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Abstract. Horn description logics (Horn-DLs) have recently started to attract
attention due to the fact that their (worst-case) data complexities are in general
lower than their overall (i.e. combined) complexities, which makes them attrac-
tive for reasoning with large ABoxes. However, the natural question whether
Horn-DLs also provide advantages for TBox reasoning has hardly been addressed
so far. In this paper, we therefore provide a thorough and comprehensive analysis
of the combined complexities of Horn-DLs. While the combined complexity for
many Horn-DLs turns out to be the same as for their non-Horn counterparts, we
identify subboolean DLs where Hornness simplifies reasoning.

1 Introduction

One of the driving motivations behind description logic (DL) research is to design lan-
guages which maximise the availability of expressive language features for the knowl-
edge modelling process, while at the same time striving for the most inexpensive lan-
guages in terms of computational complexity. A particularly prominent case in point
is the DL-based Web Ontology Language OWL,1 which is a W3C recommended stan-
dard since 2004. OWL (more precisely, OWL DL) is indeed amongthe most expressive
known knowledge representation languages which are also decidable.

Of particular interest for practical investigations are obviously tractable DLs. While
not being boolean closed, and thus relatively inexpressive, they recently receive in-
creasing attention as they promise to provide a good trade-off between expressivity and
scalability (see e.g. [1]).

At the same time, Horn-DLs have been introduced [2, 3], as their generally lower
data complexities make them a natural and efficient choice for reasoning with large
numbers of individuals, i.e. for ABox-reasoning. However,the natural question whether
Horn-DLs also provide advantages for TBox reasoning – in terms of combined com-
plexity – has hardly been addressed so far.

In this paper, we therefore provide a thorough and comprehensive analysis of the
combined complexities of Horn-DLs. While the combined complexity for many Horn-
DLs turns out to be the same as for their non-Horn counterparts – which is no surprise
–, we are also able to identify subboolean DLs where the Hornness restriction improves
reasoning complexity.

1 http://www.w3.org/2004/OWL/



Table 1.Concept constructors inSHOIQ◦. Semantics refers to an interpretationI with domain
D.

Name Syntax Semantics
inverse role R− {(x, y) | (y, x) ∈ RI}
top ⊤ D

bottom ⊥ ∅

nominal {i} {iI}
negation ¬C D \CI

conjunction C ⊓ D CI ∩ DI

disjunction C ⊔ D CI ∪ DI

univ. restriction ∀R.C {x ∈ D | (x, y) ∈ RI impliesy ∈ CI}
exist. restriction ∃R.C {x ∈ D | for somey ∈ D, (x, y) ∈ RI andy ∈ CI}
qualified number≤ n R.C {x ∈ D | #{y ∈ D | (x, y) ∈ RI andy ∈ CI} ≤ n}
restriction ≥ n R.C {x ∈ D | #{y ∈ D | (x, y) ∈ RI andy ∈ CI} ≥ n}

The paper is structured as follows. After recalling some preliminaries on DLs, we
deal in turn with the Horn versions ofFL0, FL−andFLE and some of their variants.
We will see that these provide us with a fairly complete picture of the complexities of
Horn-DLs.

2 Preliminaries

In this section, we briefly recall some basic definitions of DLs and introduce our nota-
tion. We start with the rather expressive description logicSHOIQ◦ and define other
DLs as restrictions thereof.

Definition 1. A knowledge base of the description logicSHOIQ◦ is based on a setNR

of role names, a setNC of concept names, and a setI of individual names. The set of
SHOIQ◦ atomic conceptsC consists of all concept names and all expressions of the
form {i} with i ∈ NI . The set ofSHOIQ◦ (abstract) rolesis R = NR ∪ {R− | R ∈ NR},
and we setInv(R) = R− and Inv(R−) = R. In the following, we leave this vocabulary
implicit and assume that A, B are atomic concepts, a, b are individual names, and R, S
are abstract roles.

ASHOIQ◦ knowledge base consists of three finite sets of axioms that are referred
to as RBox, TBox, and ABox. A SHOIQ◦ RBox may contain axioms of the form
S ⊑ R iff it also containsInv(S) ⊑ Inv(R), and axioms of the formTrans(R) iff it also
containsTrans(Inv(R)). By⊑∗ we denote the reflexive-transitive closure of⊑. A role R is
transitivewhenever there is a role S such thatTrans(S), R⊑∗ S and S⊑∗ R. R issimple
if it has no transitive subroles, i.e., if S⊑∗ R implies that S is not transitive. Roles that
are not simple are also calledcomplex. Moreover, an RBox can contain axioms of the
form S1 ◦ . . . ◦ Sn ⊑ R.

ASHOIQ◦ TBox consists of axioms of the form C⊑ D, where C and D areconcept
expressionsconstructed from concept names, role names, and individualnames by the
operators shown in Table 1. ASHOIQ◦ ABox consists of axioms of the form A(a),
R(a, b), and a≈ b.



The above definition is fairly standard, except that we restrict ABox concept state-
ments to atomic concepts. Our ABoxes thus areextensionally reduced, but it is known
that this does not restrict the expressivity of the logic since complex ABox statements
can easily be moved into the TBox by introducing auxiliary concept names. Moreover,
we do not explicitly consider concept/role equivalence≡, since it can be modelled via
mutual concept/role inclusions.

We adhere to the common model-theoretic semantics forSHOIQ◦ with general
concept inclusion axioms: an interpretationI consists of a setD calleddomaintogether
with a function·I mapping

– individual names to elements ofD,
– class names to subsets ofD, and
– role names to subsets ofD×D.

This function is inductively extended to roles and concept descriptions as shown in
Table 1. An interpretationI satisfiesan axiomF, writtenI |= F, if one of the following
conditions hold:

– I |= S ⊑ R if SI ⊂ RI

– I |= S1 ◦ . . . ◦ Sn ⊑ R if SI1 ◦ . . . ◦ SIn ⊆ RI (where◦ is the relational product)
– I |= Trans(S) if SI is a transitive relation
– I |= C ⊑ D if CI ⊆ DI

– I |= A(a) if aI ∈ AI

– I |= R(a, b) if (aI, bI) ∈ RI

– I |= a ≈ b if aI = bI

We will be specifically interested in (variants of) the following subboolean frag-
ments ofSHOIQ◦. Those definitions and naming conventions can also be found in
[4].

Definition 2. Restricting the syntax ofSHOIQ◦, we define the following description
logics:

– FLE is the fragment ofSHOIQ◦ using only the constructors⊤, ⊥, ⊓, ∃, and∀.
– FL− is the fragment ofFLE for which all existential role restrictions have the form
∃R.⊤.

– FL0 is the fragment ofFL− that does not contain existential role restrictions.

In the presence of GCIs, all of those logics are known to have acombined com-
plexity that is ET-complete. To prevent this effect in our below investigation of
their Horn-fragments, we impose suitable restrictions that ensure that the syntactically
forbidden constructors do not sneak in through the back door.

2.1 Horn DLs

Now we define the class of Horn DLs. This is done by first definingHorn-SHOIQ◦,
and then identifying suitable (syntactic) fragments of it.



Table 2.A grammar for defining Horn-SHOIQ◦. A, R, andSdenote the sets of all atomic con-
cepts, abstract roles, and simple role names, respectively. The presentation is slightly simplified
by exploiting associativity and commutativity of⊓ and⊔, and by omitting≥1R.C if ∃R.C is
present.

C+1 F ⊤ | ⊥ | ¬C−1 | C
+
1 ⊓ C+1 | C

+
0 ⊔ C+1 | ∃R.C

+
1 | ∀S.C

+
1 | ∀R.C

+
0 | ≥n R.C+1 | ≤1 R.C−0 | A

C−1 F ⊤ | ⊥ | ¬C+1 | C
−
0 ⊓ C−1 | C

−
1 ⊔ C−1 | ∃S.C

−
1 | ∃R.C

−
0 | ∀R.C

−
1 | ≥2 R.C−0 | ≤n R.C+1 | A

C+0 F ⊤ | ⊥ | ¬C−0 | C
+
0 ⊓ C+0 | C

+
0 ⊔ C+0 | ∀R.C

+
0

C−0 F ⊤ | ⊥ | ¬C+0 | C
−
0 ⊓ C−0 | C

−
0 ⊔ C−0 | ∃R.C

−
0 | A

Definition 3. The description logic Horn-SHOIQ◦ is defined asSHOIQ◦ except
that the only allowed concept inclusions are of the formC−0 ⊑ C+1 or C−1 ⊑ C+0 according
to the grammar in Table 2.

This definition stems from [5] and has merely been exended by nominals in a
straightforward way. Our results in the following sectionsillustrate that adding nom-
inals to Horn logics in the above sense does often not affect the combined complexity
of typical reasoning tasks. To facilitate further considerations and proofs, we now show
that any Horn-SHOIQ◦ knowledge base can be transformed into an equisatisfiable
Horn-SHOIQ◦ knowledge base without negations and disjunctions.

As a first facilitation, note that any GCIC ⊑ D with C ∈ C−1 and D ∈ C+0 is
equivalent to the GCI¬D ⊑ ¬C. Since¬D ∈ C+1 and¬C ∈ C−0 we will in the following
assume any GCI to be of the formC−0 ⊑ C+1 . For a given concept description, we
recursively define the negation normal form (NNF) as usual by:

NNF(C) ≔ C for all C ∈ {⊤,⊥,A,¬A}
NNF(¬⊤) ≔ ⊥

NNF(¬⊥) ≔ ⊤

NNF(¬¬C) ≔ NNF(C)
NNF(C ⊓ D) ≔ NNF(C) ⊓ NNF(D)
NNF(¬(C ⊓ D)) ≔ NNF(¬C) ⊔ NNF(¬D)
NNF(C ⊔ D) ≔ NNF(C) ⊔ NNF(D)
NNF(¬(C ⊔ D)) ≔ NNF(¬C) ⊓ NNF(¬D)
NNF(∀R.C) ≔ ∀R.NNF(C)
NNF(¬∀R.C) ≔ ∃R.NNF(¬C)
NNF(∃R.C) ≔ ∃R.NNF(C)
NNF(¬∃R.C) ≔ ∀R.NNF(¬C)
NNF(≤ nR.C) ≔ ≤ nR.NNF(C)
NNF(¬ ≤ nR.C) ≔ ≥ (n+ 1)R.NNF(C)
NNF(≥ nR.C) ≔ ≥ nR.NNF(C)
NNF(¬ ≥ nR.C) ≔ ≤ (n− 1)R.NNF(C)

Obvously, calculating the negation normal form of a conceptdescription does not
change its semantics (see, e.g., [6]). As an auxiliary lemma, we will show that convert-
ing a concept expression to itsNNF does not change its grammar type due to Table 2.



Table 3.Reduced grammar for defining Horn-SHOIQ◦ via theNNF.

C+1 F ⊤ | ⊥ | C+1 ⊓ C+1 | C
+
0 ⊔ C+1 | ∃R.C

+
1 | ∀S.C

+
1 | ∀R.C

+
0 | ≥n R.C+1 | ≤1 R.C−0 | A | ¬A

C+0 F ⊤ | ⊥ | C+0 ⊓ C+0 | C
+
0 ⊔ C+0 | ∀R.C

+
0 | ¬A

C−0 F ⊤ | ⊥ | C−0 ⊓ C−0 | C
−
0 ⊔ C−0 | ∃R.C

−
0 | A

Lemma 1. Let C ∈ D be a concept description withD ∈ {C+1 ,C
−
1 ,C

+
0 ,C

−
0} . Then

NNF(C) ∈ D as well.

Proof. The proof can be done by induction over the formula depth. Note that for every
D, we just have to check the case¬D′ since in the other cases the proposition follows
directly from the induction hypothesis. Moreover one can skip the cases where double
negation occurs, since it can be just eliminated directly (and in the presented grammar,
for anyD, ¬¬C ∈ D impliesC ∈ D).

The base cases (i.e.,C ∈ ⊤,⊥,A,¬A) are clear sinceNNF does not change them at
all. From the remaining cases, we will just exemplarily giveone, the others can be done
in an analogue way.

Thus considerD = C+1 andC = ¬(D ⊓ E) with D ∈ C−0 andE ∈ C−1 . This directly
implies¬D ∈ C+0 and¬E ∈ C+1 . Due to the induction hypothesis, we then also have
NNF(¬D) ∈ C+0 andNNF(¬E) ∈ C+1 . Hence,NNF(¬(D⊓E)) = NNF(¬D)⊔NNF(¬E) ∈
C+1 as a look to the grammar immediately shows. ⊓⊔

Note that any concept expression of any DL allowing arbitrary negation can be
transformed intoNNF, while for DLs not allowing negation (or only on the atomic con-
cept level) any concept expression trivially is already in negation normal form. Hence
we will without loss of generality assume that all concept expressions we deal with are
in NNF.

This directly reduces the grammar from Table 2 to the one presented in Table 3. The
assumptions underlying this reduction have an important effect on subsequent syntactic
restrictions. On the one hand, the transformation to negation normal form may introduce
different logical operators. On the other hand, the aforementioned transformation from
C−1 ⊑ C+0 to C−0 ⊑ C+1 may also have this effect. For example, theFL0 axiom∀R.C ⊑
∀S.⊥ is of the formC−1 ⊑ C+0 . Its equivalent form∃S.⊤ ⊑ ∃R.C in turn can be stated
only in (Horn-)FLE. This effect is due to the presence of GCIs, and is also the reason
why the distinction ofFL0, FL−, andFLE is not of interest in this general case [4].
Since it is our goal to identify description logic fragmentsthat are sufficiently restricted
to have smaller worst-case complexities, we prevent the above effect by restricting to
FL0 andFL− axioms to the normal form of Table 3.

Definition 4. A knowledge base is in Horn-FL0 (Horn-FL−, Horn-FLE) whenever all
its TBox axioms F satisfy the following requirements:

– F is of the formC−0 ⊑ C+1 of Table 3, and
– F is inFL0 (FL−, FLE).

For defining the Horn fragments of all DLs that are Boolean closed, one can as
well consider axioms of all forms given in Table 2. Especially, this extension yields



Table 4.Normal form for Horn-SHOIQ◦. A, B, andC are names of atomic concepts,R, S, and
T (possibly inverse) role names, andc andd individual names.

⊤ ⊑ A A⊓ B ⊑ C ∃R.A ⊑ B A(c) R ⊑ T
A ⊑ ⊥ A ⊑ ∃R.B A ⊑ ∀S.B R(c,d) R◦ S ⊑ T
A ⊑ ≥n R.A A ⊑ ≤1 R.A A ⊑ C c≈ d

Table 5. Normal form transformation for Horn-SHOIQ◦. A, B, C, Â, Ĉ, and D are concept
expressions, wherêA andĈ are neither concept names nor nominals, andD is a fresh concept
name.Ri , S, andU are (possibly inverse) role names, whereU is fresh.

P1: R1 ◦ . . . ◦Rn−1 ◦ Rn ⊑ S 7→ {R1 ◦ . . . ◦ Rn−1 ⊑ U,U ◦ Rn ⊑ S}
Â ⊑ Ĉ 7→ {Â ⊑ D,D ⊑ Ĉ}

Â⊓ B ⊑ C 7→ {Â ⊑ D,D ⊓ B ⊑ C}
B⊓ Â ⊑ C 7→ {Â ⊑ D,D ⊓ B ⊑ C}

A ⊑ B⊔C 7→ {A ⊑ D,D ⊓ NNF(¬B) ⊑ C} if B ∈ C+0
{A ⊑ D,D ⊓ NNF(¬C) ⊑ D} otherwise

∃R.Â ⊑ B 7→ {Â ⊑ D,∃R.D ⊑ B}
A ⊑ ∃R.Ĉ 7→ {A ⊑ ∃R.D,D ⊑ Ĉ}
A ⊑ ∀R.Ĉ 7→ {A ⊑ ∀R.D,D ⊑ Ĉ}
A ⊑ ≥n R.B̂ 7→ {A ⊑ ≥n R.D,D ⊑ B̂}
A ⊑ ≤1 R.B̂ 7→ {A ⊑ ≤1 R.D,D ⊑ B̂}
⊥ ⊑ C 7→ ∅

A ⊑ ⊤ 7→ ∅

P2: A ⊑ B⊓C 7→ {A ⊑ B,A ⊑ C}
Â⊔ B ⊑ C 7→ {Â ⊑ C,B ⊑ C}
B⊔ Â ⊑ C 7→ {Â ⊑ C,B ⊑ C}

A ⊑ ¬B 7→ {A ⊑ D,D ⊓ B ⊑ ⊥}

the well-known definition for Horn-SHIQ [3]. While the above negation normal form
thus is a true restriction for some description logics, we will now show that one can
safely extend all of the Horn fragments we consider with negations and (some of the)
disjunctions allowed in Table 3.

Definition 5. A Horn-SHOIQ◦ knowledge base is innormal formif it contains only
axioms of the forms shown in Table 4.

The following shows that we can restrict to knowledge bases in normal form for
checking satisfiability.

Theorem 1. Checking satisfiability of a Horn-SHOIQ◦ knowledge base can be re-
duced in linear time to checking satisfiability of a Horn-SHOIQ◦ knowledge base that
is in normal form.

Proof. Consider the transformation rules in Table 5, where each rule replaces one axiom
by a set of derived axioms. A transformation algorithm is given by first exhaustively
applying the rules P1 to the knowledge base, and then exhaustively applying the rules
P2. We have to show the following propositions:



– The algorithm terminates after at most a linear number of steps.
– The result of this transformation is a knowledge base in normal form.
– The algorithm preserves satisfiability.

Termination in linear time is guaranteed by the fact that theprocess traverses the
axioms in a top-down manner and produces strictly smaller axioms and by ensuring
(by the two step process) that the only concepts being multiplied during the process are
concept names (such that they do not require any further reduction steps).

That the resulting knowledge base is in normal form can be easily seen: for any
axiom being not in normal form, one of the transformation rules applies. Termination
of the process has been shown above, so the only possible axioms left must be in normal
form.

That the algorithm preserves satisfiability follows from the fact, that any of the
transformation steps does so. Hence one has to show for everytransormation rule that
applying it to an according axiom in a Horn knowledge base KB one obtains an equisat-
isfiable knowledge base KB’. We will show a stronger proposition, namely that for any
modelI of KB we find a modelI′ of KB’ where ·I

′

coincides with·I on the original
sets of concept and role names – and vice versa: any modelI′ of KB’ gives rise to a
modelI of KB with this property. The line of argumentation herein isquite straightfor-
ward: on one hand one provides a canonical extension fromI toI′ by letting the newly
introduced concept have the same extension as the complex concept it substitutes. On
the other hand one shows that in any modelI′ the axiom removed by the transformation
rule is satisfied and henceI′ can also serve as a model of KB. ⊓⊔

Clearly, the above transformation algorithm does not affect the containment of a
set of axioms in a syntactic DL fragment, as long as the negation normal form trans-
formationsNNF(¬B) andNNF(¬C) do not introduce axioms that are outside the given
fragment. The structure of the conceptsB andC above is in turn only depending on
C+0 , and we can easily identify the following admissible extensions of subboolean Horn
logics.

Corollary 1. Consider the following alternative definitions ofC+0 in Table 3:

(a) C+0
′
≔ ⊤ | ⊥ | C+0

′
⊓C+0

′
| C+0

′
⊔ C+0

′
| ¬A

(b) C+0
′′
≔ ⊤ | ⊥ | C+0

′′
⊓ C+0

′′
| C+0

′′
⊔ C+0

′′
| ∀R.⊥ | ¬A

Moreover, letC+1
′ and C+1

′′ denote the rules obtained by replacingC+0 ⊔ C+1 in the
definition ofC+1 byC+0

′
⊔C+1 andC+0

′′
⊔ C+1 , respectively.

Checking satisfiability of a knowledge base that consists ofFL0 (FL−) axioms of the
formC−0 ⊑ C+1

′ (C−0 ⊑ C+1
′′) can be reduced in linear time to checking satisfiability of a

Horn-FL0 (Horn-FL−) knowledge base that is in the reduced normal form of Table 4.

Knowing that they can be reduced to the standard notions, we will not consider
extensions of the above form in the rest of this paper. Similar restricted forms of dis-
junction and atomic negation are admissible in many Horn-fragments. For example,
note that also the description logicEL++ [1] can be extended with Horn atomic nega-
tions and some forms of Horn disjunctions (arbitrary disjunction in C−0 and disjunction



with quantifier-freeC+0 as part ofC+1 ), thus obtaining an even more expressive tractable
description logic.

The principles underlying the above reduction of⊔ are easily seen to be closely
related toLloyd-Topor transformationsthat are well-known in (Horn) logic program-
ming. Reductions of atomic negations are less common, sincemany logic programming
paradigms do not support⊥ and classical negations.

2.2 Reducibility of reasoning problems in the Horn case

Finally, we observe that the following standard reasoning tasks are mutually reducuble
even when restricting to Horn knowledge bases:

Knowledge base satisfiability. We call a knowledge basesatisfiable, if it has a
model, i.e., if there exists an interpretationI satisfying all axioms of the knowledge
base.

Instance checking. For a given individuala and a given concept descriptionC of
form C−0 , we ask whetherC(a) is satisfied in all models of the knowledge base KB.
This task can be reduced to the knowledge base satisfiabilityproblem in the following
way: Letting A be a new, unused concept name, check whether the knowledge base
KB ∪ {A(a),A⊓C ⊑ ⊥} is unsatisfiable.

Entailment of TBox axioms. A TBox axiom (GCI)C ⊑ D is entailedby a knowl-
edge base KB if it is satisfied by all interpretations that satisfy the knowledge base.
If C is of the formC+1 and D is of the formC−0 , this problem can be reduced to
the instance checking problem: letA, B be concept names not already present in the
knowledge base KB anda be a new individual name. Then instance check forB(a) in
KB ∪ {A ⊑ C,D ⊑ B,A(a)}.

Concept satisfiability. A concept descriptionC is satisfiable(with respect to a
given knowledge base) if the knowledge base has a modelI with CI , ∅. If C has the
form C+1 , this can be reduced to the preceding problem by checking whetherC ⊑ ⊥ is
entailed by the considered knowledge base.

Hence, we have shown that all reasoning problems can be reduced to knowledge
base satisfiability. Querying a knowledge base for some statement is equivalent to
checking whether the negation of this statement entails unsatisfiability, which explains
why the above (Horn) restrictions on queries are in a sense dual to the restrictions on
Horn axioms.

Finally mark that a knowledge base is satisfiabile if and onlyif the concept⊤ is
satisfiable. This closes the circle and shows that also in theHorn case all mentioned
reasoning tasks are reducible to each other.

3 Horn-FL0

The description logicFL0 is indeed very simple:⊤, ⊥, ⊓, and∀ are the only operators
allowed. Yet, checking the satisfiability ofFL0 knowledge bases is already ET-
complete [1]. In this section, we show that Horn-FL0 is in P, and thus is much simpler
than its non-Horn counterpart. In fact, we can even extend the logic with various oper-
ations without sacrificing tractability.



Table 6. Normal form for Horn-FL0
+. A, B, andC are names of atomic concepts or nominal

classes,R, S, andT (possibly inverse) role names, andc andd individual names.

A ⊑ C ⊤ ⊑ C A(c) R ⊑ T
A⊓ B ⊑ C A ⊑ ⊥ R(c,d) R◦ S ⊑ T

A ⊑ ∀R.C c≈ d

Definition 6. The description logicFL0
+ is the extension ofFL0 with

– nominals,
– role hierarchies,
– role composition, and
– inverse roles.

The logic Horn-FL0
+ is the restriction ofFL0

+ to TBox axioms of the formC0 ⊑ C+1 as
defined in Table 4.

To show that Horn-FL0
+ is in P, we will reduce satisfiability checking for Horn-

FL0
+ to satisfiability checking in the 3-variable fragment of function-free Horn logic. A

Horn-clause is a disjunction of atomic formulae or negations thereof, which contains at
most one non-negated atom, and with all variables quantifieduniversally. Horn-clauses
are commonly written as implications (with possibly empty head or body), and without
explicitly specifying the quantifiers. The following is straightforward.

Proposition 1. Satisfiability of a logical theory that consists of function-free Horn-
clauses with a bounded number of variables can be checked in time polynomial w.r.t.
the size of the theory.

Proof. Due to the absence of function symbols, the theory is equivalent to its grounding
(assuming, w.l.o.g., that the language has at least one constant symbol). The latter is
a theory of propositional Horn-logic that is polynomially bounded in the size of the
input theory. Satisfiability of propositional Horn-logic theories can easily be checked in
polynomial time. ⊓⊔

The following is an easy restriction of Theorem 1 to Horn-FL0
+.

Lemma 2. Checking satisfiability of a Horn-FL0
+ knowledge base can be reduced in

linear time to checking satisfiability of a Horn-FL0
+ knowledge base that contains only

axioms in the normal form given in Table 3.

The normal form transformation is necessary to ensure that at most three distinct
variables are needed within the first-order version of everyaxiom.

Lemma 3. Every Horn-FL0
+ knowledge base in normal form is semantically equiva-

lent to a logical theory in the 3-variable fragment of function-free Horn-logic.

Proof. The translation is straightforward for most cases. Axioms of the formA ⊑ ∀R.C
are translated into Horn-clauses∀x.∀y.(¬A∨ ¬R(x, y) ∨C(y)). For nominal classes{c},
we writex ≈ c instead of{c}(x). Equality statements from this transformation and from



ABox statements are taken into account by explicitly axiomatising equality in Horn-
logic. The following axioms are added

→ x ≈ x C(x) ∨ x ≈ y → C(y)
x ≈ y → y ≈ x R(x, z) ∨ x ≈ y → R(y, z)
x ≈ y∨ y ≈ z → x ≈ z R(z, x) ∨ x ≈ y → R(z, y)

instantiated for every concept and role name in place ofC andR, respectively. Further-
more, a axioms of the form

R(x, y)→ R−1(y, x) R−1(x, y)→ R(y, x)

are added for every role nameR. The additional axioms obviously increase the size
of the knowledge base only linearly. It is easy to see that theresulting Horn-theory is
semantically equivalent to the original knowledge base. ⊓⊔

Summing up, we obtain the following.

Theorem 2. Deciding satisfiability for the description logic Horn-FL0
+ is in P.

Proof. Combine Lemmas 2 and 3 with Proposition 1. ⊓⊔

This also shows that decidability in Horn-FL0 can be checked in polynomial time,
which is an interesting contrast to the ET-completeness ofFL0.

The well-known DLP-fragment ofSHIQ [2] does indeed allow for a similar re-
duction to 3-variable Horn logic, and thus has an at most polynomial time complexity.
To the best of our knowledge, this result has not been spelledout before. While DLP
has sometimes been defined semantically as the general intersection of description log-
ics and logic programming, we need to look at a syntactic definition that allows for a
suitable normal form transformation. The following is taken from [7].

Proposition 2. All description logic programs (DLP) can be transformed into a seman-
tically equivalent set of function-free Horn rules with at most three-variables.

Proof. The claim follows immediately from Theorem 2.2 of [7], together with the nor-
mal forms given in Table 1 loc. cit. ⊓⊔

Corollary 2. Deciding satisfiability for description logic programs (DLP) is inP.

As discussed in [7], extensions of DLP with nominals are alsoadmissible. In fact,
their use of enumerated concepts of the form{o1, o2, . . . , on} is a special case of the
reduction of disjunctions inC−0 established by Theorem 1.

4 Horn-FL−

Horn-FL− is the Horn fragment ofALC that allows⊤, ⊥, ⊓, ∀, and unqualified∃
(i.e. concept expressions of the form∃R.⊤). Although Horn-FL− is only a very small
extension of Horn-FL0, we will see that it is PS-complete. Moreover, not all of the
extensions that could be added to Horn-FL0

+ can also be added to Horn-FL− without
further increasing the complexity. The extension ofFL− that we will consider below is
defined as follows.



Definition 7. The description logicFLOH− is the extension ofFL− with

– nominals, and
– role hierarchies.

The logic Horn-FLOH− is the restriction ofFLOH− to TBox axioms of the formC0 ⊑

C+1 as defined in Table 4.

We will show that all logics between Horn-FL− and Horn-FLOH− are PS-
complete.

4.1 Hardness

We directly show that Horn-FL− is PS by reducing the halting problem for polyno-
mially space-bounded Turing machines to checking unsatisfiability in Horn-FL−.

Definition 8. A deterministic Turing machine(TM)M is a tuple(Q, Σ, ∆, q0) where

– Q is a finite set of states,
– Σ is a finitealphabetthat includes ablanksymbol�,
– ∆ ⊆ (Q × Σ) × (Q × Σ × {l, r}) is a transition relationthat is deterministic, i.e.

(q, σ, q1, σ1, d1), (q, σ, q2, σ2, d2) ∈ ∆ implies q1 = q2, σ1 = σ2, and d1 = d2.
– q0 ∈ Q is theinitial state, and
– QA ⊆ Q is a set ofaccepting states.

A configurationofM is a wordα ∈ Σ∗QΣ∗. A configurationα′ is a successorof a
configurationα if one of the following holds:

1. α = wlqσσrwr , α′ = wlσ
′q′σrwr , and(q, σ, q′, σ′, r) ∈ ∆,

2. α = wlqσ, α′ = wlσ
′q′�, and(q, σ, q′, σ′, r) ∈ ∆,

3. α = wlσlqσwr , α′ = wlq′σlσ
′wr , and(q, σ, q′, σ′, l) ∈ ∆,

where q∈ Q andσ, σ′, σl , σr ∈ Σ as well as wl ,wr ∈ Σ
∗. Given some natural number s,

the possibletransitions in spaces are defined by additionally requiring that|α′| ≤ s+1.
The set ofaccepting configurationsis the least set which satisfies the following

conditions. A configurationα is accepting iff

– α = wlqwr and q∈ QA, or
– at least one the successor configurations ofα are accepting.

M acceptsa given word w∈ Σ∗ (in space s) iff the configuration q0w is accepting (when
restricting to transitions in space s).

The complexity class PS is defined as follows.

Definition 9. A language L is accepted by a polynomially space-bounded TM iff there
is a polynomial p such that, for every word w∈ Σ∗, w ∈ L iff w is accepted in space
p(|w|).



Table 7. Knowledge baseKM,w simulating a polynomially space-bounded TM. The axioms are
instantiated for allq, q′ ∈Q, σ,σ′∈Σ, i, j ∈{0, . . . , p(|w|) − 1}, andδ ∈ ∆.

(1) Left and right transition rules:

Aq ⊓ Hi ⊓Cσ,i ⊑ ∃S.⊤ ⊓ ∀S.(Aq′ ⊓ Hi+1 ⊓Cσ′,i) with δ = (q, σ,q′, σ′, r), i < p(|w|) − 1

Aq ⊓ Hi ⊓Cσ,i ⊑ ∃S.⊤ ⊓ ∀S.(Aq′ ⊓ Hi−1 ⊓Cσ′,i) with δ = (q, σ,q′, σ′, l), i > 0

(2) Memory:

H j ⊓Cσ,i ⊑ ∀S.Cσ,i i , j
(3) Failure: (4) Propagation of failure:

F ⊓ Aq ⊑ ⊥ q ∈ QA F ⊑ ∀S.F

In this section, we exclusively deal with polynomially space-bounded TMs, and so
we omit additions such as “in spaces” when clear from the context.

In the following, we consider a fixed TMM denoted as in Definition 8, and a poly-
nomialp that defines a bound for the required space. For any wordw ∈ Σ∗, we construct
a Horn-FLOH− knowledge baseKM,w and show thatw is accepted byM iff KM,w is
unsatisfiable. Intuitively, the elements of an interpretation domain ofKM,w represent
possible configurations ofM, encoded by the following concept names

– Aq for q ∈ Q: the TM is in stateq,
– Hi for i = 0, . . . , p(|w|) − 1: the TM is at positioni on the storage tape,
– Cσ,i with σ ∈ Σ and i = 0, . . . , p(|w|) − 1: positioni on the storage tape contains

symbolσ.

Based on those concepts, elements in each interpretation ofa knowledge base en-
code certain states of the Turing machine. A roleS will be used to encode the successor
relationship between states. The initial configuration forword w is described by the
concept expressionIw:

Iw ≔ Aq0 ⊓ H0 ⊓Cσ0,0 ⊓ . . . ⊓Cσ|w|−1,|w|−1 ⊓C�,|w| ⊓ . . . ⊓C�,p(|w|)−1,

whereσi denotes the symbol at theith position ofw.
It is not hard to describe runs of the TM with Horn-FL− axioms, but formulating the

acceptance condition is slightly more difficult. The reason is that in absence of state-
ments like∃S.A and∀S.A in the condition part of Horn-axioms, one cannot propagate
acceptance from the final accepting configuration back to initial configuration. The so-
lution is to introduce a new conceptF that states that a state isnot accepting, and to
propagate this assumption forwards along the runs to provoke an inconsistency as soon
as an accepting configuration is reached. Thus we arrive at the axioms given in Table 7.

Next we need to investigate the relationship between elements of an interpretation
that satisfiesKM,w and configurations ofM. Given an interpretationI of KM,w, we say
that an elemente of the domain ofI representsa configurationσ1 . . . σi−1qσi . . . σm if
e ∈ AIq , e ∈ HIi , and, for everyj ∈ {0, . . . , p(|w|) − 1}, e ∈ CI

σ, j whenever



j ≤ m and σ = σm or j > m and σ = �.

Note that we do not require uniqueness of the above, so that a single element might
in fact represent more than one configuration. As we will see below, this does not affect
our results. Ife represents a configuration as above, we will also say thate has stateq,
positioni, symbolσ j at positionj etc.

Lemma 4. Consider some interpretationI that satisfies KM,w. If some element e ofI
represents a configurationα and some transitionδ is applicable toα, then e has an
SI-successor that represents the (unique) result of applyingδ to α.

Proof. Consider an elemente, stateα, and transitionδ as in the claim. Then one of the
axioms (1) applies, andemust also have anSI-successor. This successor represents the
correct state, position, and symbol at positioni of e, again by the axioms (1). By axiom
(2), symbols at all other positions are also represented by all SI-successors ofe. ⊓⊔

Lemma 5. A word w is accepted byM iff {Iw(i), F(i)} ∪ KM,w is unsatisfiable, where i
is a new constant symbol.

Proof. Let I be a model of{Iw(i), F(i)} ∪ KM,w. I being a model forIw(i), iI clearly
represents the initial configuration ofM with input w. By Lemma 4, for any further
configuration reached byM during computation,iI has a (not necessarily direct)SI

successor representing that configuration.
SinceI satisfiesF(i) and axiom (4) of Table 7, a simple induction argument shows

that F I contains allSI successors ofiI. But thenI satisfies axiom (3) only if none
of the configurations that are reached have an accepting state. SinceI was arbitrary,
{Iw(i), F(i)} ∪ KM,w can only have a satisfying interpretation ifM does not reach an
accepting state.

It remains to show the converse: ifM does not acceptw, there is some interpreta-
tion I satisfying{Iw(i), F(i)} ∪ KM,w. To this end, we define a canonical interpretation
M as follows. The domain ofM is the set of all configurations ofM that have size
p(|w|) + 1 (i.e. that encode a tape of lengthp(|w|), possibly with trailing blanks). The
interpretations for the conceptsAq, Hi , andCσ,i are defined as expected so that every
configuration represents itself but no other configuration.Especially,I M

w is the singleton
set containing the initial configuration. Given two configurationsα andα′, and a tran-
sition δ, we define (α, α′) ∈ SM iff there is a transitionδ from α to α′. FM is defined to
be the set of all configurations that are reached during the run ofM onw.

It is easy to see thatM satisfies the axioms (1), (2), and (3) of Table 7. Axiom (4) is
satisfied since, by our initial assumption, none of the configurations reached byM is in
an accepting state. ⊓⊔

Thus checking satisfiability of Horn-FL− knowledge bases is PS-hard.

4.2 Containment

To show that inferencing for Horn-FLOH− is in PS, we develop a tableau algorithm
for deciding the satisfiability of a Horn-FLOH− knowledge base. To this end, we first



Table 8. Normal form for Horn-FLOH−. A, B, andC are names of atomic concepts or nominal
classes,R, S, andT role names, andc andd individual names.

A ⊑ C ∃R.⊤ ⊑ C A⊓ B ⊑ C A(c)
⊤ ⊑ C A ⊑ ∃R.⊤ R ⊑ S R(c,d)
A ⊑ ⊥ A ⊑ ∀R.C c≈ d

present a normal form transformation similar to the one in Section 3. Afterwards, we
present the tableau construction and show its correctness,and demonstrate that it can
be executed in polynomial space.

The reduction is established by first transforming each Horn-FLOH− knowledge
base into a normal form, again by restricting Theorem 1 accordingly.

Lemma 6. Checking satisfiability of a Horn-FLOH− knowledge base can be reduced
in linear time to checking satisfiability of a Horn-FLOH− knowledge base that contains
only axioms in the normal form given in Table 8.

Next, we are going to present a procedure for checking satisfiability of Horn-FL−

knowledge bases. In the following we assume without loss of generality that theFL−

language in consideration has at least one individual symbol.

Definition 10. Consider a Horn-FLOH− knowledge base KB in normal form, withC
the set of atomic concepts and nominal names,R the set of role names, andI the set of
individual names. A set of relevant concept expressions is defined by setting

cl(KB) = C ∪ {QR.C|R ∈ R,C ∈ C,Q ∈ {∃,∀}} ∪ {⊤,⊥}.

Given a set I of individual names, a setTI of ABox expressions is defined as follows:

TI ≔ {C(e) | C ∈ cl(KB), e ∈ I } ∪ {R(e, f ) | R ∈ R, e, f ∈ I }

For a set T⊆ TI and individuals e, f∈ I, we use Te7→ f to denote the set

{C( f ) | C(e) ∈ T} ∪ {R( f , g) | R(e, g) ∈ T, g ∈ I } ∪ {R(g, f ) | R(g, e) ∈ T, g ∈ I }.

For the special case that e= f , we use the abbreviation Te≔ Te7→e. A tableaufor KB is
given by a (possibly infinite) set I of individual names, and aset T⊆ TI such thatI ⊆ I
and the following conditions hold:

1. if e∈ I, then⊤(e) ∈ T and, if e∈ I , {e} ∈ T,
2. if A(e) ∈ KB (R(e, f ) ∈ KB), then A(e) ∈ T (R(e, f ) ∈ T),
3. if e≈ f ∈ KB, then{ f }(e) ∈ T and{e}( f ) ∈ T,
4. if { f }(e) ∈ T, then C(e) ∈ T iffC( f ) ∈ T, R(e, g) ∈ T iffR( f , g) ∈ T, and R(g, e) ∈ T

iff R(g, f ) ∈ T, for all C ∈ C, R∈ R, and g∈ I,
5. if A ⊑ C ∈ KB and A(e) ∈ T, then C(e) ∈ T,
6. if A⊓ B ⊑ C ∈ KB, A(e) ∈ T, and B(e) ∈ T, then C(e) ∈ T,
7. if R⊑ S ∈ KB and R(e, f ) ∈ T, then S(e, f ) ∈ T,
8. ∃R.⊤(e) ∈ T iff R(e, f ) ∈ T for some f∈ I,



9. if ∀R.C(e) ∈ T, then C( f ) ∈ T for all f ∈ I with R(e, f ) ∈ T,

A tableauis said contain aclashif it contains a statement of the form⊥(e).

Proposition 3. A Horn-FLOH− knowledge base KB is satisfiable iff it has a clash-free
tableau.

Proof. Assume thatKB has a clash-free tableau (I ,T). An interpretationI is defined
as follows. Due to condition 4 in Definition 10, we can define anequivalence relation∼
on I by settinge∼ f iff there is someg ∈ I with {{g}(e), {g}( f )} ⊆ T. The domainI∼ of
I is the set of equivalence classes of∼. The interpretation function is defined by setting
eI = [e]∼, eI ∈ CI iff C(e) ∈ T, and (eI, f I) ∈ RI iff R(e, f ) ∈ T, for all elementse,
f ∈ I , concept namesC, and role namesR. It is easy to see thatI satisfiesKB.

For the converse, assume thatKB is satisfiable, and that it thus has some modelI.
We define a tableau (I ,T) where I is the domain ofI. Further, we setC(e) ∈ T iff
e ∈ CI, andR(e, f ) ∈ T iff (e, f ) ∈ RI, whereC ∈ cl(KB), andR some role name.
Again, it is easy to see that this meets the conditions of Definition 10. ⊓⊔

As is evident by the Turing machine construction in the previous section, some
Horn-FLOH− knowledge bases may require a model to contain an exponential number
of individuals, even within single paths of the computation. Detecting clashes in poly-
nomial space thus requires special care. In particular, a standard tableau procedure with
blocking does not execute in polynomial space. Therefore, we first provide a procedu-
ral description of acanonical tableauwhich will form the basis for our below decision
algorithm.

Definition 11. Consider an algorithm that computes a tableau-like structure (I ,T). Ini-
tially, we set I≔ I , and T≔ ∅. The algorithm execute the following steps:

(1) Iterate over all individuals e∈ I. To each such e, apply rules (T1) to (T11) of
Table 9.

(2) If T was changed in the previous step, goto (1).
(3) Apply rule (∃) of Table 9 to all existing elements e∈ I.
(4) If T was changed by the previous step, goto (1).
(5) Halt.

While most rules should be obvious, some require explanations. The rules (T6) are
used to ensure that individualse satisfying a nominal class are synchronised with the
respective named individualf ∈ I . The six sub-rules are needed since one generally
cannot add{e}( f ) to T as e might not be an element ofI . On the other hand, role
statements that are inferred in this way need not be taken into account as premises in
other deduction rules, since they are guaranteed to have an active original. Whatever
could be inferred using copied role statements and rules (T9a), (T10), or (T11), can as
well be inferred via the active original from which the inactive role was initially created
(note that this argument involves an induction over the number of applications of rule
(T6)).

Rule (T9) is also special. In principle, one could omit (T9b), and use rules (T9a)
and (T10) instead. This inference, however, is the only casewhere a role-successor



Table 9.An algorithm for constructing tableaux for Horn-FLOH− knowledge bases. Role state-
ments computed by the algorithm might be markedinactiveto better control the deduction. All
other role statements areactive.

(T1) T ≔ T ∪ {⊤(e)}
(T2) if e ∈ I is a named individual,T ≔ T ∪ {{e}(e)}
(T3) for eachA(e) ∈ KB, T ≔ T ∪ {A(e)}
(T4) for eachR(e, f ) ∈ KB, T ≔ T ∪ {R(e, f )}
(T5) for eache≈ f ∈ KB, T ≔ T ∪ {{ f }(e)} andT ≔ T ∪ {{e}( f )}
(T6) for each{ f }(e) ∈ T

(T6a) for eachC( f ) ∈ T, T ≔ T ∪ {C(e)},
(T6b) for eachg ∈ I and eachR( f ,g) ∈ T, T ≔ T ∪ {R(e,g)}; R(e,g) is marked inactive,
(T6c) for eachg ∈ I and eachR(g, f ) ∈ T, T ≔ T ∪ {R(g,e)}; R(g,e) is marked inactive,
(T6d) for eachC(e) ∈ T, T ≔ T ∪ {C( f )},
(T6e) for eachg ∈ I and eachR(e,g) ∈ T, T ≔ T ∪ {R( f ,g)}; R( f ,g) is marked inactive,
(T6f) for eachg ∈ I and eachR(g,e) ∈ T, T ≔ T ∪ {R(g, f )}; R(g, f ) is marked inactive

(T7) for eachA ⊑ C ∈ KB, if A(e) ∈ T thenT ≔ T ∪ {C(e)}
(T8) for eachA⊓ B ⊑ C ∈ KB, if A(e) ∈ T andB(e) ∈ T thenT ≔ T ∪ {C(e)}
(T9) for eachR⊑ S ∈ KB, do the following:

(T9a) for eachf ∈ I , if R(e, f ) ∈ T andR(e, f ) is not inactive, thenT ≔ T ∪ {S(e, f )},
(T9b) if ∃R.⊤(e) ∈ T thenT ≔ T ∪ {∃S.⊤(e)}

(T10) for eachf ∈ I andR(e, f ) ∈ T with R(e, f ) not inactive,T ≔ T ∪ {∃R.⊤(e)}
(T11) for each∀R.C(e) ∈ T and eachf ∈ I with R(e, f ) ∈ T,

if R(e, f ) is not inactive, thenT ≔ T ∪ {C( f )}

(∃) for each∃R.⊤(e) ∈ T, if R(e, f ) < T for all f ∈ I then
I ≔ I ∪ {g} andT ≔ T ∪ {R(e,g)}, whereg is a fresh individual

of some individuale might contribute to the classes inferred fore. By providing rule
(T9b), the class expressions containingecan be computed without considering any role
successor, and rule (T10) is essential only when role expressions have been inferred
from ABox statements. In combination with the delayed application of rule (∃), this
ensures that concepts are indeed inferred by (T9b) rather than by (T9a)+(T10), which
will be exploited in the proof of Lemma 9 below.

Also note that the algorithm of Definition 11 is not a decisionprocedure, since
we do not require the algorithm to halt. What we are interested in, however, is the
(possibly infinite) tableau that the algorithm constructs in the limit. The existence of
this limit is evident from the fact that all completion rulesare finitary, and that each rule
monotonically increases the size of the computed structure. It is easy to see that there
is a correspondence between the rules of Table 9 and the conditions of Definition 10,
so that the limit structure will indeed meet all the requirements imposed on a tableau.
For a given knowledge baseKB, we write (̄IKB, T̄KB) to denote thecanonical tableau
constructed by the above algorithm fromKB, where the subscripts are omitted when
understood. It is easy to see that, whenever the canonical tableau contains a clash, this
must be the case for all possible tableaux.



The algorithm of Definition 11 can be viewed as a “breadth-first” construction of
a canonical tableau. Due to the explicit procedural description of tableau rules, any
role and class expression of the canonical tableau is first computed after a well-defined
number of computation steps.2 Accordingly, we define a total order≺ on T̄ by setting
F ≺ G iff F is computed beforeG.

The canonical tableau and the order≺ are the main ingredients for showing the
correctness of following nondeterministic decision algorithm.

Definition 12. Consider a Horn-FLOH− knowledge base KB with canonical tableau
(Ī , T̄). A set of individuals I is defined as I≔ I ∪ {a, b}, where a, b< Ī. Nondeterminis-
tically select one element g∈ I, and initialise T⊆ TI by setting T≔ {⊥(g)}.

The algorithm repeatedly modifies T by nondeterministically applying one of the
following rules:

(N1) Given any X∈ TI , set T≔ T ∪ {X}. If X is a role statement, decide nondetermin-
istically whether X is marked inactive.

(N2) If there is some individual e∈ I and X ∈ T such that X can be derived from
T \ {X} using one of the rules (T1) to (T11) in Table 9, set T≔ T \ {X}. Rules
(T6b), (T6c), (T6e), and (T6f) can only be used if X is marked inactive.

(N3) If Ta = {R(e, a)} for some e∈ I \ {a} such that∃R.⊤(e) ∈ T, set T≔ T \ Ta.
(N4) If Ta = ∅, set T≔ (T ∪ Tb7→a) \ Tb.
(N5) If T = ∅, return “unsatisfiable.”

Lemma 7. The algorithm of Definition 12 can be executed in polynomially bounded
space.

Proof. Since|I |, |C|, and |R| are polynomially bounded by the size of the knowledge
base, so iscl(KB) and thusT. ⊓⊔

Lemma 8. If there is a sequence of choices such that the algorithm of Definition 12
returns “unsatisfiable” after some finite time, KB is indeed unsatisfiable.

Proof. Intuitively, the nondeterministic algorithm applies rules of the algorithm in Def-
inition 11 in reverse order, deleting a conclusion wheneverit can be derived from the
remaining statements. The anonymous individualsa andb are used to dynamically rep-
resent (various) elements from the canonical tableau. For aformal proof, assume that
the algorithm terminates within finitely many steps, and, without loss of generality, that
each step involves a successful application of one of the rules (N1) to (N5). We useTn

to denote the state of the algorithmn steps before termination. In particular,T0 = ∅.
We claim that for eachTn there are individualse, f ∈ Ī , such thatTn

a7→e,b7→ f ⊆ T̄.
This is verified by induction over the number of steps executed by the algorithm. Since
T0 = ∅, the claim forT0 holds for anye, f ∈ Ī .

For the induction step, assume thatTn
a7→e,b7→ f ⊆ T̄. To show the claim forTn+1, we

distinguish by the transformation rule that was applied to obtainTn from Tn+1:

2 For this to be true, one must also specify the order for the involved iterations, e.g. by ordering
elements lexicographically and adopting a naming scheme for newly introduced elements. We
assume that such an order was chosen.



(N1) SinceTn+1 ⊂ Tn, we concludeTn+1
a7→e,b7→ f ⊆ T̄.

(N2) Tn+1 = Tn∪{X}, whereX can be derived fromTn by one of the rules (T1) to (T11).
Since those rules have been applied exhaustively inT̄, we findTn+1

a7→e,b7→ f ⊆ T̄.

(N3) We findTn
a = ∅ and, for someg ∈ I \ {a} andR ∈ R, Tn+1 = Tn ∪ {R(g, a)} and

∃R.⊤(g) ∈ Tn. Defineg′ ≔ f if g = b, andg′ = g otherwise. We conclude that
∃R.⊤(g′) ∈ T̄ and thus there is some individuale′ ∈ Ī with R(g′, e′). We conclude
thatTn+1

a7→e′,b7→ f ⊆ T̄.

(N4) This rule merely exchangesb with (the unused)a. Thus we haveTn+1
a7→ f ,b7→e ⊆ T̄.

Applying the above induction to the initial state{⊥(g)}, we find that{⊥(g)}a7→e,b7→ f ∈ T̄.
HenceT̄ indeed contains a clash andKB is unsatisfiable. ⊓⊔

Lemma 9. Whenever KB is unsatisfiable, there is a sequence of choices such that the
algorithm of Definition 12 returns “unsatisfiable” after some finite time.

Proof. We first specify a possible sequence of choices, and then showits correctness.
If KB is unsatisfiable, there is some elemente ∈ Ī in the canonical tableau such that
⊥(e) ∈ T̄. Pick one suche. We usea′ andb′ to denote the elements ofĪ that are currently
simulated bya andb. Initially, we seta′ = b′ = � for some element� < Ī . Rule (N1)
of the algorithm will repeatedly be used to closeT under relevant inferences that are
≺-smaller than some statementX. GivenX ∈ T̄, we define:

↓X =
{

C( f ) ∈ T̄ | C( f ) � X, f ∈ I ∪ {a′, b′}
}

a′ 7→a, b′ 7→b
∪

{

R( f , g) ∈ T̄ | R( f , g) is not inactive,R( f , g) � X, f , g ∈ I ∪ {a′, b′}
}

a′ 7→a, b′ 7→b
.

This selects all elements in̄T that can be represented using the elements fromI with
the current representation ofa′ asa, andb′ asb. Throughout the below computation,
the following property will be preserved:

Ta7→a′ ,b7→b′ ⊆ T̄ (†)

Now if e ∈ I , seta′ ≔ e. Using the nondeterministic initialisation and rule (N1),
the algorithm of Definition 12 can now computeT = ↓{⊥(e)}. The algorithm now
repeatedly executes steps according to the following choice strategy.

Single step choice strategy.If Ta is non-empty, letX be the≺-largest element of
Ta. Else, letX be the≺-largest element ofT. By property (†), there is someX′ ∈ T̄ with
{X}a7→a′ ,b7→b′ = {X′}. Applying rule (N1), the algorithm first computesT ≔ T ∪ ↓X (∗).
The algorithm nondeterministically guesses the rule of Table 9 that was used to infer
X′, and proceeds accordingly:

– If X′ was inferred by one of the rules (T1), (T2), (T3), (T4), (T5),(T7), (T8), (T9a),
(T9b), and (T10), the premises of a respective rule application in T have been com-
puted in (∗). This is so since the required premises are≺-smaller and not inactive,
and since they only involve individuals that are also found in X, i.e. which are rep-
resented byI with the current choice ofa′ andb′. Hence the algorithm can apply
rule (N2) to reduceX.



– If X′ was inferred by one of the rules of (T6), then one of the premises used was
of the form{ f }(e), and thusf ∈ I . Since inactive roles are not generated by any of
the given choices, rules (T6b), (T6c), (T6e), and (T6f) are not relevant. IfX′ was
inferred by rule (T6a) thenX can directly be reduced by applying rule (N2). The
existence of the premises inT follows again from (∗).
If X′ was inferred by rules (T6d), thenX′ is of the formC( f ) and thusTa = ∅. If
the individuale in the premise is inI , thenX again can be reduced by rule (N2). If
e < I , seta′ = e and use rule (N1) to computeTa = {{ f }(e),C(e)}. Apply (N2) to
reduceX.

– If X′ was inferred by rule (T11), thenX′ = C(g) for some elementg, and there is
some elementesuch that{∀R.C(e),R(e, g)} ⊆ T̄. We distinguish two cases:
• If g ∈ I , thenX = C(g) andTa = ∅. Seta′ = e and use rule (N1) to compute

Ta = {∀R.C(a),R(a, g)}. Use rule (N2) to reduceX.
• If g < I , thenX = C(a) ande, a′. If e ∈ I ∪{b′}, then{∀R.C(e),R(e, a)} ⊆ T by

(∗). Use rule (N2) to reduceX. If e < I∪{b′}, thenb′ = � andTb = ∅, as we will
show below. Setb′ = e and use rule (N1) to computeTb = {∀R.C(b),R(b, g)}.
Use rule (N2) to reduceX.
We claimed thatb′ = � whenever it is not equal to the predecessore. This is so,
sincea′ < I is ensured by each step of the algorithm, and since elements that
are not inI are involved in active role statements of exactly one predecessor
(the one which generateda′). This is easily verified by inspecting the rules that
can create role statements.

– If X′ was inferred by rule (∃), we haveX′ = R(e, g) for some newly introduced
elementg < I . Thus X is of the formR(e′, a), and, sinceX was selected to be
≺-maximal,Ta = {X}. Thus we can apply rule (N3) to reduceX. In addition, the
algorithm applies rule (4) to copyb to the (now empty)a, and we seta′ ≔ b′ and
b′ ≔ �.

With the above choices, the algorithm instantiates elements a on demand, and re-
peatedly reduces the statements of those elements. The individual rules show that this
reduction might require another (predecessor) individualb to be considered, but that
no further element is needed. Also note that rule (T9b) is required to ensure that all
concept expressions inTa can be reduced without generating any role successors fora.
Hence, it is evident that the above choice strategy ensures that exactly one of the above
reductions is applicable in each step.

Finally, we need to show that the algorithm terminates. Thisclaim is established
by defining a well-founded termination order. For details onsuch approaches and the
related terminology, see [8]. Now consideringT as a multiset, the multiset-extension of
the well-founded order≺ is a suitable termination order, which is easy to see since in
every reduction step, the elementX is deleted, and possibly replaced by one or more
elements that are strictly smaller thanX. ⊓⊔

The above lemmata establish an NPS decision procedure for detecting unsat-
isfiability of Horn-FLOH− knowledge bases. But NPS is known to coincide with
PS, and we can conclude the main theorem of this section.

Theorem 3. Unsatisfiability of a Horn-FLOH− knowledge base KB can be decided in
space that is polynomially bounded by the size of KB.



Proof. Combine the lemmata 7, 8, and 9 to obtain a nondeterministic time-polynomial
decision procedure for detecting unsatisfiability. ApplySavitch’s Theoremto show the
existence of an according PS algorithm. ⊓⊔

Summing up the result from the previous two sections, we obtain the following.

Theorem 4. Deciding knowledge base satisfiability in any description logic between
Horn-FL− and Horn-FLOH− is PS-complete.

Proof. Combine Lemma 5 and Theorem 3. ⊓⊔

5 Horn-FLE

FLE further extendsFL− by allowing arbitrary existential role quantifications, which
turns out to raise the complexity of Horn-FLE to ET. Note that inclusion in E-
T is obvious sinceFLE is a fragment ofSHIQ which is also in ET [9]. To
show that Horn-FLE is ET-hard, we reduce the halting problem of polynomially
space-bounded alternating Turing machines, defined next, to the concept subsumption
problem.

5.1 Alternating Turing machines

Definition 13. Analternating Turing machine(ATM)M is a tuple(Q, Σ, ∆, q0) where

– Q = U ∪̇ E is the disjoint union of a finite set ofuniversal statesU and a finite set
of existential statesE,

– Σ is a finitealphabetthat includes ablanksymbol�,
– ∆ ⊆ (Q× Σ) × (Q× Σ × {l, r}) is a transition relation, and
– q0 ∈ Q is theinitial state.

A (universal/existential)configurationofM is a wordα ∈ Σ∗QΣ∗ (Σ∗UΣ∗ /Σ∗EΣ∗). A
configurationα′ is a successorof a configurationα if one of the following holds:

1. α = wlqσσrwr , α′ = wlσ
′q′σrwr , and(q, σ, q′, σ′, r) ∈ ∆,

2. α = wlqσ, α′ = wlσ
′q′�, and(q, σ, q′, σ′, r) ∈ ∆,

3. α = wlσlqσwr , α′ = wlq′σlσ
′wr , and(q, σ, q′, σ′, l) ∈ ∆,

where q∈ Q andσ, σ′, σl , σr ∈ Σ as well as wl ,wr ∈ Σ
∗. Given some natural number s,

the possibletransitions in spaces are defined by additionally requiring that|α′| ≤ s+1.
The set ofaccepting configurationsis the least set which satisfies the following

conditions. A configurationα is accepting iff

– α is a universal configuration and all its successor configurations are accepting, or
– α is an existential configuration and at least one of its successor configurations is

accepting.



Note that universal configurations without any successors here play the rôle of accept-
ing final configurations, and thus form the basis for the recursive definition above.
M acceptsa given word w∈ Σ∗ (in space s) iff the configuration q0w is accepting

(when restricting to transitions in space s).

This definition is inspired by the complexity classes NP and co-NP, which are char-
acterised by non-deterministic Turing machines that accept an input if either at least
one or all possible runs lead to an accepting state. An ATM canswitch between these
two modes and indeed turns out to be more powerful than classical Turing machines of
either kind. In particular, ATMs can solve ET problems in polynomial space [10].

Definition 14. A language L is accepted by a polynomially space-bounded ATMiff
there is a polynomial p such that, for every word w∈ Σ∗, w ∈ L iff w is accepted in
space p(|w|).

Fact 1. The complexity classAPS of languages accepted by polynomially space-
bounded ATMs coincides with the complexity classET.

We thus can show ET-hardness of Horn-SHIQ by polynomially reducing the
halting problem of ATMs with a polynomially bounded storagespace to inferencing in
Horn-SHIQ. In the following, we exclusively deal with polynomially space-bounded
ATMs, and so we omit additions such as “in spaces” when clear from the context.

5.2 Simulating ATMs in Horn-FLE

In the following, we consider a fixed ATMM denoted as in Definition 13, and a poly-
nomialp that defines a bound for the required space. For any wordw ∈ Σ∗, we construct
a Horn-FLE knowledge baseKM,w and show that acceptance ofw by the ATMM can
be decided by inferencing over this knowledge base.

In detail,KM,w depends onM andp(|w|), and has an empty ABox.3 Acceptance of
w by the ATM is reduced to checking concept subsumption, whereone of the involved
concepts directly depends onw. Intuitively, the elements of an interpretation domain of
KM,w represent possible configurations ofM, encoded by the following concept names:

– Aq for q ∈ Q: the ATM is in stateq,
– Hi for i = 0, . . . , p(|w|) − 1: the ATM is at positioni on the storage tape,
– Cσ,i with σ ∈ Σ and i = 0, . . . , p(|w|) − 1: positioni on the storage tape contains

symbolσ,
– A: the ATM accepts this configuration.

This approach is pretty standard, and it is not too hard to axiomatise a successor
relation S and appropriate acceptance conditions inALC (see, e.g., [11]). But this
reduction is not applicable in Horn-SHIQ, and it is not trivial to modify it accordingly.

One problem that we encounter is that the acceptance condition of existential states
is a (non-Horn) disjunction over possible successor configurations. To overcome this,
we encode individual transitions by using a distinguished successor relation for each

3 The RBox is empty forFLE anyway.



Table 10.Knowledge baseKM,w simulating a polynomially space-bounded ATM. The rules are
instantiated for allq, q′ ∈Q, σ,σ′∈Σ, i, j ∈{0, . . . , p(|w|) − 1}, andδ ∈ ∆.

(1) Left and right transition rules:

Aq ⊓ Hi ⊓Cσ,i ⊑ ∃Sδ.(Aq′ ⊓ Hi+1 ⊓Cσ′ ,i) with δ = (q, σ,q′, σ′, r), i < p(|w|) − 1

Aq ⊓ Hi ⊓Cσ,i ⊑ ∃Sδ.(Aq′ ⊓ Hi−1 ⊓Cσ′ ,i) with δ = (q, σ,q′, σ′, l), i > 0

(2) Memory: (3) Existential acceptance:

H j ⊓Cσ,i ⊑ ∀Sδ.Cσ,i i , j Aq ⊓ ∃Sδ.A ⊑ A for all q ∈ E

(4) Universal acceptance:

Aq ⊓ Hi ⊓Cσ,i ⊓
�
δ∈∆̃(∃Sδ.A) ⊑ A q ∈ U, x ∈ {r | i < p(|w|) − 1} ∪ {l | i > 0}

∆̃ = {(q, σ,q′, σ′, x) ∈ ∆}

translation in∆. This allows us to explicitly state which conditions must hold for a
particular successor without requiring disjunction. For the acceptance condition, we
use a recursive formulation as employed in Definition 13. In this way, acceptance is
propagated backwards from the final accepting configurations.

In the case ofALC, acceptance of the ATM is reduced to concept satisfiability,
i.e. one checks whether an accepting initial configuration can exist. This requires that
acceptance is faithfully propagated to successor states, so that any model of the initial
concept encodes a valid traces of the ATM. Axiomatising thisrequires many exclusive
disjunctions, such as “The ATM always is inexactlyone of its statesHi .” Since it is not
clear how to model this in a Horn-DL, we take a dual approach: reducing acceptance to
concept subsumption, we require the initial state to be accepting inall possible models.
We therefore may focus on the task of propagating propertiesto successor configura-
tions, while not taking care of disallowing additional statements to hold. Our encoding
ensures that, whenever the initial configuration is not accepting, there is at least one
“minimal” model that reflects this.

After this informal introduction, consider the knowledge baseKM,w given in Ta-
ble 10. The rolesSδ, δ ∈ ∆, describe a configuration’s successors using the translation
δ. The initial configuration for wordw is described by the concept expressionIw:

Iw ≔ Aq0 ⊓ H0 ⊓Cσ0,0 ⊓ . . . ⊓Cσ|w|−1,|w|−1 ⊓C�,|w| ⊓ . . . ⊓C�,p(|w|)−1,

whereσi denotes the symbol at theith position ofw. We will show that checking
whether the initial configuration is accepting is equivalent to checking whetherIw ⊑ A
follows fromKM,w. The following is obvious from the characterisation given in Table 2.

Lemma 10. KM,w and Iw ⊑ A are in Horn-FLE.

Next we need to investigate the relationship between elements of an interpretation
that satisfiesKM,w and configurations ofM. Given an interpretationI of KM,w, we say
that an elemente of the domain ofI representsa configurationσ1 . . . σi−1qσi . . . σm if
e ∈ AIq , e ∈ HIi , and, for everyj ∈ {0, . . . , p(|w|) − 1}, e ∈ CI

σ, j whenever

j ≤ m andσ = σm or j > m andσ = �.

Note that we do not require uniqueness of the above, so that a single element might
in fact represent more than one configuration. As we will see below, this does not affect



our results. Ife represents a configuration as above, we will also say thate has stateq,
positioni, symbolσ j at positionj etc.

Lemma 11. Consider some interpretationI that satisfies KM,w. If some element e of
I represents a configurationα and some transitionδ is applicable toα, then e has an
SI
δ
-successor that represents the (unique) result of applyingδ to α.

Proof. Consider an elemente, stateα, and transitionδ as in the claim. Then one of the
axioms (1) applies, andemust also have anSI

δ
-successor. This successor represents the

correct state, position, and symbol at positioni of e, again by the axioms (1). By axiom
(2), symbols at all other positions are also represented by all SI

δ
-successors ofe. ⊓⊔

Lemma 12. A word w is accepted byM iff Iw ⊑ A is a consequence of KM,w.

Proof. Consider an arbitrary interpretationI that satisfiesKM,w. We first show that, if
any elemente of I represents an accepting configurationα, thene ∈ AI.

We use an inductive argument along the recursive definition of acceptance. Ifα is
a universal configuration then all successors ofα are accepting, too. By Lemma 11, for
anyδ-successorα′ of α there is a correspondingSI

δ
-successore′ of e. By the induction

hypothesis forα′, e′ is in AI. Since this holds for allδ-successors ofα, axiom (4) implies
e ∈ AI. Especially, this argument covers the base case whereα has no successors.

If α is an existential configuration, then there is some accepting δ-successorα′ of
α. Again by Lemma 11, there is anSI

δ
-successore′ of e that representsα′, ande′ ∈ AI

by the induction hypothesis. Hence axiom (3) applies and also concludee ∈ AI.
Since all elements inIIw represent the initial configuration of the ATM, this shows

that IIw ⊆ AI whenever the initial configuration is accepting.

It remains to show the converse: if the initial configurationis not accepting, there
is some interpretationI such thatIIw * AI. To this end, we define a canonical inter-
pretationM of KM,w as follows. The domain ofM is the set of all configurations ofM
that have sizep(|w|) + 1 (i.e. that encode a tape of lengthp(|w|), possibly with trailing
blanks). The interpretations for the conceptsAq, Hi , andCσ,i are defined as expected
so that every configuration represents itself but no other configuration. Especially,I M

w

is the singleton set containing the initial configuration. Given two configurationsα and
α′, and a transitionδ, we define (α, α′) ∈ SM

δ
iff there is a transitionδ fromα to α′. AM

is defined to be the set of accepting configurations.
By checking the individual axioms of Table 10, it is easy to see thatM satisfies

KM,w. Now if the initial configuration is not accepting,I M
w * AM by construction. Thus

M is a counterexample forIw ⊑ A which thus is not a logical consequence. ⊓⊔

We can summarise our results as follows.

Theorem 5. Checking concept subsumption in any description logic between Horn-
FLE and Horn-SHIQ is ET-complete.

Proof. Inclusion is obvious as Horn-SHIQ is a fragment ofALC, which is in E-
T. Regarding hardness, Lemma 12 shows that the word problem for polynomially
space-bounded ATMs can be reduced to checking concept subsumption in KM,w. By



Lemma 10,KM,w is in Horn-FLE. The reduction is polynomially bounded due to the
restricted number of axioms: there are at most 2× |Q| × p(|w|)× |Σ| × |∆| axioms of type
(1), p(|w|)2 × |Σ| × |∆| of type (2), |Q| × |Σ| of type (3), and|Q| × p(|w|) × |Σ| of type
(4). ⊓⊔

Note that, even in Horn logics, it is straightforward to reduce knowledge base satis-
fiability to the entailment of the concept subsumption⊤ ⊑ ⊥. The proof that was used
to establish the previous result is suitable for obtaining further complexity results for
logical fragments that are not above Horn-FLE.

Theorem 6. (a) Let EL≤1 denoteEL extended with number restrictions of the form
≤1R.⊤.

(b) LetFL◦− denoteFL− extended with composition of roles.
(c) LetFLI− denoteFL− extended with inverse roles.

Horn-FL◦− is ET-hard, and both Horn-EL≤1 and Horn-FLI− are ET-
complete.

Proof. The results are established by modifying the knowledge baseKM,w to suite the
given fragment. We restrict to providing the required modifications; the full proofs are
analogous to the proof for Horn-FLE.

(a) Replace axioms (2) in Table 10 with the following statements:

⊤ ⊑ ≤1Sδ.⊤ H j ⊓Cσ,i ⊓ ∃Sδ.⊤ ⊑ ∃Sδ.Cσ,i , i , j
(b) Replace axioms (1) with axioms of the form

Aq ⊓ Hi ⊓Cσ,i ⊑ ∃Sδ.⊤ ⊓ ∀Sδ.(Aq′ ⊓ Hi±1 ⊓Cσ′ ,i).

Any occurrence of conceptA is replaced by∃RA.⊤, with RA a new role. Moreover,
we introduce rolesRAδ for each transitionδ, and replace any occurrence of∃Sδ.A
with ∃RAδ.⊤. Finally, the following axioms are added:

Sδ ◦ RA ⊑ RAδ for eachδ ∈ ∆.
(c) Axioms (1) are replaced as in (b). Any occurrence of∃Sδ.A is now replaced with a

new concept nameASδ, and the following axioms are added:

A ⊑ ∀S−1
δ
.ASδ for eachδ ∈ ∆.

It is easy to see that those changes still enable analogous reductions. Inclusion results
for Horn-EL≤1 and Horn-FLI− are immediate from their inclusion inSHIQ. ⊓⊔

ET-completeness ofEL≤1 was shown in [1], but the above theorem sharpens
this result to the Horn case, and provides a more direct proof. Theorems 5 and 6 thus
can be viewed as sharpenings of the hardness results on extensions ofEL.

6 Summary

Horn logics, while having a long tradition in logic programming, have only recently
been studied in the context of description logics, mainly due to their lower data com-
plexities [3]. In this work, we have investigated the effects of Hornness on the overall
complexity of DL reasoning, and we have shown that only the Horn fragments of certain
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Fig. 1. Overview over complexity boundaries for combined complexity of (Horn) description
logics in the presence of GCIs. The exact location of the boxed DLs is conjectured, and has not
been shown yet.

subboolean description logics are actually less complex than their non-Horn versions.
On the other hand, the well-known tractable DLsEL++ [1] and DLP [2] are also recog-
nised as (fragments of) Horn-logics, and we thus obtain a unified picture of combined
complexities of some of the most important tractable DLs currently discussed.4 The
main results of our work are summarised in Figure 1.

While most of the displayed relationships have been verifiedabove, Figure 1 also
includes two open conjectures that are left to future research: Horn-SHOIQmight also
turn out to be in ET, whereas Horn-FL◦− could even be NET-hard. In ad-
dition, some related results have not been included in Figure 1. In particular, we have
shown that (Horn) disjunction and atomic negation never increase the complexity of
Horn-logics. Accordingly, the extension ofEL++ to Horn-ELU(¬)++ is still tractable,
while it was shown in [1] that bothELU andEL(¬) are ET-complete. An in-
teresting application of this extension is the use of DLs as query languages, since the
use of disjunctions is not constrained within queries (which are treated as negated ax-
ioms) at all. This is exploited, for instance, in the semantic search implementation of

4 http://owl1_1.cs.manchester.ac.uk/tractable.html



Semantic MediaWiki [12], which indeed supports a (syntactically adopted) fragment of
Horn-ELU++ for querying large scale knowledge bases.

Our results on Horn-FLE and Horn-EL≤1 sharpen the known results on the non-
extendibility ofEL. On the other hand, various expressive extensions that are known
not to increase the complexity ofEL were also shown to be tolerable in the case of
Horn-FL0 and Horn-FL−. In particular, nominals and role hierarchies have had no
negative effect on the worst-case complexity of any of the investigated Horn-logics.
Yet, it is apparent from the technically more involved proofof Horn-FLOH−’s PS-
completeness that especially nominals can easily make the reasoning task more compli-
cated. As all other proofs, this proof is established directly, without referring to existing
complexity results. While this is often increasing the length of the required argumenta-
tion, we believe that direct proofs are often most instructive for analysing the source of
increased complexities.

Acknowledgements.We would like to thank the anonymous reviewers for helpful com-
ments for improving this work. Research reported in this paper was supported by the
EU in the IST projects X-Media (IST-FP6-026978) and NeOn (IST-2006-027595).

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope.In: Proc. 19th Int. Joint Conf. on
Artificial Intelligence (IJCAI-05), Edinburgh, UK, Morgan-Kaufmann Publishers (2005)

2. Grosof, B., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Combining logic
programs with description logics. In: Proc. of WWW 2003, Budapest, Hungary, May 2003,
ACM (2003) 48–57

3. Hustadt, U., Motik, B., Sattler, U.: Data complexity of reasoning in very expressive descrip-
tion logics. In: Proc. 18th Int. Joint Conf. on Artificial Intelligence (IJCAI-05), Edinburgh,
UK, Morgan-Kaufmann Publishers (2005) 466–471

4. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.: The De-
scription Logic Handbook: Theory, Implementation and Applications. Cambridge University
Press (2003)

5. Krötzsch, M., , Rudolph, S., Hitzler, P.: On the complexity of Horn description logics. In:
Proc. 2nd Workshop OWL Experiences and Directions, Athens,Georgia, USA (2006)

6. Motik, B.: Reasoning in Description Logics using Resolution and Deductive Databases. PhD
thesis, Universität Karlsruhe (TH), Germany (2006)

7. Hitzler, P., Eberhart, A.: Description logic programs: Normal forms. Technical note, Uni-
versität Karlsruhe (TH), Germany (2004)

8. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press (1998)
9. Tobies, S.: Complexity Results and Practical Algorithmsfor Logics in Knowledge Repre-

sentation. PhD thesis, RWTH Aachen, Germany (2001)
10. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM28 (1981) 114–133
11. Lutz, C., Sattler, U.: Description logics (2005) Tutorial at the ICCL Summer School 2005,

Dresden, Germany. Course material available online.
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