

# DATABASE THEORY

#### Lecture 14: Datalog Implementation

David Carral Knowledge-Based Systems

TU Dresden, May 26, 2020

# **Review:** Datalog

#### A rule-based recursive query language

| father(alice, bob)                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------|
| mother(alice, carla)                                                                                                             |
| $Parent(x, y) \leftarrow father(x, y)$                                                                                           |
| $Parent(x, y) \leftarrow mother(x, y)$                                                                                           |
| SameGeneration( <i>x</i> , <i>x</i> )                                                                                            |
| $\label{eq:amegeneration} \left  SameGeneration(x,y) \leftarrow Parent(x,v) \land Parent(y,w) \land SameGeneration(v,w) \right.$ |
|                                                                                                                                  |

- · Datalog is more complex than FO query answering
- Datalog is more expressive than FO query answering
- Semipositive Datalog with a successor ordering captures P
- Datalog containment is undecidable

Remaining question: How can Datalog query answering be implemented?

Markus Krötzsch, May 26, 2020

Database Theory

slide 2 of 13

# Implementing Datalog

FO queries (and thus also CQs and UCQs) are supported by almost all DBMS  $\sim$  many specific implementation and optimisation techniques

#### How can Datalog queries be answered in practice?

 $\rightsquigarrow$  techniques for dealing with recursion in DBMS query answering

#### There are two major paradigms for answering recursive queries:

- Bottom-up: derive conclusions by applying rules to given facts
- Top-down: search for proofs to infer results given query

# Computing Datalog Query Answers Bottom-Up

# We already saw a way to compute Datalog answers bottom-up: the step-wise computation of the consequence operator $T_P$

Bottom-up computation is known under many names:

- Forward-chaining since rules are "chained" from premise to conclusion (common in logic programming)
- Materialisation since inferred facts are stored ("materialised") (common in databases)
- Saturation since the input database is "saturated" with inferences (common in theorem proving)
- Deductive closure since we "close" the input under entailments (common in formal logic)

# Naive Evaluation of Datalog Queries

# A direct approach for computing $T_P^{\infty}$

#### $T_{P}^{0} := \emptyset$ 01 Notation for line 06/07: 02 *i* := 0 • a substitution $\theta$ is a 03 repeat : mapping from variables to 04 $T_{p}^{i+1} := \emptyset$ database elements **for** $H \leftarrow B_1 \land \ldots \land B_\ell \in P$ : 05 • for a formula F, we write $F\theta$ 06 for $\theta \in B_1 \land \ldots \land B_{\ell}(T_p^i)$ : for the formula obtained by replacing each free variable 07 $T_{p}^{i+1} := T_{p}^{i+1} \cup \{H\theta\}$ x in F by $\theta(x)$ 08 i := i + 1• for a CQ *O* and database *I*, 09 until $T_p^{i-1} = T_p^i$ we write $\theta \in Q(I)$ if $I \models Q\theta$ 10 return $T_p^i$

Markus Krötzsch, May 26, 2020

Database Theory

slide 5 of 13

# Less Naive Evaluation Strategies

# Does it really matter how often we consider a rule match? After all, each fact is added only once ...

In practice, finding applicable rules takes significant time, even if the conclusion does not need to be added – iteration takes time!  $\sim$  huge potential for optimisation

#### **Observation:**

#### we derive the same conclusions over and over again in each step

# **Idea:** apply rules only to newly derived facts $\sim$ semi-naive evaluation

Markus Krötzsch, May 26, 2020

Database Theory

slide 7 of 13

What's Wrong with Naive Evaluation?

## An example Datalog program:

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e(1,2)   | e(2,3)                        | e(3,4)          | e(4,5) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------|-----------------|--------|
| ( <i>R</i> 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T(x, y)  | $\leftarrow \mathbf{e}(x, y)$ |                 |        |
| (R2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T(x,z)   | $\leftarrow T(x,y) /$         | T(y, z)         |        |
| How many body matches do w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e need t | o iterate ov                  | ver?            |        |
| $T_P^0 = \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | initialisatio                 | on              |        |
| $T_P^1 = \{T(1,2),T(2,3),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T(3,4),T($ | (4,5)}   | 4 matches                     | s for (R1       | )      |
| $T_P^2 = T_P^1 \cup \{T(1,3),T(2,4),T(3)\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , 5)}    | $4 \times (R1) +$             | $3 \times (R2)$ | )      |
| $T_P^3 = T_P^2 \cup \{T(1,4),T(2,5),T(1,4)\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , 5)}    | $4 \times (R1) +$             | $8 \times (R2)$ | )      |
| $T_P^4 = T_P^3 = T_P^\infty$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | $4 \times (R1) +$             | $10 \times (R$  | 2)     |
| In total, we considered 37 matc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | hes to c | erive 11 fa                   | cts             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                               |                 |        |

Markus Krötzsch, May 26, 2020

Database Theory

Semi-Naive Evaluation

# The computation yields sets $T_P^0 \subseteq T_P^1 \subseteq T_P^2 \subseteq \ldots \subseteq T_P^\infty$

- For an IDB predicate R, let R<sup>i</sup> be the "predicate" that contains exactly the R-facts in T<sup>i</sup><sub>P</sub>
- For  $i \leq 1$ , let  $\Delta_{\mathsf{R}}^{i}$  be the collection of facts  $\mathsf{R}^{i} \setminus \mathsf{R}^{i-1}$

We can restrict rules to use only some computations.

#### Some options for the computation in step i + 1:

| $T(x,z) \leftarrow T^{i}(x,y) \wedge T^{i}(y,z)$           | same as original rule           |
|------------------------------------------------------------|---------------------------------|
| $T(x,z) \leftarrow \Delta^i_T(x,y) \wedge \Delta^i_T(y,z)$ | restrict to new facts           |
| $T(x,z) \leftarrow \Delta^i_T(x,y) \land T^i(y,z)$         | partially restrict to new facts |
| $T(x,z) \leftarrow T^{i}(x,y) \wedge \Delta^{i}_{T}(y,z)$  | partially restrict to new facts |

### What to choose?

Markus Krötzsch, May 26, 2020

slide 8 of 13

slide 6 of 13

# Semi-Naive Evaluation (2)

#### Inferences that involve new and old facts are necessary:

# $\begin{array}{ll} & e(1,2) & e(2,3) & e(3,4) & e(4,5) \\ (R1) & & \mathsf{T}(x,y) \leftarrow \mathsf{e}(x,y) \\ (R2) & & \mathsf{T}(x,z) \leftarrow \mathsf{T}(x,y) \wedge \mathsf{T}(y,z) \end{array}$

|                                                         | $T_P^0 = \emptyset$               |
|---------------------------------------------------------|-----------------------------------|
| $\Delta_{T}^1 = \{T(1,2),T(2,3),T(3,4),T(3,4),T(4,5)\}$ | $T_P^1 = \Delta_{T}^1$            |
| $\Delta_{T}^2 = \{T(1,3),T(2,4),T(3,5)\}$               | $T_P^2 = T_P^1 \cup \Delta_{T}^2$ |
| $\Delta_{T}^3 = \{T(1,4),T(2,5),T(1,5)\}$               | $T_P^3 = T_P^2 \cup \Delta_{T}^3$ |
| $\Delta_T^4 = \emptyset$                                | $T_P^4 = T_P^3 = T_P^\infty$      |

# To derive T(1, 4) in $\Delta_T^3$ , we need to combine T(1, 3) $\in \Delta_T^2$ with T(3, 4) $\in \Delta_T^1$ or T(1, 2) $\in \Delta_T^1$ with T(2, 4) $\in \Delta_T^2$ $\sim$ rule T(x, z) $\leftarrow \Delta_T^i(x, y) \land \Delta_T^i(y, z)$ is not enough

Markus Krötzsch, May 26, 2020

Database Theory

# Semi-Naive Evaluation (3)

**Correct approach:** consider only rule application that use at least one newly derived IDB atom

# For example program:

|                                                                   | e(1,2) $e(2,3)$ $e(3,4)$ $e(4,5)$                                                       |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| ( <i>R</i> 1)                                                     | $T(x,y) \leftarrow e(x,y)$                                                              |
| ( <i>R</i> 2.1)                                                   | $T(x,z) \leftarrow \Delta^i_T(x,y) \wedge T^i(y,z)$                                     |
| ( <i>R</i> 2.2)                                                   | $T(x,z) \leftarrow T^{i}(x,y) \wedge \Delta^{i}_{T}(y,z)$                               |
| There is still redundancy here: the by both $(R2.1)$ and $(R2.2)$ | he matches for $T(x, z) \leftarrow \Delta^i_T(x, y) \land \Delta^i_T(y, z)$ are covered |
| $\rightarrow$ replace (R2.2) by the following                     | g rule:                                                                                 |

# $(R2.2') \qquad \mathsf{T}(x,z) \leftarrow \mathsf{T}^{i-1}(x,y) \land \Delta^{i}_{\mathsf{T}}(y,z)$

EDB atoms do not change, so their ∆ would be Ø → ignore such rules after the first iteration Markus Krötzsch, May 26, 2020 Database Theory

slide 10 of 13

# Semi-Naive Evaluation: Example

|                 | e(1,2)  | e(2,3)                          | e(3,4)                       | e(4,5)     |
|-----------------|---------|---------------------------------|------------------------------|------------|
| ( <b>R</b> 1)   | T(x, y) | $\leftarrow \mathbf{e}(x, y)$   |                              |            |
| ( <i>R</i> 2.1) | T(x, z) | $\leftarrow \Delta^i_{T}(x, y)$ | $(y) \wedge T^{i}(y)$        | <i>z</i> ) |
| (R2.2')         | T(x, z) | $\leftarrow T^{i-1}(x)$         | $(y) \wedge \Delta^i_{T}(y)$ | (y, z)     |

#### How many body matches do we need to iterate over?

| $T_P^0 = \emptyset$                           | initialisation                      |
|-----------------------------------------------|-------------------------------------|
| $T_P^1 = \{T(1,2), T(2,3), T(3,4), T(4,5)\}$  | $4 \times (R1)$                     |
| $T_P^2 = T_P^1 \cup \{T(1,3),T(2,4),T(3,5)\}$ | $3 \times (R2.1)$                   |
| $T_P^3 = T_P^2 \cup \{T(1,4),T(2,5),T(1,5)\}$ | $3 \times (R2.1), 2 \times (R2.2')$ |
| $T_P^4 = T_P^3 = T_P^\infty$                  | $1 \times (R2.1), 1 \times (R2.2')$ |
|                                               |                                     |

#### In total, we considered 14 matches to derive 11 facts

Markus Krötzsch, May 26, 2020

Database Theory

slide 11 of 13

slide 9 of 13

# Semi-Naive Evaluation: Full Definition

### In general, a rule of the form

$$\mathsf{H}(\vec{x}) \leftarrow \mathsf{e}_1(\vec{y}_1) \land \ldots \land \mathsf{e}_n(\vec{y}_n) \land \mathsf{I}_1(\vec{z}_1) \land \mathsf{I}_2(\vec{z}_2) \land \ldots \land \mathsf{I}_m(\vec{z}_m)$$

# is transformed into *m* rules

$$\begin{split} \mathsf{H}(\vec{x}) &\leftarrow \mathsf{e}_1(\vec{y}_1) \wedge \ldots \wedge \mathsf{e}_n(\vec{y}_n) \wedge \Delta_{\mathsf{l}_1}^i(\vec{z}_1) \wedge \mathsf{l}_2^i(\vec{z}_2) \wedge \ldots \wedge \mathsf{l}_m^i(\vec{z}_m) \\ \mathsf{H}(\vec{x}) &\leftarrow \mathsf{e}_1(\vec{y}_1) \wedge \ldots \wedge \mathsf{e}_n(\vec{y}_n) \wedge \mathsf{l}_1^{i-1}(\vec{z}_1) \wedge \Delta_{\mathsf{l}_2}^i(\vec{z}_2) \wedge \ldots \wedge \mathsf{l}_m^i(\vec{z}_m) \end{split}$$

# $\mathsf{H}(\vec{x}) \leftarrow \mathsf{e}_1(\vec{y}_1) \land \ldots \land \mathsf{e}_n(\vec{y}_n) \land \mathsf{I}_1^{i-1}(\vec{z}_1) \land \mathsf{I}_2^{i-1}(\vec{z}_2) \land \ldots \land \Delta_{\mathsf{I}_{-}}^i(\vec{z}_m)$

#### Advantages and disadvantages:

- Huge improvement over naive evaluation
- Some redundant computations remain (see example)
- Some overhead for implementation (store level of entailments)

# Summary and Outlook

Datalog queries can be evaluated bottom-up or top-down

Simplest practical bottom-up technique: semi-naive evaluation

# Next question:

- Can we improve Datalog evaluation further?
- What about practical implementations?

Markus Krötzsch, May 26, 2020

Database Theory

slide 13 of 13