
FOUNDATIONS OF SEMANTIC
WEB TECHNOLOGIES

OWL 2 – Syntax and Semantics

Sebastian Rudolph



OWL

TU Dresden Foundations of Semantic Web Technologies



OWL

TU Dresden Foundations of Semantic Web Technologies



Agenda

• Recap OWL & Overview OWL 2
• The Description Logic SROIQ
• Inferencing with SROIQ
• OWL 2 DL
• OWL 2 Profiles
• OWL 2 Full
• Summary

TU Dresden Foundations of Semantic Web Technologies



Agenda

• Recap OWL & Overview OWL 2
• The Description Logic SROIQ
• Inferencing with SROIQ
• OWL 2 DL
• OWL 2 Profiles
• OWL 2 Full
• Summary

TU Dresden Foundations of Semantic Web Technologies



Insufficiencies of OWL
OWL still too weak for certain tasks

• OWL insufficient as query language
 conjunctive queries, SPARQL for OWL

• OWL insufficient as ontology language
 FOL-based rule extensions, SWRL & RIF

Should the OWL standard itself be extended?
 OWL 2

TU Dresden Foundations of Semantic Web Technologies



Insufficiencies of OWL
OWL still too weak for certain tasks

• OWL insufficient as query language
 conjunctive queries, SPARQL for OWL

• OWL insufficient as ontology language
 FOL-based rule extensions, SWRL & RIF

Should the OWL standard itself be extended?
 OWL 2

TU Dresden Foundations of Semantic Web Technologies



Insufficiencies of OWL
OWL still too weak for certain tasks

• OWL insufficient as query language
 conjunctive queries, SPARQL for OWL

• OWL insufficient as ontology language
 FOL-based rule extensions, SWRL & RIF

Should the OWL standard itself be extended?
 OWL 2

TU Dresden Foundations of Semantic Web Technologies



Insufficiencies of OWL
OWL still too weak for certain tasks

• OWL insufficient as query language
 conjunctive queries, SPARQL for OWL

• OWL insufficient as ontology language
 FOL-based rule extensions, SWRL & RIF

Should the OWL standard itself be extended?

 OWL 2

TU Dresden Foundations of Semantic Web Technologies



Insufficiencies of OWL
OWL still too weak for certain tasks

• OWL insufficient as query language
 conjunctive queries, SPARQL for OWL

• OWL insufficient as ontology language
 FOL-based rule extensions, SWRL & RIF

Should the OWL standard itself be extended?
 OWL 2

TU Dresden Foundations of Semantic Web Technologies



Development of OWL 2

OWL 2 as “next version” of OWL

extensions due to practical experiences with OWL 1.0:
• additional expressivity due to new ontological axioms
• extralogical extensions (syntax, metadata, . . . )
• revision of the OWL variants (Lite/DL/Full)

goals:
• most extensive compatibility with the existing OWL standard
• preservation of decidability of OWL DL
• correction of problems in the OWL 1.0 standard

TU Dresden Foundations of Semantic Web Technologies



Agenda

• Recap OWL & Overview OWL 2
• The Description Logic SROIQ
• Inferencing with SROIQ
• OWL 2 DL
• OWL 2 Profiles
• OWL 2 Full
• Summary

TU Dresden Foundations of Semantic Web Technologies



From SHOIN to SROIQ
OWL DL based on DL SHOIN (D):
• axioms:

– TBox: subclass relationships C v D
– RBox: subrole relationships R v S (H), inverse roles R− (I),

transitivity
– ABox: class assertions C(a), role assertions R(a, b), equality a ≈ b,

inequality a 6≈ b

• class constructors:
– conjunction C u D, disjunction C t D, negation ¬C of classes
– role restrictions: universal ∀R.C and existential ∃R.C
– number restrictions (N ): ≤n R and ≥n R (n non-negative integer)
– nominals (O): {a}

• datatypes (D)

OWL 2 extends this to SROIQ(D)

TU Dresden Foundations of Semantic Web Technologies



ABox
SHOIN supports different ABox assertions:
• class membership C(a) (C complex class),
• special case: negated class membership ¬C(a) (C complex class),
• equality a ≈ b,
• inequality a 6≈ b

• role membership R(a, b)

• negated role membership?

 SROIQ allows negated roles in der ABox: ¬R(a, b)

TU Dresden Foundations of Semantic Web Technologies



ABox
SHOIN supports different ABox assertions:
• class membership C(a) (C complex class),
• special case: negated class membership ¬C(a) (C complex class),
• equality a ≈ b,
• inequality a 6≈ b

• role membership R(a, b)

• negated role membership?

 SROIQ allows negated roles in der ABox: ¬R(a, b)

TU Dresden Foundations of Semantic Web Technologies



ABox
SHOIN supports different ABox assertions:
• class membership C(a) (C complex class),
• special case: negated class membership ¬C(a) (C complex class),
• equality a ≈ b,
• inequality a 6≈ b

• role membership R(a, b)

• negated role membership?

 SROIQ allows negated roles in der ABox: ¬R(a, b)

TU Dresden Foundations of Semantic Web Technologies



Number Restrictions
SHOIN supports only unqualified number restrictions (N ):

Person u ≥3 hasChild

"‘class of all persons with 3 or more children"’

 SROIQ also allows qualified

number restrictions (Q):

Person u ≥3 hasChild.(Woman u Professor)

"‘class of all persons with 3 or more daughters who are professors"’

TU Dresden Foundations of Semantic Web Technologies



Number Restrictions
SHOIN supports only unqualified number restrictions (N ):

Person u ≥3 hasChild

"‘class of all persons with 3 or more children"’ SROIQ also allows qualified

number restrictions (Q):

Person u ≥3 hasChild.(Woman u Professor)

"‘class of all persons with 3 or more daughters who are professors"’

TU Dresden Foundations of Semantic Web Technologies



The Self “Concept”

modeling task: "‘Every human knows himself/herself."’

• SHOIN :

knows(tom, tom) knows(tina, tina) knows(udo, udo) . . .

 not generally applicable

• SROIQ: specific notation Self

Human v ∃knows.Self

TU Dresden Foundations of Semantic Web Technologies



The Self “Concept”

modeling task: "‘Every human knows himself/herself."’

• SHOIN :

knows(tom, tom) knows(tina, tina) knows(udo, udo) . . .

 not generally applicable

• SROIQ: specific notation Self

Human v ∃knows.Self

TU Dresden Foundations of Semantic Web Technologies



The Self “Concept”

modeling task: "‘Every human knows himself/herself."’

• SHOIN :

knows(tom, tom) knows(tina, tina) knows(udo, udo) . . .

 not generally applicable

• SROIQ: specific notation Self

Human v ∃knows.Self

TU Dresden Foundations of Semantic Web Technologies



Role Axioms in SHOIN
SHOIN provides few role axioms:
• Trans(r), owl:TransitiveProperty: r is transitive

Example: Trans(locatedIn)

• Sym(r), owl:SymmetricProperty: r is symmetric
Example: Sym(relativeOf)
also: r v r−

• Func(r), owl:FunctionalProperty: r is functional
Example: Func(hasFather)
also: > v6 1r

• InvFunc(r), owl:InverseFunctionalProperty: r is inverse
functional
Example: InvFunc(isFatherOf)
also > v6 1r− or Func(r−)

TU Dresden Foundations of Semantic Web Technologies



Role Axioms in SHOIN
SHOIN provides few role axioms:
• Trans(r), owl:TransitiveProperty: r is transitive

Example: Trans(locatedIn)
• Sym(r), owl:SymmetricProperty: r is symmetric

Example: Sym(relativeOf)
also: r v r−

• Func(r), owl:FunctionalProperty: r is functional
Example: Func(hasFather)
also: > v6 1r

• InvFunc(r), owl:InverseFunctionalProperty: r is inverse
functional
Example: InvFunc(isFatherOf)
also > v6 1r− or Func(r−)

TU Dresden Foundations of Semantic Web Technologies



Role Axioms in SHOIN
SHOIN provides few role axioms:
• Trans(r), owl:TransitiveProperty: r is transitive

Example: Trans(locatedIn)
• Sym(r), owl:SymmetricProperty: r is symmetric

Example: Sym(relativeOf)
also: r v r−

• Func(r), owl:FunctionalProperty: r is functional
Example: Func(hasFather)
also: > v6 1r

• InvFunc(r), owl:InverseFunctionalProperty: r is inverse
functional
Example: InvFunc(isFatherOf)
also > v6 1r− or Func(r−)

TU Dresden Foundations of Semantic Web Technologies



Role Axioms in SHOIN
SHOIN provides few role axioms:
• Trans(r), owl:TransitiveProperty: r is transitive

Example: Trans(locatedIn)
• Sym(r), owl:SymmetricProperty: r is symmetric

Example: Sym(relativeOf)
also: r v r−

• Func(r), owl:FunctionalProperty: r is functional
Example: Func(hasFather)
also: > v6 1r

• InvFunc(r), owl:InverseFunctionalProperty: r is inverse
functional
Example: InvFunc(isFatherOf)
also > v6 1r− or Func(r−)

TU Dresden Foundations of Semantic Web Technologies



Role Axioms in SROIQ
SROIQ provides additional statements about roles:
• Ref(r), owl:ReflexiveProperty: r is reflexive, (x, x) ∈ rI for all

domain individuals x
Example: Ref(knows)

• Irr(r), owl:IrreflexiveProperty: r is irreflexive, (x, x) 6∈ rI for all
domain individuals x
Example: Irr(hasChild)

• Asym(r), owl:AsymmtericProperty: r is asymmetric, (x, y) ∈ rI

implies (y, x) 6∈ rI

Example: Asym(hasChild)
• Dis(r, s), owl:propertyDisjointWith, ,

owl:AllDisjointProperties: r and s are disjoint, (x, y) 6∈ rI ∩ sI for
all x, y
Example: Dis(hasFather, hasSon)

TU Dresden Foundations of Semantic Web Technologies



Role Axioms in SROIQ
SROIQ provides additional statements about roles:
• Ref(r), owl:ReflexiveProperty: r is reflexive, (x, x) ∈ rI for all

domain individuals x
Example: Ref(knows)

• Irr(r), owl:IrreflexiveProperty: r is irreflexive, (x, x) 6∈ rI for all
domain individuals x
Example: Irr(hasChild)

• Asym(r), owl:AsymmtericProperty: r is asymmetric, (x, y) ∈ rI

implies (y, x) 6∈ rI

Example: Asym(hasChild)
• Dis(r, s), owl:propertyDisjointWith, ,

owl:AllDisjointProperties: r and s are disjoint, (x, y) 6∈ rI ∩ sI for
all x, y
Example: Dis(hasFather, hasSon)

TU Dresden Foundations of Semantic Web Technologies



Role Axioms in SROIQ
SROIQ provides additional statements about roles:
• Ref(r), owl:ReflexiveProperty: r is reflexive, (x, x) ∈ rI for all

domain individuals x
Example: Ref(knows)

• Irr(r), owl:IrreflexiveProperty: r is irreflexive, (x, x) 6∈ rI for all
domain individuals x
Example: Irr(hasChild)

• Asym(r), owl:AsymmtericProperty: r is asymmetric, (x, y) ∈ rI

implies (y, x) 6∈ rI

Example: Asym(hasChild)

• Dis(r, s), owl:propertyDisjointWith, ,
owl:AllDisjointProperties: r and s are disjoint, (x, y) 6∈ rI ∩ sI for
all x, y
Example: Dis(hasFather, hasSon)

TU Dresden Foundations of Semantic Web Technologies



Role Axioms in SROIQ
SROIQ provides additional statements about roles:
• Ref(r), owl:ReflexiveProperty: r is reflexive, (x, x) ∈ rI for all

domain individuals x
Example: Ref(knows)

• Irr(r), owl:IrreflexiveProperty: r is irreflexive, (x, x) 6∈ rI for all
domain individuals x
Example: Irr(hasChild)

• Asym(r), owl:AsymmtericProperty: r is asymmetric, (x, y) ∈ rI

implies (y, x) 6∈ rI

Example: Asym(hasChild)
• Dis(r, s), owl:propertyDisjointWith, ,

owl:AllDisjointProperties: r and s are disjoint, (x, y) 6∈ rI ∩ sI for
all x, y
Example: Dis(hasFather, hasSon)

TU Dresden Foundations of Semantic Web Technologies



The Universal Role
SROIQ provides the universal role:
• universal role U (owl:TopObjectProperty):

(x, y) ∈ UI for all x, y

Example
> v 6 7 000 000 000 U.Human
(not recommended!)

 U is mainly comfortable as a counterpart for >, e.g. as root element in a
graphically displayed role hierarchy

• the converse owl:BottomObjectProperty has been introduced in
OWL, but has no corresponding syntactic element in DLs

• for datatype properties analog owl:TopDataProperty and
owl:BottomDataProperty

TU Dresden Foundations of Semantic Web Technologies



Complex Role Inclusion

"‘The friends of my friends are my friends."’

 can be expressed in SHOIN :
hasFriend is transitive

"‘The enemies of my friends are my enemies."’

 Cannot be expressed in SHOIN !

complex role inclusion
• RBox-expressions of the form r1 ◦ r2 ◦ . . . ◦ rn v s

• semantics: (x0, x1) ∈ rI1 , (x1, x2) ∈ rI2 , . . . , (xn−1, xn) ∈ rIn ,
implies (x0, xn) ∈ sI

TU Dresden Foundations of Semantic Web Technologies



Complex Role Inclusion

"‘The friends of my friends are my friends."’

 can be expressed in SHOIN :
hasFriend is transitive

"‘The enemies of my friends are my enemies."’

 Cannot be expressed in SHOIN !

complex role inclusion
• RBox-expressions of the form r1 ◦ r2 ◦ . . . ◦ rn v s

• semantics: (x0, x1) ∈ rI1 , (x1, x2) ∈ rI2 , . . . , (xn−1, xn) ∈ rIn ,
implies (x0, xn) ∈ sI

TU Dresden Foundations of Semantic Web Technologies



Complex Role Inclusions – Example

Example
hasFriend ◦ hasEnemy v hasEnemy:
if (x, y) ∈ hasFriendI and (y, z) ∈ hasEnemyI ,
then also holds (x, z) ∈ hasEnemyI

further examples
partOf ◦ belongsTo v belongsTo hasBrother ◦ hasChild v isUncleOf

TU Dresden Foundations of Semantic Web Technologies



Expressivity of Complex Role Inclusions

How complicated are complex role inclusions?

RBoxes allow for encoding formal languages:

grammar for language of words ab, aabb, aaabbb, . . . :

L ::= ab
L ::= aLb

becomes the following RBox ra ◦ rb v `
ra ◦ ` ◦ rb v `

In fact, this way, all context-free languages can be encoded. This even enables
us to encode the emptiness problem for intersection of two context-free
languages into KB satisfiability.
 OWL with (unrestricted) role inclusions is undecidable.

TU Dresden Foundations of Semantic Web Technologies



Regular RBoxes

Can complex role inclusion be restricted in order to retain decidability?
• RBoxes correspond to grammars for context-free languages
• intersection of these problematic

 restriction to regular languages!

TU Dresden Foundations of Semantic Web Technologies



Regularity Conditions for RIAs

in order to guarantee decidability of inferenceing, the set of role inclusions has
to be regular
• there has to be a strict linear order ≺ over the roles such that every RIA

has one of the following forms (with si ≺ r for all 1 ≤ i ≤ n):

• r ◦ r v r

• r− v r

• s1 ◦ s2 ◦ . . . ◦ sn v r

• r ◦ s1 ◦ s2 ◦ . . . ◦ sn v r

• s1 ◦ s2 ◦ . . . ◦ sn ◦ r v r

TU Dresden Foundations of Semantic Web Technologies



Regularity Conditions for RIAs

• Example 1: r ◦ s v r s ◦ s v s r ◦ s ◦ r v t

 regular with order s ≺ r ≺ t

• Example 2: r ◦ t ◦ s v t

 not regular, form not allowed

• Example 3: r ◦ s v s s ◦ r v r

 not regular, since no appropriate order exists

TU Dresden Foundations of Semantic Web Technologies



Regularity Conditions for RIAs

• Example 1: r ◦ s v r s ◦ s v s r ◦ s ◦ r v t

 regular with order s ≺ r ≺ t

• Example 2: r ◦ t ◦ s v t

 not regular, form not allowed

• Example 3: r ◦ s v s s ◦ r v r

 not regular, since no appropriate order exists

TU Dresden Foundations of Semantic Web Technologies



Regularity Conditions for RIAs

• Example 1: r ◦ s v r s ◦ s v s r ◦ s ◦ r v t

 regular with order s ≺ r ≺ t

• Example 2: r ◦ t ◦ s v t

 not regular, form not allowed

• Example 3: r ◦ s v s s ◦ r v r

 not regular, since no appropriate order exists

TU Dresden Foundations of Semantic Web Technologies



Regularity Conditions for RIAs

• Example 1: r ◦ s v r s ◦ s v s r ◦ s ◦ r v t

 regular with order s ≺ r ≺ t

• Example 2: r ◦ t ◦ s v t

 not regular, form not allowed

• Example 3: r ◦ s v s s ◦ r v r

 not regular, since no appropriate order exists

TU Dresden Foundations of Semantic Web Technologies



Revisiting the Definition of Simple Roles

• simple roles in SHOIN = roles without transitive subroles
• in SROIQ we need to take RIAs into account

TU Dresden Foundations of Semantic Web Technologies



Revisiting the Definition of Simple Roles

simple roles are all roles. . .
• that do not occur on the rhs of a role inclusion,
• that are inverses of other simple roles,
• that occur only on the rhs of RIAs where the lhs consists of a length-one

chain with a simple role.

(Caution: inductive definition)
 non-simple are roles that can be derived from a chain of roles with length at
least 2

Expressions ≤n r.C, ≥n r.C, Irr(r), Dis(r, s), ∃r.Self, ¬r(a, b)
are only allowed for simple roles r and s!
(Reason: ensure decidability)

TU Dresden Foundations of Semantic Web Technologies



Revisiting the Definition of Simple Roles

simple roles are all roles. . .
• that do not occur on the rhs of a role inclusion,
• that are inverses of other simple roles,
• that occur only on the rhs of RIAs where the lhs consists of a length-one

chain with a simple role.

(Caution: inductive definition)
 non-simple are roles that can be derived from a chain of roles with length at
least 2

Expressions ≤n r.C, ≥n r.C, Irr(r), Dis(r, s), ∃r.Self, ¬r(a, b)
are only allowed for simple roles r and s!
(Reason: ensure decidability)

TU Dresden Foundations of Semantic Web Technologies



Overview SROIQ – TBoxes

class expressions
class names A, B
conjunction C u D
disjunction C t D
negation ¬C
existential role restriction ∃r.C
universal role restriciton ∀r.C
Self ∃s.Self
atleast restriction > n s.C
atmost restriction 6 n s.C
nominals {a}

TBox (class axioms)
inclusion C v D
equivalence C ≡ D

TU Dresden Foundations of Semantic Web Technologies



Overview SROIQ – RBoxes & ABoxes

Roles
roles r, s, t
simple roles s, t
universal role u

ABox (assertions)
class membership C(a)
role membership r(a, b)
neg. role membership ¬s(a, b)
equality a ≈ b
inequality a 6≈ b

RBox (role axioms)
inclusion r1 v r2
complex role inclusion r1 ◦ . . . ◦ rn v r
transitivity Trans(r)
symmetry Sym(r)
reflexivity Ref(r)
irreflexivity Irr(s)
disjointness Dis(s, t)

TU Dresden Foundations of Semantic Web Technologies



Agenda

• Recap OWL & Overview OWL 2
• The Description Logic SROIQ
• Inferencing with SROIQ
• OWL 2 DL
• OWL 2 Profiles
• OWL 2 Full
• Summary

TU Dresden Foundations of Semantic Web Technologies



How complicated is SROIQ?

recap: SHOIN (OWL DL) is very complex (NExpTime)

observation: some modeling features are not really necessary (“syntactic
sugar”)
• Trans(r) can be expressed as r ◦ r v r

• Sym(r) can be expressed as r− v r

• Asym(r) can be expressed as Dis(r, r−)

• Irr(s) can be expressed as > v ¬∃S.Self
• ABox can be represented by TBox axioms with nominals, e.g. r(a, b)

becomes {a} v ∃r.{b}

qualifizierte number restrictions do not cause problems (known and
implemented before)

 main problem: role axioms (RBox)

TU Dresden Foundations of Semantic Web Technologies



How complicated is SROIQ?

recap: SHOIN (OWL DL) is very complex (NExpTime)
observation: some modeling features are not really necessary (“syntactic
sugar”)
• Trans(r) can be expressed as r ◦ r v r

• Sym(r) can be expressed as r− v r

• Asym(r) can be expressed as Dis(r, r−)

• Irr(s) can be expressed as > v ¬∃S.Self
• ABox can be represented by TBox axioms with nominals, e.g. r(a, b)

becomes {a} v ∃r.{b}

qualifizierte number restrictions do not cause problems (known and
implemented before)

 main problem: role axioms (RBox)

TU Dresden Foundations of Semantic Web Technologies



Role Inclusions , Languages, Automata

How to deal with RBoxes?

• RBox inclusions resemble formal grammars
• every role r defines a regular language:

the language of role chains from which it follows
• regular languages ≡ regular Expressions ≡ finite automata

 approach: tableau methods are extended by "‘RBox automata"’

TU Dresden Foundations of Semantic Web Technologies



Decidability of SROIQ
tableau method for SROIQ shows decidability
• algorithm has a good adaptation behaviour: modeling features that are

not used do hardly impede computation (“pay as you go”)
• tableau method not useful for complexity considerations
• SROIQ 2-NExpTime-complete

– RIQ and SROIQ are Harder than SHOIQ. Yevgeny Kazakov.
In Gerhard Brewka and Jérôme Lang, editors, KR 2008. Pages
274-284. AAAI Press. 2008

– lower bound: encoding of a 2Exp tiling problem
– upper bound: exponential translation into the 2-variable fragment of

FOL with counting quantifiers, C2, for which satisfiability checking is
known to be NExpTime-complete)

TU Dresden Foundations of Semantic Web Technologies



Agenda

• Recap OWL & Overview OWL 2
• The Description Logic SROIQ
• Inferencing with SROIQ
• OWL 2 DL
• OWL 2 Profiles
• OWL 2 Full
• Summary

TU Dresden Foundations of Semantic Web Technologies



OWL 2 DL: Further Aspects

SROIQ is “only” logical foundation of OWL 2 DL

further non-logical aspects:
• Syntax (extension necessary)
• datatype declarations and datatype functions, new datatypes?
• metamodeling: “punning”
• comments and ontological metadata
• invers-functional conkrete roles (datatype properties): Keys?
• mechanisms for ontology import?
• . . .

 diverse smaller changes

TU Dresden Foundations of Semantic Web Technologies



Metamodeling

Metamodeling
specification of ontological knowledge about elements of the ontology (including
classes, roles, axioms).

Examples:
• “The class Person was created on the 30.1.2008 by bglimm.”
• “For the class City, we recommend the property numberOfCitizens.”
• “The statement ‚Dresden was founded in 1206‘ was extracted

automatically with a confidence of 85%.”

(Compare Reification in RDF Schema)

TU Dresden Foundations of Semantic Web Technologies



Punning in OWL

Metamodeling in expressive logics is dangerous and expensive!

OWL 2 currently supports the simples form of metamodeling:

Punning
• the names for classes, roles, individuals do not have to be disjoint
• no logical relationship between class, individual and role of the same

name
• only relevant for pragmatic interpretation

Example:
Person(Birte) classCreatedBy(Person, bglimm)

TU Dresden Foundations of Semantic Web Technologies



Comments and Metadata
punning supports simple metadata with (weak) semantic meaning

How can one make purely syntactic comments in an ontology?
• comments in XML files: <!-- comment -->

 no relation to the OWL axioms in this file
• non-logical annotations in OWL 2: owl:AnnotationProperty
 attached to (semantic) ontological element

TU Dresden Foundations of Semantic Web Technologies



Comments and Metadata
punning supports simple metadata with (weak) semantic meaning

How can one make purely syntactic comments in an ontology?
• comments in XML files: <!-- comment -->
 no relation to the OWL axioms in this file

• non-logical annotations in OWL 2: owl:AnnotationProperty

 attached to (semantic) ontological element

TU Dresden Foundations of Semantic Web Technologies



Comments and Metadata
punning supports simple metadata with (weak) semantic meaning

How can one make purely syntactic comments in an ontology?
• comments in XML files: <!-- comment -->
 no relation to the OWL axioms in this file

• non-logical annotations in OWL 2: owl:AnnotationProperty
 attached to (semantic) ontological element

TU Dresden Foundations of Semantic Web Technologies



Syntactic Aspects

new/extended syntaxes:
• RDF/XML: extension by OWL 2 elements
• functional-style syntax: replaces “abstract syntax” in OWL 1
• OWL/XML: syntax for simpler processing in XML tools
• Turtle: RDF triple syntax
• Manchester syntax: syntax that is easier to read for humans

TU Dresden Foundations of Semantic Web Technologies



Quo vadis, OWL Lite?

OWL Lite as a Failure:
• almost as complex as OWL DL
• complicated syntax that does not provide direct access to actual modeling

power
• use in ontologies today only "‘by accident"’, not deliberately

original goal:
capture the part of OWL that is easy and efficiently implementable

 OWL 2 Profiles

TU Dresden Foundations of Semantic Web Technologies



Quo vadis, OWL Lite?
OWL Lite as a Failure:
• almost as complex as OWL DL
• complicated syntax that does not provide direct access to actual modeling

power
• use in ontologies today only "‘by accident"’, not deliberately

original goal:
capture the part of OWL that is easy and efficiently implementable

 OWL 2 Profiles

TU Dresden Foundations of Semantic Web Technologies



Quo vadis, OWL Lite?
OWL Lite as a Failure:
• almost as complex as OWL DL
• complicated syntax that does not provide direct access to actual modeling

power
• use in ontologies today only "‘by accident"’, not deliberately

original goal:
capture the part of OWL that is easy and efficiently implementable

 OWL 2 Profiles

TU Dresden Foundations of Semantic Web Technologies



Agenda

• Recap OWL & Overview OWL 2
• The Description Logic SROIQ
• Inferencing with SROIQ
• OWL 2 DL
• OWL 2 Profiles
• OWL 2 Full
• Summary

TU Dresden Foundations of Semantic Web Technologies



OWL 2 Profiles
OWL 2 defines three fragments where automated inferencing can be done in
PTime
• OWL EL

– computation of the class hierarchy (all subclass relationships) in
PTime

• OWL QL
– conjunctive queries in AC0 (data complexity) reducible to SQL

• OWL RL
– can be used as an extension of RDFS or as a fragment of OWL DL

(OWL Direct Semantics)
– complexity PTime

TU Dresden Foundations of Semantic Web Technologies



OWL 2 Profiles
OWL 2 defines three fragments where automated inferencing can be done in
PTime
• OWL EL

– computation of the class hierarchy (all subclass relationships) in
PTime

• OWL QL
– conjunctive queries in AC0 (data complexity) reducible to SQL

• OWL RL
– can be used as an extension of RDFS or as a fragment of OWL DL

(OWL Direct Semantics)
– complexity PTime

TU Dresden Foundations of Semantic Web Technologies



OWL 2 Profiles
OWL 2 defines three fragments where automated inferencing can be done in
PTime
• OWL EL

– computation of the class hierarchy (all subclass relationships) in
PTime

• OWL QL
– conjunctive queries in AC0 (data complexity) reducible to SQL

• OWL RL
– can be used as an extension of RDFS or as a fragment of OWL DL

(OWL Direct Semantics)
– complexity PTime

TU Dresden Foundations of Semantic Web Technologies



OWL 2 EL

• An (almost maximal) fragment of OWL 2 such that
– satisfiability can be checked in PTime (PTime-complete)
– data complexity for ABox queries also PTime-complete

• class hierarchy (all subsumption relationships between atomic classes)
can be computed in one pass

• uses a saturation method that was developed for the description logic EL

TU Dresden Foundations of Semantic Web Technologies



OWL 2 EL

• allowed:
– subclass axioms with conjunction, existential restriction, >, ⊥,

singleton nominals
– complex RIAs, range restrictions (under certain conditions)

• not allowed:
– negation, disjunction, universal restrictions, inverse roles

TU Dresden Foundations of Semantic Web Technologies



OWL 2 QL

• an (almost maximal) fragment of OWL 2 such that
– data complexity of conjunctive query answering is in AC0

• queries can be rewritten such that no terminological knowledge has to be
taken into account
⇒ standard RDBMS can be used for storage and querying

TU Dresden Foundations of Semantic Web Technologies



OWL 2 QL

• allowed:
– simple role hierarchies, domain & range axioms
– subclass axioms with

• lhs: class name or existential restriction with >
• rhs: conjunction of class names, existential restriction and

negation of lhs expressions
• supports RDFS with “well-formed” graphs

TU Dresden Foundations of Semantic Web Technologies



OWL 2 RL

• An (almost maximal) fragment of OWL 2 such that
– automated inferencing is PTime-complete (consistency, satisfiability

of classes, subsumption, class membership checks)
– automated inferencing is correct (sound & complete) if the given

RDF graph satisfies certain requirements
– otherwise the automated reasoning may be be sound but

incomplete.
• can operate directly on RDF triples in order to enrich instance data

(materialization, forward chaining for facts)
• automated inferencing can be implemented via a set of rules (using a rule

engine that supports equality)

TU Dresden Foundations of Semantic Web Technologies



Agenda

• Recap OWL & Overview OWL 2
• The Description Logic SROIQ
• Inferencing with SROIQ
• OWL 2 DL
• OWL 2 Profiles
• OWL 2 Full
• Summary

TU Dresden Foundations of Semantic Web Technologies



What to do with OWL Full?
Goal of OWL 2 DL: make many OWL Full 1.0 ontologies interpretable as OWL
DL (cf. e.g. punning)

• extension of OWL Full by OWL 2 features is required by a few
practitioners

• allows to work on all kinds of RDF graphs
• despite undecidability: many FOL verification tools do not guarantee

termination and are still useful
• alternative implementation techniques can be used, which might be faster

(but do not guarantee termination)

TU Dresden Foundations of Semantic Web Technologies



What to do with OWL Full?
Goal of OWL 2 DL: make many OWL Full 1.0 ontologies interpretable as OWL
DL (cf. e.g. punning)

• extension of OWL Full by OWL 2 features is required by a few
practitioners

• allows to work on all kinds of RDF graphs
• despite undecidability: many FOL verification tools do not guarantee

termination and are still useful
• alternative implementation techniques can be used, which might be faster

(but do not guarantee termination)

TU Dresden Foundations of Semantic Web Technologies



Crucial Differences in the Semantics

• annotations do not have a semantics in the direct semantics (which is
used for OWL DL), but they do in the RDF-based semantics (which is
used for OWL Full)

• import commands are only parser commands in the direct semantics, but
do have a presence as triple in the RDF-based Semantics

• in the RDF-based semantics, classes are individuals, that are endowed
with an extension semantic conditions are only applicable to those
classes that have an individual representant

TU Dresden Foundations of Semantic Web Technologies



Crucial Differences in the Semantics

Example
• C(a)
• query for all instances of the class C t D

• RDF-based semantics: ∅, direct semantics: a

 under the RDF-based semantics, we only have the guarantee that the
union of the extensions of C and D do exist as subsets of the domain,
however it is not ensured that an element exists which has this set as
extension.

 contrarily, in the direct semantics class names “directly” represent sets
and not domain elements

 the answer coincides for both semantics after adding E ≡ C t D

TU Dresden Foundations of Semantic Web Technologies



Crucial Differences in the Semantics

Example
• C(a)
• query for all instances of the class C t D
• RDF-based semantics: ∅, direct semantics: a

 under the RDF-based semantics, we only have the guarantee that the
union of the extensions of C and D do exist as subsets of the domain,
however it is not ensured that an element exists which has this set as
extension.

 contrarily, in the direct semantics class names “directly” represent sets
and not domain elements

 the answer coincides for both semantics after adding E ≡ C t D

TU Dresden Foundations of Semantic Web Technologies



Crucial Differences in the Semantics

Example
• C(a)
• query for all instances of the class C t D
• RDF-based semantics: ∅, direct semantics: a

 under the RDF-based semantics, we only have the guarantee that the
union of the extensions of C and D do exist as subsets of the domain,
however it is not ensured that an element exists which has this set as
extension.

 contrarily, in the direct semantics class names “directly” represent sets
and not domain elements

 the answer coincides for both semantics after adding E ≡ C t D

TU Dresden Foundations of Semantic Web Technologies



Agenda

• Recap OWL & Overview OWL 2
• The Description Logic SROIQ
• Inferencing with SROIQ
• OWL 2 DL
• OWL 2 Profiles
• OWL 2 Full
• Summary

TU Dresden Foundations of Semantic Web Technologies



Summary

OWL 2 as first extension of the OWL standard
• standardized 27.10.2009
• logical extension based on description logic SROIQ
• new modeling features, most notably complex RIAs, qualified number

restrictions
• non-logical extensions: punning, comments, datatypes, etc.
• profiles with polynomial reasoning procedures

TU Dresden Foundations of Semantic Web Technologies


	Motivation
	Recap OWL & Overview OWL 2
	The Description Logic SROIQ
	Inferencing with SROIQ
	OWL 2 DL
	OWL 2 Profiles
	OWL 2 Full
	Summary

