
Stage Semantics and the SCC-recursive
Schema for Argumentation Semantics
Wolfgang Dvořák, University of Vienna, Faculty of Computer Science,
Vienna, Austria
E-mail: wolfgang.dvorak@univie.ac.at

Sarah Alice Gaggl, Technische Universität Dresden, Institute of Artificial
Intelligence, Computational Logic Group, Dresden, Germany
E-mail: sarah.gaggl@tu-dresden.de

Abstract
Recently, stage and cf2 semantics for abstract argumentation attracted specific attention. By distancing from the
notion of defense, they are capable to select arguments out of odd-length cycles. In case of cf2 semantics, the
SCC-recursive schema guarantees that important evaluation criteria for argumentation semantics, like directionality,
weak- and CF -reinstatement, are fulfilled. Beside several desirable properties, both stage and cf2 semantics still
have some drawbacks. The stage semantics does not satisfy the above mentioned evaluation criteria, whereas cf2

semantics produces some questionable results on frameworks with cycles of length ≥ 6. Therefore, we suggest
to combine stage semantics with the SCC-recursive schema of cf2 semantics. The resulting stage2 semantics
overcomes the problems regarding cf2 and stage semantics.

We study properties of stage2 semantics and its relations to existing semantics, show that it fulfills the mentioned
evaluation criteria, study strong equivalence for stage2 semantics, and provide a comprehensive complexity anal-
ysis of the associated reasoning problems. Besides the analysis of stage2 semantics we also complement existing
complexity results for cf2 by an analysis of tractable fragments and fixed parameter tractability. Furthermore we
provide answer-set programming (ASP) encodings for stage2 semantics and labeling-based algorithms for cf2 and
stage2 semantics.

Keywords: abstract argumentation, cf2 semantics, stage2 semantics, odd-length cycles, computational complexity,
strong equivalence, answer-set programming, labelings

1 Introduction
The formalism of abstract argumentation frameworks (AFs) as introduced by Dung [22],
provides a way of dealing with conflicting knowledge. It allows for a concise representation
of statements together with a binary relation between the statements, where the conflicts are
then solved on the semantical level. In abstract AFs the internal structure of the statements
(also called arguments) is not of specific interest. One concentrates on the relation between
the arguments, where the actual meaning of the so called attack relation depends on the
particular application field. Typically this relation denotes some kind of conflict between the
statements.

AFs are typically represented as directed graphs, where the nodes are the arguments and
the edges are the attack relation. Loops of different kind can appear in these graphs, like
even-length as well as odd-length cycles and even self-loops as a special form of odd-length
cycles. Recent investigations [5, 7, 9, 10, 44, 58] showed that some of these loops can have
a strong and in certain cases undesired influence on the computation of solutions, e.g. in the

1 c© Oxford University Press

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 2

case of stable semantics an odd-cycle can prevent the AF from having an extension at all. The
meaning of the different loops is not defined explicitly by the AF but by the argumentation
semantics one chooses. In particular it is not clear what it means for two arguments to appear
in either an even- or an odd-length loop. However, it seems obvious to take this special graph
structure also in the evaluation of the framework into account.

Traditional argumentation semantics build on the concept of admissible sets, i.e. conflict-
free sets where each argument attacking an argument in the set is also attacked by the set,
which may yield undesired behavior in the presence of odd-length cycles. Consider an AF
consisting of three arguments a, b and c, where a attacks b, b attacks c, and c attacks a. For
the set S = {a} the first condition of admissible sets is fulfilled, as a is not self-attacking.
Now a is attacked by c, then the set S needs to attack c to defend a. This would require that b
belongs to S, as it is the only attacker of c. But a attacks b, thus the first condition is violated.
So in an AF consisting of an odd-length cycle the only admissible extension is the empty
set. Hence, the traditional well-studied admissibility based semantics are not applicable if we
want to select arguments in odd-length cycles.

There are situations, where it is not required that the arguments are defended against all
attacks on them. In particular if one sees arguments as different choices and the attack re-
lation between two choices denotes that they can not stand together. Then, one would like
to be able to select maximal consistent sets of arguments as solutions. In the following we
denote semantics which build on maximal conflict-free, so called naive sets, as naive-based
semantics. Lately, there have been proposed several approaches how to deal with such situa-
tions [5, 7, 9, 10, 44, 58, 61]. Out of them the cf2 semantics as introduced in [4] and revisited
later in [7], attracted specific attention [44, 45, 47]. This naive-based semantics does not only
treat cycles in a more sensitive way than others, the SCC-recursive schema where it is de-
fined guarantees that principal properties for argumentation semantics like directionality [5]
are fulfilled. The recursive definition of cf2 is based on a decomposition of the framework
along its strongly connected components (SCCs), where in the base case (if the AF consists
of a single SCC) the naive sets are chosen. In contrast to admissible-based semantics, cf2
semantics does not require to defend arguments against all attacks but the SCC-recursive
schema somehow simulates defense. In particular arguments do not need to be defended
against attacks from members of their own SCC and attacks from other SCCs do only apply
if they come from acceptable arguments. However, one weakness of cf2 is that in case the AF
consists of, resp. contains, an SCC of certain size, even in the absence of odd-length cycles,
the evaluation is questionable [44, 47]. These shortcomings already appear in the base-cases
for cf2 where only naive semantics are applied.

On the other side, the well studied naive-based semantics stage [61] can also handle odd-
length cycles and does not change the behavior of odd-cycle-free AFs. The disadvantages of
stage semantics are that very basic properties are not satisfied, for example the skeptical ac-
ceptance of unattacked arguments, i.e. the weak reinstatement property [5] is violated. While
naive-based semantics seem to be the right candidates when the above described behavior
of admissible-based semantics is unwanted, there are several shortcomings with existing ap-
proaches, as mentioned above.

We can see that stage semantics lack a lot of desired properties which are guaranteed by
the SCC-recursive schema, while cf2 mainly suffers from using naive as base semantics.
Thus to overcome the observed problems we propose to combine the concepts of cf2 and
stage semantics, which results in the sibling semantics stage2 . We use the SCC-recursive
schema of cf2 semantics and instantiate the base case with stage semantics. It turns out,

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 3

that the novel stage2 semantics resolves the shortcomings of both cf2 and stage semantics.
Besides introducing the novel stage2 semantics, we perform a systematic analysis of stage2
and compare the results with the other naive-based semantics, cf2 and stage. We consider
well established methods starting with relating stage2 to other naive-based semantics, as well
as the classification in terms of the general evaluation criteria as proposed by Baroni et al.
in [5].

Recently the concept of strong equivalence for argumentation semantics attracted specific
attention [56]. Two AFs are strongly equivalent w.r.t. a semantics σ, if no matter which new
arguments and attacks one adds to both of them, they always produce the same extensions.
Surprisingly, it turned out that for cf2 semantics, strong equivalence is only given if the two
frameworks are identically [47]. So far cf2 is the only semantics where this behavior was
observed, while for all other semantics, it was possible to identify redundant attacks [56, 47].
This special behavior has been made explicit with the succinctness property [47]. We will
show that stage2 is the second semantics which satisfies the succinctness property.

Strong equivalence not only gives an additional property to investigate the differences be-
tween argumentation semantics but also has some interesting applications. First, suppose
we model a negotiation between two agents via argumentation frameworks. Here, strong
equivalence allows to characterize situations where the two agents have an equivalent view
of the world which is moreover robust to additional information. Second, we believe that
the identification of redundant attacks is important in choosing an appropriate semantics, in
particular if an abstract argumentation framework has been built from a given knowledge
base. Caminada and Amgoud outlined in [15] that the interplay between how a framework
is built and which semantics is used to evaluate the framework is crucial in order to obtain
useful results when the (claims of the) arguments selected by the chosen semantics are col-
lected together. Knowledge about redundant attacks (w.r.t. a particular semantics) might help
to identify unsuitable such combinations or showing that two ways to build a framework are
actual equivalent for a semantics.

Classifying the computational complexity of argumentation semantics always has been an
important issue in the field [3, 18, 20, 23, 25, 17, 37, 38, 47] (for an overview see [26, 27]),
this is for good reasons. Such an analysis is of high values when it comes to implementa-
tions of reasoning systems for argumentation semantics, in particular parametrized complex-
ity analysis [54], guides a way to algorithms performing well on practical instances. From the
knowledge representation point of view, the computational complexity of an argumentation
semantics is also a measure for the expressiveness of these semantics.

In order to evaluate argumentation frameworks and to compare the different semantics, it is
desirable to have efficient systems at hand which are capable of dealing with a large number
of argumentation semantics. As argumentation problems are in general intractable, which is
also the case for cf2 and stage2 semantics, developing dedicated algorithms for the different
reasoning problems is non-trivial. A promising way to implement such systems is to use a
reduction method, where the given problem is translated into another language, for which
sophisticated systems already exist. It turned out that the declarative programming paradigm
of Answer-Set Programming (ASP) is especially well suited for this purpose (see [60] for
an overview). Following the ASPARTIX approach [40] we will provide a fixed program
for stage2 semantics, where the actual AF to process is given as an input database. Then
the answer sets are in a one-to-one correspondence to the stage2 extensions of the input
framework. As the encodings for stage2 semantics require a certain maximality check which
is performed with the quite involved saturation technique [41], we will present an alternative

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 4

encoding making use of the novel metasp optimization front-end [49] for the ASP-system
gringo/claspD to simplify the encodings.

A somehow orthogonal approach to the above mentioned reduction methods are dedicated
algorithms based on argument labeling functions [21, 53, 62]. Such labelings distinguish
different statuses of arguments, e.g. whether they are accepted, attacked or undecided. Now
when fixing the label of one argument this has immediate implications for its neighbors. For
instance if we mark one argument as accepted we have to mark all arguments attacked by it as
attacked. The idea of labeling based algorithms is to use these implications to prune the search
space for possible extensions. In this work we will study such propagation rules for labelings
of cf2 and stage2 semantics hand in hand with dedicated labeling-based algorithms.
The contributions of this work are the following:

• In Section 2, we have a closer look at the properties of, and differences between, existing
naive-based semantics stage and cf2 . We highlight the shortcomings of these approaches
in the presence of odd- and even-length cycles.
• To overcome the outlined shortcomings we study a combination of the concepts of stage

and cf2 semantics in Section 3, where we use the SCC-recursive schema of cf2 semantics
and instantiate the base case with stage semantics. In this way, we obtain the novel stage2
semantics.
• We investigate the basic properties of the novel semantics as well as its relation to the

existing semantics, and we show that it solves most of the above mentioned problems. In
particular, we evaluate stage2 semantics with the criteria proposed in [5].
• In Section 4, we analyze strong equivalence w.r.t. stage2 semantics, where it turns out

that it is the second semantics, beside cf2 , satisfying the succinctness property [47]. Fur-
thermore, we investigate standard equivalence between stage2 and the other naive-based
semantics.
• In Section 5, we study computational properties of naive-based SCC-recursive semantics.

That is we complement existing results for cf2 semantics by:
– Providing a complexity analysis for the standard argumentation reasoning tasks and
stage2 . We show that complexity from stage semantics carries over to stage2 seman-
tics and therefore stage2 is located on the second level of the polynomial hierarchy.

– Moreover, we provide an analysis of possible tractable fragments [18, 32, 33] for cf2
and stage2 which can help to improve the performance for easy instances of the in
general hard problems. In particular we consider acyclic AFs, even-cycle free AFs,
bipartite AFs and symmetric AFs. Finally we consider the backdoor approach [32] for
augmenting these tractable fragments.

• Finally in Section 6, we concentrate on implementations. We study two orthogonal ap-
proaches for implementing abstract argumentation semantics. First we give the ASP
encodings of stage2 , where we make a distinction between the standard saturation en-
codings [41] and the novel metasp encodings [49]. Second, we give labeling-based
algorithms to compute the solutions for cf2 and stage2 semantics.

2 Preliminaries
In this section we introduce the basics of abstract argumentation, the semantics we need for
further investigations followed by a comparison of cf2 and stage semantics.

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 5

2.1 Abstract Argumentation

We first give the formal definition of abstract argumentation frameworks as introduced by
Dung [22].

DEFINITION 2.1
An argumentation framework (AF) is a pair F = (A,R), where A is a finite1 set of argu-
ments and R ⊆ A×A is the attack relation. The pair (a, b) ∈ R means that a attacks b. A set
S ⊆ A of arguments attacks b (in F), if there is an a ∈ S, such that (a, b) ∈ R. An argument
a ∈ A is defended by S ⊆ A (in F) iff, for each b ∈ A, it holds that, if (b, a) ∈ R, then S
attacks b (in F). Moreover, given an AF F , we use AF to denote the set of its arguments and
resp. RF to denote its attack relation.

The inherent conflicts between the arguments are resolved by selecting subsets of arguments,
where a semantics σ assigns a collection of sets of arguments to an AF F . The basic require-
ment for all semantics is that none of the selected arguments attack each other.

DEFINITION 2.2
Let F = (A,R) be an AF. A set S ⊆ A is said to be conflict-free (in F), if there are no
a, b ∈ S, such that (a, b) ∈ R. We denote the collection of sets which are conflict-free (in
F) by cf (F). A set S ⊆ A is maximal conflict-free or naive, if S ∈ cf (F) and for each
T ∈ cf (F), S 6⊂ T . We denote the collection of all naive sets of F by naive(F). For the
empty AF F0 = (∅, ∅), we set naive(F0) = {∅}.

Towards the definition of the semantics we introduce the following formal concepts.

DEFINITION 2.3
Given an AF F = (A,R), let S ⊆ A. The characteristic function FF : 2A → 2A of
F is defined as FF (S) = {x ∈ A | x is defended by S}. We define the range of S as
S+
R = S ∪ {b | ∃a ∈ S, s. t. (a, b) ∈ R}.

In the following we give brief definitions of the standard semantics in abstract argumenta-
tion [22] together with the definition of stage semantics [61]. For comprehensive surveys on
argumentation semantics the interested reader is referred to [2, 6].

DEFINITION 2.4
Let F = (A,R) be an AF, then S ∈ cf (F) is

• a stable extension (of F), i.e. S ∈ stable(F), if S+
R = A;

• an admissible extension, i.e. S ∈ adm(F), if each a ∈ S is defended by S;
• a preferred extension, i.e. S ∈ prf (F), if S ∈ adm(F) and for each T ∈ adm(F),
S 6⊂ T ;
• the grounded extension (of F), i.e. S = grd(F), if it is the least fixed-point of the char-

acteristic function FF ;
• a stage extension (of F), i.e. S ∈ stg(F), if for each T ∈ cf (F), S+

R 6⊂ T
+
R .

To illustrate the different behavior of the introduced semantics we have a look at the following
example.

1While Dung [22] also considers infinite argument sets, we restrict ourselves to finite AFs.

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 6

FIG. 1. The argumentation framework F from Example 2.5.

EXAMPLE 2.5
Consider the AF F = (A,R), consisting of the set or arguments A = {a, b, c, d, e, f , g}
and the attack relation R = {(a, b), (c, b), (c, d), (d, c), (d, e), (e, f), (f, f), (f, g), (g, e)}
as illustrated in Figure 1. Then, the above defined semantics yield the following extensions.

• naive(F) = {{b, e}, {b, d, g}, {a, d, g}, {a, c, e}, {a, c, g}};
• stable(F) = ∅, this is the only semantics where it can happen that there does not exist

any extension;
• adm(F) = {{}, {a}, {d}, {a, c}, {a, d}}, note that the empty set is always an admissible

extension;
• prf (F) = {{a, c}, {a, d}};
• grd(F) = {{a}};
• stg(F) = {{a, d, g}, {a, c, e}, {a, c, g}}.

3

Next we consider cf2 semantics, which is based on a decomposition along the strongly con-
nected components (SCCs) of an AF depending on a given set S of arguments. The cf2
semantics has been originally defined by Baroni and Giacomin in 2003 [4] as an approach
to solve several problems which arise for frameworks with odd-length cycles. Later in 2005
they defined a general SCC-recursive schema for argumentation semantics [7] where the cf2
semantics is also involved. The authors in [7] describe a general schema which captures all
Dung semantics. The SCC-recursive schema is based on a recursive decomposition of an AF
along its strongly connected components. In this work we only concentrate on one special
case of this schema, the cf2 semantics. For a more detailed discussion on the cf2 semantics
we refer to [6, 7, 47].

As mentioned before, all admissible-based semantics, i.e. semantics which build on the
concept of admissible sets, cannot accept arguments out of an odd-length cycle. We already
introduced stage semantics as the first semantics based on naive sets. On the basis of this
requirement one can classify the semantics into admissible-, and naive-based semantics. All
Dung semantics fall into the category of admissible-based semantics, whereas naive, stage as
well as cf2 and stage2 (introduced next and in Section 3) count to the naive-based semantics.
Only stable semantics falls into both groups as both stable(F) ⊆ adm(F) and stable(F) ⊆
naive(F) holds for any AF F = (A,R).

Before we introduce the cf2 semantics, we require some further formal machinery and con-
cepts from graph theory. By SCCs(F), we denote the set of strongly connected components

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 7

of an AF F = (A,R), i.e. sets of vertices of the maximal strongly connected2 sub-graphs of
F ; SCCs(F) is thus a partition ofA. Moreover, for an argument a ∈ A, we denote by CF (a)
the component of F where a occurs in, i.e. the (unique) set C ∈ SCCs(F), such that a ∈ C.
AFs F1 = (A1, R1) and F2 = (A2, R2) are called disjoint if A1 ∩ A2 = ∅. Moreover, the
union between (not necessarily disjoint) AFs is defined as F1 ∪ F2 = (A1 ∪A2, R1 ∪R2).

It turns out to be convenient to use two different concepts to obtain sub-frameworks of AFs.
Let F = (A,R) be an AF and S a set of arguments. Then, F |S = ((A ∩ S), R ∩ (S × S))
is the sub-framework of F w.r.t. S, and we also use F − S = F |A\S . We note the following
relation (which we use implicitly later on), for an AF F and sets S, S′: F |S\S′ = F |S−S′ =
(F − S′)|S .

We now give the definition of the cf2 semantics which slightly differs in notation from (but
is equivalent to) the original definition in [7].

DEFINITION 2.6
Let F = (A,R) be an AF and S ⊆ A. A b ∈ A is component-defeated by S (in F), if there
exists an a ∈ S, s.t. (a, b) ∈ R and a /∈ CF (b). The set of arguments component-defeated by
S in F is denoted by DF (S).

Then, the cf2 extensions of an AF are recursively defined as follows.

DEFINITION 2.7
Let F = (A,R) be an argumentation framework and S a set of arguments. Then, S is a cf2
extension of F , i.e. S ∈ cf2 (F), iff

• in case |SCCs(F)| = 1, then S ∈ naive(F),
• else, for each C ∈ SCCs(F) : (S ∩ C) ∈ cf2 (F |C −DF (S)).

In words, an AF is recursively decomposed along its SCCs depending on a set S, where in
the base case S needs to be a naive extensions. We illustrate the behavior of the introduced
semantics in the following example.

EXAMPLE 2.8
Consider the following AF F = (A,R) with A = {a, b, c} and R = {(a, b), (b, c), (c, b),
(c, c)}, as depicted in Figure 2. Then, the above defined semantics yield the following exten-
sions.

• stable(F) = ∅;
• adm(F) = {{}, {a}};
• prf (F) = grd(F) = {{a}}; and
• naive(F) = stg(F) = {{a}, {b}}.

Regarding stage semantics, note S = {b} is a stage extension, as S+
R = {b, c} and there is

not T ∈ cf (F) s.t. T+
R ⊃ S+

R . Furthermore, S = {a} is the only cf2 extension of F , as F
has two SCCs C1 = {a} and C2 = {b, c} and DF (S) = {b}. Then,

• (S ∩ C1) ∈ cf2 (F |C1) holds as {a} ∈ naive(F |C1), and
• (S ∩ C2) ∈ cf2 (F |C2

− {b}) holds as ∅ ∈ naive(F |{c}).

3

2A directed graph (an AF) is called strongly connected if there is a path from each vertex to every other vertex of the graph.

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 8

FIG. 2. The argumentation framework F from Example 2.8.

2.2 Properties of cf2 and Stage Semantics

To avoid the recursive computation of sub-frameworks, Gaggl and Woltran [45] introduced
an alternative characterization of cf2 semantics which requires the following concepts. The
motivation for this was to design a compact Answer-set Programming (ASP) encoding which
has also been incorporated in the system ASPARTIX 3 [40]. Furthermore, it facilitated the
analysis of strong equivalence w.r.t. cf2 semantics [46, 47] and the proof of general complex-
ity results for reasoning problems regarding the cf2 semantics [47].

The first concept describes that an AF is separated if there are no attacks between different
SCCs and the separation of an AF deletes all attacks between different SCCs.

DEFINITION 2.9
An AF F = (A,R) is called separated if for each (a, b) ∈ R, CF (a) = CF (b). We define
[[F]] =

⋃
C∈SCCs(F) F |C and call [[F]] the separation of F .

Next we consider a restricted reachability relation identifying whether there is a path from an
argument to another only using arguments in a specific set B.

DEFINITION 2.10
Let F = (A,R) be an AF, arguments a, b ∈ A and B ⊆ A. We say that b is reachable
in F from a modulo B, in symbols a ⇒B

F b, if there exists a path from a to b in F |B , i.e.
there exists a sequence c1, . . . , cn (n > 1) of arguments such that c1 = a, cn = b, and
(ci, ci+1) ∈ R ∩ (B ×B), for all i with 1 ≤ i < n.

The operator ∆F,S(.) (applied to D = ∅) computes recursively all arguments which are
attacked by the set S and can not reach their attacker without going over arguments already
in ∆F,S(.).

DEFINITION 2.11
For an AF F = (A,R), D ⊆ A and S ⊆ A,

∆F,S(D) = {a ∈ A | ∃b ∈ S : b 6= a, (b, a) ∈ R, a 6⇒A\D
F b}.

∆F,S(.) is monotonic and thus it has a least fixed-point (lfp). With slightly abuse of nota-
tion we will denote the least fixed-point as ∆F,S , i.e. ∆F,S = ∆n

F,S(∅) with n such that
∆n
F,S(∅) = ∆n+1

F,S (∅) .
Now the cf2 extensions can be characterized as follows.

PROPOSITION 2.12 ([45, 47])
For any AF F ,

cf2 (F) = {S | S ∈ naive(F) ∩ naive([[F −∆F,S]])}.
3See http://rull.dbai.tuwien.ac.at:8080/ASPARTIX/ for a web front-end.

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 9

FIG. 3. Framework F . FIG. 4. Modified Framework G.

In the following we illustrate how the characterization of Proposition 2.12 can be used for
identifying cf2 extensions, for a more detailed explanation we refer to [47].

EXAMPLE 2.13
To exemplify the behavior of ∆F,S and [[F −∆F,S]] let us consider the AF F of Example 2.8
(Figure 2). F has two naive sets, namely S = {a} and T = {b}. First, we concentrate on
the set S and compute ∆F,S = {b} and [[F − ∆F,S]] = ({a, c}, {(c, c)}). Thus, S ∈
naive([[F −∆F,S]]) and clearly S ∈ cf2 (F).
For T we obtain ∆F,T = ∅ and [[F − ∆F,T]] = (A, {(b, c), (c, b), (c, c)}). Now, T 6∈
naive([[F −∆F,T]]), as there is the set T ′ = {a, b} ⊃ T and T ′ ∈ cf ([[F −∆F,T]]). 3

Now, we focus on the special behavior of cf2 and stage semantics. They are both based
on naive sets, thus they are, in contrast to admissible-based semantics, capable to select argu-
ments out of odd-length cycles as accepted. Consider the following example [57].

EXAMPLE 2.14
Suppose there are three witnesses A, B and C, where A states that B is unreliable, B states
that C is unreliable and C states that A is unreliable. Moreover, C has a statement S. The
graph of the framework F is illustrated in Figure 3. Any admissible-based semantics returns
the empty set as its only extension. But if we have four rather than three witnesses, let’s call
the fourth oneX , as in the AFG pictured in Figure 4, the situation changes, and the preferred
extensions of G are {a, c, s} and {b, x}. On the other hand, the naive-based semantics return
stg(F) = cf2 (F) = {{b}, {a, s}, {c, s}} and stg(G) = cf2 (G) = {{a, c, s}, {b, x}}. 3

The motivation behind selecting arguments out of an odd-length cycle is to see the arguments
as different choices and to be able to choose between them. There is no need for defense,
and the naive sets ensure I-maximality [5]. A special case of odd-length cycles are self-
attacking arguments. One might think that it is not necessary to defend against those ”broken”
arguments. But, admissible-based semantics are not able to distinguish if it is necessary to
defend against an attack or not. In this case it might also be desired to abandon defense and
take the naive sets as the basic requirement.

So far, we only discussed the positive behavior of the cf2 and stg semantics, but unfortu-
nately there are also some disadvantages.

EXAMPLE 2.15
Consider the AF F in Figure 5. We obtain

• stg(F) = prf (F) = stable(F) = {{a, c, e}, {b, d, f}}, but
• cf2 (F) = naive(F) = {{a, d}, {b, e}, {c, f}, {a, c, e}, {b, d, f}}.

In this example the framework consists of an even-length cycle and the cf2 semantics pro-
duces three more extensions compared to stable semantics. This does not really coincide with

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 10

FIG. 5. AF from Example 2.15.

the motivation for a symmetric treatment of odd- and even-length cycles, as now the results
differ significantly for an even-length cycle. 3

Example 2.15 shows, that also the cf2 semantics has some drawbacks. Furthermore, for AFs
F with odd-length cycles ≥ 9, we can also obtain cf2 (F) 6= stg(F). Whereas, stage seman-
tics gives more reasonable results especially on single SCCs and still guarantees a uniform
treatment of odd-, and even-length cycles. As stage semantics extends stable semantics in
the sense that both semantics coincide if at least one stable extension exists, it holds that for
SCCs without odd-length cycles stage semantics proposes stable extensions. Similar obser-
vations have also been made in [44]. However, for a stage extension it might be the case that
even unattacked arguments are not accepted and more general, the grounded extension is not
contained in every stage extension. For instance consider the AF F in Example 2.8 (Figure 2)
where grdF = {a} but {b} is a stage extension not containing the unattacked argument a.

3 Combining Stage and cf2 Semantics
In the previous section, we observed that the stage semantics has a more intuitive behavior on
single SCCs than cf2 , because there cf2 semantics only selects the naive extensions. Whereas
in general the SCC-recursive schema of cf2 guarantees that several evaluation criteria are
fulfilled.

Our suggestion is to combine the two semantics, where we use the SCC-recursive schema
of the cf2 semantics and instantiate the base case with stage semantics. To retain the naming
introduced in [7] we denote the obtained semantics as stage2 .

DEFINITION 3.1
Let F = (A,R) be an AF and S ⊆ A. Then, S is a stage2 extension of F , i.e. S ∈
stage2 (F), iff

• in case |SCCs(F)| = 1, then S ∈ stg(F),
• else, for each C ∈ SCCs(F) : (S ∩ C) ∈ stage2 (F |C −DF (S)).

According to the alternative characterization of cf2 semantics, one can also formulate stage2
semantics in the same way.

PROPOSITION 3.2
For any AF F ,

stage2 (F) = {S | S ∈ naive(F) ∩ stg([[F −∆F,S]])}.

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 11

Towards a proof of Proposition 3.2, we need to define two more formal concepts. First, we
define the set of recursively component defeated argumentsRDF (S) as in [45].

DEFINITION 3.3
Let F = (A,R) be an AF and S ⊆ A. We define the set of arguments recursively component
defeated by S (in F) as follows:

• if |SCCs(F)| = 1 thenRDF (S) = ∅; else,

• RDF (S)=DF (S) ∪
⋃

C∈SCCs(F)

RDF |C−DF (S)(S ∩ C).

Next, we define the level of recursiveness a framework shows with respect to a set S of
arguments.

DEFINITION 3.4
For an AF F = (A,R) and S ⊆ A, we recursively define the level `F (S) of F w.r.t. S as
follows:

• if |SCCs(F)| = 1 then `F (S) = 1;
• otherwise, `F (S) = 1 + max ({`F |C−DF (S)(S ∩ C) | C ∈ SCCs(F)}).

LEMMA 3.5
For any AF F = (A,R), S ⊆ A. LetR′F,C,S = RDF |C−DF (S)(S ∩ C), then

(F |C −DF (S))−R′F,C,S = F |C −RDF (S).

PROOF. The observation has been proven in more detail in [45]. Here we just sketch the idea.
We fix a C ∈ SCCs(F). Since for each further C ′ ∈ SCCs(F) (i.e. C 6= C ′), no argument
fromRDF |C ′−DF (S)(S ∩ C ′) occurs in F |C , the assertion follows.

Lemma 3.6 gives the first alternative characterization of stage2 .

LEMMA 3.6
Let F = (A,R) be an AF and S ⊆ A. Then,

S ∈ stage2 (F) iff S ∈ stg([[F −RDF (S)]]).

PROOF. We show the claim by induction over `F (S).
Induction base. For `F (S) = 1, we have |SCCs(F)| = 1. By definition RDF (S) = ∅ and
we have [[F − RDF (S)]] = [[F]] = F . Thus, the assertion states that S ∈ stage2 (F) iff
S ∈ stg(F) which matches the original definition for the stage2 semantics in case the AF
has a single strongly connected component.
Induction step. Let `F (S) = n and assume the assertion holds for all AFs F ′ and sets
S′ with `F ′(S′) < n. In particular, we have by definition that, for each C ∈ SCCs(F),
`F |C−DF (S)(S ∩ C) < n. By the induction hypothesis and Lemma 3.5, we thus obtain that,
for each C ∈ SCCs(F) the following holds:

(S ∩ C) ∈ stage2 (F |C −DF (S)) iff
(S ∩ C) ∈ stg

(
[[F |C −RDF (S)]]

)
. (3.1)

We now prove the assertion. Let S ∈ stage2 (F). By definition, for each C ∈ SCCs(F),
(S ∩ C) ∈ stage2 (F |C −DF (S)). Using (3.1), we get that for each C ∈ SCCs(F),

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 12

(S ∩ C) ∈ stg([[F |C − RDF (S)]]). By the definition of components and the semantics of
stage, the following relation thus follows:⋃

C∈SCCs(F)

(S ∩ C) ∈ stg
(⋃
C∈SCCs(F)

[[F |C −RDF (S)]]
)
.

Since S =
⋃
C∈SCCs(F)(S ∩ C) and due to [45],

⋃
C∈SCCs(F)[[F |C −RDF (S)]] = [[F −

RDF (S)]], we arrive at S ∈ stg([[F − RDF (S)]]) as desired. The other direction is by
essentially the same arguments.

PROOF. [Proof of Proposition 3.2] The result holds by the following observations. Due to
Lemma 3.6, S ∈ stage2 (F) iff S ∈ stg([[F − RDF (S)]]). Moreover, due to [45], for any
S ∈ cf (F), ∆F,S = RDF (S). Finally, S ∈ stage2 (F) implies S ∈ naive(F).

We obtain for the framework F of Example 2.8, stage2 (F) = cf2 (F) = {{a}}, and for the
AF of Example 2.15, stage2 (F) = stg(F) = {{a, c, e}, {b, d, f}}.

3.1 Comparison of stage2 with other Semantics

The novel stage2 semantics is clearly a naive-based semantics due to the way it is defined.
In this section we compare stage2 with other naive-based semantics w.r.t. the ⊆-relations
between the sets of extensions. Furthermore, we consider coherent AFs, as stage semantics
also coincides with stable and preferred on these frameworks but cf2 does not.

We start with stage and stage2 semantics which are in general incomparable w.r.t. set
inclusion. For instance, consider the following example.

EXAMPLE 3.7
Let F = (A,R) as illustrated in Figure 6. Then, the naive sets of F are {a, d}, {a, e}, {b, d}
and {b, e}. We consider first stage semantics, therefore we compute the range of each naive
set.

• {b, d}+R = {a, b, c, d, e},
• {b, e}+R = {a, b, c, e, f},
• {a, d}+R = {a, b, d, e} ⊂ {b, e}+R,
• {a, e}+R = {a, b, e, f} ⊂ {b, e}+R.

Thus, stg(F) = {{b, d}, {b, e}}.
The stage2 extensions are {a, d} and {b, d} which are computed as follows.

• For S1 = {a, d}, ∆F,S1 = {e} and S1 ∈ stg([[F −∆F,S1]]). Thus, S1 ∈ stage2 (F).
• For S2 = {b, d}, ∆F,S2

= {c, e} and S2 ∈ stg([[F −∆F,S2
]]). Thus, S2 ∈ stage2 (F).

• For S3 = {a, e}, ∆F,S3
= {f} but S3 6∈ stg([[F − ∆F,S3

]]) because S+
3R′

= {a, b, e}
and there is the set T ∈ naive(F ′) with T = {a, d, e} and T+

R′ = {a, b, d, e} ⊃ S+
3R′

where F ′ = [[F −∆F,S3]]. Hence, S3 6∈ stage2 (F).
• For S4 = {b, e}, ∆F,S4

= {c, f} but S4 6∈ stg([[F −∆F,S4
]]) because S+

4R′′
= {a, b, e}

and there is the set T ∈ naive(F ′′) with T = {a, d, e} and T+
R′′ = {a, b, d, e} ⊃ S+

4R′′

where F ′′ = [[F −∆F,S4
]]. Hence, S4 6∈ stage2 (F).

3

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 13

FIG. 6. Framework F from Example 3.7.

Now, we consider the relation between cf2 and stage2 semantics. By Example 2.15 we
know that there are AFs with cf2 (F) 6⊆ stage2 (F).

PROPOSITION 3.8
For any AF F = (A,R), stage2 (F) ⊆ cf2 (F).

PROOF. Consider a set S ∈ stage2 (F). By Proposition 3.2, S ∈ naive(F) ∩ stg([[F −
∆F,S]]). Now using that for every AF G, stg(G) ⊆ naive(G) we obtain S ∈ naive(F) ∩
naive([[F −∆F,S]]). By Proposition 2.12, S ∈ cf2 (F).

Next, we study the relations between stable and stage2 semantics.

PROPOSITION 3.9
For any AF F = (A,R), stable(F) ⊆ stage2 (F).

PROOF. Consider E ∈ stable(F), then we know that E ∈ naive(F) and for each a ∈ A \E
there exists b ∈ E such that (b, a) ∈ R. Hence, a ∈ E+

RF
. It remains to show that E ∈

stg([[F −∆F,E]]). We show the stronger statement E ∈ stable([[F −∆F,E]]).
To this end, let F ′ = F − ∆F,E and F ′′ = [[F − ∆F,E]], we have either a ∈ ∆F,E

or a ∈ AF ′ . For a ∈ AF ′ = AF ′′ , we need to show that a ∈ E+
RF ′′

. If a ∈ E clearly
a ∈ E+

RF ′′
, hence we consider a ∈ AF ′ \ E. As E is stable there exists b ∈ E such

that (b, a) ∈ RF ′ . Now as a 6∈ ∆F,E , by Definition 2.11 we know that a ⇒A\∆F,E

F b.
In other words a, b are in the same SCC of F ′ and thus (b, a) ∈ RF ′′ . Hence, for every
a ∈ AF ′′ \E there is an argument b ∈ E such that (b, a) ∈ RF ′′ , hence E ∈ stable(F ′′). As
for any AF G stable(G) ⊆ stg(G), it follows that E ∈ stg(F ′′). Thus, by Proposition 3.2,
E ∈ stage2 (F).

Figure 7 gives an overview of the relations between naive-based semantics. An arrow from
semantics σ to semantics τ encodes that each σ-extension is also a τ -extension. Furthermore,
if there is no directed path from σ to τ , then one can construct AFs with a σ-extension that is
not a τ -extension.

If an AF possesses at least one stable extension, stage coincides with stable semantics.
Obviously, this does not hold for stage2 semantics, for instance consider the AF F =
({a, b, c}, {(a, b), (b, a), (b, c), (c, c)}).

We obtain stage2 (F) = {{a}, {b}} and stable(F) = {{b}}. However, these semantics
comply with each other in coherent AFs, i.e. AFs where stable and preferred semantics coin-
cide.

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 14

FIG. 7. Relations between naive-based semantics.

PROPOSITION 3.10
For any coherent AF F , stable(F) = stg(F) = stage2 (F).

PROOF. By Proposition 3.9, stable(F) ⊆ stage2 (F) and thus it only remains to show that
also stable(F) ⊇ stage2 (F) holds. Let us first consider the case where F consists of a single
SCC. Then, stage2 semantics coincides with stage semantics and as F is coherent also with
stable semantics.

Now, let this be our induction base, and let us assume the claim holds for AFs of size < n.
Let us consider an AF F of size n with (Ci)1≤i≤m being the SCCs of F , such that there is
no attack from Ci to Cj for j < i. If m = 1 we are in the base-case, hence let us assume
that m ≥ 2. Consider S ∈ stage2 (F) and S1 = S ∩

⋃
1≤i<m Ci, S2 = S ∩ Cm. By

definition of stage2 we know that S1 ∈ stage2 (F − Cm) and S2 ∈ stage2 (F |Cm − S+
1).

Note, S1 ∩ S2 = ∅. By assumption, F is coherent and it is easy to see that also F − Cm is
coherent. This is because prf -semantics satisfies directionality [5] and thus prf (F −Cm) =
prf (F) ∩

⋃
1≤i<m Ci = stable(F) ∩

⋃
1≤i<m Ci. Now as each E ∈ prf (F − Cm) is

contained in an E′ ∈ stable(F) it must be also stable in F − Cm, i.e. F − Cm is coherent.
Hence, by the induction hypothesis, stable(F − Cm) = prf (F − Cm) = stage2 (F − Cm).

Next, we show that also F |Cm − S+
1 is coherent. By definition, stable(F) ⊆ prf (F).

Now, consider an extension E2 ∈ prf (F |Cm
− S+

1) and the extension S1 ∪ E2 of F . First,
by construction S1 ∪ E2 is conflict-free and, as S1 is not attacked by arguments in Cm, also
S1 ∪ E2 defends all arguments in S1. Second, as S1 ∈ stable(F − Cm) we have that S1

defends E2 against attacks from
⋃

1≤i<m Ci and, as E2 ∈ adm(F |Cm − S+
1), E2 defend

itself against the remaining attacks. Finally by the maximality of E2 in adm(F |Cm
− S+

1)
we obtain (S1 ∪ E2) ∈ prf (F). Now, as F is coherent also (S1 ∪ E2) ∈ stable(F) and
thus, E2 ∈ stable(F |Cm

− S+
1). Hence, F |Cm

− S+
1 is coherent and again we can use the

induction hypothesis.
Finally, we obtain S1 ∈ stable(F − Cm) and S2 ∈ stable(F |Cm − S+

1), combining these
results we get S ∈ stable(F).

Notice, Proposition 3.10 implies that on coherent AFs stage2 semantics coincides with

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 15

preferred, stage and semi-stable [17] semantics, because on coherent AFs all these semantics
coincide with stable semantics.

3.2 Extension Evaluation Criteria

Several general criteria for the evaluation of argumentation semantics have been proposed
in [5]. In this subsection we analyze the criteria relevant for naive-based semantics.4

DEFINITION 3.11
A semantics σ satisfies

• the I-maximality criterion if for each AF F = (A,R), and for each S1, S2 ∈ σ(F), if
S1 ⊆ S2 then S1 = S2;
• the reinstatement criterion if for each AF F = (A,R), and for each S ∈ σ(F), a de-

fended by S implies a ∈ S.
• the weak reinstatement criterion, if for each F = (A,R), and for each S ∈ σ(F) :
grd(F) ⊆ S;
• the CF-reinstatement criterion, if for each F = (A,R), for each S ∈ σ(F),∀b : (b, a) ∈
R,∃c ∈ S : (c, b) ∈ R and S ∪ {a} ∈ cf (F)⇒ a ∈ S.
• the directionality criterion if for each F = (A,R), and for each unattacked set of ar-

guments U ⊆ A (s. t. ∀a ∈ A \ U there is no b ∈ U with (a, b) ∈ R), it holds that
σ(F |U) = {(S ∩ U) | S ∈ σ(F)}.

We start with some general properties of naive-based semantics.

PROPOSITION 3.12
I-maximality and CF-reinstatement are satisfied by each semantics σ with σ(F) ⊆ naive(F).

PROOF. Clearly naive semantics satisfies both I-maximality and CF-reinstatement. A set E
which is ⊆-maximal in naive(F) is also maximal in each subset of naive(F) and thus, σ
satisfies I-maximality. CF-reinstatement is a property defined on single extensions, and as
each σ-extension is also a naive extension, CF-reinstatement is satisfied .

Among the naive-based semantics, only stable semantics satisfies the reinstatement property,
which is due to the fact that it is also an admissible-based semantics.
PROPOSITION 3.13
The reinstatement property is not satisfied by semantics which can select non-empty conflict-
free subsets out of odd-length cycles.

PROOF. Consider an odd length cycle F = ({a0, . . . , an−1}, {(ai, ai+1 mod n) | 0 ≤ i ≤
n − 1}) with n being an odd integer. So this is a cycle of length n where ai attacks ai+1

and an = a0. We claim that no E ∈ cf (F) and E 6= ∅ satisfies the reinstatement property.
Now, towards a contradiction let us assume there exists a nonemptyE ∈ cf (F) satisfying the
reinstatement property. W.l.o.g. assume that a1 ∈ E. Then a3 is defended and by assumption
a3 ∈ E. But then also a5 is defended, and by induction it follows that ai ∈ E if i is odd.
Hence also an ∈ E, but {a1, an} ⊆ E contradicts that E is conflict-free in F .

Hence, when considering naive-based semantics we are usually interested in weaker forms of
reinstatement, namely the weak- or CF-reinstatement.

4Some of the criteria have been reformulated to fit to the notation of this paper, but can be easily shown to be equivalent to those in [5].

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 16

PROPOSITION 3.14
The weak reinstatement and directionality criterion are not satisfied by naive and stage se-
mantics.

PROOF. Consider the AF F from Example 2.8. We obtain naive(F) = stg(F) = {{a}, {b}}
and the grounded extension G = {a}. Then, the weak reinstatement criterion is not satisfied
because G 6⊆ {b}. Now let us consider directionality and the sub-framework F |{a}. Then
stg(F |{a}) = {{a}} but {({a} ∩ S) | S ∈ stg(F)} = {∅, {a}}, contradicting the direction-
ality criterion.

PROPOSITION 3.15
The weak reinstatement criterion is satisfied by stage2 semantics.

PROOF. Let F = (A,R) and E ∈ grd(F). Due to [7], for any AF F and any S ∈ cf2 (F),
E ⊆ S. From Proposition 3.8 we know that for any AF G, stage2 (G) ⊆ cf2 (G). It follows
that for any extension S ∈ stage2 (F), S ∈ cf2 (F) and E ⊆ S.

We sum up the results for the novel stage2 semantics.

• Directionality is satisfied. Due to [5], any SCC-recursive semantics σ that admits at least
one extension for any AF satisfies the directionality criterion. As the stage2 semantics
has been directly defined in terms of the SCC-recursive schema, the directionality crite-
rion is indeed satisfied.
• I-maximality and CF-reinstatement are satisfied, see Proposition 3.12.
• Reinstatement is not satisfied, see Proposition 3.13.
• Weak reinstatement is satisfied, see Proposition 3.15.

We summarize the evaluation criteria w.r.t. naive-based semantics in Table 1.
Finally, we mention that directionality implies the properties crash-resistance and non-

interference (cf. [2]) which both are violated by stable semantics, but satisfied by stage2 .

naive stable stg cf2 stage2

I-max. Yes Yes Yes Yes Yes
Reinst. No Yes No No No
Weak reinst. No Yes No Yes Yes
CF-reinst. Yes Yes Yes Yes Yes
Direct. No No No Yes Yes

TABLE 1. Evaluation Criteria w.r.t. Naive-based Semantics.

4 Notions of Equivalence
Argumentation can be understood as a dynamic reasoning process, i.e. it is in particular use-
ful to know the effects additional information causes with respect to a certain semantics.
Accordingly, one can identify the information which does not contribute to the results no
matter which changes are performed. In other words, we are interested in so-called kernels

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 17

FIG. 8. AF F from Example 4.1. FIG. 9. AF G from Example 4.1.

of frameworks, where two frameworks with the same kernel are equally affected by all kind
of newly added information in the sense that they always produce an equal outcome.

The concept of strong equivalence for argumentation frameworks captures this intuition
and has been analyzed for several semantics mostly based on the concept of admissibility by
Oikarinen and Woltran in [56], and for cf2 semantics in [47]. It turned out that strong equiva-
lence w.r.t. admissible, preferred, semi-stable and ideal semantics is exactly the same concept,
while stable, stage, complete, and grounded semantics require distinct kernels. Interestingly,
in the case of cf2 semantics, strong equivalence coincides with syntactic equivalence [47],
hence there are no redundant attacks at all. This special behavior has been made explicit with
the succinctness property [47]. If a semantics σ satisfies the succinctness property, then for
every framework F , all its attacks contribute to the evaluation of at least one framework F ′

containing F .
In the following we will introduce the necessary concepts for standard and strong equiva-

lence as well as the succinctness property. Then, we analyze standard equivalence between
stage2 and the other naive-based semantics, followed by the investigation of strong equiva-
lence w.r.t. stage2 semantics.

If two distinct AFs possess the same extensions w.r.t. a semantics σ we speak about (stan-
dard) equivalence. Consider the following example.

EXAMPLE 4.1
The AFs F and G are illustrated in Figures 8 and 9. The two AFs differ in the attacks
(a, b), (a, d), (e, d), (e, b) and (e, c). Both AFs have no stable extension, hence stable(F) =
stable(G) = ∅. Thus, F and G are equivalent with respect to stable semantics. 3

Strong equivalence for argumentation frameworks not only requires that two AFs have the
same extensions under a specific semantics but also, if the frameworks are augmented with
additional information, they still possess the same extensions (under the semantics). The
following example illustrates this for stable semantics.

EXAMPLE 4.2
Consider the AFs F and G from Example 4.1 (Figures 8 and 9). We add the new AF
H = ({b, e}, {(b, e)}) to each of them. Then, they still have the same stable extensions
stable(F ∪ H) = stable(G ∪ H) = {{b, d}}, as highlighted in the graphs of Figures 10
and 11. Furthermore, it can be shown that no matter which framework H one adds to F and
G they will always posses the same stable extensions. 3

The concept of strong equivalence for argumentation frameworks, as introduced by Oikari-
nen and Woltran in [56], meets exactly the behavior described in Example 4.2. The formal

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 18

FIG. 10. F ∪H from Example 4.2. FIG. 11. G ∪H from Example 4.2.

definition is as follows.
DEFINITION 4.3
Two AFs F and G are strongly equivalent to each other w.r.t. a semantics σ, in symbols
F ≡σs G, iff for each AF H , σ(F ∪H) = σ(G ∪H).

By definition, F ≡σs G implies σ(F) = σ(G), but the other direction is not true in general.
To identify to which extent attacks contribute in terms of a given semantics, the succinct-

ness property has been introduced in [47]. In contrast to strong equivalence which considers
particular AFs, the succinctness property denotes a general property for argumentation se-
mantics. Hence, it is independent of the specific instantiation method.

Before we give the definition of the succinctness property, we define what we mean with
redundant attacks; for AFs F = (A,R) and F ′ = (A′, R′) we write F ⊆ F ′ to denote
that A ⊆ A′ and R ⊆ R′ jointly hold. Moreover, we use F \ (a, b) as a shorthand for the
framework (A,R \ {(a, b)}).

DEFINITION 4.4
For an AF F = (A,R) and semantics σ we call an attack (a, b) ∈ R redundant in F w.r.t. σ
if for all F ′ with F ⊆ F ′, σ(F ′) = σ(F ′ \ (a, b)).

DEFINITION 4.5
An argumentation semantics σ satisfies the succinctness property or is maximal succinct iff
no AF contains a redundant attack w.r.t. σ.

The following proposition gives the link between the succinctness property and strong equiv-
alence.
PROPOSITION 4.6 ([47])
An argumentation semantics σ satisfies the succinctness property iff for any AFs F , G with
AF = AG: F ≡σs G⇔ F = G.

We point out that for all semantics considered so far, strong equivalence for AFs implies that
the AFs have the same arguments. Thus, for the semantics under our consideration, one can
drop the condition AF = AG in the above proposition.

4.1 Standard Equivalence

We take a closer look at the relations between stage2 and the other naive-based semantics in
terms of equivalence. Especially we are interested if equivalence w.r.t. a semantics implies

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 19

FIG. 12. AF F from Example 4.7. FIG. 13. AF G from Example 4.7.

equivalence w.r.t. another semantics? In the next examples we show that there is no par-
ticular relation between naive, stage, stable, cf2 and stage2 semantics in terms of standard
equivalence.

First, we consider AFs F and G such that σ(F) = σ(G) 6=⇒ θ(F) = θ(G), where
σ ∈ {naive, stg , stable} and θ ∈ {cf2 , stage2}.

EXAMPLE 4.7
Let F and G be as illustrated in Figures 12 and 13. The only difference between those two
AFs is the attack (b, a) which is contained in F but not in G. This has the effect that the
framework F consists of a single SCC ; and thus cf2 (F) = naive(F) and stage2 (F) =
stg(F). We have stable(F) = stable(G) = ∅ and stg(F) = stg(G) = {{a, c}, {a, d}}.
Furthermore, naive(F) = naive(G) = {{a, c}, {a, d}}. However, we have cf2 (F) =
stage2 (F) = {{a, c}, {a, d}} and cf2 (G) = stage2 (G) = {{a, c}}.

In the following we briefly show why S = {a, d} is not a cf2 extension of G. First,
∆G,S = {b}, so we obtain

[[G−∆G,S]] = ({a, c, d, e}, {(d, e), (e, d), (e, e)}),

and thus naive([[G−∆G,S]]) = {{a, c, d}}. For stage2 and the set S we observe stg([[G−
∆G,S]]) = {{a, c, d}}, and thus S is no stage2 extension of G. Hence,

σ(F) = σ(G) 6=⇒ θ(F) = θ(G)

for σ ∈ {naive, stg , stable}, and θ ∈ {cf2 , stage2} as desired. 3

The next example shows that σ(F) = σ(G) 6=⇒ θ(F) = θ(G), where σ ∈ {naive , cf2 ,
stage2} and θ ∈ {stg , stable}.

EXAMPLE 4.8
The AFs F and G are illustrated in Figures 14 and 15. Then, we obtain

• naive(F) = naive(G) = {{a}, {b}},
• cf2 (F) = cf2 (G) = {{a}} and
• stage2 (F) = stage2 (G) = {{a}}.

On the other side

• stable(F) = ∅ 6= stable(G) = {{a}} and
• stg(F) = {{a}, {b}} 6= stg(G) = {{a}}.

Thus, we showed that σ(F) = σ(G) 6=⇒ θ(F) = θ(G), for σ ∈ {naive, cf2 , stage2} and
θ ∈ {stg , stable}. 3

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 20

FIG. 14. AF F from Example 4.8. FIG. 15. AF G from Example 4.8.

FIG. 16. AF F from Example 4.9. FIG. 17. AF G from Example 4.9.

FIG. 18. F ∪H . FIG. 19. G ∪H .

Now, we provide frameworks F and G such that σ(F) = σ(G) 6=⇒ naive(F) = naive(G),
where σ ∈ {stable, stg , cf2 , stage2}.

EXAMPLE 4.9
Let the AFs F and G be as in Figures 16 and 17. Then, we have σ(F) = σ(G) =
{{c}}, where σ ∈ {stable, stg , cf2 , stage2} but naive(F) = {{a, b}, {c}} and naive(G) =
{{a}, {b}, {c}}. 3

4.2 Strong Equivalence

In [46, 47], it has been shown that for cf2 semantics, strong equivalence coincides with
syntactic equivalence. In other words, there are no redundant patterns at all. In the following,
we show that the same also holds for stage2 semantics.

THEOREM 4.10
For any AFs F and G, F ≡stage2

s G iff F = G.

PROOF. Since for any AFs F = G obviously implies for all AFs H , stage2 (F ∪ H) =

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 21

FIG. 20. [[(F ∪H)−∆F∪H,E]]. FIG. 21. [[(G ∪H)−∆G∪H,E]].

stage2 (G ∪ H), we only have to show that if F 6= G there exists an AF H such that
stage2 (F ∪H) 6= stage2 (G ∪H).
For any two AFs F and G, strong equivalence w.r.t. naive-based semantics requires that the
AFs coincide with the arguments and the self-attacks [46]. We thus assume thatA = A(F) =
A(G) and (a, a) ∈ R(F) iff (a, a) ∈ R(G), for each a ∈ A. Let us thus suppose w.l.o.g. an
attack (a, b) ∈ R(F) \R(G) and consider the AF

H = (A ∪ {d, x, y, z, z1}, {(a, a), (b, b), (b, x), (x, a), (a, y), (y, z), (z, a),

(z, z1), (z1, z), (z1, z1), (d, c) | c ∈ A \ {a, b}}),

see also Figures 18 and 19 for illustration.
Then, for E = {d, x, z}, we have E ∈ stage2 (F ∪ H) but E 6∈ stage2 (G ∪ H). To
show that E ∈ stage2 (F ∪ H), we first compute ∆F∪H,E = {c | c ∈ A \ {a, b}}. Thus,
we have two SCCs left in the instance F ′ = [[(F ∪ H) − ∆F∪H,E]], namely C1 = {d}
and C2 = {a, b, x, y, z, z1} as illustrated in Figure 20. Furthermore, all attacks between the
arguments of C2 are preserved, and we obtain that E ∈ stg(F ′), and as E ∈ naive(F ∪H),
E ∈ stage2 (F ∪H) follows.
On the other hand, we obtain ∆G∪H,E = {a} ∪ {c | c ∈ A \ {a, b}}, and the instance
G′ = [[(G∪H)−∆G∪H,E]] consists of five SCCs, namely C1 = {d}, C2 = {b}, C3 = {x},
C4 = {y} and C5 = {z, z1}, with b and z1 being self-attacking as illustrated in Figure 21.
Thus, the set T = {d, x, y, z} ⊃ E is conflict-free in G′ and T+

R(G′) ⊃ E+
R(G′). Therefore,

we obtain E 6∈ stg(G′), and hence, E 6∈ stage2 (G ∪H). F 6≡stage2
s G follows.

By Theorem 4.6 and Theorem 4.10 the following result is obvious.

COROLLARY 4.11
The stage2 semantics satisfies the succinctness property.

No matter which AFs F 6= G are given, we can always construct a framework H such that
stage2 (F ∪ H) 6= stage2 (G ∪ H). In particular, we can always add new arguments and
attacks such that the missing attack in one of the original frameworks leads to different SCCs
in the modified ones and therefore to different stage2 extensions, when suitably augmenting
the two AFs under comparison. Till now, stage2 is the second semantics beside cf2 , where
strong equivalence coincides with syntactic equivalence. This can be seen as another special
property of these semantics which is met by the succinctness property.

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 22

Verσ Credσ Skeptσ Exists¬∅σ

naive in P in P in P in P

grd P-c P-c P-c in P

stable in P NP-c coNP-c NP-c
adm in P NP-c trivial NP-c
comp in P NP-c P-c NP-c
cf2 in P NP-c coNP-c in P

prf coNP-c NP-c ΠP
2 -c NP-c

stg coNP-c ΣP
2 -c ΠP

2 -c in P

sem coNP-c ΣP
2 -c ΠP

2 -c NP-c

TABLE 2. Complexity of decision problems (C-c denotes completeness for class C).

5 Computational Properties
In this section we study the computational complexity of the typical reasoning tasks in ab-
stract argumentation for the stage2 semantics and complement existing results for cf2 seman-
tics. We first consider these tasks on arbitrary AFs, give the general complexity of stage2
semantics and compare it with results from the literature. Second, we consider graph classes
which are typically tractable for abstract argumentation and study the complexity of reason-
ing with cf2 and stage2 side by side. Finally we consider the backdoor approach [32] for
extending these tractable fragments.

We assume the reader has knowledge about standard complexity classes, i.e. P, NP and
coNP. Nevertheless we briefly recapitulate the concept of oracle machines and some related
complexity classes. Thus let C notate some complexity class. By a C-oracle machine we
mean a (polynomial time) Turing machine which can access an oracle that decides a given
(sub)-problem in C within one step. We denote such machines as PC if the underlying Turing
machine is deterministic; and NPC if the underlying Turing machine is nondeterministic.
We are now ready to define specific complexity classes using NP-oracles. First the class
ΣP

2 = NPNP, denotes the problems which can be decided by a nondeterministic polynomial
time algorithm that has (unrestricted) access to an NP-oracle. The class ΠP

2 = coNPNP is
defined as the complementary class of ΣP

2 , i.e. ΠP
2 = coΣP

2 .
The typical problems of interest in abstract argumentation are the following decision prob-

lems for given F = (A,R), a semantics σ, a ∈ A and S ⊆ A:

• Verification Verσ: is S ∈ σ(F)?
• Credulous acceptance Credσ: is a contained in at least one σ extension of F ?
• Skeptical acceptance Skeptσ: is a contained in every σ extension of F ?
• Non-emptiness Exists¬∅σ : is there any S ∈ σ(F) for which S 6= ∅?

In Table 2 known complexity results for various argumentation semantics are summarized [17,
18, 20, 23, 25, 37, 38, 47]. For a detailed discussion of them we refer to [26, 27].

We briefly review the hardness results for cf2 semantics presented in [47]. The hardness
proofs of Credcf2 and Skeptcf2 are based on the following reduction from propositional
formulas in conjunctive normal form (CNF) to AFs as in [20, 23].

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 23

FIG. 22. AF Fϕ for the example 3-CNF formula ϕ.

DEFINITION 5.1
Given a 3-CNF formula ϕ =

∧m
j=1 Cj over atoms Z with Cj = lj1 ∨ lj2 ∨ lj3 (1 ≤ j ≤ m)

the corresponding AF Fϕ = (Aϕ, Rϕ) is built as follows.

Aϕ = Z ∪ Z̄ ∪ {C1, . . . , Cm} ∪ {ϕ,¬ϕ}
Rϕ = {(z, z̄), (z̄, z) | z ∈ Z} ∪ {(Cj , ϕ) | j ∈ {1, . . . ,m}} ∪ {(ϕ,¬ϕ)} ∪

{(z, Cj) | j ∈ {1, . . . ,m}, z ∈ {lj1, lj2, lj3}} ∪
{(z̄, Cj) | j ∈ {1, . . . ,m},¬z ∈ {lj1, lj2, lj3}}

In [47] it is shown that a formula ϕ is satisfiable iff ϕ is credulously accepted in Fϕ (w.r.t.
cf2) iff ¬ϕ is not skeptically accepted in Fϕ (w.r.t. cf2), which proves NP (resp. coNP)
hardness of the corresponding reasoning problems.

5.1 General Complexity of stage2 Semantics

We now give an exact complexity case of stage2 semantics when considering arbitrary AFs.

THEOREM 5.2
For stage2 semantics the following holds

• Ver stage2 is coNP-complete;
• Cred stage2 is ΣP

2 -complete;
• Skeptstage2 is ΠP

2 -complete;

• Exists¬∅stage2 is in P.

PROOF. We first consider the membership part starting with Ver stage2 . Given an AF F =
(A,R) a set E of arguments, by Proposition 3.2 we have to check whether E ∈ naive(F)
(which can be done in P), and whether E ∈ stg([[F − ∆F,S]]). As [[F − ∆F,S]] can be
constructed in polynomial time and Ver stg ∈ coNP [37] also Ver stage2 ∈ coNP.

The problems Cred stage2 and Skeptstage2 can be solved by a standard guess and check
algorithm, i.e. guessing an extension containing the argument (resp. not containing the
argument) and using an NP-oracle to verify the extension. Thus Cred stage2 ∈ ΣP

2 and
Skeptstage2 ∈ ΠP

2 follows.

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 24

(a) AF F (b) AFR(F)

FIG. 23: An illustration of the reduction in proof of Theorem 5.2, with stg(F) = {{b}} =
stage2 (F).

For the hardness part we give a reduction R mapping argumentation frameworks to argu-
mentation frameworks, such that for each AF F it holds that stg(F) = stage2 (R(F)).5

The hardness results then follow from the corresponding hardness results for stage seman-
tics [37]. Given an AF F = (A,R) we define R(F) = (A∗, R∗) with A∗ = A ∪ {t}
and R∗ = R ∪ {(t, t)} ∪ {(t, a), (a, t) | a ∈ A}), where t is a fresh argument. We il-
lustrate the construction in Figure 23. Then, R(F) consists of a single SCC and hence
stg(R(F)) = stage2 (R(F)). It remains to show that stg(F) = stg(R(F)). First, as
(t, t) ∈ R∗, the argument t can not be contained in a stage extension. Furthermore, the reduc-
tion R does not modify attacks between arguments in A and we obtain cf (F) = cf (R(F)).
By the construction of R(F), for each non-empty E ⊆ A we have E+

R ∪ {t} = E+
R∗ thus,

stg(F) = stg(R(F)). It is easy to see that ∅ ∈ stg(F) iff cf (F) = {∅} iff ∅ ∈ stg(R(F)).

Finally consider Exists¬∅stage2 ∈ P. Recall, for every AF F it holds that each stage2 extension
of F is a naive extension of F . Thus, in case we have an F which possesses only the empty
set as its stage2 extension, we know, the empty set is also the only naive extension of F .
However, this is only the case if all arguments of F are self-attacking. Thus, to decide
whether there exists a non-empty cf2 extension of an AF F = (A,R), it is sufficient to check
if there exists any argument a ∈ A such that (a, a) 6∈ R. This can be done in polynomial
time.

We summarize the complexity results for naive-based semantics in Table 3. The results
for naive semantics are due to [18], the ones for stable semantics are from [20] and the
results for stage semantics have been shown in [37]. Regarding cf2 , the complexity of
Credcf2 ,Skeptcf2 and Vercf2 is the same as for stable semantics, only non-emptiness is
in P for cf2 where it is NP-complete for stable semantics. Considering the plethora of argu-
mentation semantics, beside stage2 , only for stage and semi-stable semantics the complexity
of both skeptical and credulous reasoning is located on the second level of the polynomial
hierarchy. Remember, for preferred semantics only skeptical acceptance is located on the
second level of the polynomial hierarchy while credulous acceptance is NP-complete [25].
This indicates that stage2 is among the computationally hardest semantics but in the same
breath also among the most expressive ones.

As mentioned before, the complexity results discussed so far are worst-case scenarios,
for specific classes of problem instances one can achieve better results. In the next section

5Such a reductionR from stage to stage2 , is called an exact translation for stage⇒ stage2 in [38]. In terms of [38] we show that stage semantics
can be exactly translated to stage2 semantics.

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 25

Verσ Credσ Skeptσ Exists¬∅σ

naive in P in P in P in P

stable in P NP-c coNP-c NP-c

cf2 in P NP-c coNP-c in P

stg coNP-c ΣP
2 -c ΠP

2 -c in P

stage2 coNP-c ΣP
2 -c ΠP

2 -c in P

TABLE 3. Computational Complexity of naive-based semantics.

we investigate instances where possibly better results for cf2 and stage2 semantics can be
obtained.

5.2 Tractable Fragments for cf2 and stage2

As both cf2 and stage2 semantics are in general computationally intractable, i.e. the former
is on the NP-layer while the latter is even on the second level of the polynomial hierarchy,
naturally the issue of identifying tractable instances arises. Such studies of special instances
of AFs where efficient algorithms can solve the reasoning problems on polynomial time have
been done for several admissibility-based semantics [18, 23, 25]. In the following we study
tractable fragments, i.e. classes of problem instances that can be decided in (deterministic)
polynomial time, proposed for admissibility-based semantics and whether tractability also
applies to cf2 and stage2 semantics.

First, we identify a relation between credulous and skeptical acceptance. By the follow-
ing result, whenever credulous acceptance is tractable we immediately get tractability for
skeptical acceptance.

PROPOSITION 5.3
Given an AF F = (A,R) and a ∈ A such that (a, a) /∈ R. Then, a is skeptically accepted
with cf2 (resp. stage2) iff no {b | (b, a) ∈ R or (a, b) ∈ R} is credulously accepted with
cf2 (resp. stage2).

PROOF. For the proof we abstract from the concrete semantics cf2 , stage2 and consider an
arbitrary semantics σ with σ(F) ⊆ naive(F).
⇒: Consider E ∈ σ(F) with a ∈ E. As E ∈ cf (F), clearly {b | (b, a) ∈ R or (a, b) ∈
R} ∩ E = ∅. As, by assumption, for each E ∈ σ(F) we have a ∈ E no {b | (b, a) ∈
R or (a, b) ∈ R} is credulously accepted.
⇐: Consider E ∈ σ(F) with {b | (b, a) ∈ R or (a, b) ∈ R} ∩ E = ∅. As E ∈ naive(F)
and (a, a) 6∈ R we have a ∈ E. By assumption each E ∈ σ(F) satisfies {b | (b, a) ∈
R or (a, b) ∈ R} ∩ E = ∅ and thus a is skeptically accepted.

In the following we consider different graph classes which have been proposed as tractable
fragments for abstract argumentation in the literature and study the complexity of stage2 and
cf2 semantics on these graph classes.

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 26

5.2.1 Acyclic Argumentation Frameworks
One tractable fragment for argumentation is the class of acyclic AFs. Tractability is due to
the fact that on acyclic AFs most semantics coincide with the grounded semantics [22]. This
result extends to cf2 and stage2 .

THEOREM 5.4
For acyclic AFs and σ ∈ {cf2 , stage2} the problems Credσ and Skeptσ are in P.

PROOF. We first show that, on acyclic AFs, grounded, cf2 and stage2 semantics coincide.
Having a look at the SCC-recursive schema applied to acyclic AFs, then the base semantics is
only applied to AFs consisting of a single argument and no attack. Thus semantics coincide if
they coincide on these AFs. We have grd({a}, ∅) = naive({a}, ∅) = stg({a}, ∅) = {{a}}
and thus the assertion follows. Now the complexity results are immediate by the fact that
these problems are in P for grounded semantics.

5.2.2 Even-Cycle Free Argumentation Frameworks
By a result in [24], reasoning with admissible-based semantics in AFs without even-length
cycles is tractable. Unsurprisingly this result does not extend to cf2 and stage2 semantics.
As odd and even length cycles are treated in the same manner we can simple replace the
even-cycles by odd ones.

THEOREM 5.5
For AFs without even-length cycles:

• Credcf2 is NP-complete,
• Skeptcf2 is coNP-complete,
• Cred stage2 is NP-hard, and
• Skeptstage2 is coNP-hard.

PROOF. The membership part for cf2 follows immediately from the complexity results for
arbitrary AFs. For the hardness part we reduce the NP-hard SAT (resp. coNP-hard UNSAT)
problem to Cred (resp. Skept).

Given a 3-CNF formula ϕ =
∧m
j=1 Cj over atoms Z withCj = lj1∨lj2∨lj3 (1 ≤ j ≤ m),

the corresponding AF Fϕ = (Aϕ, Rϕ) is built as follows:

Aϕ = Z ∪ Z̄ ∪ Ẑ ∪ {C1, . . . , Cm} ∪ {ϕ,¬ϕ}
Rϕ = {(z, z̄), (z̄, ẑ), (ẑ, z) | z ∈ Z} ∪ {(Cj , ϕ) | 1 ≤ j ≤ m} ∪ {(ϕ,¬ϕ)} ∪

{(z, Cj) | j ∈ {1, . . . ,m}, z ∈ {lj1, lj2, lj3}} ∪
{(z̄, Cj) | j ∈ {1, . . . ,m},¬z ∈ {lj1, lj2, lj3}}

Figure 24 illustrates the AF Fϕ of the formula ϕ = (z1 ∨ z2 ∨ z3) ∧ (¬z2 ∨ ¬z3 ∨ ¬z4) ∧
(¬z1 ∨ z2 ∨ z4).

An SCC of Fϕ either consists of a single argument or is a cycle of length three which
is not attacked by another SCC. As stage and naive semantics coincide on both we have
cf2 (Fϕ) = stage2 (Fϕ). Thus, in the remainder of the proof we only consider cf2 semantics.
We now claim

(1) ϕ is satisfiable iff

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 27

FIG. 24. AF Fϕ for the 3-CNF ϕ.

(2) ϕ is credulously accepted in Fϕ iff
(3) ¬ϕ is not skeptically accepted in Fϕ.

(1) ⇒ (2): ϕ is satisfiable and thus it has a model M ⊆ Z. Consider the set E = M ∪ {z̄ |
z ∈ Z \ M} ∪ {ϕ}. We next show, E is a cf2 extension of Fϕ. It is easy to check that
E ∈ naive(Fϕ). So we consider ∆Fϕ,E . As M is a model of ϕ each Cj is either attacked
by a zi ∈ E or z̄i ∈ E, and as there are no attacks from Cj to Z ∪ Z̄ we obtain Cj ∈ ∆Fϕ,E

for 1 ≤ i ≤ m. Similarly, ¬ϕ is attacked by ϕ, and as ¬ϕ has no outgoing attacks also
¬ϕ ∈ ∆Fϕ,E .

Now consider Z ∪ Z̄ ∪ Ẑ. Those arguments are not attacked from outside their SCCs, hence
none of the arguments is contained in ∆Fϕ,E . Now consider

F ′ = [[Fϕ −∆Fϕ,E]] = (Z ∪ Z̄ ∪ Ẑ ∪ {ϕ}, {(z, z̄), (z̄, ẑ), (ẑ, z) | z ∈ Z}).

It is easy to see that E ∈ naive(F ′) and we finally obtain, E ∈ cf2 (Fϕ). Hence, ϕ is
credulously accepted.
(1) ⇐ (2): Let E ∈ cf2 (Fϕ) such that ϕ ∈ E. As E is conflict-free and ϕ ∈ E we have
Cj 6∈ E for 1 ≤ i ≤ m. Moreover Cj ∈ ∆Fϕ,E . Assume the contrary, then there exists a
Cj ∈ [[Fϕ −∆Fϕ,E]], and as Cj is not strongly connected to any argument, it is an isolated
argument in the separation and thus in any naive set of [[Fϕ−∆Fϕ,E]], a contradiction. Now
as Cj ∈ ∆Fϕ,E , for each Cj there exists l ∈ Z ∪ Z̄ and l ∈ E such that l attacks Cj (which is
equivalent to l ∈ Cj). Notice, asE is conflict-free it can not happen that {z, z̄} ⊆ E. Finally,
we obtain M = E ∩ Z is a model of ϕ.
(2) ⇔ (3): This is by the fact that in Fϕ the argument ¬ϕ is only connected to ϕ and thus
each naive (resp. cf2) extension of Fϕ either contains ϕ or ¬ϕ.

While even-cycle free AFs are tractable for admissible-based semantics, in particular for
stable semantics, they are still hard for cf2 , stage2 and also for stage semantics [31, 32].

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 28

FIG. 25. The bipartite AF F from Example 5.6.

5.2.3 Bipartite Argumentation Frameworks
Bipartite AFs are a special class of frameworks where there exists a partition of the set of
arguments A into two sets A1 and A2 such that attacks only exist between A1 and A2 but not
within the sets.

EXAMPLE 5.6
Consider the AF F = (A,R) as illustrated in Figure 25. We can partition A in A1 =
{a, b, d, g} and A2 = {c, e, f}, and it is easy to see that there are only attacks between those
two sets. Thus, F is a bipartite argumentation framework. 3

Bipartite AFs have been shown to be tractable for admissible based semantics [23]. In the
following we show that they are also tractable for cf2 and stage2 semantics.

THEOREM 5.7
For bipartite AFs the problems Credcf2 , Skeptcf2 are in P.

PROOF. Given a bipartite AF F = (A1, A2, R) with A = A1 ∪ A2. In the following we use
the notation S � a if a set S attacks an argument a. We consider the following procedure.
Start with E1 = A1 and E2 = ∅, iterate (until E1, E2 reach a fixed-point)

(1) E2 := E2 ∪ {b ∈ A2 | E1 6� b} and
(2) E1 := E1 \ {a ∈ E1 | E2 � a}.

By results in [23] the above algorithm works in polynomial time and computes the stable
extension S = E1 ∪ E2 of F , with E1 being the set of credulously accepted arguments of F
from A1 (w.r.t. stable semantics). We next show that this algorithm also applies to cf2 . Due
to [63], in coherent systems an argument is skeptically accepted iff none of its attackers is
credulously accepted. Bipartite AFs are indeed coherent, this property explains intuitively the
functioning of our procedure. To this end let C1 be the set of credulously accepted arguments
of F from A1 and S2 the set of skeptically accepted arguments of F from A2 (w.r.t cf2
semantics). We claim that after each iteration step it holds that

(i) E1 ⊇ C1,
(ii) E2 ⊆ S2 and

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 29

(iii) A1 \ E1 ⊆ ∆F,S2 .

As an induction base observe that E1 = A1 and E2 = ∅ trivially satisfies (i)-(iii). Now for
the induction step assume (i)-(iii) holds before applying the iteration step, we have to show
that it also holds afterwards.
First consider (ii): E2 is only changed if there is a b ∈ A2 and E1 6� b. But by (iii) this
means that for all E ∈ cf2 (F) all attackers of b are contained in ∆F,E . Hence, for each
E ∈ cf2 (F), the argument b is isolated in the AF [[F − ∆F,E]] and thus clearly b ∈ E.
Hence, b ∈ S2 and (ii) is satisfied.
Now consider (i): By (2) an argument a is only removed from E1 if it is attacked by a
skeptically accepted argument. But then a can not be credulously accepted, i.e. a 6∈ C1, and
thus still E1 ⊇ C1.
Finally consider (iii): If an argument a is removed from E1 it is attacked by an argument b
such that forE ∈ cf2 (F) all attackers of b are contained in ∆F,E . Then clearly a 6⇒A\∆F,E

F b
and thus a ∈ ∆F,E . Now using that S = E1 ∪ E2 is a stable extension, the fixed-point of
the above algorithm is also a cf2 extension. Thus, E1 = C1 and E2 = S2. By symmetry
we finally obtain that in bipartite AFs, the credulously (resp. skeptically) accepted arguments
w.r.t. cf2 coincide with the credulously (resp. skeptically) accepted arguments w.r.t. stable6.
Hence, the P results for stable semantics in [23] carry over to cf2 semantics.

In the following we illustrate the procedure of the proof of Theorem 5.7 on the AF of Fig-
ure 25.

EXAMPLE 5.8
Let F be the bipartite AF of Example 5.6 with A1 = {a, b, d, g} and A2 = {c, e, f}. We
start the algorithm for computing credulous and skeptical accepted arguments as in the proof
above. First, for E1 = A1 and E2 = ∅ the sets remain unchanged. Thus, we obtain S1 =
{a, b, d, g} as a stable extension of F which is also the set of credulously accepted arguments
of F from A1, and none of the arguments from A2 is skeptically accepted in F . Due to
symmetry we consider now E1 = A2 and E2 = ∅. Then, we obtain

• E2 = {b} and
• E1 = A2 \ {c} = {e, f}.

The set S2 = {b, e, f} is a stable extension of F , the arguments e and f from A2 are cred-
ulously accepted in F and {b} ⊂ A1 is skeptically accepted in F (w.r.t. cf2 and stable
semantics). Finally, the arguments a, b, d, g, e and f are credulously accepted in F (w.r.t. cf2
and stable semantics). 3

Even though credulous and skeptical acceptance of cf2 and stable semantics coincide on
bipartite AFs, they propose different extensions. For instance consider the AF F from Ex-
ample 2.15 (illustrated on page 9). F consists of a cycle of length 6 and is a bipartite, with
A1 = {a, c, e} and A2 = {b, d, f}. The set {a, d} is a cf2 extension of F which is not
stable. Furthermore, no argument is skeptically accepted w.r.t. cf2 and stable semantics but
all arguments are credulously accepted in F . However, for stage2 and stable semantics, also
the extensions coincide.

6By stable(F) ⊆ stage2(F) ⊆ cf2(F) and Proposition 5.3 this also extends to stage2 semantics. However, this does not cover the complexity
of the Verstage2 problem.

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 30

cf2 stage2 stable stg

Credσ
acycl in P in P P-c P-c

Skeptσ
acycl in P in P P-c P-c

Credσ
even−free NP-c coNP-h P-c ΣP

2 -c

Skeptσ
even−free coNP-c coNP-h P-c ΠP

2 -c

Credσ
bipart in P in P P-c P-c

Skeptσ
bipart in P in P P-c P-c

Credσ
sym in P in P/ΣP

2 -c∗ in P in P/ΣP
2 -c∗

Skeptσ
sym in P in P/ΠP

2 -c∗ in P in P/ΠP
2 -c∗

TABLE 4: Complexity results for special AFs ∗ with self-attacking arguments). An entry C-c
denotes completeness for the class C.

THEOREM 5.9
For bipartite AFs Cred stage2 , Skeptstage2 , Ver stage2 are in P.

PROOF. Bipartite AFs are odd-cycle free and therefore coherent [22]. Hence stable and stage
semantics coincide. By Proposition 3.10 we know that also stable(F) = stage2 (F). Then,
the theorem follows from the results for stable semantics in [23].

5.2.4 Symmetric AFs
Finally we consider symmetric AFs, which where studied in [18]. In symmetric AFs all at-
tacks go into both directions, hence all SCCs are isolated in the sense that there is no attack
from one SCC to another (otherwise by symmetry, there would be an attack back and thus,
those SCCs would merge to just one). Thus, in symmetric AFs cf2 coincides with naive se-
mantics while stage2 coincides with stage semantics. We immediately obtain the complexity
result for cf2 and stage2 by the corresponding results for naive and stage. In the first case
this clearly leads to tractability. In the latter one we have to be more careful. If we follow [18]
and assume that symmetric AFs are also irreflexive then, we have tractability by the fact that
such AFs are coherent and stable semantics are tractable. However, without the assumption of
irreflexivity, the tractability results for stable and stage semantics do not hold. Thus, they do
not hold for stage2 as well. In fact one can show that stage (and thus also stage2) semantics
maintain their full complexity in symmetric AFs allowing self-attacks [27].

We summarize the results for the discussed tractable fragments in Table 4. For comparison
we also included the results for stable and stage semantics from [27].

5.3 Backdoor Approach

A generalization of these fragments is the so called called backdoor approach [32], using the
distance to a tractable fragment. This approach comes from parametrized complexity theory
(see [42, 54]). For so called fixed-parameter tractability (fpt), one identifies problem parame-
ters, for instance the above mentioned distance, such that computational costs heavily depend
on the parameter but are only polynomial in the size of the instance. Now, if only considering

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 31

problem instances with bounded parameter, one obtains a polynomial time algorithm.
Next we formally define the distance of an AF to a graph class in terms of arguments that

one has to delete such that the AF falls into the graph class.

DEFINITION 5.10
Let G be a graph class and F = (A,R) an AF. We define distG(F) as the minimal number k
such that there exists a set S ⊆ A with |S| = k and (A \ S,R ∩ (A \ S × A \ S)) ∈ G. If
there is no such set S we define distG(F) =∞.

In [32] it was shown that the backdoor approach does not help in the case of stage seman-
tics, i.e. that even instances with a small distance are still NP or coNP hard, while it can be
applied to admissibility based semantics. Here we show that the backdoor approach is also
not applicable for cf2 and stage2 semantics.

THEOREM 5.11
Credcf2 is NP-hard, Skeptcf2 is coNP-hard even for AFs F with distacycl(F) = 1.

PROOF. We consider a variation of the standard reduction from Definition 5.1. Given a 3-
CNF the AF F ′ϕ = (A′ϕ, R

′
ϕ) is built as follows.

A′ϕ = Z ∪ Z̄ ∪ {C1, . . . , Cm} ∪ {ϕ,¬ϕ, g}
R′ϕ = {(z, z̄), (z̄, g), (g, z) | z ∈ Z} ∪ {(Cj , ϕ) | j ∈ {1, . . . ,m}} ∪ {(ϕ,¬ϕ), (g, g)} ∪

{(z, Cj) | j ∈ {1, . . . ,m}, z ∈ {lj1, lj2, lj3}} ∪
{(z̄, Cj) | j ∈ {1, . . . ,m},¬z ∈ {lj1, lj2, lj3}}

For an illustration see Figure 26. The differences between Fϕ and F ′ϕ being that F ′ϕ does not
contain attacks (z̄, z) and the new argument g with its attacks. When deleting the argument
g from the AF F ′ϕ the AF becomes acyclic and hence distacycl(F ′ϕ) = 1. Moreover one can
show that cf2 (Fϕ) = cf2 (F ′ϕ) from which the claim follows.

We defineA = Z∪Z̄∪{g}, F|A = (A\{g}, Rϕ∩(A×A)), and F ′|A = (A,R′ϕ∩(A×A)).
By the SCC-recursiveness of cf2 it suffices to show that cf2 (F|A) = cf2 (F ′|A). As the g is
self-attacking in F ′|A and the remaining conflicts are the same as in F|A (although with differ-
ent orientation) we obtain that naive(F|A) = naive(F ′|A). In F|A there are only symmetric
attacks and thus naive and stable semantics coincide. Using that each stable extension is a
cf2 extension at each cf2 -extension is a naive set we obtain naive(F|A) = cf2 (F|A). Next
consider F ′|A. As F ′|A has just one strongly connected component (each argument is strongly
connected to g) we obtain that naive(F ′|A) = cf2 (F ′|A). Thus, cf2 (F|A) = cf2 (F ′|A) and
hence cf2 (Fϕ) = cf2 (F ′ϕ) as desired.

THEOREM 5.12
Credcf2 is NP-hard, Skeptcf2 is coNP-hard even for AFs F with distbipart(F) = 1.

PROOF. Here we again consider the standard reduction from Definition 5.1 but apply it to a
monotone 3-CNF (SAT is still NP-hard for such instances). The characteristic of a mono-
tone 3-CNF is that each clause either consists solely of positive literals or solely of negative
literals. We denote the set of the former by C and the set of the latter by C̄.

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 32

FIG. 26. AF F ′ϕ for the example 3-CNF ϕ.

Then we can partition Aϕ in A1 = Z ∪ C̄ A2 = Z̄ ∪ C ∪ {¬ϕ} and B = {ϕ}. It is easy
to verify that each of these sets is conflict free and thus when deleting B from Fϕ we get an
bipartite AF. Hence distbipart(Fϕ) = 1 and the claim follows.

THEOREM 5.13
Credcf2 is NP-hard, Skeptcf2 is coNP-hard even for AFs F with distsym(F) = 1.

PROOF. Once more we consider a variation of the standard reduction from Definition 5.1.
Given a 3-CNF the AF F ∗ϕ = (A∗ϕ, R

∗
ϕ) is built as follows.

A∗ϕ = Z ∪ Z̄ ∪ {C1, . . . , Cm} ∪ {ϕ,¬ϕ}
R∗ϕ = {(z, z̄), (z̄, z) | z ∈ Z} ∪ {(Cj , ϕ) | j ∈ {1, . . . ,m}} ∪ {(ϕ,¬ϕ)} ∪

{(z, Cj), (Cj , z) | j ∈ {1, . . . ,m}, z ∈ {lj1, lj2, lj3}} ∪
{(z̄, Cj), (Cj , z̄) | j ∈ {1, . . . ,m},¬z ∈ {lj1, lj2, lj3}}

This reduction is illustrated in Figure 27. The differences between Fϕ and F ∗ϕ being that in
F ∗ϕ the attacks between literals and clauses are symmetric.

We show that ϕ is satisfiable iff ϕ is credulously accepted. The claim then follows.
⇒: Assume ϕ has a model M . We show that E = M ∪X \M ∪{ϕ} is a stable extension

and thus also a cf2 -extension. First it is easy to check that E is conflict-free. For each x ∈ X
either x ∈ E or x̄ ∈ E and thus x ∈ E+ for each x ∈ X ∪ X̄ . Further as M is a model each
Ci is attacked by an x ∈ E or an x̄ ∈ E. Finally ¬ϕ is attacked by ϕ and thus E+ = Aϕ.
Hence E is a stable extension.
⇐: Now consider a cf2 extension E with ϕ ∈ E. We defineA = {C1, . . . , Cm}∪X ∪ X̄ ,

E′ = E ∩A and F ∗|A = (A,Rϕ ∩ (A×A)). As mentioned earlier cf2 satisfies directionality
and thus we have that E′ ∈ cf2 (F ∗|A) and further as F ∗|A is symmetric E′ ∈ naive(F ∗|A).
Using that ϕ ∈ E we obtain that no Ci can be contained in E′. But as E′ is a naive set we

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 33

FIG. 27. AF F ∗ϕ for the example 3-CNF ϕ.

have that for each Ci there is either an x ∈ E′ or an x̄ ∈ E′ that attacks Ci, i.e. x ∈ Ci, resp.
x̄ ∈ Ci. Thus E ∩X is a model of ϕ.

THEOREM 5.14
Cred stage2 is NP-hard, Skeptstage2 is coNP-hard even for

• AFs F with distacycl(F) ≤ 2,
• AFs F with distbipart(F) ≤ 2, and
• AFs F with distsym(F) ≤ 3.

PROOF. In [32] hardness proofs for the case of stage semantics are given for AFs F with
distacycl(F) = 1, AFs F with distbipart(F) ≤ 1, and AFs F with distsym(F) ≤ 2. The
reduction presented in the proof of Theorem 5.2 just introduces one argument and ensures
that stage semantics coincides with stage2 semantics. Indeed this reduction just increases
the distance to a tractable fragment by one. By combining this with the above mentioned
results from [32] we obtain the claim.

5.4 Summary and Further Considerations

To sum up, we completed the complexity analysis for cf2 and stage2 semantics for the stan-
dard reasoning problems verification, credulous and skeptical acceptance. It turned out that
both semantics are intractable, where stage2 is even on the second level of the polynomial
hierarchy.

Furthermore, we considered special instances of AFs and showed that acyclic, bipartite
and symmetric self-attack free frameworks are tractable for both cf2 and stage2 semantics.
Whereas, if self-attacking arguments are contained in a symmetric frameworks, then we do
not have tractability for stage2 . Even-cycle free AFs are not tractable for cf2 and stage2
semantics, which reflects the special behavior of these semantics on odd-length cycles.

Beside the backdoor approach there are several other ways to parametrize argumentation
have been studies in the literature. First investigations for fixed-parameter tractability regard-
ing abstract argumentation were undertaken for the graph parameters tree-width [23, 33] and
clique-width [35]. The work in [36] shows that also reasoning with cf2 semantics is fpt w.r.t.
tree-width and clique-width. Moreover, using the building blocks provided there, one can
easily construct a monadic second order logic encoding for stage2 semantics, and by the

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 34

results presented in [36] this implies fixed-parameter tractability w.r.t. tree-width and clique-
width. Moreover, [27, 33] shows that several parameters tailored for directed graphs are not
applicable to abstract argumentation with the common semantics. These results immediately
turn over to cf2 and stage2 semantics.

6 Implementation
In this section we concentrate on the more practical part of our investigation. In order to eval-
uate and compare abstract argumentation frameworks with respect to the numerous semantics
it is indispensable to have efficient systems. Here we consider two approaches to such sys-
tems: First encoding argumentation semantics in answer-set programming and second using
labelings as basis for dedicated algorithms.

Many argumentation semantics have been already implemented in ASP, see [60] for an
overview. In this work we follow the ASPARTIX approach [40], where a single program
is used to encode a particular semantics, while the instance of the framework is given as an
input database. In particular we will present ASP encodings for stage2 semantics.

The challenging part in the design of the encodings for stage2 semantics is that the def-
inition following the SCC-recursive schema involves a recursive computation of different
sub-frameworks which is rather cumbersome to represent directly in ASP. This was the main
reason why the alternative characterization for cf2 (resp. for stage2) semantics has been
invented [45, 47]. With the alternative characterization we are able to directly (i) guess a
set S of the given AF F and then (ii) check whether S is a stage extension of the instance
[[F −∆F,S]]. While the encodings for cf2 (as presented in [45]) are quite short and compre-
hensible this is not the case for the standard encodings for stage2 semantics. This semantics
is located on the second level of the polynomial hierarchy and is based on stage semantics
which requires a test for subset-maximality. To perform this test we need to apply a certain
saturation technique [41] which is hardly accessible for non-experts in ASP.

However, recent advances in ASP solvers, in particular, the metasp optimization front-
end for the ASP-system gringo/claspD allows for much simpler encodings for such
tests. More precisely, metasp allows to use the traditional #minimize statement (which
in its standard variant minimizes w.r.t. cardinality or weights, but not w.r.t. subset inclusion)
also for selection among answer sets which are minimal w.r.t. subset inclusion in certain
predicates. Details about metasp can be found in [49]. We will use this optimization to
simplify the encodings for stage2 semantics.

Besides the ASP approach we will consider the labeling-based approach as a direct imple-
mentation method. Lately algorithms based on labelings attracted specific attention [13, 14,
53, 55, 62]. In contrast to the traditional extension-based approach, so called labelings (see
e.g. [2]) distinguish different kinds of unaccepted arguments, e.g. those which are rejected by
the extension and those which are neither rejected nor accepted. Such distinctions are inter-
esting from a logic perspective [16] but also have proven to be highly useful for algorithmic
issues. Hence, we follow this approach and present two algorithms which compute all valid
labelings / extensions for cf2 and stage2 semantics.

6.1 Answer-Set Programming Encodings

We consider ASP as a reduction-based approach for the implementation of AFs. First we
introduce the necessary background on ASP, then we formalize how argumentation frame-

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 35

works are represented in ASP and we give the encodings for stage2 semantics. In particular
we distinguish between the standard saturation encodings and the optimized metasp encod-
ings for stage2 semantics. All our encodings are fixed where the instance of an AF is given
as input, and they are incorporated in the system ASPARTIX 7(see [39, 40] for more details).
The encodings from the system ASPARTIX are written in the general datalog syntax. It may
be the case that one needs to adapt the encodings for some ASP solvers. The metasp encod-
ings can only be performed with gringo/claspD. Furthermore we point out that we give
an informal description of the ASP encodings. For a more formal investigation of the system
ASPARTIX we refer to [40].

6.1.1 Background Answer-Set Programming
We give a brief overview of the syntax and semantics of disjunctive logic programs under the
answer-sets semantics [50]; for further background, see [52].

We fix a countable set U of (domain) elements, also called constants; and suppose a total
order < over the domain elements. An atom is an expression p(t1, . . . , tn), where p is a
predicate of arity n ≥ 0 and each ti is either a variable or an element from U . An atom is
ground if it is free of variables. BU denotes the set of all ground atoms over U .

A (disjunctive) rule r with n ≥ 0, m ≥ k ≥ 0, n+m > 0 is of the form

a1 ∨ · · · ∨ an ← b1, . . . , bk, not bk+1, . . . , not bm

where a1, . . . , an, b1, . . . , bm are atoms, and “not ” stands for default negation. An atom a
is a positive literal, while not a is a default negated literal. The head of r is the set H(r) =
{a1, . . . , an} and the body of r is B(r) = B+(r) ∪ B−(r) with B+(r) = {b1, . . . , bk} and
B−(r) = {bk+1, . . . , bm}. A rule r is normal if n ≤ 1 and a constraint if n = 0. A rule r is
safe if each variable in r occurs in B+(r). A rule r is ground if no variable occurs in r. A
fact is a ground rule without disjunction and with an empty body. An (input) database is a set
of facts. A program is a finite set of disjunctive rules. For a program π and an input database
D, we often write π(D) instead of D ∪ π. If each rule in a program is normal (resp. ground),
we call the program normal (resp. ground).

Besides disjunctive and normal program, we consider here the class of optimization pro-
grams, i.e. normal programs which additionally contain #minimize statements

#minimize[l1 = w1@J1, . . . , lk = wk@Jk] (6.1)

where li is a literal, wi an integer weight and Ji an integer priority level.
For any program π, let Uπ be the set of all constants appearing in π. Gr(π) is the set

of rules rτ obtained by applying, to each rule r ∈ π, all possible substitutions τ from the
variables in r to elements of Uπ . An interpretation I ⊆ BU satisfies a ground rule r iff
H(r) ∩ I 6= ∅ whenever B+(r) ⊆ I and B−(r) ∩ I = ∅. I satisfies a ground program π,
if each r ∈ π is satisfied by I . A non-ground rule r (resp., a program π) is satisfied by an
interpretation I iff I satisfies all groundings of r (resp., Gr(π)). I ⊆ BU is an answer set of
π iff it is a subset-minimal set satisfying the Gelfond-Lifschitz reduct

πI = {H(r)← B+(r) | I ∩B−(r) = ∅, r ∈ Gr(π)}.

For a program π, we denote the set of its answer sets by AS(π). For semantics of optimiza-
tion programs, we interpret the #minimize statement w.r.t. subset-inclusion: For any sets X

7The encodings are available at http://www.dbai.tuwien.ac.at/research/project/argumentation/systempage/ .

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 36

e normal programs disjunctive program optimization programs

|=c NP ΣP
2 ΣP

2

|=s coNP ΠP
2 ΠP

2

TABLE 5. Data Complexity for logic programs (all results are completeness results).

and Y of atoms, we have Y ⊆wJ X , if for any weighted literal l = w@J occurring in (6.1),
Y |= l implies X |= l. Then, M is a collection of relations of the form ⊆wJ for priority
levels J and weights w. A standard answer set (i.e. not taking the minimize statements into
account) Y of π dominates a standard answer set X of π w.r.t. M if there are a priority level
J and a weight w such thatX ⊆wJ Y does not hold for⊆wJ ∈M , while Y ⊆w′J′ X holds for all
⊆w′J′∈M where J ′ ≥ J . Finally a standard answer set X is an answer set of an optimization
program π w.r.t. M if there is no standard answer set Y of π that dominates X w.r.t. M .

Credulous and skeptical reasoning in terms of programs is defined as follows. Given a
program π and a set of ground atoms A. Then, we write π |=c A (credulous reasoning),
if A is contained in some answer set of π; we write π |=s A (skeptical reasoning), if A is
contained in each answer set of π.

We briefly recall some complexity results for disjunctive logic programs. In fact, since
we will deal with fixed programs we focus on results for data complexity. Depending on
the concrete definition of |=, we give the complexity results in Table 6.1.1 (cf. [19] and the
references therein). We note here, that even normal programs together with the optimization
technique have a worst case complexity of ΣP

2 (resp. ΠP
2). Inspecting Table 2 one can see

which kind of encoding is appropriate for an argumentation semantics.

6.1.2 Representing AFs in ASP
Here we first show how to represent AFs in ASP, and we give two programs which we need
later on in this section. The first one πcf opens the search space for our solutions via two
guessing rules and eliminates all guesses which are not conflict-free. The second program
π< defines an order over the domain elements.

All our programs are fixed which means that the only translation required, is to give an AF
F as input database F̂ to the program πσ for a semantics σ. In fact, for an AF F = (A,R),
we define F̂ as

F̂ = { arg(a) | a ∈ A} ∪ {att(a, b) | (a, b) ∈ R }.

In what follows, we use unary predicates in/1 and out/1 to perform a guess for a set S ⊆
A, where in(a) represents that a ∈ S (resp. out(a) for a 6∈ S). The following notion of
correspondence is relevant for our purposes.

DEFINITION 6.1
Let S ⊆ 2U be a collection of sets of domain elements and let I ⊆ 2BU be a collection of
sets of ground atoms. We say that S and I correspond to each other, in symbols S ∼= I, iff

(i) for each S ∈ S, there exists an I ∈ I, such that {a | in(a) ∈ I} = S;
(ii) for each I ∈ I, it holds that {a | in(a) ∈ I} ∈ S; and

(iii) |S| = |I|.

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 37

Let F = (A,R) be an AF. The following program fragment guesses, when augmented by F̂ ,
any subset S ⊆ A and then checks whether the guess is conflict-free in F :

πcf = { in(X)← not out(X), arg(X);

out(X)← not in(X), arg(X);

← in(X), in(Y), att(X,Y) }.

PROPOSITION 6.2 ([40])
For any AF F , cf (F) ∼= AS(πcf (F̂)).

For ASP encodings, it is sometimes required or desired to avoid the use of negation. This
might either be the case for the saturation technique or if a simple program can be solved
without a Guess&Check approach. Then, encodings typically rely on a form of loops where
all domain elements are visited and it is checked whether a desired property holds for all
elements visited so far. We will use this technique for saturation-based encoding but also for
the computation of the instance [[F −∆F,S]] for stage2 semantics.

For this purpose, an order < over the domain elements (usually provided by common ASP
solvers) is used together with helper predicates defined in program π< below; in fact, predi-
cates inf /1, succ/2 and sup /1 denote infimum, successor and supremum of the order <.

π< = { lt(X,Y)← arg(X), arg(Y), X < Y ;

nsucc(X,Z)← lt(X,Y), lt(Y,Z);

succ(X,Y)← lt(X,Y),not nsucc(X,Y);

ninf(Y)← lt(X,Y);

inf(X)← arg(X),not ninf(X);

nsup(X)← lt(X,Y);

sup(X)← arg(X),not nsup(X) }.

6.2 ASP-Encodings for stage2 Semantics

Here we concentrate on implementing the stage2 semantics in ASP. We provide a fixed
program which, augmented with an input database representing a given AF F , has its answer
sets in a one-to-one correspondence to the stage2 extensions of F . In particular, the program
computes stage2 extensions along the lines of Proposition 3.2. The modularity of ASP allows
us to split the program into several modules, where we also make use of the two program
moduls πcf and π< introduced above. Then, the program implements the following steps,
given an AF F = (A,R):

1. Guess the conflict-free sets S ⊆ A of F .
2. For each S, compute the set ∆F,S .
3. For each S, derive the instance [[F −∆F,S]].
4. Check whether S ∈ stg([[F −∆F,S]]).

Steps 1− 3 are the same as for the computation of cf2 extensions introduced in [45]. For the
sake of completeness we recall these steps here. For Step 4 we will use two different ways
of computing stage extensions, namely the saturation encodings and the metasp encodings
which have both been introduced for stage semantics in [30].

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 38

Step 1 is computed by πcf , thus we go directly to Step 2. In the module πreach we use
the predicates inf(·), succ(·, ·) and sup(·) from the module π< to iterate over the operator
∆F,S(·). Given F = (A,R), by definition of ∆F,S it is sufficient to compute at most |A|
such iterations to reach the fixed-point. Let us now present the module and then explain its
behavior in more detail.

πreach = { arg set(N,X)← arg(X), inf(N); (6.2)
reach(N,X, Y)← arg set(N,X), arg set(N,Y), att(X,Y); (6.3)
reach(N,X, Y)← arg set(N,X), att(X,Z), reach(N,Z, Y); (6.4)
d(N,X)← arg set(N,Y), arg set(N,X), in(Y), att(Y,X),

not reach(N,X, Y); (6.5)
arg set(M,X)← arg set(N,X),not d(N,X), succ(N,M) }. (6.6)

Rule (6.2) first copies all arguments into a set indexed by the infimum which initiates the
computation. The remaining rules are applicable to arbitrary indices, whereby rule (6.6)
copies (a subset of the) arguments from the currently computed set into the “next” set using
the successor function succ(·, ·). This guarantees a step-by-step computation of arg set(i, ·)
by incrementing the index i. The functioning of rules (6.3)–(6.6) is as follows. Rules (6.3)
and (6.4) compute a predicate reach(n, x, y) indicating that there is a path from argument
x to argument y in the given framework restricted to the arguments of the current set n. In
rule (6.5), d(n, x) is obtained for all arguments x which are component-defeated by S in this
restricted framework. In other words, if n is the i-th argument in the order <, d(n, x) carries
exactly those arguments x which are contained in ∆i

F,S . Finally, rule (6.6) copies arguments
from the current set which are not component-defeated to the successor set.

Next, we derive the instance [[F − ∆F,S]] with the module πinst . As already outlined
above, if the supremum m is reached in πreach , we are guaranteed that the derived atoms
arg set(m,x) characterize exactly those arguments x from the given AF F which are not
contained in ∆F,S . It is thus now relatively easy to obtain the instance [[F −∆F,S]] which is
done below via predicates arg new(·) and att new(·, ·).

πinst = { arg new(X)← arg set(M,X), sup(M);

att new(X,Y)← arg new(X), arg new(Y), att(X,Y),

reach(M,Y,X), sup(M) }.

In the following we give the two different ways of how to encode the checking part. We
start with the saturation encodings for stage2 .

6.2.1 Saturation Encodings for stage2 Semantics
The saturation technique as introduced by Eiter and Gottlob in [41] allows for encodings
which solve associated problems located on the second level of the polynomial hierarchy.
This technique was already used to encode the preferred and semi-stable semantics in [40]
and the stage semantics in [30]. While with default negation, one is capable to formulate an
exclusive guess, disjunction can be employed for the saturation technique, which allows for
representing even more complex problems. The term “saturation” indicates that all atoms
which are subject to a guess can also be jointly contained in an interpretation. To saturate a
guess, it is however necessary that the checking part of a program interacts with the guessing
part.

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 39

To implement Step 4, for any F = (A,R) and S ∈ cf (F), check whether S ∈ stg(F ′)
with F ′ = [[F −∆F,S]], we need to check whether no T ∈ cf (F ′) with S+

R′ ⊂ T+
R′ exists.

Therefore we have to guess an arbitrary set T and saturate if either

(i) T is not conflict-free in F ′, or
(ii) S+

R′ 6⊂ T
+
R′ .

Let F = (A,R), the following module computes for a guessed set S ⊆ A the range S+
R′

of S, in F ′ = [[F −∆F,S]].

πrange = { in range(X)← in(X);

in range(X)← in(Y), att new(Y,X);

not in range(X)← arg new(X),not in range(X) }.

In the next module we make a second guess for the set T . Then, in/1 holds the current guess
for S and inN/1 holds the current guess for T .

πsatstage = { inN(X) ∨ outN(X)← arg new(X); (6.7)
fail← inN(X), inN(Y), att new(X,Y); (6.8)
fail← eqplus; (6.9)
fail← in range(X),not in rangeN(X); (6.10)
inN(X)← fail, arg new(X); (6.11)
outN(X)← fail, arg new(X); (6.12)
← not fail }. (6.13)

More specifically:

• In rule (6.7) we use disjunction for the guess. This is essential for the saturation technique
because it allows for an argument a to have both inN(a) and outN(a) in the same answer
set which is not possible for the predicates in/1 and out/1 from module πcf .
• Rule (6.8) checks requirement (i), so if the set T is not conflict-free in F ′ we derive fail.
• Rule (6.9) fires in case S+

R′ = T+
R′ (indicated by predicate eqplus/0 described below).

• Rule (6.10) fires if there exists an a ∈ S+
R′ such that a /∈ T+

R′ (here we use predicate
in range/1 from above and predicate not in rangeN/1 which we also present below).
As is easily checked one of the last two conditions holds exactly if (ii) holds.
• Next, the rules (6.11) and (6.12) saturate if fail was derived. This means that we derive

for each a ∈ A both inN(a) and outN(a) and therefore blow up the answer sets.
• Finally, the constraint (6.13) rules out all guesses which do not contain fail.

To sum up, exactly those sets S survive where there is no T which is both conflict-free (in
F ′) and has a bigger range than S (in F ′).

Next, in the module πrangeN we compute the predicate not in rangeN/1 via undef upto/2.
To compute the predicate undef upto(i, a) which states that the argument a is undefeated
(in F ′) up to the i-th argument, we use new predicates for the order over the arguments
in the instance F ′ as given below in the module π<′ . This is important as there might be
less arguments in F ′ than in F , so that the infimum, supremum and successor may have
changed. Then, if an argument a is undefeated up to the supremum (in F ′), we derive

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 40

not in rangeN(a). Furthermore we compute the predicate in rangeN/1 which gives us the
range T+

R′ for the arguments in the second guess.

πrangeN = { undef upto(N,X)← infN(N), outN(X), outN(N);

undef upto(N,X)← infN(N), outN(X),not att new(N,X);

undef upto(N,X)← succN(Z,N),undef upto(Z,X), outN(N);

undef upto(N,X)← succN(Z,N),undef upto(Z,X),not att new(N,X);

not in rangeN(X)← supN(M), outN(X),undef upto(M,X);

in rangeN(X)← inN(X);

in rangeN(X)← outN(X), inN(Y), att new(Y,X) }.

π<′ is defined as the order over the arguments contained in the instance [[F −∆F,S]].

π<′ = { ltN(X,Y)← arg new(X), arg new(Y), X < Y ;

nsuccN(X,Z)← ltN(X,Y), ltN(Y,Z);

succN(X,Y)← ltN(X,Y),not nsuccN(X,Y);

ninfN(Y)← ltN(X,Y);

infN(X)← arg(X),not ninfN(X);

nsupN(X)← ltN(X,Y);

supN(X)← arg new(X),not nsupN(X) }.

In the module π+
eq we obtain eqplus, if the range from the first guess S and the second guess

T is equal (in F ′), i.e. if S+
R′ = T+

R′ . This is done via the predicate eqplus upto/1.

π+
eq = { eqplus upto(X)← infN(X), in range(X), in rangeN(X);

eqplus upto(X)← infN(X),not in range(X),not in rangeN(X);

eqplus upto(X)← succN(Z,X), in range(X), in rangeN(X), eqplus upto(Z);

eqplus upto(X)← succN(Y,X),not in range(X),not in rangeN(X),

eqplus upto(Y);

eqplus← supN(X), eqplus upto(X) }.

Finally, we put everything together and obtain the encodings for stage2 semantics:

πstage2 = πcf ∪ π< ∪ πreach ∪ πinst ∪ πrange ∪ π<′ ∪ πrangeN ∪ π+
eq ∪ πsatstage .

The following result gives the link between the stage2 extensions of an AF F and the answer
sets of the program πstage2 with the input F̂ 8.
PROPOSITION 6.3
For any AF F , stage2 (F) ∼= AS(πstage2 (F̂)).

As one can see saturation encodings are quite complicated and normally one needs an ASP
expert to design them. As many interesting problems require some kind of meta-reasoning,
Gebser and Schaub designed the metasp optimization front end for gringo/claspD [49],
which also allows for ASP beginners to encode problems which are on the second level of
the polynomial hierarchy. In the next subsection we will explain how one can simplify the
encodings of stage2 semantics using metasp.

8We omit the proof of Proposition 6.3 as it would require to introduce several further concepts which are not relevant for the content of this article. For
the interested reader we refer to [40] which contains proofs of similar ASP encodings for other argumentation semantics.

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 41

6.2.2 metasp Encodings for stage2 Semantics
In [30] the metasp approach has been used to simplify the encodings for preferred, semi-
stable, stage and resolution-based grounded semantics. Here we picture this novel method
by means of stage2 semantics. In particular we present the simplified encodings for stage2
semantics with the aid of the #minimize statement which are then evaluated with the subset-
minimization semantics provided by metasp. For our encodings we do not need prioriti-
zation and weights, therefore these are omitted (i.e. set to default) in the minimization state-
ments. The minimization technique is realized through meta programming techniques, which
themselves are answer set programs. This works as follows.

• The ASP encodings to solve are given to the grounder gringo which reifies the pro-
grams, i.e. outputs ground programs consisting of facts, which represent the rules and
facts of the original input encodings.
• The grounder is then again executed on this output together with the meta programs which

encode the optimization.
• Finally, claspD computes the answer sets.

Note that here we use the version of clasp which supports disjunctive rules. Therefore for
a program π and an AF F we have the following execution.
gringo --reify π(F̂) | \

gringo - {meta.lp,metaO.lp,metaD.lp} \
<(echo ‘‘optimize(1,1,incl).’’) | claspD 0

Here, meta.lp, metaO.lp and metaD.lp are the encodings for the minimization state-
ment 9. The statement optimize(incl,1,1) indicates that we use subset inclusion for
the optimization technique using priority and weight 1.

Now the program for stage2 semantics uses the modules πcf , π<, πreach and πinst to
compute for each guess the instance [[F−∆F,S]]. For the check if the guessed set S is a stage
extension of the instance, we first compute the predicate not in rangeN/1 via undef upto/2
in the slightly modified module πrangeN ′ .

πrangeN ′ = { undef upto(N,X)← inf(N), out(X), out(N);

undef upto(N,X)← inf(N), out(X),not att new(N,X);

undef upto(N,X)← succ(Z,N),undef upto(Z,X), out(N);

undef upto(N,X)← succ(Z,N),undef upto(Z,X),not att new(N,X);

not in rangeN(X)← sup(M), out(X),undef upto(M,X) }.

Then, we check if S is a naive extension of the instance in the module πcheck naive .

πcheck naive = { conflicting(X)← att new(Y,X), out(X), in(Y);

conflicting(X)← att new(X,Y), out(X), in(Y);

conflicting(X)← att new(X,X);

← not conflicting(X),not in rangeN(X), arg new(X) }.
9available at: http://www.cs.uni-potsdam.de/wv/metasp/

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 42

We put everything together including the minimize statement for not in rangeN/1.

πstage2 metasp = πcf ∪ π< ∪ πreach ∪ πinst ∪ πcheck naive ∪ πrangeN ′
∪ {#minimize[not in range]}.

Finally we obtain the following result.

PROPOSITION 6.4
For any AF F , stage2 (F) ∼= AS(πstage2 metasp(F̂)).

Performance tests comparing the saturation encodings with the metasp encodings on dif-
ferent random instances showed that the use of this optimization front-end not only makes
the encodings simpler but also faster. Especially in the case of stage semantics the runtime
differences are in evidence. A detailed representation of the experimental evaluation can be
found in [30].

6.3 Labeling-based Algorithms

Labeling-based algorithms build on top of alternative characterizations for argumentation
semantics using certain labeling functions, assigning labels to arguments. While extension-
based semantics just distinguish whether an argument is in the extensions or not, the labeling-
based approach allows for a more fine-grained classification of the justification status of an
argument, probably the most prominent variant being the 3-valued labelings due to Caminada
and Gabbay [16]. These labelings label each argument either with in, out or undec, with the
intended meaning that they are either accepted, rejected or one has not decided whether to
accept or to reject the argument. There are characterizations in terms of labelings for nearly
all prominent semantics, for an overview we refer to [2], where also a labeling for cf2 seman-
tics is included. However, we present here a slightly different notion of cf2 labelings, which
better suites our purposes, as well as labeling-based characterization of stage2 semantics.
On top of these we provide labeling based algorithms for cf2 and stage2 semantics, which
are complexity sensitive in the sense that they reflect some results from Section 5.

6.3.1 Labelings
Here we present labeling-based characterizations of argumentation semantics which we will
exploit in the subsequent algorithms. As we use labelings solely for algorithmic issues we
use a 4-valued labelings extending the 3-valued labelings of [16] by the label out∆.

DEFINITION 6.5
Let F = (A,R) be an AF. A labeling is a total function L : A→ {in , out , out∆, undec}.

Then, a labeling can be denoted as a tuple L = (Lin ,Lout ,Lout∆ ,Lundec), where Ll =
{a ∈ A | L(a) = l}. Following [2] conflict-free and stage labelings are given as follows.

DEFINITION 6.6
Let F = (A,R) be an AF. Then, L is a conflict-free labeling of F , i. e. L ∈ cf L(F), iff

• for all a ∈ Lin there is no b ∈ Lin such that (a, b) ∈ R,
• for all a ∈ Lout there exists a b ∈ Lin such that (b, a) ∈ R, and
• Lout∆

= ∅.

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 43

Then, L is a naive labeling of F , i. e. L ∈ naiveL(F), iff L ∈ cf L(F) and there is no
L′ ∈ cf L(F) with either Lin ⊂ L′in or Lout ⊂ L′out . Finally, L is a stage labeling of F , i. e.
L ∈ stgL(F), iff L ∈ cf L(F) and there is no L′ ∈ cf L(F) with L′undec ⊂ Lundec .

We are now prepared to define cf2 and stage2 labelings, where an argument is labeled out∆

iff it is attacked by an argument labeled in which does not belong to the same SCC.

DEFINITION 6.7
Let F = (A,R) be an AF. Then, L is a cf2 labeling of F , i.e. L ∈ cf2L(F), iff

• L ∈ naiveL(F), in case |SCCs(F) = 1|.
• otherwise, ∀C ∈ SCCs(F),L|C\DF (Lin) ∈ cf2L(F |C −DF (Lin)),

and DF (Lin) = Lout∆ .

It is easy to see that there is a one-to-one mapping between cf2 extensions and labelings, s.t.
each extension S corresponds to a labeling L with Lin = S and Lout∆

= ∆F,S .
From the alternative characterization for cf2 -extensions we obtain the following charac-

terization for cf2 -labelings L ∈ cf2L(F), iff (Lin ,Lout ∪ Lout∆ , ∅,Lundec) ∈ naiveL(F),
(Lin ,Lout , ∅,Lundec) ∈ naiveL([[F −∆F,Lin]]), and ∆F,Lin = Lout∆ .

The labeling based definition of stage2 semantics is in a similar fashion.

DEFINITION 6.8
Let F = (A,R) be an AF. Then, L is a stage2 labeling of F , i.e. L ∈ stage2L(F), iff

• L ∈ stgL(F), in case |SCCs(F) = 1|.
• otherwise, ∀C ∈ SCCs(F),L|C\DF (Lin) ∈ stage2L(F |C −DF (Lin)),

and DF (Lin) = Lout∆

Again there is a one-to-one mapping between stage2 extensions and labelings, and each
extension S corresponds to a labeling L with Lin = S and Lout∆ = ∆F,S .

Using the characterization from Proposition 3.2 we also obtain that L ∈ stage2L(F), iff
(Lin ,Lout∪Lout∆

, ∅,Lundec) ∈ naiveL(F), (Lin ,Lout , ∅,Lundec) ∈ stgL([[F−∆F,Lin
]]),

and ∆F,Lin
= Lout∆

.
Finally, we have stage2L(F) ⊆ cf2L(F) for every AF F .

6.3.2 Labeling Algorithm for cf2
The basic idea of labeling-based algorithms is to iterate over the possible labeling functions
and test them for being, in our case, cf2 -labelings. Of courses, one does not want to consider
all labelings, hence one tries to reduce the search space. In labeling-based algorithms this is
done by using the fact as soon a label for one argument is fixed, this has immediate implica-
tions for the possible labels of the arguments in the neighborhood. The following proposition
identifies two such rules to propagate already computed labels.

PROPOSITION 6.9
For AF F = (A,R) and labeling L = (Lin ,Lout ,Lout∆ ,Lundec) ∈ cf2L(F). Let a ∈ A,
then att(a) = {b ∈ A | (b, a) ∈ R} denotes all attackers of a.

1. For every a ∈ A: if att(a) ⊆ Lout∆
∧ (a, a) 6∈ R then a ∈ Lin .

2. For every a ∈ A: if ∃b ∈ Lin , O ⊆ Lout∆
: (b, a) ∈ R ∧ a 6⇒A\O

F b then a ∈ Lout∆
.

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 44

PROOF. (1) By definition a ∈ Lout∆ implies a ∈ ∆F,Lin . If all attackers of a are in ∆F,Lin

we get that {a} is an isolated argument in [[F −∆F,S]]. Now, as L ∈ naive([[F −∆F,S]])
and (a, a) 6∈ R we finally get a ∈ Lin .

(2) Using ∃b ∈ Lin , O ⊆ Lout∆
: (b, a) ∈ R ∧ a 6⇒A\O

F b and O ⊆ Lout∆
= ∆F,Lin

, we

obtain that ∃b ∈ Lin : (b, a) ∈ R ∧ a 6⇒A\Lout∆

F b. As ∆F,Lin
is a fixed-point we obtain that

a ∈ ∆F,Lin
and thus also a ∈ Lout∆

.

We exploit these rules in Algorithm 1 for computing cf2 extensions.

Algorithm 1 cf2L(F,L)

Require: AF F = (A,R), labeling L = (Lin ,Lout ,Lout∆
,Lundec);

Ensure: Return all cf2 labelings of F .
1: X = {a ∈ Lundec | att(a) ⊆ Lout∆};
2: Y = {a ∈ Lundec | ∃b ∈ Lin , (b, a) ∈ R, a 6⇒A\Lout∆

F b};
3: while (X ∪ Y) 6= ∅ do
4: Lin = Lin ∪X,Lout∆

= Lout∆
∪ Y,Lundec = Lundec \ (X ∪ Y);

5: update X and Y ;
6: end while
7: B = {a ∈ Lundec | Lin ∪ {a} ∈ cf (F)};
8: if B 6= ∅ then
9: C = {a ∈ B |6 ∃b ∈ B : b⇒A\Lout∆

F a, a 6⇒A\Lout∆

F b};
10: E = ∅;
11: for all L′ ∈ naiveL(F |C) do
12: Lin = Lin ∪ L′in ,Lout = Lout ∪ L′out ,Lundec = Lundec \ (L′in ∪ L′out);
13: E = E ∪ cf2L(F,L);
14: end for
15: return E ;
16: else
17: return {(Lin ,Lout ,Lout∆

,Lundec)};
18: end if

To compute all cf2 labelings of an AF F the function stage2L(F,L) is called with the label-
ing L = (∅, ∅, ∅, A).

Algorithm 1 requires as input an AF F = (A,R) and a labeling L = (Lin ,Lout ,Lout∆
,

Lundec). To compute all cf2 labelings of an AF F we start cf2L(F,L) with the initial
labeling L = (∅, ∅, ∅, A). So the algorithm starts with all arguments labeled undec and will
eventually change such labels to either in , out or out∆, but other labels are never changed
by the algorithm.

The procedure first computes the labels which can be directly propagated according to
Proposition 6.9. At the beginning, the two sets X and Y are computed (Lines 1-2). Where X
identifies those arguments in Lundec which can directly be labeled with in , and Y identifies
those arguments in Lundec which can directly be labeled with out∆ according to Proposi-
tion 6.9. Then in the while loop (Lines 3-6) we first update the labeling according to the sets
X,Y and then compute anew the sets X,Y for the updated labeling. We repeat this till a
fixed-point is reached, i.e. there are no further labels that can be computed using the rules
from Proposition 6.9.

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 45

Second, we test whether there are still arguments which can be added to Lin (Line 7-8)
and identify them in the set B, these are precisely the arguments in Lundec which are not in
conflict with Lin . If there are still such arguments, the set C identifies the next SCCs to be
labeled, following the definition of cf2 these are the minimal SCCs, i.e. those SCCs which
are not attacked by any argument from an other SCC in B. Note here, C does not contain
all arguments of an SCC, but all arguments which can be labeled in . To be more precise,
self-attacking arguments are omitted in C. By definition each cf2 -labeling must be a naive
labeling of the sub-framework F |C . Thus in Line 11 a separated procedure identifies all
naive labelings of the sub-framework F |C . For each naive labeling L′ we update the actual
labeling L with L′ and call cf2L(F,L) recursively. Notice, as all this naive labellings differ
in at least one argument, this step is a branch between different cf2 extensions, and thus we
never produce the same labeling twice.
EXAMPLE 6.10
Consider the AF illustrated in Figure 28. We call cf2L(F,L) with the initial labeling L =
(∅, ∅, ∅, A).

At the beginning we have X = ∅, Y = ∅, B = A and C = {a, b, c}. We invoke
the external procedure for computing the naive extensions of F |C which return three naive
labelings L1 = ({a}, {b}, ∅, {c}), L2 = ({b}, {c}, ∅, {a}) and L3 = ({c}, {a}, ∅, {b}). For
each of them the actual labeling is updated with L′ ∈ naiveL(F |C) and cf2L(F,L) is called.

• For L1 this looks as follows. We call cf2L(F,L) with L = ({a}, {b}, ∅, A \ {a, b}).
Then, X = ∅, Y = ∅, B = {d, e, f, g, h, i} and C = {d}. As F |C consists of the single
argument d, we can update the actual labeling to ({a, d}, {b}, ∅, A\{a, d}) and call cf2L
again.
– Now, X = ∅, Y = {f} and Lout∆

= {f}. Then, X = {g}, Y = ∅ and Lin =
{a, d, g}. Next, X = ∅, Y = {h} and Lout∆ = {f, h}. Then, X = {i}, Y = ∅ and
Lin = {a, d, g, i}. Thus we obtain B = C = {e} and we can update the labeling and
return ({a, d, e, g, i}, {b}, {f, h}, {c}).

• For L2 we call cf2L(F,L) with L = ({b}, {c}, ∅, A \ {b, c}). Then, X = ∅, Y = {d, e}
and Lout∆

= {d, e}. Next,B = C = {f, g, h, i} and as F |C has two naive extensions we
can return the two cf2 labelings ({b, f, h}, {c, g, i}, {d, e}, {a}) and ({b, g, i}, {c, f, h},
{d, e}, {a, c}).
• Finally for L3 we call cf2L(F,L) with L = ({c}, {a}, ∅, A \ {a, c}). Then, X = ∅,
Y = ∅, B = {d, e, f, g, h, i} and C = {d}. Here we have the same set B as in the step
above for L1, which leads us to the cf2 labeling ({c, d, e, g, i}, {a}, {f, h}, {b}).

3

Finally, notice that for acyclic AFs, the above algorithm will compute the cf2 labeling
solely by applying the rules from Proposition 6.9. Hence, there are no recursive calls and
thus the algorithm terminates in polynomial time. We cannot expect a similar behavior for
the other tractable fragments from Section 5, i.e. symmetric and bipartite AFs, because these
may propose an exponential number of extensions (the tractability for reasoning tasks was
via some shortcut preventing us from computing all extensions).

6.3.3 Labeling Algorithm for stage2
In this section we adopt the algorithm presented before for stage2 . We first discuss the
necessary modifications resulting Algorithm 2 and then present an illustrative example.

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 46

FIG. 28. The argumentation framework F from Example 6.10.

First, as stage2L(F) ⊆ cf2L(F) we can use the propagation rules of Proposition 6.9,
also for computing stage2 labelings. Hence, we only make changes in the second part of the
algorithm where we branch between the different extensions. For stage2 semantics we have
to consider self-attacking arguments in the AF F |D (Line 10 & 12), as they have an impact
on the stage extension of a SCC (while they do not effect the naive extensions). Hence we
compute the minimal SCCs including the self-attacking arguments and store them in the set
D. Second, instead of computing the naive labelings of F |C we have to compute the stage
labelings of F |D, a labeling-based procedure for this is presented in [14].

Algorithm 2 stage2L(F,L)

Require: AF F = (A,R), labeling L = (Lin ,Lout ,Lout∆
,Lundec);

Ensure: Return all stage2 labelings of F .
1: X = {a ∈ Lundec | att(a) ⊆ Lout∆};
2: Y = {a ∈ Lundec | ∃b ∈ Lin , (b, a) ∈ R, a 6⇒A\Lout∆

F b};
3: while (X ∪ Y) 6= ∅ do
4: Lin = Lin ∪X,Lout = Lout ∪ Y,Lundec = Lundec \ (X ∪ Y);
5: update X and Y ;
6: end while
7: B = {a ∈ Lundec | Lin ∪ {a} ∈ cf (F)};
8: if B 6= ∅ then
9: C = {a ∈ B |6 ∃b ∈ B : b⇒A\Lout∆

F a, a 6⇒A\Lout∆

F b};
10: D = C ∪ {a ∈ Lundec | ∃b ∈ C, a⇒

A\Lout∆

F b, b⇒A\Lout∆

F a}
11: E = ∅;
12: for all L′ ∈ stgL(F |D) do
13: Lin = Lin ∪ L′in ,Lout = Lout ∪ L′out ,Lundec = Lundec \ (L′in ∪ L′out);
14: E = E ∪ stage2L(F,L);
15: end for
16: return E ;
17: else
18: return {(Lin ,Lout ,Lout∆

,Lundec)};
19: end if

To compute all stage2 labelings of an AF F the function stage2L(F,L) is called with the
labeling L = (∅, ∅, ∅, A).

EXAMPLE 6.11
We illustrate the behavior of Algorithm 2 on the AF F pictured in Figure 29. We start

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 47

FIG. 29. The argumentation framework F from Example 6.11.

stage2L(F,L) with the initial labeling L = (∅, ∅, ∅, A).
In this first call we have X = ∅, Y = ∅, B = {a, b, d, e, f, g, h, i} and C = {a, b}.

To complete the inner loop we compute D = {a, b, c} which also takes the self-attacking
argument c into account. Next we call the external procedure to obtain all stage labelings of
the restricted AF F |D which gives us L1 = ({a}, {b}, ∅, {c}) and L2 = ({b}, {c}, ∅, {a}).
Here we have the first branch where we update the actual labeling to the ones obtained from
stgL(F |D).

• For L1 we call stage2L(F,L) with the updated labeling L = ({a}, {b}, ∅, A \ {a, b}).
This leads us to X = ∅, Y = ∅ and B = C = D = {d, e, f, g, h, i}. We call stgL(F |D)
which returns L1,1 = ({e, g, i}, {d, f, h}, ∅, ∅) and L1,2 = ({d, f, h}, {e, g, i}, ∅, ∅) as
the two stage labelings of F |D. We update the actual labeling with them and branch
another time.
– For L1,1 we call stage2L(F,L) with L = ({a, e, g, i}, {b, d, f, h}, ∅, {c, x}), where

we have X = ∅, Y = ∅ and B = ∅. Thus, Algorithm 2 returns the stage2 labeling
({a, e, g, i}, {b, d, f, h}, ∅, {c, x}).

– For L1,2 we call stage2L(F,L) with L = ({a, d, f, h}, {b, e, g, i}, ∅, {c, x}). Then,
X = ∅, Y = {x} and we obtain Lout∆

= {x}. As B = ∅ we return ({a, d, f, h},
{b, e, g, i}, {x}, {c}).

• For L2 we call stage2L(F,L) with L = ({b}, {c}, ∅, A \ {b, c}). Then X = ∅, Y = {g}
and Lout∆

= {g}. Next, X = {h}, Y = ∅ and Lin = {b, h}. In the next iteration we
have X = ∅, Y = {i} and Lout = {g, i} and then X = {d}, Y = ∅ and Lin = {b, d, h}.
We continue with X = ∅, Y = {e, x} and Lout = {e, g, i, x} and X = {f}, Y = ∅ and
Lin = {b, d, f, h}. Finally X = ∅, Y = ∅ and B = ∅ and the algorithm returns the last
stage2 labeling of F , namely ({b, d, f, h}, {c}, {e, g, i, x}, {a}).

3

7 Discussion
In this paper we studied abstract argumentation semantics which treat odd- and even-length
cycles in a similar fashion, i.e. semantics which are able to select arguments from odd-length
cycles. We first highlighted shortcomings of the existing semantics cf2 and stage, and then,

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 48

stg cf2 stage2

I-max. Yes Yes Yes
Reinst. No No No
Weak reinst. No Yes Yes
CF-reinst. Yes Yes Yes
Direct. No Yes Yes

Succinct. No Yes Yes

TABLE 6. Properties of Naive-based Semantics.

to overcome these shortcomings, we proposed to use the SCC-recursive schema of cf2 and
instantiate the base case with stage semantics, instead of only naive semantics. Thus, we
obtained a new sibling semantics of cf2 which we called stage2 . We showed that this novel
semantics solves the problematic behavior of cf2 on longer cycles, in particular on cycles of
length ≥ 6. Moreover, on coherent AFs (and in particular on odd-cycle free AFs) stage2
semantics coincide with the standard admissibility based semantics. This guarantees that we
do not get an unintended behavior on this class of AFs, and in general on parts of AFs that
are coherent. Furthermore, stage2 satisfies the directionality property as well as the weak
reinstatement property which was not the case for stage semantics. A comparison of the
properties of stage, cf2 and stage2 semantics is provided in Table 6.

The analysis of equivalence showed that stage2 is the second semantics considered so far
where strong equivalence coincides with syntactic equivalence, i.e. there are no redundant
attacks at all. Thus, stage2 semantics also satisfies the succinctness property, which allows
to relate the semantics according to how much meaning every attack has for the computation
of the extensions.

We provided a comprehensive complexity analysis for cf2 and stage2 semantics. A sum-
mary of the obtained results for the standard reasoning problems for argumentation semantics
and for the investigation of tractable fragments is pictured in Table 7. It turned out that both
semantics are computationally hard and stage2 semantics is even located on the second level
of the polynomial hierarchy. Thus stage2 it is among the hardest but also most expressiveness
argumentation semantics. Faced with this in general intractable complexity, we were able to
identify tractable fragments for both semantics, namely acyclic, bipartite and symmetric self-
attack free frameworks. However, we showed that recent techniques [32] to augment such
fragments are not applicable here.

In the implementation part we gave the ASP encodings of stage2 semantics, where the
alternative characterization facilitated this step. As stage2 is located at the second level of the
polynomial hierarchy, we needed more involved programming techniques like the saturation
encodings. To simplify those encodings we applied the novel metasp optimization front-
end from the ASP system gringo/claspD. All these encodings are incorporated in the
system ASPARTIX and available on the web10. We also provided labeling based algorithms
for cf2 and stage2 to directly compute the respective extensions.

10See http://rull.dbai.tuwien.ac.at:8080/ASPARTIX/ for a web front-end.

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 49

cf2 stage2 stg

Verσ in P coNP-c coNP-c

Credσ NP-c ΣP
2 -c ΣP

2 -c

Skeptσ coNP-c ΠP
2 -c ΠP

2 -c

Exists¬∅σ in P in P in P

Credσ
acycl in P in P P-c

Skeptσ
acycl in P in P P-c

Credσ
even−free NP-c coNP-h ΣP

2 -c

Skeptσ
even−free coNP-c coNP-h ΠP

2 -c

Credσ
bipart in P in P P-c

Skeptσ
bipart in P in P P-c

Credσ
sym in P in P/ΣP

2 -c∗ in P/ΣP
2 -c∗

Skeptσ
sym in P in P/ΠP

2 -c∗ in P/ΠP
2 -c∗

TABLE 7: Summary of complexity results (∗ with self-attacking arguments). An entry C-c
denotes completeness for the class C.

7.1 Related Work

Here, we consider different approaches which deal with the problems related to cycles in AFs,
and in particular with odd-length cycles. Of course the cf2 semantics is not the only attempt
to solve this problem. Bodanza and Tohmé introduced two semantics the sustainable and
the tolerant semantics [10]. While the former basically ignores attacks from self-attacking
arguments the latter is in a similar spirit than cf2 and stage2 . The intuition there is that the
defense of a set of arguments should not be defined in absolute terms but relative to other
possible challenging sets of arguments. They propose an application of this semantics in the
field of strategic argumentation games, where each player has to choose a set of arguments to
confront with and defend against the possible choices of the other agent. As tolerant, cf2 and
stage semantics are of similar fashion one might ask whether some of them coincide. In [10]
(Example 27) there is an example for an AF with a tolerant extension which is not a cf2
extensions. As each stage2 extension is also a cf2 extension this also shows that tolerant se-
mantics differ from stage2 . If we compare tolerant with cf2 semantics one main difference
is that on odd-cycle free AFs tolerant semantics coincides with preferred semantics 11 and
thus does not have the problematic behavior on even-length cycles. However, it has the same
(problematic) behavior in odd-length cycles of certain length. To best of the authors knowl-
edge there is no systematic analysis of the properties studied in this paper for sustainable and
tolerant semantics.

Gabbay introduced several loop-busting semantics in [44]. One of them, the LB2 seman-
tics has shown to be equivalent to cf2 . All these semantics are involved in the equational
approach to argumentation networks [43]. The author also defines an equational approach

11This does not hold for coherent AFs in general, e.g. consider the coherent AF ({a, b, c, }, {(a, b), (a, c), (c, b), (b, a)}) where {a} is the
only preferred extension but both {a} and {b} being tolerant extensions.

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 50

to stage2 semantics in [44], namely LB2 − stage . Furthermore in [1] the authors propose
the Shkop semantics which has been shown to be equivalent to LB4 from the loop-busting
semantics in [44].

Roos proposed in [58] the preferential model semantics which also handles odd loops in
a special way. The motivation for this semantics comes from the preferential model seman-
tics for non-monotonic reasoning systems [51]. There, the attack relation is used to define
preferences over states. So, not one argument is preferred over another one, but one prefers
a state where the attacking argument is valid, over a state where the attacked argument is
valid. This semantics results in different extensions than cf2 , for example consider the AF
F = (A,R) with A = {a, b, c} and R = {(a, b), (b, c), (c, a), (c, c)}. Then, {a} and {b} are
cf2 extensions, but only {a} is a pm extension, because the state a is preferred over the state
b, as the only attacker of a is the argument c which is self-attacking.

7.2 Future Work

While the computational complexity of a semantics gives a first impression of its expres-
siveness the concept of translations between semantics [38, 34] gives a more fine-grained
hierarchy. To get an even better feeling how cf2 and stage2 relates to the other semantics in
terms of expressiveness we plan to investigate possible intertranslations between cf2 , stage2
and standard argumentation semantics. Notice that the construction in proof of Theorem 5.2
already provides a translation from stage to stage2 semantics. So one particular question of
interest, would be whether also the reverse is possible, i.e. whether there is a translation from
stage2 to stage semantics.

As it turned out that strong equivalence is indeed a very strong condition for many seman-
tics, in case of cf2 and stage2 it even breaks down to syntactic equivalence, it can be bene-
ficial to relax the notion of equivalence and for example consider a relativized notion, where
source and target of attacks are restricted. This can be interesting in the course of two agents,
where one can only point attacks from and to a specific set of arguments. Recently, one step
towards this direction has already been made in [8] with the normal and strong expansion
equivalence. However, the studies of [8] are restricted to admissibility-based semantics.

As the ASP encodings provided for cf2 and stage2 semantics are rather comprehensive
there might be several ways to improve the performance. One direction for future investiga-
tions are possible optimizations of the ASP encodings, by using advanced ASP constructs like
aggregates and techniques like symmetry breaking, and to investigate how they can improve
the performance [48].

One main criticism concerning naive-based semantics comes from the non-abstract set-
ting where one instantiates argumentation frameworks from a knowledge base. One of the
most prominent framework for such an instantiation is the ASPIC+ system and is has been
shown that both stage and cf2 semantics can produce inconsistent solutions when instanti-
ated by ASPIC+ (see [2]). However, the examples given in [2] can not be generalized to
stage2 semantics and hence it is open issue whether stage2 proposes consistent conclu-
sion in the ASPIC+ setting. As on coherent AFs stage2 semantics coincides with stable
semantics constructing inconsistent solutions seems to me more challenging, if even possi-
ble. Finally, as the ASPIC+ framework seems to be tailored to admissibility based semantics,
it seems worth to consider cf2 and stage2 semantics in other instantiation schemes. How-
ever, recently Strass [59] proposed an instantiation scheme for abstract dialectical frameworks
(ADFs) [11, 12], a generalization of Dung’s AFs, which overcomes the problems of ASPIC+

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 51

regarding the rationality postulates proposed in [15]. Hence, generalizing cf2 and stage2
semantics to the ADFs setting is promising direction for future research.

For both cf2 and stage2 semantics we presented a characterization of the form σ(F) =
{S | τ(F) ∩ θ([[F − ∆F,S]])}. One can see this as a general schema for argumentation
semantics, where one can exchange the semantics τ and θ. For naive-based semantics one
might choose τ = naive while for admissible-based semantics one can choose τ = adm .
One special instantiation is stable2(F) = {S | S ∈ naive(F) ∩ stable([[F − ∆F,S]])} =
{S | S ∈ adm(F)∩stable([[F −∆F,S]])} and it clearly holds that stable2(F) = stable(F).
The investigation of other such combinations might reveal new options.

Acknowledgments
Earlier versions of parts of this paper have been presented at the 14th International Work-
shop on Non-Monotonic Reasoning (NMR’12) [29] and the Fourth International Conference
on Computational Models of Argument (COMMA’12) [28]. The authors want to thank the
reviewers of the preceding papers and the current paper for their valuable comments which
helped to improve the quality of the paper. Furthermore the authors are grateful to Stefan
Woltran for helpful discussions and comments.

References
[1] Michael Abraham, Dov M. Gabbay, and Uri J. Schild. The handling of loops in talmudic logic, with application

to odd and even loops in argumentation. In David Rydeheard, Andrei Voronkov, and Margarita Korovina,
editors, Proceedings of Higher-Order Workshop on Automated Runtime Verification and Debugging (HOWARD
60), 2011.

[2] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. An introduction to argumentation semantics.
Knowledge Eng. Review, 26(4):365–410, 2011.

[3] Pietro Baroni, Paul E. Dunne, and Massimiliano Giacomin. On the resolution-based family of abstract argu-
mentation semantics and its grounded instance. Artif. Intell., 175(3–4):791–813, 2011.

[4] Pietro Baroni and Massimiliano Giacomin. Solving semantic problems with odd-length cycles in argumen-
tation. In Thomas D. Nielsen and Nevin L. Zhang, editors, Proceedings of the 7th European Conference on
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2003), volume 2711 of
Lecture Notes in Computer Science, pages 440–451. Springer, 2003.

[5] Pietro Baroni and Massimiliano Giacomin. On principle-based evaluation of extension-based argumentation
semantics. Artif. Intell., 171(10-15):675–700, 2007.

[6] Pietro Baroni and Massimiliano Giacomin. Semantics in abstract argumentation systems. In Iyad Rahwan and
Guillermo R. Simari, editors, Argumentation in Artificial Intelligence, pages 25–44. Springer, 2009.

[7] Pietro Baroni, Massimiliano Giacomin, and Giovanni Guida. SCC-recursiveness: A general schema for argu-
mentation Semantics. Artif. Intell., 168(1–2):162–210, 2005.

[8] Ringo Baumann. Normal and strong expansion equivalence for argumentation frameworks. Artif. Intell.,
193:18–44, 2012.

[9] Trevor J. M. Bench-Capon. Persuasion in practical argument using value-based argumentation frameworks.
Journal of Logic and Computation, 13(3):429–448, 2003.

[10] Gustavo A. Bodanza and Fernando A. Tohmé. Two approaches to the problems of self-attacking arguments
and general odd-length cycles of attack. Journal of Applied Logic, 7(4):403–420, 2009. Special Issue: Formal
Models of Belief Change in Rational Agents.

[11] Gerhard Brewka, Stefan Ellmauthaler, Hannes Strass, Johannes P. Wallner, and Stefan Woltran. Abstract dialec-
tical frameworks revisited. In Proceedings of the 23rd International Joint Conference on Artificial Intelligence
(IJCAI 2013), pages 803–809. AAAI Press, 2013.

[12] Gerhard Brewka and Stefan Woltran. Abstract dialectical frameworks. In Fangzhen Lin, Ulrike Sattler, and
Miroslaw Truszczynski, editors, Proceedings of the 12th International Conference on Principles of Knowledge
Representation and Reasoning (KR 2010), pages 102–111. AAAI Press, 2010.

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 52

[13] Martin Caminada. An algorithm for computing semi-stable semantics. In Khaled Mellouli, editor, Proceedings
of the 9th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty
(ECSQARU 2007), volume 4724 of Lecture Notes in Computer Science, pages 222–234. Springer, 2007.

[14] Martin Caminada. An algorithm for stage semantics. In Pietro Baroni, Federico Cerutti, Massimiliano Gi-
acomin, and Guillermo R. Simari, editors, Proceedings of the 3rd Conference on Computational Models of
Argument (COMMA 2010), volume 216 of Frontiers in Artificial Intelligence and Applications, pages 147–
158. IOS Press, 2010.

[15] Martin Caminada and Leila Amgoud. On the evaluation of argumentation formalisms. Artif. Intell., 171(5–
6):286–310, 2007.

[16] Martin Caminada and Dov M. Gabbay. A logical account of formal argumentation. Studia Logica, 93(2–
3):109–145, 2009.

[17] Martin Caminada, Walter A. Carnielli, and Paul E. Dunne. Semi-stable semantics. Journal of Logic and
Computation, 22(5):1207–1254, 2012.

[18] Sylvie Coste-Marquis, Caroline Devred, and Pierre Marquis. Symmetric argumentation frameworks. In Lluis
Godo, editor, Proceedings of the 8th European Conference on Symbolic and Quantitative Approaches to Rea-
soning with Uncertainty (ECSQARU 2005), volume 3571 of Lecture Notes in Computer Science, pages 317–
328. Springer, 2005.

[19] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity and expressive power of
logic programming. ACM Computing Surveys, 33(3):374–425, 2001.

[20] Yannis Dimopoulos and Alberto Torres. Graph theoretical structures in logic programs and Default Theories.
Theor. Comput. Sci., 170(1–2):209–244, 1996.

[21] Sylvie Doutre and Jérôme Mengin. Preferred extensions of argumentation frameworks: Query answering and
computation. In IJCAR, pages 272–288, 2001.

[22] Phan M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artif. Intell., 77(2):321–358, 1995.

[23] Paul E. Dunne. Computational properties of argument systems satisfying graph-theoretic constraints. Artif.
Intell., 171(10–15):701–729, 2007.

[24] Paul E. Dunne and Trevor J. M. Bench-Capon. Complexity and combinatorial properties of argument systems.
Technical report, Dept. of Computer Science, University of Liverpool, 2001.

[25] Paul E. Dunne and Trevor J. M. Bench-Capon. Coherence in finite argument systems. Artif. Intell.,
141(1/2):187–203, 2002.

[26] Paul E. Dunne and Michael Wooldridge. Complexity of abstract argumentation. In Iyad Rahwan and
Guillermo R. Simari, editors, Argumentation in Artificial Intelligence, pages 85–104. Springer, 2009.

[27] Wolfgang Dvořák. Computational Aspects of Abstract Argumentation. PhD thesis, Vienna University of Tech-
nology, 2012.

[28] Wolfgang Dvořák and Sarah A. Gaggl. Computational aspects of cf2 and stage2 argumentation semantics. In
Bart Verheij, Stefan Szeider, and Stefan Woltran, editors, Proceedings of the 4th International Conference on
Computational Models of Argument (COMMA 2012), volume 245 of Frontiers in Artificial Intelligence and
Applications, pages 273–284. IOS Press, 2012.

[29] Wolfgang Dvořák and Sarah A. Gaggl. Incorporating stage semantics in the scc-recursive schema for argumen-
tation semantics. In In Proceedings of the 14th International Workshop on Non-Monotonic Reasoning (NMR
2012), 2012.

[30] Wolfgang Dvořák, Sarah A. Gaggl, Johannes P. Wallner, and Stefan Woltran. Making use of advances in answer-
set programming for abstract argumentation systems. In Proceedings of the 19th International Conference on
Applications of Declarative Programming and Knowledge Management (INAP 2011), pages 117–130, 2011.

[31] Wolfgang Dvořák, Matti Järvisalo, Johannes Peter Wallner, and Stefan Woltran. Complexity-sensitive decision
procedures for abstract argumentation. In Gerhard Brewka, Thomas Eiter, and Sheila A. McIlraith, editors,
Principles of Knowledge Representation and Reasoning: Proceedings of the 13th International Conference,
KR 2012, Rome, Italy, June 10-14, 2012, pages 54–64. AAAI Press, 2012.

[32] Wolfgang Dvořák, Sebastian Ordyniak, and Stefan Szeider. Augmenting tractable fragments of abstract argu-
mentation. Artificial Intelligence, 186(0):157–173, 2012.

[33] Wolfgang Dvořák, Reinhard Pichler, and Stefan Woltran. Towards fixed-parameter tractable algorithms for
abstract argumentation. Artificial Intelligence, 186(0):1 – 37, 2012.

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 53

[34] Wolfgang Dvořák and Christof Spanring. Comparing the expressiveness of argumentation semantics. In Bart
Verheij, Stefan Szeider, and Stefan Woltran, editors, Proceedings of the 4th International Conference on Com-
putational Models of Argument (COMMA 2012), volume 245 of Frontiers in Artificial Intelligence and Appli-
cations, pages 261–272. IOS Press, 2012.

[35] Wolfgang Dvořák, Stefan Szeider, and Stefan Woltran. Reasoning in argumentation frameworks of bounded
clique-width. In Pietro Baroni, Federico Cerutti, Massimiliano Giacomin, and Guillermo R. Simari, editors,
Proceedings of the 3rd Conference on Computational Models of Argument (COMMA 2010), Frontiers in Arti-
ficial Intelligence and Applications, pages 219–230. IOS Press, 2010.

[36] Wolfgang Dvořák, Stefan Szeider, and Stefan Woltran. Abstract argumentation via monadic second order logic.
In Eyke Hüllermeier, Sebastian Link, Thomas Fober, and Bernhard Seeger, editors, Proceedings of the 6th
International Conference on Scalable Uncertainty Management (SUM 2012), volume 7520 of Lecture Notes in
Computer Science, pages 85–98. Springer, 2012.

[37] Wolfgang Dvořák and Stefan Woltran. Complexity of semi-stable and stage semantics in argumentation frame-
works. Inf. Process. Lett., 110(11):425–430, 2010.

[38] Wolfgang Dvořák and Stefan Woltran. On the intertranslatability of argumentation semantics. J. Artif. Intell.
Res. (JAIR), 41:445–475, 2011.

[39] Uwe Egly, Sarah A. Gaggl, and Stefan Woltran. Aspartix: Implementing argumentation frameworks using
answer-set programming. In Maria Garcia de la Banda and Enrico Pontelli, editors, Proceedings of the 24th
International Conference on Logic Programming (ICLP 2008), volume 5366 of Lecture Notes in Computer
Science, pages 734–738. Springer, 2008.

[40] Uwe Egly, Sarah A. Gaggl, and Stefan Woltran. Answer-set programming encodings for argumentation frame-
works. Argument and Computation, 1(2):144–177, 2010.

[41] Thomas Eiter and Georg Gottlob. On the computational cost of disjunctive logic programming: Propositional
case. Ann. Math. Artif. Intell., 15(3–4):289–323, 1995.

[42] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer Science.
Springer, 2006.

[43] Dov M. Gabbay. Equational approach to argumentation networks. Argument and Computation, 3(2–3):87–142,
2012.

[44] Dov M. Gabbay. The equational approach to cf2 semantics. In Bart Verheij, Stefan Szeider, and Stefan Woltran,
editors, Proceedings of the 4th International Conference on Computational Models of Argument (COMMA
2012), volume 245 of Frontiers in Artificial Intelligence and Applications, pages 141–152. IOS Press, 2012.

[45] Sarah A. Gaggl and Stefan Woltran. cf2 semantics revisited. In Pietro Baroni, Federico Cerutti, Massimiliano
Giacomin, and Guillermo R. Simari, editors, Proceedings of the 3rd Conference on Computational Models of
Argument (COMMA 2010), volume 216 of Frontiers in Artificial Intelligence and Applications, pages 243–254.
IOS Press, 2010.

[46] Sarah A. Gaggl and Stefan Woltran. Strong equivalence for argumentation semantics based on conflict-free sets.
In Weiru Liu, editor, Proceedings of the 11th European Conference on Symbolic and Quantitative Approaches
to Reasoning with Uncertainty (ECSQARU 2011), volume 6717 of Lecture Notes in Computer Science, pages
38–49. Springer, 2011.

[47] Sarah A. Gaggl and Stefan Woltran. The cf2 argumentation semantics revisited. Journal of Logic and Compu-
tation, 23(5):925–949, 2013.

[48] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers, 2012.

[49] Martin Gebser, Roland Kaminski, and Torsten Schaub. Complex optimization in answer set programming.
Theory and Practice of Logic Programming, 11(4–5):821–839, 2011.

[50] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunctive databases. New
Generation Comput., 9(3–4):365–386, 1991.

[51] Sarit Kraus, Daniel J. Lehmann, and Menachem Magidor. Nonmonotonic reasoning, preferential models and
cumulative logics. Artif. Intell., 44(1–2):167–207, 1990.

[52] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri, and Francesco
Scarcello. The dlv system for knowledge representation and reasoning. ACM Trans. Comput. Log., 7(3):499–
562, 2006.

[53] Sanjay Modgil and Martin Caminada. Proof theories and algorithms for abstract argumentation frameworks. In
Iyad Rahwan and Guillermo Simari, editors, Argumentation in Artificial Intelligence, pages 105–129. Springer,
2009.

Stage Semantics and the SCC-recursive Schema for Argumentation Semantics 54

[54] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics And Its
Applications. OUP Oxford, 2006.

[55] Samer Nofal, Paul E. Dunne, and Katie Atkinson. On preferred extension enumeration in abstract argumenta-
tion. In Bart Verheij, Stefan Szeider, and Stefan Woltran, editors, Proceedings of the 4th International Confer-
ence on Computational Models of Argument (COMMA 2012), volume 245 of Frontiers in Artificial Intelligence
and Applications, pages 205–216. IOS Press, 2012.

[56] Emilia Oikarinen and Stefan Woltran. Characterizing strong equivalence for argumentation frameworks. Artif.
Intell., 175(14–15):1985–2009, 2011.

[57] John L. Pollock. Justification and defeat. Artificial Intelligence, 67:377–407, 1994.
[58] Nico Roos. The relation between preferential model and argumentation semantics. In In Proceedings of the

13th International Workshop on Non-Monotonic Reasoning (NMR 2010), 2010.
[59] Hannes Strass. Instantiating knowledge bases in abstract dialectical frameworks. In João Leite, Tran Cao Son,

Paolo Torroni, Leon van der Torre, and Stefan Woltran, editors, Proceedings of the Fourteenth International
Workshop on Computational Logic in Multi-Agent Systems (CLIMA XIV), volume 8143 of Lecture Notes in
Computer Science, pages 86–101. Springer, September 2013.

[60] Francesca Toni and Marek Sergot. Argumentation and answer set programming. In Marcello Balduccini and
Tran C. Son, editors, Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning, volume
6565 of Lecture Notes in Computer Science, pages 164–180. Springer Berlin Heidelberg, 2011.

[61] Bart Verheij. Two approaches to dialectical argumentation: Admissible sets and argumentation stages. In John-
Jules Ch. Meyer and Linda C. van der Gaag, editors, Proceedings of the 8th Dutch Conference on Artificial
Intelligence (NAIC 1996), pages 357–368. University of Utrecht, 1996.

[62] Bart Verheij. A labeling approach to the computation of credulous acceptance in argumentation. In Manuela M.
Veloso, editor, Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI 2007),
pages 623–628, 2007.

[63] Gerard Vreeswijk and Henry Prakken. Credulous and sceptical argument games for preferred semantics. In
Manuel Ojeda-Aciego, Inman P. de Guzmán, Gerhard Brewka, and Luı́s M. Pereira, editors, Proceedings of
the European Workshop on Logics in Artificial Intelligence (JELIA 2000), volume 1919 of Lecture Notes in
Computer Science, pages 239–253. Springer, 2000.

