{bf}(y,z)$ could be expressed using rules: $\sup_{0}(x) \leftarrow \operatorname{input}_{T}^{bf}(x)$ $\sup_{1}(x, y) \leftarrow \sup_{0}(x) \land \operatorname{output}_{T}^{bf}(x, y)$ $\sup_{z}(x, z) \leftarrow \sup_{z}(x, y) \land \operatorname{output}_{\tau}^{bf}(y, z)$ $\operatorname{output}_{\mathsf{T}}^{bf}(x,z) \leftarrow \sup_{2}(x,z)$

Magic Sets as Simulation of QSQ (2)

Observation: $\sup_0(x)$ and $\sup_2(x, z)$ are redundant. Simpler:

 $\begin{aligned} \sup_{1}(x,y) \leftarrow \operatorname{input}_{\mathsf{T}}^{bf}(x) \wedge \operatorname{output}_{\mathsf{T}}^{bf}(x,y) \\ \operatorname{output}_{\mathsf{T}}^{bf}(x,z) \leftarrow \operatorname{sup}_{1}(x,y) \wedge \operatorname{output}_{\mathsf{T}}^{bf}(y,z) \end{aligned}$

We still need to "call" subqueries recursively:

 $\operatorname{input}_{\mathsf{T}}^{bf}(y) \leftarrow \sup_{1}(x, y)$

It is easy to see how to do this for arbitrary adorned rules.

A Note on Constants

Constants in rule bodies must lead to bindings in the subquery.

Example 15.6: The following rule is correctly adorned

$$\mathsf{R}^{bf}(x,y) \leftarrow \mathsf{T}^{bbf}(x,a,y)$$

This leads to the following rules using Magic Sets:

$$output_{\mathsf{R}}^{bf}(x, y) \leftarrow \mathsf{input}_{\mathsf{R}}^{bf}(x) \land \mathsf{output}_{\mathsf{T}}^{bbf}(x, a, y)$$
$$\mathsf{input}_{\mathsf{b}}^{bf}(x, a) \leftarrow \mathsf{input}_{\mathsf{R}}^{bf}(x)$$

Note that we do not need to use auxiliary predicates \sup_0 or \sup_1 here, by the simplification on the previous slide.

Magic Sets: Summary

A goal-directed bottom-up technique:

- Rewritten program rules can be constructed on the fly
- Bottom-up evaluation can be semi-naive (avoid repeated rule applications)
- Supplementary relations can be cached in between queries

Nevertheless, a full materialisation might be better, if

- Database does not change very often (materialisation as one-time investment)
- Queries are very diverse and may use any IDB relation (bad for caching supplementary relations)
- \rightsquigarrow semi-naive evaluation is still very common in practice

Implementation

How to Implement Datalog

We saw several evaluation methods:

- Semi-naive evaluation
- QSQ(R)
- Magic Sets

Don't we have enough algorithms by now?

No. In fact, we are still far from actual algorithms.

Issues on the way from "evaluation method" to basic algorithm:

- Data structures! (Especially: how to store derivations?)
- Joins! (low-level algorithms; optimisations)
- Duplicate elimination! (major performance factor)
- Optimisations! (further ideas for reducing redundancy)
- Parallelism! (using multiple CPUs)

• . . .

General concerns

System implementations need to decide on their mode of operation:

- Interactive service vs. batch process
- Scale? (related: what kind of memory and compute infrastructure to target?)
- · Computing the complete least model vs. answering specific queries
- Static vs. dynamic inputs (will data change? will rules change?)
- Which data sources should be supported?
- Should results be cached? Do we to update caches (view maintenance)?
- Is intra-query parallelism desirable? On which level and for how many CPUs?

• ...

Datalog as a Special Case

Datalog is a special case of many approaches, leading to very diverse implementation techniques.

- Prolog is essentially "Datalog with function symbols" (and many built-ins).
- Answer Set Programming is "Datalog extended with non-monotonic negation and disjunction"
- Production Rules use "bottom-up rule reasoning with operational, non-monotonic built-ins"
- Recursive SQL Queries are a syntactically restricted set of Datalog rules
- → Different scenarios, different optimal solutions
- \rightsquigarrow Not all implementations are complete (e.g., Prolog)

Datalog Implementation in Practice

Dedicated Datalog engines as of 2018 (incomplete):

- RDFox Fast in-memory RDF database with runtime materialisation and updates
- VLog Fast in-memory Datalog materialisation with bindings to several databases, including RDF and RDBMS (co-developed at TU Dresden)
- Llunatic PostgreSQL-based implementation of a rule engine
- Graal In-memory rule engine with RDBMS bindings
- SociaLite and EmptyHeaded Datalog-based languages and engines for social network analysis
- DeepDive Data analysis platform with support for Datalog-based language "DDlog"
- LogicBlox Big data analytics platform that uses Datalog rules (commercial, discontinued?)
- DLV Answer set programming engine that is usable on Datalog programs (commercial)
- Datomic Distributed, versioned database using Datalog as main query language (commercial)
- E Fast theorem prover for first-order logic with equality; can be used on Datalog as well
- ...

\rightsquigarrow Extremely diverse tools for very different requirements

Sebastian Rudolph, 14h June 2021

Summary and Outlook

Several implementation techniques for Datalog

- bottom up (from the data) or top down (from the query)
- goal-directed (for a query) or not

Top-down: Query-Subquery (QSQ) approach (goal-directed)

Bottom-up:

- naive evaluation (not goal-directed)
- semi-naive evaluation (not goal-directed)
- Magic Sets (goal-directed)

Next topics:

- Graph databases and path queries
- Dependencies