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Outline

0 Nogoods from loop formulas
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Nogoods from logic programs
via loop formulas

Let P be a normal logic program and recall that:
® For L C atom(P), the external supports of L for P are

ESp(L) = {r € P|head(r) € L,body(r)* NL =0}
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Nogoods from logic programs
via loop formulas

Let P be a normal logic program and recall that:
® For L C atom(P), the external supports of L for P are

ES(L) = {reP]|head(r) € L,body(r)* NL =0}
® The (disjunctive) loop formula of L for P is

LFp(L)

(Vaerd) = (VreEsp(L)bOd)’(r))
= (Nveps@ybody(n) = (Aser™A)

— Note: The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported
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Nogoods from logic programs
via loop formulas

Let P be a normal logic program and recall that:
® For L C atom(P), the external supports of L for P are

ES(L) = {reP]|head(r) € L,body(r)* NL =0}
® The (disjunctive) loop formula of L for P is

LFp(L)

(Vaerd) = (VreEsp(L)bOd)’(r))
= (Nveps@ybody(n) = (Aser™A)

— Note: The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported

® The external bodies of L for P are

EBp(L) = {body(r)|re ES(L)}
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Nogoods from logic programs
loop nogoods

® For a logic program P and some () C U C atom(P),
define the loop nogood of an atom« € U as

Ma,U) = {Ta,FBy,...,FB;}

where EBp(U) = {By, ..., B}

TU Dresden, 25th June 2015 DS

slide 6 of 69



Nogoods from logic programs
loop nogoods

® For a logic program P and some () C U C atom(P),
define the loop nogood of an atom« € U as

Ma,U) = {Ta,FBy,... FB}
where EBp(U) = {By, ..., B}
® \We get the following set of loop nogoods for P:

Ar = Uscucaomm{Ma,U) |a € U}
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Nogoods from logic programs
loop nogoods

® For a logic program P and some () C U C atom(P),
define the loop nogood of an atom a € U as

Ma,U) = {Ta,FBy,...,FB}
where EBp(U) = {By, ..., B}
® \We get the following set of loop nogoods for P:
Ar = Uscucaomr)ira,U) [a € U}

® The set Ap of loop nogoods denies cyclic support among true atoms
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Example

® Consider the program

U< x
X < noty

U<
y < not x

Vi u,y
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Example

® Consider the program

U< x
X <—noty

U<
y < not x

Vi u,y

® For u in the set {u, v}, we obtain the loop nogood:

Au,{u,v}) = {Tu,F{x}}
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Example

® Consider the program

U< x
X <—noty

U<
y < not x

Vi u,y

® For u in the set {u, v}, we obtain the loop nogood:

Au,{u,v}) = {Tu,F{x}}
Similarly for v in {u, v}, we get:
A, {u,v}) = {Tv,F{x}}
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Characterization of stable models

Let P be a logic program. Then,
X C atom(P) is a stable model of P iff
X = AT N atom(P) for a (unique) solution A for Ap U Ap
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Characterization of stable models

Let P be a logic program. Then,
X C atom(P) is a stable model of P iff
X = AT N atom(P) for a (unique) solution A for Ap U Ap

Some remarks
® Nogoods in Ap augment Ap with conditions checking
for unfounded sets, in particular, those being loops
® While |Ap|is linear in the size of P, Ap may contain
exponentially many (non-redundant) loop nogoods
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Outline

e Conflict-driven nogood learning

TU Dresden, 25th June 2015 DS slide 14 of 69



Towards conflict-driven search

Boolean constraint solving algorithms pioneered for SAT led to:

® Traditional DPLL-style approach
(DPLL stands for ‘Davis-Putnam-Logemann-Loveland’)

— (Unit) propagation
— (Chronological) backtracking

— in ASP, eg smodels

® Modern CDCL-style approach
(CDCL stands for ‘Conflict-Driven Constraint Learning’)

— (Unit) propagation
— Conflict analysis (via resolution)
— Learning + Backjumping + Assertion

— in ASP, eg clasp
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DPLL-style solving

loop

propagate /I deterministically assign literals
if no conflict then
if all variables assigned then return solution

else decide // non-deterministically assign some literal
else
if top-level conflict then return unsatisfiable
else
backtrack // unassign literals made after last decision
flip // assign complement of last decision literal
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CDCL-style solving

loop
propagate /I deterministically assign literals
if no conflict then
if all variables assigned then return solution

else decide // non-deterministically assign some literal
else
if top-level conflict then return unsatisfiable
else
analyze /I analyze conflict and add conflict constraint

backjump  // unassign literals until conflict constraint is unit
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Outline

e Conflict-driven nogood learning
@ CDNL-ASP Algorithm
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Outline of CDNL-ASP algorithm

® Keep track of deterministic consequences by unit propagation on:

— Program completion [Ap]
— Loop nogoods, determined and recorded on demand [AP]
— Dynamic nogoods, derived from conflicts and unfounded sets  [V]
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Outline of CDNL-ASP algorithm

® Keep track of deterministic consequences by unit propagation on:
— Program completion [Ap]
— Loop nogoods, determined and recorded on demand [AP]
— Dynamic nogoods, derived from conflicts and unfounded sets  [V]
® \When a nogood in Ap U V becomes violated:
— Analyze the conflict by resolution
(until reaching a Unique Implication Point, short: UIP)
— Learn the derived conflict nogood §
— Backjump to the earliest (heuristic) choice such that the
complement of the UIP is unit-resulting for ¢
— Assert the complement of the UIP and proceed
(by unit propagation)
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Outline of CDNL-ASP algorithm

® Keep track of deterministic consequences by unit propagation on:
— Program completion [Ap]
— Loop nogoods, determined and recorded on demand [AP]
— Dynamic nogoods, derived from conflicts and unfounded sets  [V]
® When a nogood in Ap U V becomes violated:
— Analyze the conflict by resolution
(until reaching a Unique Implication Point, short: UIP)
— Learn the derived conflict nogood §
— Backjump to the earliest (heuristic) choice such that the
complement of the UIP is unit-resulting for ¢
— Assert the complement of the UIP and proceed
(by unit propagation)
® Terminate when either:
— Finding a stable model (a solution for Ap U Ap)
— Deriving a conflict independently of (heuristic) choices
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Algorithm 1: CDNL-ASP

Input : A normal program P
Output : A stable model of P or “no stable model”

A:=0 /I assignment over atom(P) U body(P)
: // set of recorded nogoods
// decision level

(A, V) := NogoodPropagation(P, V, A)
ife C Aforsomee € Ap U V then // conflict

if max({dlevel(c) | o € €} U {0}) = 0 then return no stable model
(8, dl) := ConflictAnalysis(e, P, V, A)

V:=VuU{é} /I (temporarily) record conflict nogood
A=A\ {o €A |d < dlevel(c)} /I backjumping
else if AT U A¥ = atom(P) U body(P) then // stable model
return A7 N atom(P)
else
oy := Select(P, V, A) // decision
dl :=dl + 1
dlevel(og) := dl
A:=Aooy
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Observations

® Decision level dl, initially set to 0, is used to count the number of
heuristically chosen literals in assignment A

® [or a heuristically chosen literal o; = Ta or o; = Fa, respectively, we
require a € (atom(P) U body(P)) \ (AT U AF)

® Forany literal o € A, di(c) denotes the decision level of o, viz. the value
dl had when o was assigned
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Observations

® Decision level dl, initially set to 0, is used to count the number of
heuristically chosen literals in assignment A

® [or a heuristically chosen literal o; = Ta or o; = Fa, respectively, we
require a € (atom(P) U body(P)) \ (AT U AF)

® Forany literal o € A, di(c) denotes the decision level of o, viz. the value
dl had when o was assigned

® A conflict is detected from violation of a nogood ¢ C Ap UV

® A conflict at decision level 0 (where A contains no heuristically chosen
literals) indicates non-existence of stable models

® A nogood ¢ derived by conflict analysis is asserting, that is,
some literal is unit-resulting for § at a decision level k < dl
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Observations

Decision level dl, initially set to 0, is used to count the number of
heuristically chosen literals in assignment A

For a heuristically chosen literal o; = Ta or o; = Fa, respectively, we
require a € (atom(P) U body(P)) \ (AT U AF)

For any literal o € A, di(o) denotes the decision level of o, viz. the value
dl had when o was assigned

® A conflict is detected from violation of a nogood ¢ C Ap UV
® A conflict at decision level 0 (where A contains no heuristically chosen

literals) indicates non-existence of stable models
A nogood ¢ derived by conflict analysis is asserting, that is,
some literal is unit-resulting for § at a decision level k < dl
— After learning 6 and backjumping to decision level k,
at least one literal is newly derivable by unit propagation
— No explicit flipping of heuristically chosen literals !
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Example: CDNL-ASP

Consider
P = X4 noty u<x,y VX W <— not x,not y
- Y4 notx u<—v Vi u,y
[dl ] o T I |
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Example: CDNL-ASP

Consider
P = X4 noty u<x,y VX W <— not x,not y
- Y4 notx u<—v Vi u,y
[dl ] o T I |
1| Tu
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Example: CDNL-ASP

Consider
P = X4 noty u<x,y VX W <— not x,not y
- Y4 notx u<—v Vi u,y
[dl ] o T I |
1| Tu

2 | F{not x,not y}
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Example: CDNL-ASP

Consider
P = X4 noty u<x,y VX W <— not x,not y
- Y4 notx u<—v Vi u,y
[dl ] o T I |
1| Tu

2 | F{not x,not y}
Fw

{Tw, F{not x,not y}} = 6(w)
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Example: CDNL-ASP

Consider
P = X4 noty u<x,y VX W <— not x,not y
- Y4 notx u<—v Vi u,y
[dl ] o T I |
1| Tu

2 | F{not x,not y}
Fw {Tw, F{not x,not y}} = 6(w)

3 | F{noty}
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Example: CDNL-ASP

Consider
P = X4 noty u<x,y VX W <— not x,not y
- Y4 notx u<—v Vi u,y
[dl] o T [6 |
1 | Tu

F{not x,not y}

Fw {Tw, F{not x,not y}} = 6(w)
3 | F{noty}

Fx {Tx,F{not y}} = 6(x)

F{x} | {T{x},Fx} € A({x})

Flx,y} | {T{xy}, Fx} € A({x,y})
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Example: CDNL-ASP

Consider
P = X4 noty u<x,y VX W <— not x,not y
- Y4 notx u<—v Vi u,y
[dl] o T [6 |
1 | Tu
F{not x,not y}
Fw {Tw, F{not x,not y}} = 6(w)
3 | F{noty}
Fx {Tx,F{not y}} = 6(x)

F{x} | {T{x},Fx} € A({x})
Floyh | {T{x,y}, Fx} € A({x,y})

(Tu, F{x, F{x, v} = A, {u,v)) | %
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Example: CDNL-ASP

Consider
P - X4—noty u4—x,y V<X W <— not x,not y
B Yy notx  u+v V4 u,y
[dl ] oy T I |
1 | Tu
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Example: CDNL-ASP

Consider
P = X4 noty u+x,y v<x W 4— not x,not y
B Yy notx  u+v V4 u,y
[dl ] oy T I |
1 | Tu
Tx {Tu,Fx} € V
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Example: CDNL-ASP

Consider
P = X<4—noty uU4—X,y V<X W <— not x, not y
B Yy notx  u+v V4 u,y
[dl ]| oy G K |
1 | Tu

Tx {Tu,Fx} € V
Tv {Fv,T{x}} € A(v)
Fy | {Ty.F{notx}} = 80)
Fw {Tw, F{not x,not y}} = 6(w)
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Example: CDNL-ASP

Consider
P = X<4—noty uU4—X,y V<X W <— not x, not y
B Yy notx  u+v V4 u,y
[dl ]| oy G K |
1 | Tu

Tx {Tu,Fx} € V
Tv {Fv,T{x}} € A(v)
Fy | {Ty.F{notx}} = 80)
Fw {Tw, F{not x,not y}} = 6(w)

TU Dresden, 25th June 2015 DS slide 36 of 69



Outline

e Conflict-driven nogood learning

@ Nogood Propagation

TU Dresden, 25th June 2015 DS slide 37 of 69



Outline of NogoodPropagation

® Derive deterministic consequences via:

— Unit propagation on Ap and V;
— Unfounded sets U C atom(P)

e Note that U is unfounded if EB(U) C AF
— Note: Forany a € U, we have (X(a,U) \ {Ta}) C A
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Outline of NogoodPropagation

® Derive deterministic consequences via:

— Unit propagation on Ap and V;
— Unfounded sets U C atom(P)

e Note that U is unfounded if EB(U) C AF
— Note: Forany a € U, we have (X(a,U) \ {Ta}) C A
® An “interesting” unfounded set U satisfies:

0 C U C (atom(P) \ AF)

® Wrt a fixpoint of unit propagation,
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Outline of NogoodPropagation

® Derive deterministic consequences via:

— Unit propagation on Ap and V;
— Unfounded sets U C atom(P)

e Note that U is unfounded if EB(U) C AF
— Note: Forany a € U, we have (X(a,U) \ {Ta}) C A
® An “interesting” unfounded set U satisfies:

0 C U C (atom(P) \ AF)
® Wrt a fixpoint of unit propagation,

such an unfounded set contains some loop of P
— Note: Tight programs do not yield “interesting” unfounded sets !
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Outline of NogoodPropagation

® Derive deterministic consequences via:

— Unit propagation on Ap and V;
— Unfounded sets U C atom(P)

e Note that U is unfounded if EB(U) C AF
— Note: Forany a € U, we have (X(a,U) \ {Ta}) C A
® An “interesting” unfounded set U satisfies:

0 C U C (atom(P) \ AF)

® Wrt a fixpoint of unit propagation,
such an unfounded set contains some loop of P
— Note: Tight programs do not yield “interesting” unfounded sets !

® Given an unfounded set U and some a € U, adding A(a, U) to V triggers
a conflict or further derivations by unit propagation

— Note: Add loop nogoods atom by atom to eventually falsify all a € U
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Algorithm 2: NogoodPropagation

Input : A normal program P, a set V of nogoods, and an assignment A.
Output : An extended assignment and set of nogoods.
U:=0 /I unfounded set
loop
repeat
if 6§ C Aforsome s € Ap U V thenreturn (A, V) // conflict
2:={6€ApUV |5\A={T},0 ¢&A} // unit-resulting nogoods

if > # Othenletc € 6 \ Aforsomes € X in
L dlevel(o) := max({dlevel(p) | p € § \ {5 }} U {0})
A:=Aoo
until © = 0
if loop(P) = 0 then return (A, V)
U:=uU\AF
if U = 0 then U := UnfoundedSet(P, A)
if U = ( then return (A, V) /I no unfounded set ® C U C atom(P) \AF

leta € Uin
L V:=VU{{Ta} U{FB|BE¢€ EBU)}} /I record loop nogood
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Requirements for UnfoundedSet

® |mplementations of UnfoundedSet must guarantee the following for a
result U

§ U C (atom(P) \ AF)
EBp(U) C AF

U = iff there is no nonempty unfounded subset of (atom(P) \ AF)
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Requirements for UnfoundedSet

® |mplementations of UnfoundedSet must guarantee the following for a
result U

U C (atom(P) \ AT)
EBp(U) C AF
U = iff there is no nonempty unfounded subset of (atom(P) \ AF)

® Beyond that, there are various alternatives, such as:

— Calculating the greatest unfounded set
— Calculating unfounded sets within strongly connected components
of the positive atom dependency graph of P

— Usually, the latter option is implemented in ASP solvers
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Example: NogoodPropagation

Consider

P = X4 noty u+x,y vx W 4 not x, not y
- Y4 notx  u<v V< u,y

Ql

[dl ]| o
1 | Tu
2 | F{not x,not y}

[ 6 l

Fw {Tw, F{not x,not y}} = 6(w)

3 | F{noty}
Fx {Tx,F{not y}} = 6(x)

Fi} | {T{xhFx) € A({x)
Floyt | {T{orhFx} € A}
T{not x} | {F{not x},Fx} = 6({not x})
T {F{not y}. Fy} = 6({not y})
T} | (7w F{oyh v} = 6(a)
T{u,y} | {F{u,y},Tu,Ty} = 6({u,y})
T {Fv, T{u,y}} € AY)

{Tu, F{x}, Fiv}} = Aw, {u,v}) | X
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Outline

e Conflict-driven nogood learning

@ Conflict Analysis
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Outline of ConflictAnalysis

® Conflict analysis is triggered whenever some nogood § € Ap UV
becomes violated, viz. § C A, at a decision level dl > 0
— Note that all but the first literal assigned at d/ have been
unit-resulting for nogoods £ € Ap UV
— If o € § has been unit-resulting for €, we obtain a new violated
nogood by resolving § and ¢ as follows:

(@\{ohu(e\{a})
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Outline of ConflictAnalysis

® Conflict analysis is triggered whenever some nogood § € Ap UV
becomes violated, viz. § C A, at a decision level dl > 0

— Note that all but the first literal assigned at d/ have been
unit-resulting for nogoods £ € Ap UV

— If o € § has been unit-resulting for €, we obtain a new violated
nogood by resolving § and ¢ as follows:

(6\{ehHu(e\{a})
® Resolution is directed by resolving first over the literal o € § derived last,

viz. (6 \ Alo]) = {o}

— lterated resolution progresses in inverse order of assignment
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Outline of ConflictAnalysis

® Conflict analysis is triggered whenever some nogood § € Ap UV
becomes violated, viz. § C A, at a decision level dl > 0
— Note that all but the first literal assigned at d/ have been
unit-resulting for nogoods £ € Ap UV
— If o € § has been unit-resulting for €, we obtain a new violated
nogood by resolving § and ¢ as follows:

(@\{ohu(e\{a})

® Resolution is directed by resolving first over the literal o € § derived last,
viz. (6 \ Alo]) = {0}
— lterated resolution progresses in inverse order of assignment
® |terated resolution stops as soon as it generates a nogood § containing
exactly one literal o assigned at decision level dl
— This literal o is called First Unique Implication Point (First-UIP)
— Allliterals in (6 \ {o'}) are assigned at decision levels smaller
than dl
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Algorithm 3: ConflictAnalysis

Input : A non-empty violated nogood &, a normal program P, a set ¥V of nogoods, and an
assignment A.

Output : A derived nogood and a decision level.

loop

let o € 6 suchthaté \ A[o] = {o} in

k := max({dlevel(p) | p € 6 \ {o}} U{0})
if k = dlevel(o) then

lete € Ap U Vsuchthate \ Alo] = {G} in
L o=@ \{oh)U(c\{7})

// resolution
else return (4, k)
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Example: ConflictAnalysis

Consider
X<4—noty U< X,y V<X W 4= not x,not y
po= {yenotx U< v Vi u,y }
dl Oq e 0
1|Tu
2 [F{not x,not y}
Fw {Tw, F{not x,not y}} = é(w)
3 [F{not y}
Fx {Tx,F{not y}} = é(x)
Fix} | {T{ch Fx) € Ax))
F{x,y} [{T{x,y},Fx} € A({x,y})
T{not x} | {F{not x}, Fx} = 6({not x})
Ty |{F{not v} By} = 6({not y})
T0) | (T Fix ) F)) = 6G0)
T{u,y} |{F{u,y},Tu, Ty} = 5({u,y})
Tv {Fv,T{u,y}} € A(v)
{Tu, F{x}, F{, v} = Alw, {u,1})
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Example: ConflictAnalysis

Consider
P = X<4—noty U< X,y V<X W 4= not x,not y
- Y4 notx u<—v Vi u,y
dl Oq e 0
1|Tu
2 [F{not x,not y}
Fw {Tw, F{not x,not y}} = é(w)
3 [F{not y}

Fx

F{x}
F{x,y}
T{not x}
Ty

T{v}
T{u,y}
Tv

{Tx,F{not y}} = é(x)

{T{x},Fx} € A({x})

{T{xv}, Fx} € A({xy})

{F{not x},Fx} = §({not x})
{F{not v}, Fy} = ({not v})

{Tu, F{v, 3}, F{1}} = 60)
{F{u,y}, Tu, Ty} = 6({u,y})
{Fv,T{u,y}} € A(v)

{Tu Fix}, Fiy}) = Alw, {u,v))
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Example: ConflictAnalysis

Consider
P = X<4—noty U< X,y V<X W 4= not x,not y
- Y4 notx u<—v Vi u,y
dl Oq e 0
1|Tu
2 [F{not x,not y}
Fw {Tw, F{not x,not y}} = é(w)
3 [F{not y}

Fx

F{x}
F{x,y}
T{not x}
Ty

T{v}
T{u,y}
Tv

{Tx,F{not y}} = é(x)

{T{x},Fx} € A({x})

{T{xv}, Fx} € A({xy})

{F{not x},Fx} = §({not x})
{F{not v}, Fy} = ({not v})

{Tu, F{v, 3}, F{1}} = 60)
{F{u,y}, Tu, Ty} = 6({u,y})
{Fv,T{u,y}} € A(v)

{Tu, F{x}, o, v} = A, {,v)
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Example: ConflictAnalysis

Consider
X<4—noty U< X,y V<X W 4= not x,not y
po= {yenotx U< v Vi u,y }
dl Oq e 0
1|Tu
2 [F{not x,not y}
Fw {Tw, F{not x,not y}} = é(w)
3 [F{not y}
Fx {Tx,F{not y}} = é(x)
Fix} | {T{ch Fx) € A}
Floy} |{T{orhFx} € A{x )
T{not x} | {F{not x}, Fx} = 6({not x})
Ty |{F{not v} By} = 6({not y})
T0) | (T Fix ) F)) = 6G0)
T{u,y} |{F{u,y},Tu, Ty} = 5({u,y})
Tv {Fv,T{u,y}} € A(v)
{Tu F{x), Flv ) ) = Al fu,1))
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Example: ConflictAnalysis

Consider
X < not U< X, V<X W <— not x, not
pPo= {y:noti u:vy V< u,y y}
dl Oq e 0
1|Tu
2 [F{not x,not y}
Fw {Tw, F{not x,not y}} = é(w)
3 [F{not y}
Fx {Tx,F{not y}} = é(x)
Flx}  {T{x},Fx} € A({x})
Fix,y} |{T{x,y}, Fx} € A({x,y}) {Tu, Fx, F{x}}
T{not x} | {F{not x}, Fx} = 6({not x})
Ty {F{not y},Fy} = §({not y})

T{v}  [{Tu,F{x,y}, F{v}} = 6(u)
T{u,y} [{F{u,y},Tu,Ty} = 6({u,y})
Tv {Fv,T{u,y}} € A(v)

{Tu, F{x}, F{x,y}} = A(u, {u,v})| X
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Example: ConflictAnalysis

Consider
X < not U< X, V<X W <— not x, not
pPo= {y:noti u:vy V< u,y y}
dl Oq e 0
1|Tu
2 [F{not x,not y}
Fw {Tw, F{not x,not y}} = é(w)
3 [F{not y}
Fx {Tx,F{not y}} = é(x)
Flx}  {T{x},Fx} € A({x})
Fix,y} |{T{x,y}, Fx} € A({x,y}) {Tu, Fx, F{x}}
T{not x} | {F{not x}, Fx} = 6({not x})
Ty {F{not y},Fy} = §({not y})

T{v}  [{Tu,F{x,y}, F{v}} = 6(u)
T{u,y} [{F{u,y},Tu,Ty} = 6({u,y})
Tv {Fv,T{u,y}} € A(v)
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Example: ConflictAnalysis

Consider
X < not U< x, V4 x W 4~ not x, not
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Example: ConflictAnalysis

Consider
X < not U< x, V4 x W 4~ not x, not
pPo= {y:noti u:vy V< u,y y}
dl Oq e 0
1|Tu
2 [F{not x,not y}
Fw {Tw, F{not x,not y}} = é(w)
3 [F{not y}
Fx {Tx,F{not y}} = é(x)
F{x} {T{x},Fx} € A({x}) {Tu,Fx}
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Example: ConflictAnalysis ctd.

Consider
P = X4 noty u+x,y v<x W 4— not x,not y
B Yy notx  u+v V4 u,y
[dl ] oy T I |
1 | Tu
Tx {Tu,Fx} €V
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Example: ConflictAnalysis ctd.

Consider
P = X<4—noty uU4—X,y V<X W <— not x, not y
B Yy notx  u+v V4 u,y
[dl ]| oy G K |
1 | Tu

Tx {Tu,Fx} €V
Tv {Fv,T{x}} € A(v)
Fy | {Ty.F{notx}} = 30)
Fw {Tw, F{not x,not y}} = 6(w)
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Remarks

® There always is a First-UIP at which conflict analysis terminates

— In the worst, resolution stops at the heuristically chosen literal
assigned at decision level d/
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Remarks

® There always is a First-UIP at which conflict analysis terminates

— In the worst, resolution stops at the heuristically chosen literal
assigned at decision level d/

® The nogood § containing First-UIP ¢ is violated by A, viz. § C A
® We have k = max({dl(p) | p € 6 \ {o}} U{0}) < dI
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Remarks

® There always is a First-UIP at which conflict analysis terminates
— In the worst, resolution stops at the heuristically chosen literal
assigned at decision level d/
® The nogood § containing First-UIP ¢ is violated by A, viz. § C A
® We have k = max({dl(p) | p € 6 \ {o}} U{0}) < dI

— After recording ¢ in ¥V and backjumping to decision level k,
@ is unit-resulting for 4 !
— Such a nogood § is called asserting
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Remarks

® There always is a First-UIP at which conflict analysis terminates
— In the worst, resolution stops at the heuristically chosen literal
assigned at decision level d/
® The nogood § containing First-UIP ¢ is violated by A, viz. § C A
® We have k = max({dl(p) | p € 6 \ {o}} U{0}) < dI
— After recording ¢ in ¥V and backjumping to decision level k,

@ is unit-resulting for 4 !
— Such a nogood § is called asserting

® Asserting nogoods direct conflict-driven search into a different region of
the search space than traversed before,
without explicitly flipping any heuristically chosen literal !
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Outline

e Summary
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Summary

® Nogoods from loop formulas
® Conlflict driven nogood learning

— CDNL-ASP Algorithm
— Nogood Propagation
— Conflict Analysis
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® See also: http://potassco.sourceforge.net
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