

FORMALE SYSTEME

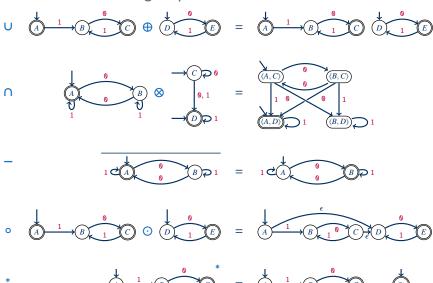
6. Vorlesung: Reguläre Ausdrücke

Markus Krötzsch

TU Dresden, 27. Oktober 2016

Rückblick

Wiederholung: Operationen auf Automaten



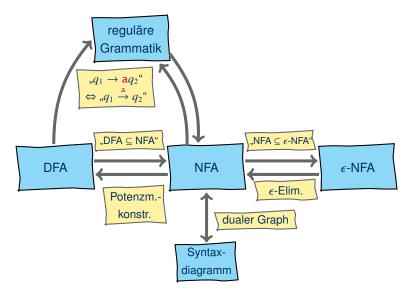
Markus Krötzsch, 27, Oktober 2016

Formale Systeme

Folie 3 von 29

NFAs mit Wortübergängen

Darstellungen von Typ-3-Sprachen



Reguläre Ausdrücke

Endliche Sprachen

Eine einfache Beobachtung:

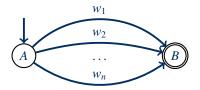
Satz: Jede endliche Sprache ist regulär.

Endliche Sprachen

Eine einfache Beobachtung:

Satz: Jede endliche Sprache ist regulär.

Beweis: Man kann eine beliebige endliche Sprache $\{w_1, \dots, w_n\}$ durch einen NFA mit Wortübergängen erkennen:



Wie in der letzten Vorlesung gezeigt, kann dieser in einen NFA umgeformt werden. Jeder NFA akzeptiert eine reguläre Sprache.

Sprachen konstruieren?

Wir haben gesehen:

- Jede endliche Sprache ist regulär.
- Durch Anwendung von ∩, ∪, ¬, ∘ und * entstehen aus regulären Sprachen immer wieder reguläre Sprachen.

Eine natürliche Frage ist also:

Welche regulären Sprachen kann man durch Anwendung von \cap , \cup , $\bar{\ }$, \circ und * aus endlichen Sprachen konstruieren?

Sprachen konstruieren?

Wir haben gesehen:

- Jede endliche Sprache ist regulär.
- Durch Anwendung von ∩, ∪, ¯, ∘ und * entstehen aus regulären Sprachen immer wieder reguläre Sprachen.

Eine natürliche Frage ist also:

Welche regulären Sprachen kann man durch Anwendung von \cap , \cup , $\bar{\ }$, \circ und * aus endlichen Sprachen konstruieren?

Allel

Die kleinste (∪, ∘, *)-abgeschlossene Klasse

Überraschender Weise sind ∩ und nicht einmal nötig!

Satz: Alle regulären Sprachen können durch Anwendung von \cup , \circ und * aus endlichen Sprachen konstruiert werden.

Mit \circ und \cup kann man jede endliche Sprache leicht aus den Sprachen \emptyset , $\{\epsilon\}$ und $\{a\}$ $(a \in \Sigma)$ konstruieren.

Die kleinste (∪, ∘, *)-abgeschlossene Klasse

Überraschender Weise sind ∩ und nicht einmal nötig!

Satz: Alle regulären Sprachen können durch Anwendung von \cup , \circ und * aus endlichen Sprachen konstruiert werden.

Mit \circ und \cup kann man jede endliche Sprache leicht aus den Sprachen \emptyset , $\{\epsilon\}$ und $\{a\}$ $(a \in \Sigma)$ konstruieren.

Mit den bekannten Abschlusseigenschaften erhält man also:

Satz: Die Klasse der regulären Sprachen ist die kleinste Klasse von Sprachen mit den folgenden Eigenschaften:

- Sie enthält die Sprachen \emptyset , $\{\epsilon\}$ und $\{a\}$ für alle $a \in \Sigma$
- Sie ist abgeschlossen unter den Operatoren ∪, ∘ und *

Die kleinste (∪, ∘, *)-abgeschlossene Klasse

Überraschender Weise sind ∩ und nicht einmal nötig!

Satz: Alle regulären Sprachen können durch Anwendung von \cup , \circ und * aus endlichen Sprachen konstruiert werden.

Mit \circ und \cup kann man jede endliche Sprache leicht aus den Sprachen \emptyset , $\{\epsilon\}$ und $\{a\}$ $(a \in \Sigma)$ konstruieren.

Mit den bekannten Abschlusseigenschaften erhält man also:

Satz: Die Klasse der regulären Sprachen ist die kleinste Klasse von Sprachen mit den folgenden Eigenschaften:

- Sie enthält die Sprachen \emptyset , $\{\epsilon\}$ und $\{a\}$ für alle $a \in \Sigma$
- Sie ist abgeschlossen unter den Operatoren ∪, ∘ und *

Beweisplan:

- Definiere diese Klasse syntaktisch: reguläre Ausdrücke
- Zeige, dass diese genau die regulären Sprachen darstellen

Reguläre Ausdrücke

Das motiviert die Einführung einer eigenen Syntax:

Die Menge der regulärer Ausdrücke über einem Alphabet Σ ist induktiv^a wie folgt definiert:

- Ø ist ein regulärer Ausdruck
- ϵ ist ein regulärer Ausdruck
- a ist ein regulärer Ausdruck für jedes $a \in \Sigma$
- Wenn α und β reguläre Ausdrücke sind,
 dann sind auch (αβ), (α | β) und (α)* reguläre Ausdrücke

^aD.h. die Menge der regulären Ausdrücke ist die kleinste Menge, welche die Bedingungen erfüllt.

Anmerkung: Manchmal werden $(\alpha + \beta)$ statt $(\alpha \mid \beta)$ und $(\alpha \circ \beta)$ oder $(\alpha \cdot \beta)$ statt $(\alpha\beta)$ verwendet

Beispiele regulärer Ausdrücke sind $(\mathbf{a}(\mathbf{b})^*)$ oder auch $(((\epsilon \mid \epsilon))^*)^*$.

Reguläre Ausdrücke als formale Sprache

Man kann die Menge der regulären Ausdrücke über dem Alphabet $\Sigma = \{\sigma_1, \dots, \sigma_n\}$ auch als kontextfreie Grammatik über dem Alphabet $\Sigma \cup \{\emptyset, \epsilon, (,), |, *\}$ beschreiben:

$$S \rightarrow \emptyset \mid \epsilon \mid A \mid (SS) \mid (S\mid S) \mid (S)^*$$

 $A \rightarrow \sigma_1 \mid \dots \mid \sigma_n$

Reguläre Ausdrücke als formale Sprache

Man kann die Menge der regulären Ausdrücke über dem Alphabet $\Sigma = \{\sigma_1, \dots, \sigma_n\}$ auch als kontextfreie Grammatik über dem Alphabet $\Sigma \cup \{\emptyset, \epsilon, (,), |, *\}$ beschreiben:

$$S \rightarrow \emptyset \mid \epsilon \mid A \mid (SS) \mid (S\mid S) \mid (S)^*$$

 $A \rightarrow \sigma_1 \mid \dots \mid \sigma_n$

Solche Notationen werden in der Praxis oft weiter vereinfacht:

• Endliche Mengen als Nichtterminale:

$$S \rightarrow \emptyset \mid \epsilon \mid \Sigma \mid (SS) \mid (S|S) \mid (S)^*$$

 Mehrere Nichtterminale als Hinweis auf unterschiedliche Ausdrücke:

$$\alpha \to \emptyset \mid \epsilon \mid \Sigma \mid (\alpha\beta) \mid (\alpha \mid \beta) \mid (\alpha)^*$$

Semantik regulärer Ausdrücke

Reguläre Ausdrücke beschreiben die erwarteten Sprachen:

Die Sprache eines regulären Ausdrucks α wird mit $\mathbf{L}(\alpha)$ bezeichnet und rekursiv definiert:

- $L(\emptyset) = \emptyset$
- $\mathbf{L}(\epsilon) = \{\epsilon\}$
- $L(a) = \{a\}$ für jedes $a \in \Sigma$
- $L((\alpha\beta)) = L(\alpha) \circ L(\beta)$
- $L((\alpha \mid \beta)) = L(\alpha) \cup L(\beta)$
- $L((\alpha)^*) = L(\alpha)^*$

Semantik regulärer Ausdrücke

Reguläre Ausdrücke beschreiben die erwarteten Sprachen:

Die Sprache eines regulären Ausdrucks α wird mit $\mathbf{L}(\alpha)$ bezeichnet und rekursiv definiert:

- $L(\emptyset) = \emptyset$
- $\mathbf{L}(\epsilon) = \{\epsilon\}$
- $L(a) = \{a\}$ für jedes $a \in \Sigma$
- $L((\alpha\beta)) = L(\alpha) \circ L(\beta)$
- $L((\alpha \mid \beta)) = L(\alpha) \cup L(\beta)$
- $L((\alpha)^*) = L(\alpha)^*$

Beispiel:
$$L(((ab))^*) = (L((ab)))^* = (L(a) \circ L(b))^* = (\{a\} \circ \{b\})^* = \{ab\}^*$$

Vereinfachte Klammerung

Reguläre Ausdrücke können durch Klammerungsregeln vereinfacht werden: * bindet stärker als Konkatenation bindet stärker als |

```
Beispiel: ab^* \mid bc ist kurz für ((a(b)^*) \mid (bc))
```

Vereinfachte Klammerung

Reguläre Ausdrücke können durch Klammerungsregeln vereinfacht werden: * bindet stärker als Konkatenation bindet stärker als |

```
Beispiel: ab^* \mid bc ist kurz für ((a(b)^*) \mid (bc))
```

Konkatenation und Alternative sind assoziativ:

$$L((\alpha(\beta\gamma))) = L(((\alpha\beta)\gamma)) \qquad L((\alpha \mid (\beta \mid \gamma))) = L(((\alpha \mid \beta) \mid \gamma))$$

Daher ist es unproblematisch, dass die Klammerregeln die Reihenfolge nicht spezifizieren.

Beispiel: 101010 könnte für genau 42 verschiedene reguläre Ausdrücke stehen, unter anderem für (((((10)1)0)1)0), ((10)((10)(10))) und (1((0((10)1))0)).

Kurzschreibweisen für reguläre Ausdrücke

Man kann eine Reihe von Kurzschreibweisen definieren:

- α^+ ist kurz für $\alpha(\alpha)^*$
- α ? ist kurz für ($\alpha \mid \epsilon$)
- $\alpha \{n, m\}$ mit $0 \le n \le m$ ist kurz für $(\underbrace{\alpha \dots \alpha}_{n-\text{mal}} | \dots | \underbrace{\alpha \dots \alpha}_{m-\text{mal}})$

Kurzschreibweisen für reguläre Ausdrücke

Man kann eine Reihe von Kurzschreibweisen definieren:

- α^+ ist kurz für $\alpha(\alpha)^*$
- α ? ist kurz für ($\alpha \mid \epsilon$)
- $\alpha\{n,m\}$ mit $0 \le n \le m$ ist kurz für $(\underbrace{\alpha \dots \alpha}_{n\text{-mal}} \mid \dots \mid \underbrace{\alpha \dots \alpha}_{m\text{-mal}})$

Implementierungen regulärer Ausdrücke bieten auch Kurzformen für Alternativen einzelner Symbole ("Character Classes"):

- .: beliebiges Symbol, d.h. $\sigma_1 \mid \ldots \mid \sigma_n$ falls $\Sigma = {\sigma_1, \ldots, \sigma_n}$
- $[\theta_1 \cdots \theta_\ell]$: beliebiges Symbol aus einer Liste, d.h. $\theta_1 \mid \ldots \mid \theta_\ell$
- [$^{\circ}\theta_1 \cdots \theta_{\ell}$]: beliebiges Symbol nicht aus einer Liste, d.h. $\sigma_1 \mid \ldots \mid \sigma_{\ell}$ mit $\{\sigma_1, \ldots, \sigma_{\ell}\} = \Sigma \setminus \{\theta_1, \ldots, \theta_{\ell}\}$
- Weitere Kurzformen für praktisch wichtige Fälle, z.B. \s oder [:blank:] für Leerzeichen, \d oder [:digit:] für Ziffern

Theoretiker meiden Kurzformen (mehr Formen = mehr Fälle in Beweisen und Definitionen)

Regexps in der Praxis

Reguläre Ausdrücke sind von großer praktischer Bedeutung

- Mustererkennung in Texten (Pattern Matching)
- Lexer/Tokenizer
- Suche nach Muster in Datenbanken
- ..

Regexps in der Praxis

Reguläre Ausdrücke sind von großer praktischer Bedeutung

- Mustererkennung in Texten (Pattern Matching)
- Lexer/Tokenizer
- Suche nach Muster in Datenbanken
- ...

Unterschiede zur reinen Lehre:

- Pattern Matching: (1) spezifiziere eine Sprache (Suchwörter) und (2) finde deren Vorkommen (Matches) in einem längeren Wort (Text) → Möglichkeiten zur Steuerung des zweiten Teils nötig (z.B. greedy vs. lazy matching)
- Referenzen: praktische Implementierungen erlauben es meist, Teile eines Matches im Muster wieder zu verwenden → keine reguläre Sprache mehr
- Escaping: Unterscheidung von Steuerzeichen (Metazeichen) und Alphabetssymbolen ist praktisch aufwändig

Äquivalenz regulärer Ausdrücke

Zwei reguläre Ausdrücke α und β sind äquivalent, in Symbolen $\alpha \equiv \beta$, wenn $\mathbf{L}(\alpha) = \mathbf{L}(\beta)$.

Typische Rechenregeln der Sprachoperationen gelten analog:

$$\alpha \mid \beta \equiv \beta \mid \alpha \qquad \qquad \epsilon \alpha \equiv \alpha \epsilon \equiv \alpha$$

$$\alpha(\beta \mid \gamma) \equiv \alpha \beta \mid \alpha \gamma \qquad \qquad \emptyset \alpha \equiv \alpha \emptyset \equiv \emptyset$$

$$(\beta \mid \gamma) \alpha \equiv \beta \alpha \mid \gamma \alpha \qquad \qquad \emptyset \mid \alpha \equiv \alpha \mid \emptyset \equiv \alpha$$

$$\epsilon^* \equiv \epsilon \qquad \qquad \emptyset^* \equiv \epsilon$$

Von Regulären Ausdrücken zu Automaten

Zielstellung

Behauptung: Eine Sprache **L** ist genau dann regulär, wenn es einen regulären Ausdruck α gibt mit $\mathbf{L}(\alpha) = \mathbf{L}$.

Beweis (Plan):

 Teilbehauptung 1: Für jeden regulären Ausdruck α gibt es einen NFA M, so dass L(α) = L(M)

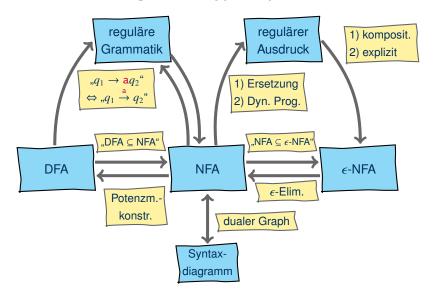
Zwei mögliche Beweismethoden:

- (1) Kompositionelle Methode
- (2) Explizite Konstruktion
- Teilbehauptung 2: Für jeden NFA M gibt es einen regulären Ausdruck α, so dass L(α) = L(M)

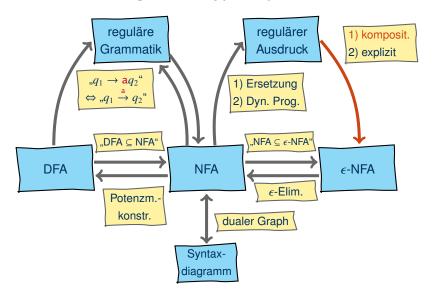
Zwei mögliche Beweismethoden:

- (1) Ersetzungsmethode
- (2) Dynamische Programmierung

Darstellungen von Typ-3-Sprachen



Darstellungen von Typ-3-Sprachen



Rekursive Komposition von ϵ -NFA

Die Struktur regulärer Ausdrücke kann mit Operationen auf Automaten direkt abgebildet werden.

Rekursive Komposition von ϵ -NFA

Die Struktur regulärer Ausdrücke kann mit Operationen auf Automaten direkt abgebildet werden.

Für einen Ausdruck α definieren wir rekursiv den ϵ -NFA $\mathcal{M}(\alpha)$:

Grundfälle:

- Wenn $\alpha = \emptyset$ dann $\mathcal{M}(\alpha) = \rightarrow A$
- Wenn $\alpha = \epsilon$ dann $\mathcal{M}(\alpha) = \rightarrow A$
- Wenn $\alpha = \mathbf{a}$ dann $\mathcal{M}(\alpha) = A$

Rekursive Komposition von ϵ -NFA

Die Struktur regulärer Ausdrücke kann mit Operationen auf Automaten direkt abgebildet werden.

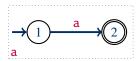
Für einen Ausdruck α definieren wir rekursiv den ϵ -NFA $\mathcal{M}(\alpha)$:

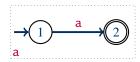
Grundfälle:

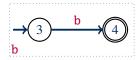
- Wenn $\alpha = \emptyset$ dann $\mathcal{M}(\alpha) = \rightarrow (A)$
- Wenn $\alpha = \epsilon$ dann $\mathcal{M}(\alpha) = \rightarrow A$
- Wenn $\alpha = \mathbf{a} \operatorname{dann} \mathcal{M}(\alpha) = A$

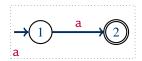
Rekursive Fälle: Wir bezeichnen mit $\operatorname{elim}_{\epsilon}(\mathcal{M})$ den NFA, der aus einem ϵ -NFA \mathcal{M} durch Eliminierung der ϵ -Übergänge entsteht.

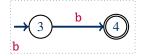
- Wenn $\alpha = (\beta \gamma)$ dann $\mathcal{M}(\alpha) = \text{elim}_{\epsilon}(\mathcal{M}(\beta) \odot \mathcal{M}(\gamma))$
- Wenn $\alpha = (\beta \mid \gamma)$ dann $\mathcal{M}(\alpha) = \mathcal{M}(\beta) \oplus \mathcal{M}(\gamma)$
- Wenn $\alpha = (\beta)^*$ dann $\mathcal{M}(\alpha) = \text{elim}_{\epsilon}(\mathcal{M}(\beta)^*)$

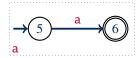


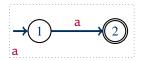


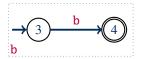


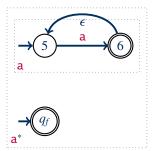


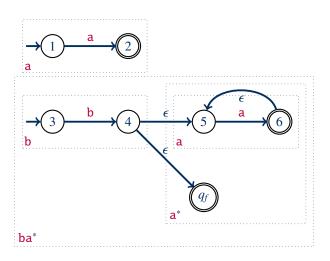


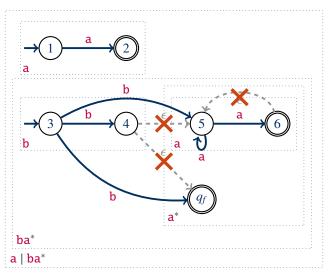












Satz: Für jeden regulären Ausdruck α gilt $\mathbf{L}(\alpha) = \mathbf{L}(\mathcal{M}(\alpha))$.

Satz: Für jeden regulären Ausdruck α gilt $\mathbf{L}(\alpha) = \mathbf{L}(\mathcal{M}(\alpha))$.

Beweis: Die Gleichheit folgt aus der Definition von $\mathbf{L}(\alpha)$ und der Korrektheit der Operationen auf Automaten und der ϵ -Eliminierung.

Satz: Für jeden regulären Ausdruck α gilt $\mathbf{L}(\alpha) = \mathbf{L}(\mathcal{M}(\alpha))$.

Beweis: Die Gleichheit folgt aus der Definition von $\mathbf{L}(\alpha)$ und der Korrektheit der Operationen auf Automaten und der ϵ -Eliminierung.

Formal ist der Beweis eine strukturelle Induktion: wir konstruieren unsere Argumentation entlang der Struktur regulärer Ausdrücke.

Satz: Für jeden regulären Ausdruck α gilt $\mathbf{L}(\alpha) = \mathbf{L}(\mathcal{M}(\alpha))$.

Beweis: Die Gleichheit folgt aus der Definition von $\mathbf{L}(\alpha)$ und der Korrektheit der Operationen auf Automaten und der ϵ -Eliminierung.

Formal ist der Beweis eine strukturelle Induktion: wir konstruieren unsere Argumentation entlang der Struktur regulärer Ausdrücke.

• Induktionsanfang: Für die Grundfälle $\alpha=\emptyset$, $\alpha=\epsilon$ und $\alpha=\mathbf{a}$ ist die Behauptung leicht zu sehen

Satz: Für jeden regulären Ausdruck α gilt $\mathbf{L}(\alpha) = \mathbf{L}(\mathcal{M}(\alpha))$.

Beweis: Die Gleichheit folgt aus der Definition von $\mathbf{L}(\alpha)$ und der Korrektheit der Operationen auf Automaten und der ϵ -Eliminierung.

Formal ist der Beweis eine strukturelle Induktion: wir konstruieren unsere Argumentation entlang der Struktur regulärer Ausdrücke.

- Induktionsanfang: Für die Grundfälle $\alpha=\emptyset$, $\alpha=\epsilon$ und $\alpha=\mathbf{a}$ ist die Behauptung leicht zu sehen
- Induktionshypothese (IH): Die Behauptung wurde bereits für β und γ gezeigt, d.h. L(β) = L(M(β)) und L(γ) = L(M(γ))

Satz: Für jeden regulären Ausdruck α gilt $\mathbf{L}(\alpha) = \mathbf{L}(\mathcal{M}(\alpha))$.

Beweis: Die Gleichheit folgt aus der Definition von $\mathbf{L}(\alpha)$ und der Korrektheit der Operationen auf Automaten und der ϵ -Eliminierung.

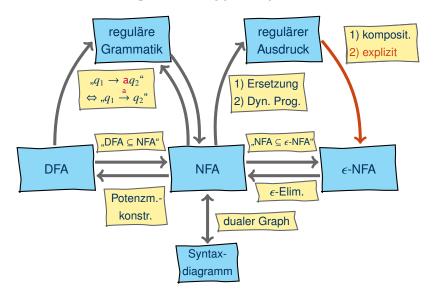
Formal ist der Beweis eine strukturelle Induktion: wir konstruieren unsere Argumentation entlang der Struktur regulärer Ausdrücke.

- Induktionsanfang: Für die Grundfälle $\alpha=\emptyset,\,\alpha=\epsilon$ und $\alpha=\mathbf{a}$ ist die Behauptung leicht zu sehen
- Induktionshypothese (IH): Die Behauptung wurde bereits für β und γ gezeigt, d.h. L(β) = L(M(β)) und L(γ) = L(M(γ))
- Induktionsschritt: Im Fall $\alpha = (\beta \gamma)$ gilt:

$$\begin{split} \mathbf{L}(\alpha) &\stackrel{\mathsf{Def.}}{=} \mathbf{L}(\beta) \circ \mathbf{L}(\gamma) \stackrel{\mathsf{IH}}{=} \mathbf{L}(\mathcal{M}(\beta)) \circ \mathbf{L}(\mathcal{M}(\gamma)) \\ &\stackrel{(1)}{=} \mathbf{L}(\mathcal{M}(\beta) \odot \mathcal{M}(\gamma)) \stackrel{(2)}{=} \mathbf{L}(\mathsf{elim}_{\epsilon}(\mathcal{M}(\beta) \odot \mathcal{M}(\gamma))) \stackrel{\mathsf{Def.}}{=} \mathbf{L}(\mathcal{M}(\alpha)). \\ &(1) \text{ Korrektheit der Operation } \odot; (2) \text{ Korrektheit der ϵ-Eliminierung} \end{split}$$

Die Fälle
$$\alpha = (\beta \mid \gamma)$$
 und $\alpha = (\beta)^*$ sind analog.

Darstellungen von Typ-3-Sprachen



Explizite Konstruktion des NFA

Idee:

- Beginne mit einem "NFA mit RegExp-Übergängen", bei dem Kanten mit regulären Ausdrücken beschriftet sind
- Eliminiere diese Übergänge schrittweise, ähnlich wie beim Eliminieren von Wortübergängen

Es ist einfacher, das für reguläre Ausdrücke zu tun, die kein \emptyset enthalten

Eliminierung von Ø

Der folgende einfache Algorithmus erzeugt reguläre Ausdrücke ohne innere Vorkommen von Ø:

Eingabe: regulärer Ausdruck α

Ausgabe: äquivalenter regulärer Ausdruck β ohne \emptyset

(falls $\mathbf{L}(\alpha) \neq \emptyset$) oder \emptyset (falls $\mathbf{L}(\alpha) = \emptyset$)

Wende die folgenden Ersetzungsregeln erschöpfend auf Teilausdrücke von α an:

- $(\gamma \mid \emptyset) \mapsto \gamma \text{ und } (\emptyset \mid \gamma) \mapsto \gamma$
- $(\gamma\emptyset) \mapsto \emptyset$ und $(\emptyset\gamma) \mapsto \emptyset$
- $(\emptyset)^* \mapsto \epsilon$

Gib das Ergebnis dieser Ersetzungen aus.

Die Korrektheit des Algorithmus folgt aus der Korrektheit der angewendeten Ersetzungsregeln

Für den Ausdruck ∅ können wir einen NFA direkt angeben (wie vorn); andernfalls gehen wir wie folgt vor:

Gegeben: regulärer Ausdruck α ohne \emptyset

Für den Ausdruck ∅ können wir einen NFA direkt angeben (wie vorn); andernfalls gehen wir wie folgt vor:

Gegeben: regulärer Ausdruck α ohne \emptyset

Initialisierung:
$$\mathcal{M}_{\alpha} = A$$
 $\xrightarrow{\alpha}$ B

Für den Ausdruck Ø können wir einen NFA direkt angeben (wie vorn); andernfalls gehen wir wie folgt vor:

Gegeben: regulärer Ausdruck α ohne \emptyset

Initialisierung:
$$\mathcal{M}_{\alpha} = A$$
 $\xrightarrow{\alpha}$ B

• Ersetze
$$q$$
 $\xrightarrow{(\gamma_1 \gamma_2)} p$ durch q $\xrightarrow{\gamma_1} r$ $\xrightarrow{\gamma_2} p$

Für den Ausdruck Ø können wir einen NFA direkt angeben (wie vorn); andernfalls gehen wir wie folgt vor:

Gegeben: regulärer Ausdruck α ohne \emptyset

Initialisierung:
$$\mathcal{M}_{\alpha} = A$$
 $\xrightarrow{\alpha}$ B

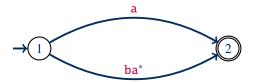
Für den Ausdruck Ø können wir einen NFA direkt angeben (wie vorn); andernfalls gehen wir wie folgt vor:

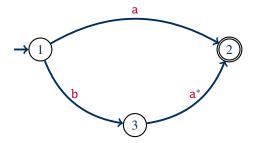
Gegeben: regulärer Ausdruck α ohne \emptyset

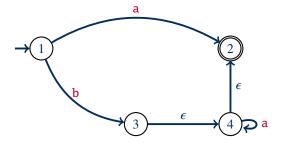
Initialisierung:
$$\mathcal{M}_{\alpha} = A$$

• Ersetze
$$q \xrightarrow{(\gamma_1 \mid \gamma_2)} p$$
 durch $q \xrightarrow{\gamma_1} p$

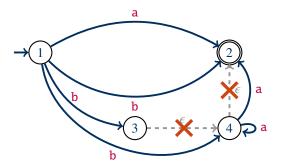








Regulärer Ausdruck: a | ba*

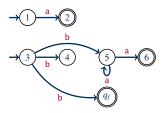


 ϵ -Übergänge können wie gewohnt eliminiert werden, um einen NFA zu erhalten

Vergleich NFA-Konstruktionen

Ausdruck: a | ba*

Kompositioneller Ansatz

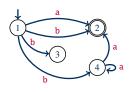


Linear viele Zustände* Meist etwas größer

Korrektheitsbeweis aus Abschlusseigenschaften

Fast ohne Löschen (außer ϵ -Übergänge)

Expliziter Ansatz



Linear viele Zustände* Meist etwas kleiner

Korrektheitsbeweis erfordert neue Argumentation

Übergänge werden oft gelöscht

*) Bzgl. Länge des reg. Ausdrucks bzw. bzgl. Anzahl seiner Operationen

Markus Krötzsch. 27. Oktober 2016 Formale Systeme Folie 28 von 29

Zusammenfassung und Ausblick

Reguläre Ausdrücke sind eine praktisch wichtige Methode zur Beschreibung (beliebiger) regulärer Sprachen

Die kompositionelle Methode wendet Automaten-Operationen an, um aus einem regulären Ausdruck einen NFA zu erzeugen

Die explizite Methode verwendet Übergänge mit regulären Ausdrücken, die schrittweise expandiert werden

Offene Fragen:

- Wie kommt man zurück von NFA zu regulärem Ausdruck?
- Welche Sprachen sind nicht regulär?
- Wie kann man Automaten systematisch vereinfachen?