
PRACTICAL USES OF EXISTENTIAL RULES
IN KNOWLEDGE REPRESENTATION

Part 2: Existential Rules in Knowledge Representation

David Carral,1 Markus Krötzsch,1 and Jacopo Urbani2

1. TU Dresden
2. Vrije Universiteit Amsterdam

Special thanks to Irina Dragoste,1 Ceriel Jacobs,2 and Maximilian Marx1

for their invaluable contributions to the software used in this tutorial

ECAI, 4 September 2020

https://iccl.inf.tu-dresden.de/web/David_Carral/en
https://kbs.inf.tu-dresden.de/mak
https://www.jacopourbani.it/
https://tu-dresden.de/
https://www.vu.nl/en/


Motivation

“Rules” are the epitome of symbolic reasoning:

• Many logical theories can be represented as rules

• Rules of inference are used to define deduction procedures

{ knowledge representation & reasoning as natural application area for existential rules

Goals for this part:

• Explain how to use rules to solve (quite unrelated) KRR problems

• Illustrate some useful modelling techniques

• Discuss aspects of reasoning performance

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 2 of 27



Description Logics

Description logics (DLs) are influential and widely used ontology languages

• basis of the W3C Web Ontology Language standard OWL

• specific DLs achieve good trade-offs between expressivity and complexity

Schema modelling in DLs: DLs talk about relational models that use only

• classes (unary predicates), e.g., “drink”

• properties (binary predicates), e.g., “madeWith”

DL ontologies describe relationships between these entities, such as

• subclass relations, e.g.,
limeSyrup v fruitSyrup states that “every lime syrup is also a fruit syrup”

• subproperty relations, e.g.,
madeWith v contains states that “if x is made with y, then x contains y”

{ DLs can model general terminological knowledge independent of specific facts

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 3 of 27



The DL EL+⊥ in a nutshell

The EL family of DLs is simple and supports polynomial time standard reasoning

The DL EL+⊥ supports the following class expressions to describe derived classes:

⊥ empty class (bottom) “the empty set”

> universal class (top) “set of all elements”

∃R.C existential restriction “set of all elements that have an R-relation to
some element in class C”

C u D intersection “set of all elements that are in class C and in
class D”

Class expressions and properties can be used in axioms:

C v D class subsumption “Every C is also a D”

R v S property subsumption “Every relation of type R is also one of type S”

R ◦ S v T property chain “Elements connected by a chain of relations R
followed by S are also directly connected by T”

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 4 of 27



The DL EL+⊥ in a nutshell

The EL family of DLs is simple and supports polynomial time standard reasoning

The DL EL+⊥ supports the following class expressions to describe derived classes:

⊥ empty class (bottom) “the empty set”

> universal class (top) “set of all elements”

∃R.C existential restriction “set of all elements that have an R-relation to
some element in class C”

C u D intersection “set of all elements that are in class C and in
class D”

Class expressions and properties can be used in axioms:

C v D class subsumption “Every C is also a D”

R v S property subsumption “Every relation of type R is also one of type S”

R ◦ S v T property chain “Elements connected by a chain of relations R
followed by S are also directly connected by T”

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 4 of 27



EL+⊥ and existential rules

All axioms of EL+⊥ can be rewritten as existential rules

Example: The axiom

alcoholicBeverage v Drink u ∃contains.Alcohol

can be written as a rule

alcoholicBeverage(x)→ ∃y.Drink(x) ∧ contains(x, y) ∧ Alcohol(y)

In general: this works for all Horn Description Logics

Problem: DLs are based on different reasoning methods. The rules they yield do
often not lead to a terminating chase.

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 5 of 27



EL+⊥ and existential rules

All axioms of EL+⊥ can be rewritten as existential rules

Example: The axiom

alcoholicBeverage v Drink u ∃contains.Alcohol

can be written as a rule

alcoholicBeverage(x)→ ∃y.Drink(x) ∧ contains(x, y) ∧ Alcohol(y)

In general: this works for all Horn Description Logics

Problem: DLs are based on different reasoning methods. The rules they yield do
often not lead to a terminating chase.

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 5 of 27



Reasoning for DLs

Example: A small EL+⊥ ontology about drinks:

Highball v Drink u ∃madeWith.Spirit

Spirit v ∃contains.Alcohol

Drink u ∃contains.Alcohol v alcoholicBeverage

madeWith ◦ contains v contains

From this example, we should be able to conclude Highball v alcoholicBeverage.

Definition: The task of computing all logically entailed subsumptions A v B be-
tween atomic classes A and B is called classification.

Classification for EL+⊥ is polynomial, but how exactly should we compute it in rules?

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 6 of 27



Prior research . . .

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 7 of 27



Prior research . . .

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 8 of 27



How to read such rules

General form of the rules:

rule name
pre-condition
conclusion

: side condition

For example:

where the parts have the following meaning:

• O: the given EL+⊥ ontology

• C, D1, D2: arbitrary (possibly nested) EL+⊥ class expressions

• “to occur negatively”: to appear in a subclass position

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 9 of 27



Encoding a calculus in rules

Three different types of inferences

Four kinds of side conditions

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 10 of 27



Encoding a calculus in rules

Three different types of inferences

Four kinds of side conditions

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 10 of 27



Encoding a calculus in rules

Three different types of inferences

Four kinds of side conditions

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 10 of 27



Encoding expressions in predicates

We simply turn every expression in the calculus into a fact:

Expression in calculus Encoding in Datalog facts

C occurs negatively in O nf:isSubClass(C)

C v D ∈ O nf:subClassOf(C,D)

R v∗
O

S nf:subProOf(R,S)

S1 ◦ S2 v S nf:subPropChain(S1,S2,S)

C v D inf:subClassOf(C,D)

E
R
→ C inf:ex(E,R,C)

init(C) inf:init(C)

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 11 of 27



Encoding class expressions

We also need to encode the structure of class expressions

We use an obvious encoding where every sub-expression becomes a fact.

Example: The class A u ∃R.(B u C) is encoded by facts

nf:conj("A u ∃R.(B u C)",A,"∃R.(B u C)")

nf:exists("∃R.(B u C)",R,"B u C")

nf:conj("B u C",B,C)

where every sub-expression is represented by a constant.

Expressions > and ⊥ are encoded by their special OWL names owl:Thing and
owl:Nothing.

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 12 of 27



Encoding class expressions

We also need to encode the structure of class expressions

We use an obvious encoding where every sub-expression becomes a fact.

Example: The class A u ∃R.(B u C) is encoded by facts

nf:conj("A u ∃R.(B u C)",A,"∃R.(B u C)")

nf:exists("∃R.(B u C)",R,"B u C")

nf:conj("B u C",B,C)

where every sub-expression is represented by a constant.

Expressions > and ⊥ are encoded by their special OWL names owl:Thing and
owl:Nothing.

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 12 of 27



Encoding expressions in predicates

Expression in calculus Encoding in Datalog facts

> owl:Thing

⊥ owl:Nothing

X = ∃R.C nf:exists(X,R,C)

X = C u D nf:conj(X,C,D)

C occurs negatively in O nf:isSubClass(C)

C v D ∈ O nf:subClassOf(C,D)

R v∗
O

S nf:subProOf(R,S)

S1 ◦ S2 v S nf:subPropChain(S1,S2,S)

C v D inf:subClassOf(C,D)

E
R
→ C inf:ex(E,R,C)

init(C) inf:init(C)

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 13 of 27



Encoding calculus rules in Datalog

Now all rules from the paper can simply be transcoded

Example:

becomes

inf:subClassOf(?C,?D1andD2) :-

inf:subClassOf(?C,?D1), inf:subClassOf(?C,?D2),

nf:conj(?D1andD2,?D1,?D2), nf:isSubClass(?D1andD2) .

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 14 of 27



Bringing it all together

Steps to produce the Datalog rules:

1. Read the paper carefully and understand the rule structure

2. Define predicates to encode the relevant expressions

3. Rewrite the rules in the new language

Steps to classify an ontology:

1. Encode the ontology using facts for the nf: predicates

2. Store the facts in an rls file, or in csv files

3. Evaluate this data with the calculus rules

4. Computed subclass relations are in predicate inf:subClassOf

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 15 of 27



Hands-On #4: Classifying Galen-EL

Let’s classify the Galen ontology (EL version)

(1) @clear ALL . (if still running)

(2) Register normalised Galen sources and load calculus:
@load "el/galen-sources.rls" .

@load "el/elk-calculus.rls" .

(3) @reason .

(4) Try some queries:
@query COUNT mainSubClassOf(?A,?B) .

@query mainSubClassOf(?A,galen:Virus) .

(5) Export classification to file:
@query mainSubClassOf(?A,?B) EXPORTCSV "galen-inf-subclass.csv" .

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 16 of 27



Performance tuning

Performance is ok for a first translation, but could be improved . . .
. . . but effective tuning requires knowledge of the reasoner!

Special aspects of VLog:

• Predicate tuples are indexed in their given order
Fast: p(?X,?Y,?Z), q(?X,?Y,?V)
Slow: p(?Z,?Y,?X), q(?V,?X,?Y)

• Body conjunctions are evaluated using binary joins

• Join order is determined by heuristics (esp. predicate size)
Fast: short bodies; selective binary joins
Slow: long bodies; possibly very un-selective joins

Running in VLog in debug-mode can yield insights on slow rule executions.

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 17 of 27



Performance tuning

Performance is ok for a first translation, but could be improved . . .
. . . but effective tuning requires knowledge of the reasoner!

Special aspects of VLog:

• Predicate tuples are indexed in their given order
Fast: p(?X,?Y,?Z), q(?X,?Y,?V)
Slow: p(?Z,?Y,?X), q(?V,?X,?Y)

• Body conjunctions are evaluated using binary joins

• Join order is determined by heuristics (esp. predicate size)
Fast: short bodies; selective binary joins
Slow: long bodies; possibly very un-selective joins

Running in VLog in debug-mode can yield insights on slow rule executions.

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 17 of 27



Performance tuning 1: Decompose rules

Some rules are hard to process:

inf:subClassOf(?E,?Y) :- inf:ex(?E,?R,?C), inf:subClassOf(?C,?D),

nf:subProp(?R,?S), nf:exists(?Y,?S,?D), nf:isSubClass(?Y) .

Likely bad join order (starting from small predicates):

(nf:exists(?Y,?S,?D) ./ nf:subProp(?R,?S)) ./ inf:ex(?E,?R,?C)

But most ontologies have very few properties (?R, ?S), each used in a large part of the
existential restrictions{ essentially a product nf:exists(?Y,?S,?D) × inf:ex(?E,?R,?C)

Solution: Replace problematic rule by several rules:

subExt(?D,?R,?Y) :- nf:subProp(?R,?S), nf:exists(?Y,?S,?D),

nf:isSubClass(?Y) .

aux(?C,?R,?Y) :- inf:subClassOf(?C,?D), subExt(?D,?R,?Y) .

inf:subClassOf(?E,?Y) :- inf:ex(?E,?R,?C), aux(?C,?R,?Y) .

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 18 of 27



Performance tuning 1: Decompose rules

Some rules are hard to process:

inf:subClassOf(?E,?Y) :- inf:ex(?E,?R,?C), inf:subClassOf(?C,?D),

nf:subProp(?R,?S), nf:exists(?Y,?S,?D), nf:isSubClass(?Y) .

Likely bad join order (starting from small predicates):

(nf:exists(?Y,?S,?D) ./ nf:subProp(?R,?S)) ./ inf:ex(?E,?R,?C)

But most ontologies have very few properties (?R, ?S), each used in a large part of the
existential restrictions{ essentially a product nf:exists(?Y,?S,?D) × inf:ex(?E,?R,?C)

Solution: Replace problematic rule by several rules:

subExt(?D,?R,?Y) :- nf:subProp(?R,?S), nf:exists(?Y,?S,?D),

nf:isSubClass(?Y) .

aux(?C,?R,?Y) :- inf:subClassOf(?C,?D), subExt(?D,?R,?Y) .

inf:subClassOf(?E,?Y) :- inf:ex(?E,?R,?C), aux(?C,?R,?Y) .

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 18 of 27



Performance tuning 1: Decompose rules

Some rules are hard to process:

inf:subClassOf(?E,?Y) :- inf:ex(?E,?R,?C), inf:subClassOf(?C,?D),

nf:subProp(?R,?S), nf:exists(?Y,?S,?D), nf:isSubClass(?Y) .

Likely bad join order (starting from small predicates):

(nf:exists(?Y,?S,?D) ./ nf:subProp(?R,?S)) ./ inf:ex(?E,?R,?C)

But most ontologies have very few properties (?R, ?S), each used in a large part of the
existential restrictions{ essentially a product nf:exists(?Y,?S,?D) × inf:ex(?E,?R,?C)

Solution: Replace problematic rule by several rules:

subExt(?D,?R,?Y) :- nf:subProp(?R,?S), nf:exists(?Y,?S,?D),

nf:isSubClass(?Y) .

aux(?C,?R,?Y) :- inf:subClassOf(?C,?D), subExt(?D,?R,?Y) .

inf:subClassOf(?E,?Y) :- inf:ex(?E,?R,?C), aux(?C,?R,?Y) .

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 18 of 27



Performance tuning 2: Argument order

Argument order in derived predicates can be changed:

inf:subClassOf(?E,?Y) :- inf:ex(?E,?R,?C), aux(?C,?R,?Y) .

For this rule, it would work better if we flipped the order of inf:ex:

inf:subClassOf(?E,?Y) :- inf:xe(?C,?R,?E), aux(?C,?R,?Y) .

Of course, this must be done across all rules!

An optimised version of the calculus is in file el/elk-caclulus-optimised.rls.
Try it with Galen.

General guideline: There is no simple rule for how to improve performance,
since many optimisations interact. Try what works best.
(The fastest results come from making typos: be sure to check correctness, too!)

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 19 of 27



Performance tuning 2: Argument order

Argument order in derived predicates can be changed:

inf:subClassOf(?E,?Y) :- inf:ex(?E,?R,?C), aux(?C,?R,?Y) .

For this rule, it would work better if we flipped the order of inf:ex:

inf:subClassOf(?E,?Y) :- inf:xe(?C,?R,?E), aux(?C,?R,?Y) .

Of course, this must be done across all rules!

An optimised version of the calculus is in file el/elk-caclulus-optimised.rls.
Try it with Galen.

General guideline: There is no simple rule for how to improve performance,
since many optimisations interact. Try what works best.
(The fastest results come from making typos: be sure to check correctness, too!)

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 19 of 27



Performance tuning 2: Argument order

Argument order in derived predicates can be changed:

inf:subClassOf(?E,?Y) :- inf:ex(?E,?R,?C), aux(?C,?R,?Y) .

For this rule, it would work better if we flipped the order of inf:ex:

inf:subClassOf(?E,?Y) :- inf:xe(?C,?R,?E), aux(?C,?R,?Y) .

Of course, this must be done across all rules!

An optimised version of the calculus is in file el/elk-caclulus-optimised.rls.
Try it with Galen.

General guideline: There is no simple rule for how to improve performance,
since many optimisations interact. Try what works best.
(The fastest results come from making typos: be sure to check correctness, too!)

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 19 of 27



Normalisation

The calculus requires us to pre-compute facts for the ontology encoding

• Standard libraries like the OWL API for Java can help

• But it still requires another software tool

Can’t we do this in rules, too?

Rationale:

• OWL (DL) ontologies are typically stored in an RDF encoding

• Rulewerk and VLog can read RDF data natively

• Rules can perform structural transformations

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 20 of 27



Normalisation

The calculus requires us to pre-compute facts for the ontology encoding

• Standard libraries like the OWL API for Java can help

• But it still requires another software tool

Can’t we do this in rules, too?

Rationale:

• OWL (DL) ontologies are typically stored in an RDF encoding

• Rulewerk and VLog can read RDF data natively

• Rules can perform structural transformations

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 20 of 27



EL in RDF

The RDF format describes labelled graphs, and DL axioms are encoded in graphs as
well.

The following graph encodes A v ∃R.(B u C):

A

R

“∃” “u” n1 n2 rdf:nil

B C

rdfs:subClassOf

owl:onProperty

owl:some
ValuesFrom

owl:inter
sectionOf rdf:next rdf:next

rdf:first rdf:first

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 21 of 27



Extracting EL from RDF
Observation: OWL/RDF contains enough auxiliary nodes to use to represent
subexpressions!

Making suitable rules is not hard:

• Extracting C v D:

nf:subClassOf(?C,?D) :- TRIPLE(?C, rdfs:subClassOf, ?D) .

• Extracting ∃R.X:

nf:exists(?X,?R,?C) :- TRIPLE(?X, owl:someValuesFrom, ?C),

TRIPLE(?X, owl:onProperty, ?R) .
• Extracting binary B u C:

ex:conj(?X,?B,?C) :-

TRIPLE(?X, owl:intersectionOf, ?L1),

TRIPLE(?L1,rdf:next,?L2), TRIPLE(?L2,rdf:next,rdf:nil),

TRIPLE(?L1,rdf:first,?B), TRIPLE(?L2,rdf:first,?C) .

The general case requires some more rules, since OWL encodes n-ary conjunctions as
linked lists.

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 22 of 27



Extracting EL from RDF
Observation: OWL/RDF contains enough auxiliary nodes to use to represent
subexpressions!

Making suitable rules is not hard:

• Extracting C v D:

nf:subClassOf(?C,?D) :- TRIPLE(?C, rdfs:subClassOf, ?D) .

• Extracting ∃R.X:

nf:exists(?X,?R,?C) :- TRIPLE(?X, owl:someValuesFrom, ?C),

TRIPLE(?X, owl:onProperty, ?R) .
• Extracting binary B u C:

ex:conj(?X,?B,?C) :-

TRIPLE(?X, owl:intersectionOf, ?L1),

TRIPLE(?L1,rdf:next,?L2), TRIPLE(?L2,rdf:next,rdf:nil),

TRIPLE(?L1,rdf:first,?B), TRIPLE(?L2,rdf:first,?C) .

The general case requires some more rules, since OWL encodes n-ary conjunctions as
linked lists.

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 22 of 27



Reusing sub-expressions

Problem: The same class expression can occur thousands of times in one ontology
{ duplicated structures, which will all be inferred to be equivalent!

Solution: Replace auxiliary nodes by new elements, unique for each expression

Approach:

• Mark the “main classes” that are not used in auxiliary positions (using negation)

• Use auxiliary predicates for syntactic extraction, e.g.:

synEx(?X,?R,?C) :- TRIPLE(?X, owl:someValuesFrom, ?C),

TRIPLE(?X, owl:onProperty, ?R) .

• Create and define representatives for every expression, recursively:

repOf(?X,?X) :- nf:isMainClass(?X) .

synExRep(?X,?R,?Rep) :- synEx(?X,?R,?Y), repOf(?Y,?Rep) .

nf:exists(!New,?R,?Rep) :- synExRep(?X,?R,?Rep) .

repOf(?X,?N) :- synExRep(?X,?R,?Rep), nf:exists(?N,?R,?Rep) .

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 23 of 27



Reusing sub-expressions

Problem: The same class expression can occur thousands of times in one ontology
{ duplicated structures, which will all be inferred to be equivalent!

Solution: Replace auxiliary nodes by new elements, unique for each expression

Approach:

• Mark the “main classes” that are not used in auxiliary positions (using negation)

• Use auxiliary predicates for syntactic extraction, e.g.:

synEx(?X,?R,?C) :- TRIPLE(?X, owl:someValuesFrom, ?C),

TRIPLE(?X, owl:onProperty, ?R) .

• Create and define representatives for every expression, recursively:

repOf(?X,?X) :- nf:isMainClass(?X) .

synExRep(?X,?R,?Rep) :- synEx(?X,?R,?Y), repOf(?Y,?Rep) .

nf:exists(!New,?R,?Rep) :- synExRep(?X,?R,?Rep) .

repOf(?X,?N) :- synExRep(?X,?R,?Rep), nf:exists(?N,?R,?Rep) .

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 23 of 27



Reusing sub-expressions

Problem: The same class expression can occur thousands of times in one ontology
{ duplicated structures, which will all be inferred to be equivalent!

Solution: Replace auxiliary nodes by new elements, unique for each expression

Approach:

• Mark the “main classes” that are not used in auxiliary positions (using negation)

• Use auxiliary predicates for syntactic extraction, e.g.:

synEx(?X,?R,?C) :- TRIPLE(?X, owl:someValuesFrom, ?C),

TRIPLE(?X, owl:onProperty, ?R) .

• Create and define representatives for every expression, recursively:

repOf(?X,?X) :- nf:isMainClass(?X) .

synExRep(?X,?R,?Rep) :- synEx(?X,?R,?Y), repOf(?Y,?Rep) .

nf:exists(!New,?R,?Rep) :- synExRep(?X,?R,?Rep) .

repOf(?X,?N) :- synExRep(?X,?R,?Rep), nf:exists(?N,?R,?Rep) .

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 23 of 27



Hands-On #5: Normalising Galen

Rules for OWL EL normalisation are given in el/elk-normalisation.rls

Steps to normalise Galen EL from OWL/RDF

1. @clear ALL . (if still running)

2. Load Galen from RDF:
@load RDF "el/galen-el.rdf" .

3. Load the normalisation rules:
@load "el/elk-normalisation.rls" .

4. @reason .

5. Check result, e.g.,
@query nf:exists(?X,?R,?C) LIMIT 10 .

6. Export normalised facts to CSV, e.g.,
@query nf:subClassOf(?C,?D) EXPORTCSV "my-galen-subClassOf.csv" .

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 24 of 27



Putting it all together

We have just implemented a complete EL reasoner in 46 existential rules:
just load elk-normalisation.rls and elk-calculus-optimised.rls together
with the triples of a OWL/RDF file!

How about performance?

• Running normalisation and reasoning separately is faster than doing everything in
one step (more rules – harder to optimise for VLog)

• Performance is below dedicated OWL EL reasoners, but practical:

[Laptop, Intel i7 2.70GHz, 4G Java heap] Normalisation only Reasoning only All in one

GALEN EL (250K triples) 2.5sec 25sec 4min

SNOMED CT (2.9M triples) 30sec 2min 9min

But then again, this only took <50 lines of code!

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 25 of 27



Putting it all together

We have just implemented a complete EL reasoner in 46 existential rules:
just load elk-normalisation.rls and elk-calculus-optimised.rls together
with the triples of a OWL/RDF file!

How about performance?

• Running normalisation and reasoning separately is faster than doing everything in
one step (more rules – harder to optimise for VLog)

• Performance is below dedicated OWL EL reasoners, but practical:

[Laptop, Intel i7 2.70GHz, 4G Java heap] Normalisation only Reasoning only All in one

GALEN EL (250K triples) 2.5sec 25sec 4min

SNOMED CT (2.9M triples) 30sec 2min 9min

But then again, this only took <50 lines of code!

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 25 of 27



Summary

What we learned

• Many rules-based reasoning calculi can be implemented in rules
• This is a multi-step process:

– Develop suitable encoding
– Translate and debug rules
– Optimise performance

• Rules also help with related tasks (normalisation, reduction, result
comparison, . . . )

• Rulewerk/VLog can be used for rapid prototyping of reasoning calculi

Up next: how to handle reasoning tasks beyond P

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 26 of 27



References
[1] David Carral, Irina Dragoste, Larry González, Ceriel J. H. Jacobs, Markus Krötzsch,
Jacopo Urbani: VLog: A Rule Engine for Knowledge Graphs. ISWC (2) 2019: 19-35
Current main reference for Rulewerk (formerly: VLog4j)

[2] David Carral, Irina Dragoste, Markus Krötzsch: Reasoner = Logical Calculus +
Rule Engine. KI - Künstliche Intelligenz, 2020. Further discussion of this use case
(rules for reasoning)

[3] Yevgeny Kazakov, Markus Krötzsch, Frantisek Simancik: The Incredible ELK –
From Polynomial Procedures to Efficient Reasoning with EL Ontologies. J. Autom.
Reason. 53(1): 1-61 (2014) Source of the DL reasoning calculus used herein

[4] Markus Krötzsch: Efficient Rule-Based Inferencing for OWL EL. IJCAI 2011:
2668-2673 An earlier, less efficient Datalog calculus for EL

[5] Jacopo Urbani, Ceriel J. H. Jacobs, Markus Krötzsch: Column-Oriented Datalog
Materialization for Large Knowledge Graphs. AAAI 2016: 258-264 Original
publication about VLog’s design; explains the indexing method relevant for our
optimisation here

Markus Krötzsch, 4 September 2020 Practical Uses of Existential Rules in Knowledge Representation slide 27 of 27


