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Abstract. Horn description logics (Horn-DLs) have recently startecattract
attention due to the fact that their (worst-case) data cerilpes are in general
lower than their overall (i.e. combined) complexities, ethimakes them attrac-
tive for reasoning with large ABoxes. However, the naturaéstion whether
Horn-DLs also provide advantages for TBox reasoning hadiyhbeen addressed
so far. In this paper, we therefore provide a thorough andocehensive analysis
of the combined complexities of Horn-DLs. While the comhirmmmplexity for
many Horn-DLs turns out to be the same as for their non-Hotmtsparts, we
identify subboolean DLs where Hornness simplifies reagpnin

1 Introduction

One of the driving motivations behind description logic (ksearch is to design lan-
guages which maximise the availability of expressive laggfeatures for the knowl-
edge modelling process, while at the same time strivingifernhost inexpensive lan-
guages in terms of computational complexity. A particylgmtominent case in point
is the DL-based Web Ontology Language OWwhich is a W3C recommended stan-
dard since 2004. OWL (more precisely, OWL DL) is indeed amthregmost expressive
known knowledge representation languages which are alidaide.

Of particular interest for practical investigations ar@iolisly tractable DLs. While
not being boolean closed, and thus relatively inexpresshay recently receive in-
creasing attention as they promise to provide a good tréitleetween expressivity and
scalability (see e.qg. [1]).

At the same time, Horn-DLs have been introduced [2, 3], ai tenerally lower
data complexities make them a natural afiicent choice for reasoning with large
numbers of individuals, i.e. for ABox-reasoning. Howevke natural question whether
Horn-DLs also provide advantages for TBox reasoning — im$eof combined com-
plexity — has hardly been addressed so far.

In this paper, we therefore provide a thorough and comphemnalysis of the
combined complexities of Horn-DLs. While the combined céewjty for many Horn-
DLs turns out to be the same as for their non-Horn countespanthich is no surprise
—, we are also able to identify subboolean DLs where the H®nestriction improves
reasoning complexity.

L httpy/www.w3.0rg20040OWL/



Table 1.Concept constructors iIBHOZQo. Semantics refers to an interpretatibravith domain
D.

Name Syntax|Semantics

inverse role R {(xY) | (y,X) € Rf}

top T D

bottom 1 0

nominal {i} (it}

negation -C D\ Ct

conjunction CcnbD |CfnD?

disjunction Cub |cfuD?

univ. restriction [YRC |{xe D | (x,y) € Rf impliesy e C%}

exist. restriction|IRC  |{x € D | for somey € D, (x,y) € Rf andy € C}
qualified numbek NRC|{xe D | #y e D | (x,y) € R andy € C'} < n}
restriction >NRC|{xe D |#ye D|(xYy) € Rl andy e C'} > n}

The paper is structured as follows. After recalling somédimiaaries on DLs, we
deal in turn with the Horn versions &Ly, £ and¥L&E and some of their variants.
We will see that these provide us with a fairly complete pietof the complexities of
Horn-DLs.

2 Preliminaries

In this section, we briefly recall some basic definitions ofsldnd introduce our nota-
tion. We start with the rather expressive description la§ffO7 Qo and define other
DLs as restrictions thereof.

Definition 1. A knowledge base of the description lo§#{O7 Qo is based on a s

of role namesa setN¢ of concept namesand a set of individual namesThe set of
SHOIQo atomic concept€ consists of all concept names and all expressions of the
form {i} with i € N,. The set oSHOI Qo (abstract) roless R = NR U {R™ | R € Ng},

and we setnv(R) = R~ andInv(R") = R. In the following, we leave this vocabulary
implicit and assume that A, B are atomic concepts, a, b arviddal names, and R, S
are abstract roles.

A SHOIQo knowledge base consists of three finite sets of axioms thaetarred
to asRBox, TBox, and ABox. A SHOZQo RBox may contain axioms of the form
S C R iffit also containdnv(S) C Inv(R), and axioms of the formirans(R) iff it also
containsTrans(Inv(R)). ByC* we denote the reflexive-transitive closuregof role R is
transitivewhenever there is arole S such tians(S), RC* S and SC* R. R issimple
if it has no transitive subroles, i.e., if §* R implies that S is not transitive. Roles that
are not simple are also calledomplex Moreover, an RBox can contain axioms of the
formS;o...0S,CR.

ASHOIQo TBox consists of axioms of the fornCD, where C and D areoncept
expressionsonstructed from concept names, role names, and individaizles by the
operators shown in Table 1. 8HOIZQo ABox consists of axioms of the fornfaf
R(a, b), and a~ b.



The above definition is fairly standard, except that we rets&Box concept state-
ments to atomic concepts. Our ABoxes thusetensionally reducedbut it is known
that this does not restrict the expressivity of the logicsinomplex ABox statements
can easily be moved into the TBox by introducing auxiliarpcept names. Moreover,
we do not explicitly consider concepile equivalences, since it can be modelled via
mutual conceptole inclusions.

We adhere to the common model-theoretic semantic$SfI07 Qo with general
concept inclusion axioms: an interpretatibeonsists of a seb calleddomaintogether
with a function-/ mapping

— individual names to elements @f,
— class names to subsets®f and
— role names to subsets 6f x D.

This function is inductively extended to roles and concegsadiptions as shown in
Table 1. Aninterpretatiofi satisfiesan axiomF, written7 [ F, if one of the following
conditions hold:

- JTESCRIifSIcR

— ITESi0...0S,CRIif S{o...0S] c R’ (whereo is the relational product)
— T E Trans(S) if S? is a transitive relation

—JTECCcDifcf cD?

- TEA@Q)ifal e A

— TER(@b)if(al,b?) e R

— TEax~bifal =b?

We will be specifically interested in (variants of) the falimg subboolean frag-
ments of SHOZQo. Those definitions and naming conventions can also be found i

[4].

Definition 2. Restricting the syntax $#H O Qo, we define the following description
logics:

— L& is the fragment o8HOI Qo using only the constructors, L, 1, 3, andV.

— FL is the fragment of LE for which all existential role restrictions have the form
JdRT.

— FLy is the fragment of L~ that does not contain existential role restrictions.

In the presence of GCls, all of those logics are known to hawerabined com-
plexity that is &kpTiMe-complete. To prevent thisfiect in our below investigation of
their Horn-fragments, we impose suitable restrictions$ émsure that the syntactically
forbidden constructors do not sneak in through the back.door

2.1 HornDLs

Now we define the class of Horn DLs. This is done by first definitogn-SHOI Qo,
and then identifying suitable (syntactic) fragments of it.



Table 2. A grammar for defining Hor8HOI Qo. A, R, andS denote the sets of all atomic con-
cepts, abstract roles, and simple role names, respectiMedypresentation is slightly simplified
by exploiting associativity and commutativity of and L, and by omitting>1R.C if ARC is
present.

Ci == T|L|-C{|ICinC|CsuC]|3IRC]|VSC]|YR.C)|2nR.C]|<1R.C;|A
Cl == T|L1|-C]|C,nC]|CIuC]|3ISC]|IRC,|VYR.C]|22R.C; | <nR.C] |A
Cy u= T|L]-Cy|CinC;ICLUC]|VR.CE

Co == T|L]|=C{IC,NC, |CouCy|IRC A

Definition 3. The description logic Hor8HOI Qo is defined asSHOIQo except
that the only allowed conceptinclusions are of the f@gn= C] or C] C C{ according
to the grammar in Table 2.

This definition stems from [5] and has merely been exendeddyyimals in a
straightforward way. Our results in the following sectidlhsstrate that adding nom-
inals to Horn logics in the above sense does often fieththe combined complexity
of typical reasoning tasks. To facilitate further consadiems and proofs, we now show
that any HornSHOZ Qo knowledge base can be transformed into an equisatisfiable
Horn-SHOI Qo knowledge base without negations and disjunctions.

As a first facilitation, note that any GGI © D with C € C] andD € C{ is
equivalent to the GChD C —C. Since-D € C] and-C € C; we will in the following
assume any GCI to be of the for@; = Ci. For a given concept description, we
recursively define the negation normal forNiNF) as usual by:

NNF(C) = CforallC e (T, L, A -A}
NNF(=T) = 1

NNF(=1) =T

NNF(--C) = NNF(C)

NNF(C r1 D) = NNF(C) 1 NNF(D)
NNF(=(C 1 D)) := NNF(-C) LU NNF(=D)
NNF(CLUD)  := NNF(C)L NNF(D)
NNF(=(C U D)) := NNF(-C) rn NNF(-D)
NNF(YR.C) = YRNNF(C)
NNF(-VRC) := dRNNF(-C)
NNF(3R.C) := JRNNF(C)
NNF(-JRC) := YRNNF(=C)

NNF(< nRC) := < nRNNF(C)

NNF(= < nRC) = > (n+ 1)RNNF(C)
NNF(>=nRC) := > nRNNF(C)

NNF(= > nRC) = < (n- 1)RNNF(C)

Obvously, calculating the negation normal form of a condsscription does not
change its semantics (see, e.g., [6]). As an auxiliary lepweawill show that convert-
ing a concept expression to KNF does not change its grammar type due to Table 2.



Table 3. Reduced grammar for defining HO®1HOI Qo via theNNF.

Ci o= T|L|C{NC{|CsUCE |IR.CI|YSC]|VYRC]|=nR.CI|<1R.Cj|A|-A
Ci = TIL|CiNCyICLUC,|VR.CS|-A
C; == TILIC;NCy|CuCy ARGy A

Lemmal. Let C € D be a concept description with € {C},C;,C§,Cy} . Then
NNF(C) € D as well.

Proof. The proof can be done by induction over the formula deptheNat for every

D, we just have to check the cas®’ since in the other cases the proposition follows
directly from the induction hypothesis. Moreover one caip ske cases where double
negation occurs, since it can be just eliminated directiyl (a the presented grammar,
for anyD, —=—C € D impliesC € D).

The base cases (i.€,€ T, L, A, —A) are clear sincéINF does not change them at
all. From the remaining cases, we will just exemplarily gives, the others can be done
in an analogue way.

Thus consideD = C] andC = —~(D 1 E) with D € C; andE € C7. This directly
implies-D € C§ and-E € Cj. Due to the induction hypothesis, we then also have
NNF(-D) € C§ andNNF(-E) € C]. HenceNNF(—(DrE)) = NNF(-D)UNNF(-E) €
C as alook to the grammar immediately shows. O

Note that any concept expression of any DL allowing arbjtraegation can be
transformed intd&NF, while for DLs not allowing negation (or only on the atomiaeo
cept level) any concept expression trivially is already égation normal form. Hence
we will without loss of generality assume that all concepdressions we deal with are
in NNF.

This directly reduces the grammar from Table 2 to the onegmtesl in Table 3. The
assumptions underlying this reduction have an importdiateon subsequent syntactic
restrictions. On the one hand, the transformation to negatrmal form may introduce
different logical operators. On the other hand, the aforemaaditransformation from
C] C C{ to C; £ C] may also have thisftect. For example, thgZ, axiomVR.C £
vS. 1 is of the formC] C C{. Its equivalent formdS.T £ 3R.C in turn can be stated
only in (Horn-)¥£L&E. This dfect is due to the presence of GCls, and is also the reason
why the distinction offLy, ¥L~, andFLE is not of interest in this general case [4].
Since it is our goal to identify description logic fragmetitat are sfficiently restricted
to have smaller worst-case complexities, we prevent theekbect by restricting to
FLo andFL~ axioms to the normal form of Table 3.

Definition 4. A knowledge base is in HoriLy (Horn-7L", Horn-7LE) whenever all
its TBox axioms F satisfy the following requirements:

— Fis ofthe formCa C CI of Table 3, and
— FisinFLy (FL, FLE).

For defining the Horn fragments of all DLs that are Boolearseth one can as
well consider axioms of all forms given in Table 2. Espegiathis extension yields



Table 4.Normal form for HornSHOIQo. A, B, andC are names of atomic concepk,S, and
T (possibly inverse) role names, andndd individual names.

TCA AnBC C JRAC B Ac) RET
ALC 1L A C JdRB ALC VYSB R(c,d) RoSC T
A C >nRA ALC <1RA ACC cxd

Table 5. Normal fo[m trapsformation for Hor8HOIQo. A, B, C, A, C, andD are concept
expressions, wher@ andC are neither concept names nor nominals, Bnd a fresh concept
nameR;, S, andU are (possibly inverse) role names, wherés fresh.

Pl: Ryo...oR_1oR, C S — {Rio...oR1CEUUoR,CS}
Ac ¢ — {AcD,Dc C}
AmBcC C — {ACD,DNBCC}
BmAcCcC — {ACD,DNBCC}
AcC BuC ~ {ACD,DNNNF(-B)CC}if BeC
{AC D,D nNNF(-C) c D} otherwise
JRAC B — {ACD,3JRDC B}
AC IRC - {ACIRD,DCC}
Ac VYVRC — {ACVYRD,DCC}
AC >nRB — {AC>nRD,DC B}
AC <lRB - {AC<1RD,DC B}
L ccC — 0
AC T — 0
P2: AC BnC — {ACB,ACC)
AuBc C — {ACC,BCC}
BuAcCC — {ACC,BCC}
AC-B =~ {ACD,DNBC 1}

the well-known definition for HorrSH 7Q [3]. While the above negation normal form
thus is a true restriction for some description logics, wi mow show that one can

safely extend all of the Horn fragments we consider with tiega and (some of the)

disjunctions allowed in Table 3.

Definition 5. A Horn-SHOI Qo knowledge base is inormal formif it contains only
axioms of the forms shown in Table 4.

The following shows that we can restrict to knowledge basesormal form for
checking satisfiability.

Theorem 1. Checking satisfiability of a Hor&dHOI Qo knowledge base can be re-
duced in linear time to checking satisfiability of a Ha8HOZ Qo knowledge base that
is in normal form.

Proof. Consider the transformationrules in Table 5, where eadraglaces one axiom
by a set of derived axioms. A transformation algorithm isegivy first exhaustively
applying the rules P1 to the knowledge base, and then extelysipplying the rules
P2. We have to show the following propositions:



— The algorithm terminates after at most a linear number gfsste
— The result of this transformation is a knowledge base in mbform.
— The algorithm preserves satisfiability.

Termination in linear time is guaranteed by the fact thatghecess traverses the
axioms in a top-down manner and produces strictly smallegnax and by ensuring
(by the two step process) that the only concepts being nfielfipluring the process are
concept names (such that they do not require any furthectieddusteps).

That the resulting knowledge base is in normal form can béyessen: for any
axiom being not in normal form, one of the transformatioresuhpplies. Termination
of the process has been shown above, so the only possiblasbaéi must be in normal
form.

That the algorithm preserves satisfiability follows frone tfact, that any of the
transformation steps does so. Hence one has to show for gaesormation rule that
applying it to an according axiom in a Horn knowledge base IKB obtains an equisat-
isfiable knowledge base KB’. We will show a stronger propositnamely that for any
model of KB we find a modell” of KB’ where -Z* coincides with-Y on the original
sets of concept and role names — and vice versa: any nfoaglKB’ gives rise to a
modelZ of KB with this property. The line of argumentation hereimjiste straightfor-
ward: on one hand one provides a canonical extension fréoZ” by letting the newly
introduced concept have the same extension as the compierpiit substitutes. On
the other hand one shows that in any mafighe axiom removed by the transformation
rule is satisfied and hendé can also serve as a model of KB. O

Clearly, the above transformation algorithm does ¢ the containment of a
set of axioms in a syntactic DL fragment, as long as the negatormal form trans-
formationsNNF(=B) andNNF(=C) do not introduce axioms that are outside the given
fragment. The structure of the conce@@ndC above is in turn only depending on
C§. and we can easily identify the following admissible extens of subboolean Horn
logics.

Corollary 1. Consider the following alternative definitions@f in Table 3:

(@) Cg' ::T|L|CS'I‘ICS'|C6’I_IC6’|ﬂA
(b) Cg" =T 1| Cg" M Cg” | Cg” Ll Cg" | VR.L|-A

Moreover, letC;" and C;” denote the rules obtained by replaciay U C; in the
definition ofC] by C}’ LiC] andC/}” L1 C7, respectively.

Checking satisfiability of a knowledge base that consisiEgf(¥£~) axioms of the
formC; £ C;’ (C, C C;”) can be reduced in linear time to checking satisfiability of a
Horn-7L, (Horn-7L") knowledge base that is in the reduced normal form of Table 4.

Knowing that they can be reduced to the standard notions, illen@t consider
extensions of the above form in the rest of this paper. Sindatricted forms of dis-
junction and atomic negation are admissible in many Hoagpfients. For example,
note that also the description lodgicC++ [1] can be extended with Horn atomic nega-
tions and some forms of Horn disjunctions (arbitrary disfion in C; and disjunction



with quantifier-freeC] as part ofC7), thus obtaining an even more expressive tractable
description logic.

The principles underlying the above reductionLofire easily seen to be closely
related toLloyd-Topor transformationthat are well-known in (Horn) logic program-
ming. Reductions of atomic negations are less common, sigey logic programming
paradigms do not suppartand classical negations.

2.2 Reducibility of reasoning problems in the Horn case

Finally, we observe that the following standard reasonasft$ are mutually reducuble
even when restricting to Horn knowledge bases:

Knowledge base satisfiability We call a knowledge bassatisfiable if it has a
model, i.e., if there exists an interpretatidnsatisfying all axioms of the knowledge
base.

Instance checking For a given individuah and a given concept descripti@of
form Cj, we ask whethe€(a) is satisfied in all models of the knowledge base KB.
This task can be reduced to the knowledge base satisfigpititlem in the following
way: Letting A be a new, unused concept name, check whether the knowledge ba
KB U {A(a), Ar1C C 1} is unsatisfiable.

Entailment of TBox axioms. A TBox axiom (GCI)C C D is entailedby a knowl-
edge base KB if it is satisfied by all interpretations thatséatthe knowledge base.
If Cis of the formC] and D is of the formC;, this problem can be reduced to
the instance checking problem: &t B be concept names not already present in the
knowledge base KB ana be a new individual name. Then instance checkBa) in
KBU{AC C,DC B,A(8)).

Concept satisfiability. A concept descriptiol€ is satisfiable(with respect to a
given knowledge base) if the knowledge base has a mbeéth C’ # 0. If C has the
form C7, this can be reduced to the preceding problem by checkingheh€ C 1 is
entailed by the considered knowledge base.

Hence, we have shown that all reasoning problems can beeddadknowledge
base satisfiability. Querying a knowledge base for somersi@nt is equivalent to
checking whether the negation of this statement entailatigfigbility, which explains
why the above (Horn) restrictions on queries are in a senaktduhe restrictions on
Horn axioms.

Finally mark that a knowledge base is satisfiabile if and dhthe conceptT is
satisfiable. This closes the circle and shows that also irHitra case all mentioned
reasoning tasks are reducible to each other.

3 Horn-%£,

The description logi¢Ly is indeed very simpleT, L, r1, and¥ are the only operators
allowed. Yet, checking the satisfiability iy knowledge bases is alreadyH me-
complete [1]. In this section, we show that Hofify is in P, and thus is much simpler
than its non-Horn counterpart. In fact, we can even exteaddbic with various oper-
ations without sacrificing tractability.



Table 6. Normal form for Horn¥L,*. A, B, andC are names of atomic concepts or nominal
classesR, S, andT (possibly inverse) role names, andndd individual names.

ACC TEC A RCT
AnBC C AC 1 R(c, d) RoSCT
A C VRC c~d

Definition 6. The description logiZLy™" is the extension ofLy with

— nominals,

role hierarchies,

role composition, and
inverse roles.

The logic Horng L™ is the restriction off Lo to TBox axioms of the for@, C C; as
defined in Table 4.

To show that HorneZLy™" is in P, we will reduce satisfiability checking for Horn-
FLo* to satisfiability checking in the 3-variable fragment of étion-free Horn logic. A
Horn-clause is a disjunction of atomic formulae or negatitrereof, which contains at
most one non-negated atom, and with all variables quantifiacersally. Horn-clauses
are commonly written as implications (with possibly empéat or body), and without
explicitly specifying the quantifiers. The following is atghtforward.

Proposition 1. Satisfiability of a logical theory that consists of functifsee Horn-
clauses with a bounded number of variables can be checkech@épgolynomial w.r.t.
the size of the theory.

Proof. Due to the absence of function symbols, the theory is eqemiab its grounding
(assuming, w.l.0.g., that the language has at least ondgastrsymbol). The latter is
a theory of propositional Horn-logic that is polynomiallpunded in the size of the
input theory. Satisfiability of propositional Horn-logiedories can easily be checked in
polynomial time. O

The following is an easy restriction of Theorem 1 to Hotfip™".

Lemma 2. Checking satisfiability of a Hors=Lo* knowledge base can be reduced in
linear time to checking satisfiability of a Horfi£y* knowledge base that contains only
axioms in the normal form given in Table 3.

The normal form transformation is necessary to ensure thaoat three distinct
variables are needed within the first-order version of eagigm.

Lemma 3. Every Horn¥Ly* knowledge base in normal form is semantically equiva-
lent to a logical theory in the 3-variable fragment of furctifree Horn-logic.

Proof. The translation is straightforward for most cases. Axioffthe formAC YR.C
are translated into Horn-clausés.Vy.(-A Vv =R(X, y) vV C(y)). For nominal classeg},
we write X ~ c instead of{c}(x). Equality statements from this transformation and from



ABox statements are taken into account by explicitly axitsirag equality in Horn-
logic. The following axioms are added

- X=X Cx)vx=y — C(y)
XYy - Yy=xX Rx2vx=y — R(Y,2
XRYVYyxZ —> X=xZ RZ,X)VXzy—> R(z,y)

instantiated for every concept and role name in plade ahdR, respectively. Further-
more, a axioms of the form

R(x,y) = Ry, x) R(xYy) = Ry, X)

are added for every role nanfi® The additional axioms obviously increase the size
of the knowledge base only linearly. It is easy to see thatésalting Horn-theory is
semantically equivalent to the original knowledge base. O

Summing up, we obtain the following.
Theorem 2. Deciding satisfiability for the description logic HorA%y™" is in P.
Proof. Combine Lemmas 2 and 3 with Proposition 1. O

This also shows that decidability in HothEy can be checked in polynomial time,
which is an interesting contrast to thelH me-completeness ofLo.

The well-known DLP-fragment ofH 7 Q [2] does indeed allow for a similar re-
duction to 3-variable Horn logic, and thus has an at mostrpmiyial time complexity.
To the best of our knowledge, this result has not been spelietbefore. While DLP
has sometimes been defined semantically as the generakictien of description log-
ics and logic programming, we need to look at a syntactic diefimthat allows for a
suitable normal form transformation. The following is takeom [7].

Proposition 2. All description logic programs (DLP) can be transformediatseman-
tically equivalent set of function-free Horn rules with abshthree-variables.

Proof. The claim follows immediately from Theorem 2.2 of [7], tolget with the nor-
mal forms given in Table 1 loc. cit. O

Corollary 2. Deciding satisfiability for description logic programs (Bl.is in P.

As discussed in [7], extensions of DLP with nominals are aldmissible. In fact,
their use of enumerated concepts of the fqon oy, ..., 0} is a special case of the
reduction of disjunctions i€ established by Theorem 1.

4 Horn-¥L~

Horn¥L™ is the Horn fragment ofALC that allowsT, L, rn, V¥, and unqualifiecd
(i.e. concept expressions of the foAR.T). Although Horn¥ZL™ is only a very small
extension of HorngLy, we will see that it is P&ce-complete. Moreover, not all of the
extensions that could be added to Hotfip* can also be added to Hofa£~ without
further increasing the complexity. The extensiorfgf that we will consider below is
defined as follows.



Definition 7. The description logi#LOH " is the extension ofL™ with

— nominals, and
— role hierarchies.

The logic Horn¥LOH " is the restriction offLOH ™ to TBox axioms of the fori@g C
C as defined in Table 4.

We will show that all logics between HorA£™ and HornFLOH™ are P$acke-
complete.

4.1 Hardness

We directly show that HorrL™ is PSace by reducing the halting problem for polyno-
mially space-bounded Turing machines to checking unsabigfy in Horn-7L".

Definition 8. A deterministic Turing machin@M) M is a tuple(Q, X, 4, go) where

— Qs afinite set of states,

— X'is a finitealphabethat includes @lanksymbolo,

-4 C (Qx2)x(Qx2x{lr}) is atransition relationthat is deterministic, i.e.
(9,0, Q1, 01, 0h), (9, 0, 02, 02, dp) € 4 implies g = 0, 01 = 02, and d = d.

— (o € Qs theinitial state and

— Qa € Qs a set ofaccepting states

A configurationof M is a worda € 2*QX*. A configurationa’ is a successoof a
configuratione if one of the following holds:

1' a = \MqO-O-rWr, a/ = WIU"q'O'rWry and(qv g, q,v 0-,, r) € Ay
2. a =wWQo, @ =wo’'qo, and(q, o, q,0”,r) € 4,
3. @ =WogoWw, @ = w g o0’w, and(q, o, ', 07, 1) € 4,

where ge Q ando, o, oy, o € 2 as well as ww;, € 2*. Given some natural number s,
the possiblaransitions in spacs are defined by additionally requiring thiat'| < s+ 1.

The set ofaccepting configurationis the least set which satisfies the following
conditions. A configuration is acceptingff

— a =wgw and ge Qa, or
— at least one the successor configurationa afre accepting.

Maccepts given word we 2 (in space s)ff the configuration gw is accepting (when
restricting to transitions in space s).

The complexity class R&ck is defined as follows.

Definition 9. A language L is accepted by a polynomially space-boundedfiltere
is a polynomial p such that, for every wordev2™, w € L iff w is accepted in space

p(Iw).



Table 7. Knowledge bas& ,,, simulating a polynomially space-bounded TM. The axioms are
instantiated for alt, g €Q, 0,0’ €ZX, i, j€{0,..., p(w]) — 1}, andé € 4.

(1) Leftand right transition rules:
AqMHiNC,; € ASTNVYS.(Ay MHiz1MCyj) Withé =(q, 0,9, 07,r),i < p(w]) — 1
AqMHiNC,; € IS TNVS.(Ay MHi-1NCy) withs = (0,0, q,07,1),i >0

(2) Memory:
Hj nCy,i C VS.Cyj i#]
(3) Failure: (4) Propagation of failure:
FNAGC L geQa FCVSF

In this section, we exclusively deal with polynomially spamounded TMs, and so
we omit additions such as “in spaseéwhen clear from the context.

In the following, we consider a fixed TMA denoted as in Definition 8, and a poly-
nomial p that defines a bound for the required space. For any ward*, we construct
a HornFLOH"™ knowledge bas& ,( and show thatv is accepted byM iff Kpqw is
unsatisfiable. Intuitively, the elements of an interplietadomain ofK, represent
possible configurations o¥1, encoded by the following concept names

— Agforge Q:the TMis in stateg,

— Hifori=0,..., p(w) - 1: the TM is at position on the storage tape,

— Cyj with o € X andi = 0,..., p(w|]) — 1: positioni on the storage tape contains
symbolo-.

Based on those concepts, elements in each interpretat@hkmdwledge base en-
code certain states of the Turing machine. A 1®\ill be used to encode the successor
relationship between states. The initial configurationvmrd w is described by the
concept expressioly:

|W = ACIo Il Ho Il C(,—D,o M...n Cf"|w|71»\W|*1 Il CD,‘W| M...n CD,p(\Wl)fb

whereo; denotes the symbol at thh position ofw.

Itis not hard to describe runs of the TM with Hoff:~ axioms, but formulating the
acceptance condition is slightly morefitiult. The reason is that in absence of state-
ments likedS.A andV¥S.Ain the condition part of Horn-axioms, one cannot propagate
acceptance from the final accepting configuration back t@lrdonfiguration. The so-
lution is to introduce a new conceptthat states that a staternst accepting, and to
propagate this assumption forwards along the runs to pmaaknconsistency as soon
as an accepting configuration is reached. Thus we arriveaioms given in Table 7.

Next we need to investigate the relationship between el&sradran interpretation
that satisfie 5w and configurations oM. Given an interpretatiofi of K, we say
that an elemen of the domain off represents configuratiorr; ... oi_1qoj . ..o if
ee Aj,ec H/, and, foreveryj € {0,..., p(wl) - 1}, e€ C_ ; whenever



j<mand o =on or j>m and o=n0.

Note that we do not require uniqueness of the above, so thiaglke £lement might
in fact represent more than one configuration. As we will sev, this does notféect
our results. Iferepresents a configuration as above, we will also sayethas state,
positioni, symbolo; at positionj etc.

Lemma 4. Consider some interpretatioh that satisfies K. If some element e df
represents a configuratiom and some transitiod is applicable toe, then e has an
S’-successor that represents the (unique) result of applyiogy.

Proof. Consider an elemem statee, and transitiors as in the claim. Then one of the
axioms (1) applies, aneimust also have a@’-successor. This successor represents the
correct state, position, and symbol at positiaf e, again by the axioms (1). By axiom
(2), symbols at all other positions are also represented I8/ asuccessors o, O

Lemma 5. A word w is accepted b1 iff {I1w(i), F(i)} U Kpw IS unsatisfiable, where i
is a new constant symbol.

Proof. Let 7 be a model ofly(i), F(i)} U Kyw. 7 being a model foly(i), i* clearly
represents the initial configuration @8ff with inputw. By Lemma 4, for any further
configuration reached by during computationi’ has a (not necessarily direyf
successor representing that configuration.

Since7 satisfies=(i) and axiom (4) of Table 7, a simple induction argument shows
that F' contains allS? successors af . But then’ satisfies axiom (3) only if none
of the configurations that are reached have an accepting Saice/ was arbitrary,
{lw(i), F()} U Ky can only have a satisfying interpretationM does not reach an
accepting state.

It remains to show the converse: Ml does not accept, there is some interpreta-
tion I satisfying{lw(i), F(i)} U Kypw. To this end, we define a canonical interpretation
M as follows. The domain oM is the set of all configurations o¥1 that have size
p(w]) + 1 (i.e. that encode a tape of lengtfjw]), possibly with trailing blanks). The
interpretations for the concep#g, Hi, andC,; are defined as expected so that every
configuration represents itself but no other configuratispecially) M is the singleton
set containing the initial configuration. Given two configtionsa anda’, and a tran-
sition 5, we define &, a’) € SM iff there is a transitiod from a to o’. FM is defined to
be the set of all configurations that are reached during thef onw.

Itis easy to see thal satisfies the axioms (1), (2), and (3) of Table 7. Axiom (4) is
satisfied since, by our initial assumption, none of the caméijons reached byt is in
an accepting state. O

Thus checking satisfiability of HorfiL~ knowledge bases is Bfse-hard.

4.2 Containment

To show that inferencing for HorfiZ OH ™ is in PSace, we develop a tableau algorithm
for deciding the satisfiability of a HorfiZ OH~ knowledge base. To this end, we first



Table 8. Normal form for Horn¥LOH ™. A, B, andC are names of atomic concepts or nominal
classesR, S, andT role names, and andd individual names.

ACC JRTCC AnBELC C A(©)
TCC AC JdRT RC S Rc,d)
AC L A C VRC c~d

present a normal form transformation similar to the one iati6a 3. Afterwards, we
present the tableau construction and show its correctaagsjemonstrate that it can
be executed in polynomial space.

The reduction is established by first transforming each W@~ knowledge
base into a normal form, again by restricting Theorem 1 atingly.

Lemma 6. Checking satisfiability of a Hors2OH~ knowledge base can be reduced
in linear time to checking satisfiability of a HorREOH ™~ knowledge base that contains
only axioms in the normal form given in Table 8.

Next, we are going to present a procedure for checking saiitfy of Horn-7L~
knowledge bases. In the following we assume without losseoegality that therZ™
language in consideration has at least one individual symbo

Definition 10. Consider a Horn¥zLOH"~ knowledge base KB in normal form, with
the set of atomic concepts and nominal nanke)e set of role names, anidhe set of
individual names. A set of relevant concept expressionsfiaet by setting

cl(KB)=CU{QRCIRe R,Ce C,Qe{q,V}}Uu{T,L}.

Given a set | of individual names, a sgtof ABox expressions is defined as follows:

77 :={C(e)| C e cl(KB), ec I} U{R(e f) |ReR, & f € I}

Foraset TC 7, and individuals e, fe I, we use T, ; to denote the set
{C(f)IC(e) e TIU{R(f,g)IR(e,0) e T,ge I} U{R(D, f) |R(0,€) € T, g e I}.

For the special case thate f, we use the abbreviationT= Te_. Atableaufor KB is
given by a (possibly infinite) set | of individual names, ars&T C 77 such that C |
and the following conditions hold:

ifeel,thenT(e)eT and,ifecl,{e}eT,

if Ale) € KB (R(g, f) e KB),then Ae) € T (R(e, f) € T),

ife~ f € KB, then{f}(e) e T and{e}(f) e T,

if{f}(e) e T,thenQe) e TifC(f) e T,Reg) eTifR(f,g)eT,andRg,e) e T
if R(g,f)eT,forallCe C,Re R,and ge I,

ifACCeKBand Ae)eT,thenGe) e T,

fAMBC CeKB,Ae)eT,andBe)e T,thenQe) e T,
fRCESeKBandRe f)eT,thenSe f) e T,

ART(e) e T iff R(e, f) € T for some fe I,

pPonNPE

©oNoO»



9. ifYRC(e) eT,thenGf) e T forall f e lwithR(e, f) e T,
Atableaus said contain alashif it contains a statement of the formy(e).

Proposition 3. A Horn<fLOH"~ knowledge base KB is satisfiabjgif has a clash-free
tableau.

Proof. Assume thakB has a clash-free tableali T). An interpretation? is defined
as follows. Due to condition 4 in Definition 10, we can defineegnivalence relation
on| by settinge ~ f iff there is somg € | with {{g}(€), {g}(f)} € T. The domairl . of
I is the set of equivalence classes-ofT he interpretation function is defined by setting
el =[g.,ef eCliffC(e) e T,and €, ) e RLiff R(e, ) € T, for all elements,
f € 1, concept name§, and role nameR. It is easy to see thdt satisfiesk B.

For the converse, assume ttaB is satisfiable, and that it thus has some madel
We define a tableau (T) wherel is the domain off. Further, we se€C(e) € T iff
e e Cf, andR(e f) € T iff (e f) € RY, whereC ¢ cl(KB), andR some role name.
Again, it is easy to see that this meets the conditions of Defin10. O

As is evident by the Turing machine construction in the prasisection, some
Horn<¥LOH"™ knowledge bases may require a model to contain an expoheuatidoer
of individuals, even within single paths of the computatibetecting clashes in poly-
nomial space thus requires special care. In particulagradstrd tableau procedure with
blocking does not execute in polynomial space. Therefoesfinst provide a procedu-
ral description of a&anonical tableawvhich will form the basis for our below decision
algorithm.

Definition 11. Consider an algorithm that computes a tableau-like streeefly, T). Ini-
tially, we set I:= 1, and T := 0. The algorithm execute the following steps:

(1) Iterate over all individuals es I. To each such e, apply rules (T1) to (T11) of
Table 9.

(2) If T was changed in the previous step, goto (1).

(3) Apply rule @) of Table 9 to all existing elementsd.

(4) If T was changed by the previous step, goto (1).

(5) Halt.

While most rules should be obvious, some require explanstibhe rules (T6) are
used to ensure that individuadssatisfying a nominal class are synchronised with the
respective named individudl € |. The six sub-rules are needed since one generally
cannot add{e}(f) to T ase might not be an element df On the other hand, role
statements that are inferred in this way need not be takeraitdtount as premises in
other deduction rules, since they are guaranteed to havetae ariginal. Whatever
could be inferred using copied role statements and rulega)(1910), or (T11), can as
well be inferred via the active original from which the in@etrole was initially created
(note that this argument involves an induction over the nemath applications of rule
(T6)).

Rule (T9) is also special. In principle, one could omit (T9nMd use rules (T9a)
and (T10) instead. This inference, however, is the only welsere a role-successor



Table 9. An algorithm for constructing tableaux for HoEOH ™ knowledge bases. Role state-
ments computed by the algorithm might be markeattiveto better control the deduction. All
other role statements aagtive

(TY) T=Tu{T(e)}

(T2) if eel is a named individuall := T U {{e}(e)}

(T3) for eachA(e) € KB, T :=T U {A(e)}

(T4) for eachR(e, f) e KB, T :=T U{R(e, )}

(T5) foreache~ f e KB, T :=T U {{f}(e)} andT =T U {{e}(f)}

(T6) foreach{f}(e) e T
(T6a) foreactC(f) e T, T =T U{C(e)},
(Téb) for eachge | and eactR(f,g) e T, T := T U {R(e, g)}; R(e, g) is marked inactive,
(Téc) foreachge | and eacR(g, f) e T, T := T U {R(g, &)}; R(g, €) is marked inactive,
(Téd) foreachC(e) e T, T =T U{C(f)},
(T6e) foreacty e | and eaclR(e,g) € T, T := T U {R(f,g)}; R(f, g) is marked inactive,
(T6f) foreachge | and eaclR(g,e) € T, T := T U {R(g, f)}; R(g, ) is marked inactive

(T7) foreachAC C € KB, if A(e) € T thenT :=T U {C(e)}

(T8) foreachAmBC C € KB, if A(e) e T andB(e) € T thenT =T U {C(e)}

(T9) for eachRC S € KB, do the following:
(T9a) for eachf €1, if R(g, f) € T andR(eg, f) is not inactive, the := T U {S(e, f)},
(T9b) ifART(e) € T thenT =T U{3S.T(e)}

(T10) for eachf € | andR(e, f) € T with R(e, f) not inactive,T := T U {dR T(e)}
(T11) for each"R.C(€) € T and eachf € | withR(e, f) € T,

if R(e, f) is not inactive, thef := T U {C(f)}

(3) foreachdRT(e) e T,if R(e, f) ¢ T forall f € | then
| :=1U{g}andT =T U{R(e g)}, whereg is a fresh individual

of some individuak might contribute to the classes inferred ®rBy providing rule
(T9b), the class expressions containg@an be computed without considering any role
successor, and rule (T10) is essential only when role egjmes have been inferred
from ABox statements. In combination with the delayed aggtion of rule f), this
ensures that concepts are indeed inferred by (T9b) ratherkik (T9a}(T10), which
will be exploited in the proof of Lemma 9 below.

Also note that the algorithm of Definition 11 is not a decisjmocedure, since
we do not require the algorithm to halt. What we are intecedte however, is the
(possibly infinite) tableau that the algorithm constructghie limit. The existence of
this limit is evident from the fact that all completion rula finitary, and that each rule
monotonically increases the size of the computed structtii® easy to see that there
is a correspondence between the rules of Table 9 and thetimmsdof Definition 10,
so that the limit structure will indeed meet all the requisgrts imposed on a tableau.
For a given knowledge bad€B, we write (kg, Tks) to denote theanonical tableau
constructed by the above algorithm frdB, where the subscripts are omitted when
understood. It is easy to see that, whenever the canonlebia contains a clash, this
must be the case for all possible tableaux.



The algorithm of Definition 11 can be viewed as a “breadth-ficenstruction of
a canonical tableau. Due to the explicit procedural desoripof tableau rules, any
role and class expression of the canonical tableau is firapated after a well-defined
number of computation stegsAccordingly, we define a total orderon T by setting
F < Giff F is computed beforé.

The canonical tableau and the ordemare the main ingredients for showing the
correctness of following nondeterministic decision aiton.

Definition 12. Consider a Horn¥LOH"~ knowledge base KB with canonical tableau
(1,T). A setof individuals | is defined as% | U {a, b}, where a, bz |. Nondeterminis-
tically select one elementqgl, and initialise T C 7, by setting T:= {L(g)}.

The algorithm repeatedly modifies T by nondeterministycafiplying one of the
following rules:

(N1) Givenany X 77, set T:= T U {X}. If X is a role statement, decide nondetermin-
istically whether X is marked inactive.

(N2) If there is some individual € | and X € T such that X can be derived from
T \ {X} using one of the rules (T1) to (T11) in Table 9, set=TT \ {X}. Rules
(T6b), (T6c), (T6e), and (T6f) can only be used if X is markedtive.

(N3) If T, = {R(e,a)} forsome e= | \ {a} suchthalRT(e) e T,set T:=T \ Ta.

(N4) If T, =0,setT:= (T UTpoa) \ Tp.

(N5) If T = 0, return “unsatisfiable.”

Lemma 7. The algorithm of Definition 12 can be executed in polynomibbunded
space.

Proof. Sincell|, |C|, and|R| are polynomially bounded by the size of the knowledge
base, so isl(KB) and thusT . O

Lemma 8. If there is a sequence of choices such that the algorithm d¢ihiBien 12
returns “unsatisfiable” after some finite time, KB is indeatsatisfiable.

Proof. Intuitively, the nondeterministic algorithm applies rsilef the algorithm in Def-
inition 11 in reverse order, deleting a conclusion whendvean be derived from the
remaining statements. The anonymous individaaadb are used to dynamically rep-
resent (various) elements from the canonical tableau. Fomaal proof, assume that
the algorithm terminates within finitely many steps, andhaiit loss of generality, that
each step involves a successful application of one of thesrN1) to (N5). We us&"
to denote the state of the algorithmsteps before termination. In particuld® = 0.

We claim that for eacfi" there are individuals, f € I, such thaff; ., . € T.
This is verified by induction over the number of steps exatbiethe algorithm. Since
TO = 0, the claim forT? holds for anye, f € . 3

For the induction step, assume tfgt, . € T. To show the claim fofl ™, we

distinguish by the transformation rule that was applieddtam T" from T™1:
2 For this to be true, one must also specify the order for thelired iterations, e.g. by ordering

elements lexicographically and adopting a naming schemesfoly introduced elements. We
assume that such an order was chosen.



(N1) SinceT™! c T", we concludd[*L | c T.

(N2) T = Thu{X}, whereX can be derived frorli" by one of the rules (T1) to (T11).
Since those rules have been applied exhaustively ine findTg,j}e bt S T-

(N3) We findT! = 0 and, for somey € | \ {a} andR € R, T™! = T" U {R(g, @)} and
AR T(g) € T". Defineg’ := f if g = b, andg’ = g otherwise. We conclude that
AR T(g) € T and thus there is some individugle | with R(g’, €). We conclude
that 71 cT.

a—€e,b-»f =

(N4) This rule merely exchangéswith (the unuseda. Thus we havé!",;]j}f,bHe cT.
Applying the above induction to the initial state(g)}, we find that L(g)}ase bt € T.
HenceT indeed contains a clash akKd is unsatisfiable. O

Lemma 9. Whenever KB is unsatisfiable, there is a sequence of chaichstlsat the
algorithm of Definition 12 returns “unsatisfiable” after s@nfinite time.

Proof. We first specify a possible sequence of choices, and then Bh@arrectness.
If KB is unsatisfiable, there is some elemert | in the canonical tableau such that
1(e) € T. Pick one sucle. We usea’ andb’ to denote the elements bthat are currently
simulated bya andb. Initially, we seta’ = b’ = o for some element ¢ |. Rule (N1)
of the algorithm will repeatedly be used to clobeunder relevant inferences that are
<-smaller than some statemexitGivenX € T, we define:

IX={C(feTIC(f)<X felu {a’,b'}}a,H&b,Hb
[R(f.g) € T|R(f,g) is not inactiveR(f,g) < X, f.gel U{a. b’}

a-a byeb’
This selects all elements fthat can be represented using the elements fraith
the current representation af asa, andb’ asb. Throughout the below computation,

the following property will be preserved:

TaHa’,be’ c T_ (T)

Now if e € I, seta’ := e. Using the nondeterministic initialisation and rule (N1),
the algorithm of Definition 12 can now compule = |{1(€)}. The algorithm now
repeatedly executes steps according to the following ehstiategy.

Single step choice strategylif T, is non-empty, le be the<-largest element of
Ta. Else, letX be the<-largest element of . By property (), there is som&’ € T with
{X}ama bt = {X’}. Applying rule (N1), the algorithm first comput@s:= T U | X (x).
The algorithm nondeterministically guesses the rule ofil@&bthat was used to infer
X’, and proceeds accordingly:

— If X’ was inferred by one of the rules (T1), (T2), (T3), (T4), (TH)7), (T8), (T9a),
(T9b), and (T10), the premises of a respective rule apjpdican T have been com-
puted in §). This is so since the required premises aremaller and not inactive,
and since they only involve individuals that are also foumi.e. which are rep-
resented by with the current choice oft andb’. Hence the algorithm can apply
rule (N2) to reduce.



— If X" was inferred by one of the rules of (T6), then one of the premissed was
of the form{f}(e), and thusf € |. Since inactive roles are not generated by any of
the given choices, rules (T6b), (T6c), (T6e), and (T6f) averelevant. IfX’ was
inferred by rule (T6a) theiX can directly be reduced by applying rule (N2). The
existence of the premisesinfollows again from ).

If X" was inferred by rules (T6d), theX is of the formC(f) and thusT, = 0. If
the individuale in the premise is i, thenX again can be reduced by rule (N2). If
e ¢ |, seta’ = eand use rule (N1) to compuie, = {{f}(e), C(e)}. Apply (N2) to
reduceX.

— If X" was inferred by rule (T11), theX’ = C(g) for some elemeng, and there is
some elemere such tha{VR.C(€), R(e, g)} < T. We distinguish two cases:

o If g eI, thenX = C(g) andT, = 0. Seta’ = e and use rule (N1) to compute
Ta = {YRC(a), R(a, g)}. Use rule (N2) to reduck.

e If g¢|,thenX =C(a)ande # &'. If ec | U{b’}, then{YR.C(€), R(e,a)} € T by
(*). Use rule (N2) to reduck. If e ¢ | U{b'}, thenb’ = o andTy, = 0, as we will
show below. Seb’ = eand use rule (N1) to compulig, = {YR.C(b), R(b, g)}.
Use rule (N2) to reduck.

We claimed thab’ = o whenever itis not equal to the predecessdthis is so,
sincea’ ¢ | is ensured by each step of the algorithm, and since elemeats t
are not inl are involved in active role statements of exactly one presisar
(the one which generated). This is easily verified by inspecting the rules that

can create role statements.
— If X" was inferred by rule), we haveX’ = R(e, g) for some newly introduced

elementg ¢ |. ThusX is of the formR(¢, a), and, sinceX was selected to be
<-maximal, T, = {X}. Thus we can apply rule (N3) to redue In addition, the
algorithm applies rule (4) to copyto the (now emptyg, and we set’ = b’ and
b =no.

With the above choices, the algorithm instantiates elesgon demand, and re-
peatedly reduces the statements of those elements. Thidimalirules show that this
reduction might require another (predecessor) individut be considered, but that
no further element is needed. Also note that rule (T9b) isiired to ensure that all
concept expressions iy can be reduced without generating any role successoss for
Hence, it is evident that the above choice strategy enshia¢exactly one of the above
reductions is applicable in each step.

Finally, we need to show that the algorithm terminates. Thasm is established
by defining a well-founded termination order. For detailssoich approaches and the
related terminology, see [8]. Now considerii@s a multiset, the multiset-extension of
the well-founded ordex is a suitable termination order, which is easy to see since in
every reduction step, the elemexXitis deleted, and possibly replaced by one or more
elements that are strictly smaller thxn O

The above lemmata establish an MRS decision procedure for detecting unsat-
isfiability of Horn-FLOH"~ knowledge bases. But NPSE is known to coincide with
PSace, and we can conclude the main theorem of this section.

Theorem 3. Unsatisfiability of a HorrFzLOH~ knowledge base KB can be decided in
space that is polynomially bounded by the size of KB.



Proof. Combine the lemmata 7, 8, and 9 to obtain a nondeterminista:polynomial
decision procedure for detecting unsatisfiability. ApBlvitch’s Theorerno show the
existence of an according RSt algorithm. O

Summing up the result from the previous two sections, weiolite following.

Theorem 4. Deciding knowledge base satisfiability in any descriptiogi¢ between
Horn-7L~ and Horn¥LOH™ is PSace-complete.

Proof. Combine Lemma 5 and Theorem 3. O

5 Horn-¥£L&

FLE further extends”L™ by allowing arbitrary existential role quantifications, i
turns out to raise the complexity of Hoff£SE to ExpTive. Note that inclusion in k-
Tmve is obvious sincefLE is a fragment ofSHIQ which is also in EpTmve [9]. To
show that Horn7LE is ExeTime-hard, we reduce the halting problem of polynomially
space-bounded alternating Turing machines, defined regigtconcept subsumption
problem.

5.1 Alternating Turing machines
Definition 13. Analternating Turing machin@ATM) M is a tuple(Q, 2, 4, go) where

— Q = U U E is the disjoint union of a finite set ainiversal states) and a finite set
of existential statek,

— 2'is a finitealphabethat includes a@lanksymbolao,

- 4C(Qx2)x(Qx2x{lr})is atransition relationand

— (o € Qs theinitial state

A (universgkxistential)configurationof M is a worda € 2*QX* (2*UX"/2*EX*). A
configuratione’ is a successoof a configurationw if one of the following holds:

1' a = \MqO-O-rWr, a/ = WIO"q'O'rWry and(qv g, q,’ 0-,, r) € Ay
2. a =wQgo, @ =wo’'qo, and(g, o, q,0”,r) € 4,
3. @ =Wogow, @’ = wiq'oio’'W, and(qg, o, q', 0", 1) € 4,

where ge Q ando, o, oy, o € X as well as ww, € 2*. Given some natural number s,
the possibléransitions in space are defined by additionally requiring thiat| < s+ 1.

The set ofaccepting configurationis the least set which satisfies the following
conditions. A configuration is acceptingff

— ais a universal configuration and all its successor configiamas are accepting, or
— a is an existential configuration and at least one of its suscesonfigurations is
accepting.



Note that universal configurations without any successers play the réle of accept-
ing final configurations, and thus form the basis for the retwe definition above.

M acceptsa given word we 2™ (in space s)ff the configuration gw is accepting
(when restricting to transitions in space s).

This definition is inspired by the complexity classes NP amdN®, which are char-
acterised by non-deterministic Turing machines that acaegnput if either at least
one or all possible runs lead to an accepting state. An ATMswdgtth between these
two modes and indeed turns out to be more powerful than cksEiring machines of
either kind. In particular, ATMs can solvexkEl' e problems in polynomial space [10].

Definition 14. A language L is accepted by a polynomially space-bounded &M
there is a polynomial p such that, for every wordew2™, w € L iff w is accepted in

space fw)).

Fact 1. The complexity clas8PSeace of languages accepted by polynomially space-
bounded ATMs coincides with the complexity cEassTME.

We thus can showeTmve-hardness of Hor&H 7Q by polynomially reducing the
halting problem of ATMs with a polynomially bounded storagpace to inferencing in
Horn-SHIQ. In the following, we exclusively deal with polynomially ape-bounded
ATMs, and so we omit additions such as “in spatwhen clear from the context.

5.2 Simulating ATMs in Horn-¥L&E

In the following, we consider a fixed ATMA denoted as in Definition 13, and a poly-
nomial p that defines a bound for the required space. For any ward*, we construct
a Horn¥ZLE& knowledge bas& (v and show that acceptancewby the ATM M can
be decided by inferencing over this knowledge base.

In detail, Ky depends oM and p(wl), and has an empty ABokAcceptance of
w by the ATM is reduced to checking concept subsumption, whaeeof the involved
concepts directly depends an Intuitively, the elements of an interpretation domain of
Kumw represent possible configurations™f encoded by the following concept names:

— Agforge Q:the ATM is in stateq,

— Hifori=0,..., p(w) - 1: the ATM is at positiori on the storage tape,

— Cyj with o € 2 andi = 0,..., p(w|]) — 1: positioni on the storage tape contains
symbolo,

— A: the ATM accepts this configuration.

This approach is pretty standard, and it is not too hard toraatise a successor
relation S and appropriate acceptance conditionsALC (see, e.g., [11]). But this
reduction is not applicable in Hor84{7Q, and it is not trivial to modify it accordingly.

One problem that we encounter is that the acceptance comditiexistential states
is a (hon-Horn) disjunction over possible successor cordiipns. To overcome this,
we encode individual transitions by using a distinguishectessor relation for each

3 The RBox is empty fofLE anyway.



Table 10.Knowledge bas& ,,, simulating a polynomially space-bounded ATM. The rules are
instantiated for alt, g €Q, 0,0’ €ZX, i, j€{0,..., p(w]) — 1}, andé € 4.

(1) Leftand right transition rules:
A HiNCyj E 3Ss.(Ay MHi1MCyrj) Withd = (9,00, 07,1),i < p(w) - 1
A HiNC, T 3S5.(Ay NHi-1MCyj) withd =(g,0,0,07,1),i >0

(2) Memory: (3) Existential acceptance:
HimC,i C VS;Chi i#] Aqn3S;, AC A forallge E
(4) Universal acceptance:
AqmHNCy N[5i(3Ss.A)E A geU,xefr|i<p(w)-211u{l|i>0}

Ad={(q0o.q,0, X € )

translation in4. This allows us to explicitly state which conditions mustichéor a
particular successor without requiring disjunction. Hee facceptance condition, we
use a recursive formulation as employed in Definition 13.hiis tvay, acceptance is
propagated backwards from the final accepting configuration

In the case ofALC, acceptance of the ATM is reduced to concept satisfiability,
i.e. one checks whether an accepting initial configurateam exist. This requires that
acceptance is faithfully propagated to successor staidbas any model of the initial
concept encodes a valid traces of the ATM. Axiomatising teguires many exclusive
disjunctions, such as “The ATM always iséxactlyone of its statesl;.” Since it is not
clear how to model this in a Horn-DL, we take a dual approagtitucing acceptance to
concept subsumption, we require the initial state to begouoginall possible models.
We therefore may focus on the task of propagating propeuissiccessor configura-
tions, while not taking care of disallowing additional staients to hold. Our encoding
ensures that, whenever the initial configuration is not piteg, there is at least one
“minimal” model that reflects this.

After this informal introduction, consider the knowledgaskK (w given in Ta-
ble 10. The roless, ¢ € 4, describe a configuration’s successors using the translati
6. The initial configuration for wordv is described by the concept expressign

lw=Ag MHoMCryomM...MCsy 1 w-1 M Cop M ... 1 Cpq pgwi)-1,
whereo; denotes the symbol at thigh position ofw. We will show that checking
whether the initial configuration is accepting is equivakerchecking whethek, C A
follows fromK . The following is obvious from the characterisation giveTable 2.

Lemma 10. Kyw and b, C A are in Horn¥ZLE.

Next we need to investigate the relationship between el&srdran interpretation
that satisfies 51w and configurations oM. Given an interpretatiodi of Ky, we say
that an elemenrg of the domain off represents configurationr; ... o_1q0 .. .o if
ec Aj,ec H/, and, foreveryj € {0,..., p(w) - 1}, e€ C({J. whenever

j £mando = oy or j > mando = 0.

Note that we do not require uniqueness of the above, so thiagke £lement might
in fact represent more than one configuration. As we will sdevy, this does notféect



our results. Ife represents a configuration as above, we will also sayethas state,
positioni, symbolo; at positionj etc.

Lemma 11. Consider some interpretatioh that satisfies . If some element e of
I represents a configuratiom and some transitiod is applicable toe, then e has an
Sg-successor that represents the (unique) result of applyiogr.

Proof. Consider an elemem statea, and transitiord as in the claim. Then one of the
axioms (1) applies, anelmust also have aﬁg-successor. This successor represents the
correct state, position, and symbol at positiarfi e, again by the axioms (1). By axiom
(2), symbols at all other positions are also represented tsgasuccessors of. O

Lemma 12. A word w is accepted byt iff |, C A is a consequence ofsly.

Proof. Consider an arbitrary interpretatidnthat satisfied< . We first show that, if
any elemene of I represents an accepting configuratigrthene € AZ.

We use an inductive argument along the recursive definitfacoeptance. & is
a universal configuration then all successors afe accepting, too. By Lemma 11, for
anyds-successott’ of a there is a correspondir@—successoef of e. By the induction
hypothesis for’, € isin A”. Since this holds for ali-successors af, axiom (4) implies
e e AL, Especially, this argument covers the base case whbiges no successors.

If @ is an existential configuration, then there is some accgptisuccesson’ of
a. Again by Lemma 11, there is zﬁg-successoef of ethat represents’, ande’ € A’
by the induction hypothesis. Hence axiom (3) applies anol@#scludes € AL,

Since all elements i, represent the initial configuration of the ATM, this shows
thatl}, ¢ A” whenever the initial configuration is accepting.

It remains to show the converse: if the initial configuratismot accepting, there
is some interpretatiod such thatil, ¢ A’. To this end, we define a canonical inter-
pretationM of Ky, as follows. The domain dl is the set of all configurations o¥1
that have sizep((wj) + 1 (i.e. that encode a tape of lengttiw|), possibly with trailing
blanks). The interpretations for the concepts Hi, andC,; are defined as expected
so that every configuration represents itself but no othefigoration. Especially
is the singleton set containing the initial configuratiofveh two configurationa and
a’/, and a transitiod, we define &, a’) € S(’sv' iff there is a transitiod from o to . AM
is defined to be the set of accepting configurations.

By checking the individual axioms of Table 10, it is easy te #eatM satisfies
Kaww- Now if the initial configuration is not accepting! ¢ AM by construction. Thus
M is a counterexample fdg, © A which thus is not a logical consequence. O

We can summarise our results as follows.

Theorem 5. Checking concept subsumption in any description logic éetwHorn-
FLE and HornSHIQ is ExpTmme-complete.

Proof. Inclusion is obvious as Hor847Q is a fragment ofALC, which is in Eep-
Tmve. Regarding hardness, Lemma 12 shows that the word problepofgnomially
space-bounded ATMs can be reduced to checking conceptraplisn in K w. By



Lemma 10K is in Horn#LE. The reduction is polynomially bounded due to the
restricted number of axioms: there are at mosi@| x p(jw|) x |X| x |4] axioms of type
(1), p(w)® x |Z] x |4] of type (2),IQl x 12] of type (3), andQ| x p(wi) x || of type
4). O

Note that, even in Horn logics, it is straightforward to redknowledge base satis-
fiability to the entailment of the concept subsumptio L. The proof that was used
to establish the previous result is suitable for obtainughfer complexity results for
logical fragments that are not above Hoffi:E.

Theorem 6. (a) Let £ denote&L extended with number restrictions of the form
<1RT.
(b) Let¥ZLo~ denotefL™ extended with composition of roles.
(c) Let¥LI™ denotefL™ extended with inverse roles.
Horn-#Lo™ is ExpTive-hard, and both Horn€ £=! and Horn9£7~ are ExpTiMe-
complete.

Proof. The results are established by modifying the knowledge Basg to suite the
given fragment. We restrict to providing the required madifions; the full proofs are
analogous to the proof for HorALE.

(a) Replace axioms (2) in Table 10 with the following statetse
TE<1S;.T H;nCei M 3Ss.T E 3S5.Cy, i #j
(b) Replace axioms (1) with axioms of the form
AqmHi M Cyi E3Ss. T N VSs.(Ag M Hiz1 MCo ).
Any occurrence of conceptis replaced bydRa. T, with Ry a new role. Moreover,
we introduce roleRa; for each transitiord, and replace any occurrenceb;. A
with JRas. T. Finally, the following axioms are added:
SsoRaC Ry  foreachs € 4.
(c) Axioms (1) are replaced as in (b). Any occurrencé8§.A is now replaced with a
new concept namAg;, and the following axioms are added:
Ac VS;LAs; foreachs € 4.

It is easy to see that those changes still enable analogdustiens. Inclusion results
for Horn-S£5! and HorngL7~ are immediate from their inclusion ifH7Q. O

ExpTive-completeness af.£=! was shown in [1], but the above theorem sharpens
this result to the Horn case, and provides a more direct pidedorems 5 and 6 thus
can be viewed as sharpenings of the hardness results orsiextenfE L.

6 Summary

Horn logics, while having a long tradition in logic prograrmg, have only recently
been studied in the context of description logics, mainlg tutheir lower data com-
plexities [3]. In this work, we have investigated thi#eets of Hornness on the overall
complexity of DL reasoning, and we have shown that only thenHimgments of certain
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Fig. 1. Overview over complexity boundaries for combined compiexif (Horn) description
logics in the presence of GCls. The exact location of the BdXes is conjectured, and has not
been shown yet.

subboolean description logics are actually less complex their non-Horn versions.
On the other hand, the well-known tractable LA 6++ [1] and DLP [2] are also recog-
nised as (fragments of) Horn-logics, and we thus obtain iaghpicture of combined
complexities of some of the most important tractable DLgently discussed.The
main results of our work are summarised in Figure 1.

While most of the displayed relationships have been verdigalve, Figure 1 also
includes two open conjectures that are left to future retea&tornSHOI Q might also
turn out to be in kpTiMe, whereas Horr Lo~ could even be NEpTime-hard. In ad-
dition, some related results have not been included in Eiquin particular, we have
shown that (Horn) disjunction and atomic negation nevereiase the complexity of
Horn-logics. Accordingly, the extension 8f£++ to Horn& LU ++ is still tractable,
while it was shown in [1] that boti& LU and &L are EpTive-complete. An in-
teresting application of this extension is the use of DLsw@ry languages, since the
use of disjunctions is not constrained within queries (utdce treated as negated ax-
ioms) at all. This is exploited, for instance, in the semasgarch implementation of

4http://owll_1.cs.manchester.ac.uk/tractable.html



Semantic MediaWiki [12], which indeed supports a (syntadly adopted) fragment of
Horn-€LU++ for querying large scale knowledge bases.

Our results on HoreLE and Horn&L=! sharpen the known results on the non-
extendibility of L. On the other hand, various expressive extensions thatremerk
not to increase the complexity éf£ were also shown to be tolerable in the case of
Horn-¥£, and Horn¥ZL . In particular, nominals and role hierarchies have had no
negative &ect on the worst-case complexity of any of the investigatednHogics.
Yet, it is apparent from the technically more involved probHorn-FLOH™'s P Sack-
completeness that especially nominals can easily make#s®ning task more compli-
cated. As all other proofs, this proof is established diyeatithout referring to existing
complexity results. While this is often increasing the lgmof the required argumenta-
tion, we believe that direct proofs are often most instrugctor analysing the source of
increased complexities.
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