
DATABASE THEORY

Lecture 14: Datalog Implementation

David Carral

Knowledge-Based Systems

TU Dresden, May 26, 2020

Review: Datalog

A rule-based recursive query language

father(alice, bob)
mother(alice, carla)

Parent(x, y) father(x, y)
Parent(x, y) mother(x, y)

SameGeneration(x, x)
SameGeneration(x, y) Parent(x, v) ^ Parent(y, w) ^ SameGeneration(v, w)

• Datalog is more complex than FO query answering

• Datalog is more expressive than FO query answering

• Semipositive Datalog with a successor ordering captures P

• Datalog containment is undecidable

Remaining question: How can Datalog query answering be implemented?

Markus Krötzsch, May 26, 2020 Database Theory slide 2 of 13

Implementing Datalog

FO queries (and thus also CQs and UCQs) are supported by almost all DBMS
{ many specific implementation and optimisation techniques

How can Datalog queries be answered in practice?
{ techniques for dealing with recursion in DBMS query answering

There are two major paradigms for answering recursive queries:

• Bottom-up: derive conclusions by applying rules to given facts

• Top-down: search for proofs to infer results given query

Markus Krötzsch, May 26, 2020 Database Theory slide 3 of 13

Computing Datalog Query Answers Bottom-Up

We already saw a way to compute Datalog answers bottom-up:
the step-wise computation of the consequence operator TP

Bottom-up computation is known under many names:

• Forward-chaining since rules are “chained” from premise to conclusion
(common in logic programming)

• Materialisation since inferred facts are stored (“materialised”)
(common in databases)

• Saturation since the input database is “saturated” with inferences
(common in theorem proving)

• Deductive closure since we “close” the input under entailments
(common in formal logic)

Markus Krötzsch, May 26, 2020 Database Theory slide 4 of 13

Naive Evaluation of Datalog Queries

A direct approach for computing T
1
P

Notation for line 06/07:

• a substitution ✓ is a
mapping from variables to
database elements

• for a formula F, we write F✓
for the formula obtained by
replacing each free variable
x in F by ✓(x)

• for a CQ Q and database I,
we write ✓ 2 Q(I) if I |= Q✓

01 T
0
P
:= ;

02 i := 0

03 repeat :

04 T
i+1
P
:= ;

05 for H B1 ^ . . . ^ B` 2 P :

06 for ✓ 2 B1 ^ . . . ^ B`(Ti

P
) :

07 T
i+1
P
:= T

i+1
P
[{H✓}

08 i := i + 1

09 until T
i�1
P
= T

i

P

10 return T
i

P

Markus Krötzsch, May 26, 2020 Database Theory slide 5 of 13

What’s Wrong with Naive Evaluation?

An example Datalog program:

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y) e(x, y)

(R2) T(x, z) T(x, y) ^ T(y, z)

How many body matches do we need to iterate over?

T
0
P
= ; initialisation

T
1
P
= {T(1, 2), T(2, 3), T(3, 4), T(4, 5)} 4 matches for (R1)

T
2
P
= T

1
P
[{T(1, 3), T(2, 4), T(3, 5)} 4 ⇥ (R1) + 3 ⇥ (R2)

T
3
P
= T

2
P
[{T(1, 4), T(2, 5), T(1, 5)} 4 ⇥ (R1) + 8 ⇥ (R2)

T
4
P
= T

3
P
= T

1
P

4 ⇥ (R1) + 10 ⇥ (R2)

In total, we considered 37 matches to derive 11 facts

Markus Krötzsch, May 26, 2020 Database Theory slide 6 of 13

Less Naive Evaluation Strategies

Does it really matter how often we consider a rule match?
After all, each fact is added only once . . .

In practice, finding applicable rules takes significant time, even if the conclusion does not
need to be added – iteration takes time!
{ huge potential for optimisation

Observation:

we derive the same conclusions over and over again in each step

Idea: apply rules only to newly derived facts
{ semi-naive evaluation

Markus Krötzsch, May 26, 2020 Database Theory slide 7 of 13

Semi-Naive Evaluation

The computation yields sets T
0
P
✓ T

1
P
✓ T

2
P
✓ . . . ✓ T

1
P

• For an IDB predicate R, let Ri be the “predicate” that contains exactly the R-facts in T
i

P

• For i  1, let �i

R be the collection of facts Ri \ Ri�1

We can restrict rules to use only some computations.

Some options for the computation in step i + 1:

T(x, z) Ti(x, y) ^ Ti(y, z) same as original rule

T(x, z) �i

T(x, y) ^ �i

T(y, z) restrict to new facts

T(x, z) �i

T(x, y) ^ Ti(y, z) partially restrict to new facts

T(x, z) Ti(x, y) ^ �i

T(y, z) partially restrict to new facts

What to choose?

Markus Krötzsch, May 26, 2020 Database Theory slide 8 of 13

Semi-Naive Evaluation (2)

Inferences that involve new and old facts are necessary:

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y) e(x, y)

(R2) T(x, z) T(x, y) ^ T(y, z)

T
0
P
= ;

�1
T = {T(1, 2), T(2, 3), T(3, 4), T(3, 4), T(4, 5)} T

1
P
= �1

T

�2
T = {T(1, 3), T(2, 4), T(3, 5)} T

2
P
= T

1
P
[�2

T

�3
T = {T(1, 4), T(2, 5), T(1, 5)} T

3
P
= T

2
P
[�3

T

�4
T = ; T

4
P
= T

3
P
= T

1
P

To derive T(1, 4) in �3
T, we need to combine

T(1, 3) 2 �2
T with T(3, 4) 2 �1

T or T(1, 2) 2 �1
T with T(2, 4) 2 �2

T
{ rule T(x, z) �i

T(x, y) ^ �i

T(y, z) is not enough

Markus Krötzsch, May 26, 2020 Database Theory slide 9 of 13

Semi-Naive Evaluation (3)
Correct approach: consider only rule application that use at least one newly derived
IDB atom

For example program:

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y) e(x, y)

(R2.1) T(x, z) �i

T(x, y) ^ Ti(y, z)

(R2.2) T(x, z) Ti(x, y) ^ �i

T(y, z)

There is still redundancy here: the matches for T(x, z) �i

T(x, y) ^ �i

T(y, z) are covered
by both (R2.1) and (R2.2)
{ replace (R2.2) by the following rule:

(R2.20) T(x, z) Ti�1(x, y) ^ �i

T(y, z)

EDB atoms do not change, so their � would be ;
{ ignore such rules after the first iteration
Markus Krötzsch, May 26, 2020 Database Theory slide 10 of 13

Semi-Naive Evaluation: Example

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y) e(x, y)

(R2.1) T(x, z) �i

T(x, y) ^ Ti(y, z)

(R2.20) T(x, z) Ti�1(x, y) ^ �i

T(y, z)

How many body matches do we need to iterate over?

T
0
P
= ; initialisation

T
1
P
= {T(1, 2), T(2, 3), T(3, 4), T(4, 5)} 4 ⇥ (R1)

T
2
P
= T

1
P
[{T(1, 3), T(2, 4), T(3, 5)} 3 ⇥ (R2.1)

T
3
P
= T

2
P
[{T(1, 4), T(2, 5), T(1, 5)} 3 ⇥ (R2.1), 2 ⇥ (R2.20)

T
4
P
= T

3
P
= T

1
P

1 ⇥ (R2.1), 1 ⇥ (R2.20)
In total, we considered 14 matches to derive 11 facts

Markus Krötzsch, May 26, 2020 Database Theory slide 11 of 13

Semi-Naive Evaluation: Full Definition

In general, a rule of the form

H(~x) e1(~y1) ^ . . . ^ en(~yn) ^ I1(~z1) ^ I2(~z2) ^ . . . ^ Im(~zm)

is transformed into m rules

H(~x) e1(~y1) ^ . . . ^ en(~yn) ^ �i

I1 (~z1) ^ Ii2(~z2) ^ . . . ^ Ii
m

(~zm)

H(~x) e1(~y1) ^ . . . ^ en(~yn) ^ Ii�1
1 (~z1) ^ �i

I2 (~z2) ^ . . . ^ Ii
m

(~zm)

. . .

H(~x) e1(~y1) ^ . . . ^ en(~yn) ^ Ii�1
1 (~z1) ^ Ii�1

2 (~z2) ^ . . . ^ �i

Im (~zm)

Advantages and disadvantages:

• Huge improvement over naive evaluation

• Some redundant computations remain (see example)

• Some overhead for implementation (store level of entailments)

Markus Krötzsch, May 26, 2020 Database Theory slide 12 of 13

Summary and Outlook

Datalog queries can be evaluated bottom-up or top-down

Simplest practical bottom-up technique: semi-naive evaluation

Next question:

• Can we improve Datalog evaluation further?

• What about practical implementations?

Markus Krötzsch, May 26, 2020 Database Theory slide 13 of 13

