DEDUCTION SYSTEMS

Lecture 5 ASP Solving II *sildes adapped from Torsten
 Schaub [Gebser et al.(2012)]

Sarah Gaggl

Dresden, 25th June 2015
 yintint

Outline

(9) Nogoods from loop formulas

2 Conflict-driven nogood learning
(3) Summary

Nogoods from logic programs via loop formulas

Let P be a normal logic program and recall that:

- For $L \subseteq \operatorname{atom}(P)$, the external supports of L for P are

$$
E S_{P}(L)=\left\{r \in P \mid \operatorname{head}(r) \in L, \operatorname{body}(r)^{+} \cap L=\emptyset\right\}
$$

Nogoods from logic programs
 via loop formulas

Let P be a normal logic program and recall that:

- For $L \subseteq \operatorname{atom}(P)$, the external supports of L for P are

$$
E S_{P}(L)=\left\{r \in P \mid \operatorname{head}(r) \in L, \operatorname{body}(r)^{+} \cap L=\emptyset\right\}
$$

- The (disjunctive) loop formula of L for P is

$$
\begin{aligned}
L F_{P}(L) & =\left(\bigvee_{A \in L} A\right) \rightarrow\left(\bigvee_{r \in E S_{p}(L)} \operatorname{body}(r)\right) \\
& \equiv\left(\bigwedge_{r \in E S_{P}(L)} \neg \operatorname{body}(r)\right) \rightarrow\left(\bigwedge_{A \in L} \neg A\right)
\end{aligned}
$$

- Note: The loop formula of L enforces all atoms in L to be false whenever L is not externally supported

Nogoods from logic programs
 via loop formulas

Let P be a normal logic program and recall that:

- For $L \subseteq \operatorname{atom}(P)$, the external supports of L for P are

$$
E S_{P}(L)=\left\{r \in P \mid \operatorname{head}(r) \in L, \operatorname{body}(r)^{+} \cap L=\emptyset\right\}
$$

- The (disjunctive) loop formula of L for P is

$$
\begin{aligned}
L F_{P}(L) & =\left(\bigvee_{A \in L} A\right) \rightarrow\left(\bigvee_{r \in E S_{p}(L)} \operatorname{body}(r)\right) \\
& \equiv\left(\bigwedge_{r \in E S_{P}(L)} \neg \operatorname{body}(r)\right) \rightarrow\left(\bigwedge_{A \in L} \neg A\right)
\end{aligned}
$$

- Note: The loop formula of L enforces all atoms in L to be false whenever L is not externally supported
- The external bodies of L for P are

$$
E B_{P}(L)=\left\{\operatorname{body}(r) \mid r \in E S_{P}(L)\right\}
$$

Nogoods from logic programs loop nogoods

- For a logic program P and some $\emptyset \subset U \subseteq \operatorname{atom}(P)$, define the loop nogood of an atom $a \in U$ as

$$
\lambda(a, U)=\left\{\boldsymbol{T} a, \boldsymbol{F} B_{1}, \ldots, \boldsymbol{F} B_{k}\right\}
$$

where $E B_{P}(U)=\left\{B_{1}, \ldots, B_{k}\right\}$

Nogoods from logic programs loop nogoods

- For a logic program P and some $\emptyset \subset U \subseteq \operatorname{atom}(P)$, define the loop nogood of an atom $a \in U$ as

$$
\lambda(a, U)=\left\{\boldsymbol{T} a, \boldsymbol{F} B_{1}, \ldots, \boldsymbol{F} B_{k}\right\}
$$

where $E B_{P}(U)=\left\{B_{1}, \ldots, B_{k}\right\}$

- We get the following set of loop nogoods for P :

$$
\Lambda_{P}=\bigcup_{\emptyset \subset U \subseteq \operatorname{atom}(P)}\{\lambda(a, U) \mid a \in U\}
$$

Nogoods from logic programs loop nogoods

- For a logic program P and some $\emptyset \subset U \subseteq \operatorname{atom}(P)$, define the loop nogood of an atom $a \in U$ as

$$
\lambda(a, U)=\left\{\boldsymbol{T} a, \boldsymbol{F} B_{1}, \ldots, \boldsymbol{F} B_{k}\right\}
$$

where $E B_{P}(U)=\left\{B_{1}, \ldots, B_{k}\right\}$

- We get the following set of loop nogoods for P :

$$
\Lambda_{P}=\bigcup_{\emptyset \subset U \subseteq \operatorname{atom}(P)}\{\lambda(a, U) \mid a \in U\}
$$

- The set Λ_{P} of loop nogoods denies cyclic support among true atoms

Example

- Consider the program

$$
\left\{\begin{array}{ll}
x \leftarrow \operatorname{not} y & u \leftarrow x \\
y \leftarrow \operatorname{not} x & u \leftarrow v \\
& v \leftarrow u, y
\end{array}\right\}
$$

Example

- Consider the program

$$
\left\{\begin{array}{ll}
x \leftarrow \operatorname{not} y & u \leftarrow x \\
y \leftarrow \operatorname{not} x & u \leftarrow v \\
& v \leftarrow u, y
\end{array}\right\}
$$

- For u in the set $\{u, v\}$, we obtain the loop nogood:

$$
\lambda(u,\{u, v\})=\{\boldsymbol{T} u, \boldsymbol{F}\{x\}\}
$$

Example

- Consider the program

$$
\left\{\begin{array}{ll}
x \leftarrow \operatorname{not} y & u \leftarrow x \\
y \leftarrow \operatorname{not} x & u \leftarrow v \\
& v \leftarrow u, y
\end{array}\right\}
$$

- For u in the set $\{u, v\}$, we obtain the loop nogood:

$$
\lambda(u,\{u, v\})=\{\boldsymbol{T} u, \boldsymbol{F}\{x\}\}
$$

Similarly for v in $\{u, v\}$, we get:

$$
\lambda(v,\{u, v\})=\{\boldsymbol{T} v, \boldsymbol{F}\{x\}\}
$$

Characterization of stable models

Theorem
Let P be a logic program. Then,
$X \subseteq \operatorname{atom}(P)$ is a stable model of P iff
$X=A^{T} \cap \operatorname{atom}(P)$ for a (unique) solution A for $\Delta_{P} \cup \Lambda_{P}$

Characterization of stable models

```
Theorem
Let P be a logic program. Then,
    X\subseteqatom(P) is a stable model of P iff
    X= A
```

Some remarks

- Nogoods in Λ_{P} augment Δ_{P} with conditions checking for unfounded sets, in particular, those being loops
- While $\left|\Delta_{P}\right|$ is linear in the size of P, Λ_{P} may contain exponentially many (non-redundant) loop nogoods

Outline

(1) Nogoods from loop formulas
(2) Conflict-driven nogood learning

3 Summary

Towards conflict-driven search

Boolean constraint solving algorithms pioneered for SAT led to:

- Traditional DPLL-style approach
(DPLL stands for 'Davis-Putnam-Logemann-Loveland')
- (Unit) propagation
- (Chronological) backtracking
- in ASP, eg smodels
- Modern CDCL-style approach
(CDCL stands for 'Conflict-Driven Constraint Learning’)
- (Unit) propagation
- Conflict analysis (via resolution)
- Learning + Backjumping + Assertion
- in ASP, eg clasp

DPLL-style solving

loop

propagate
// deterministically assign literals
if no conflict then
if all variables assigned then return solution
else decide // non-deterministically assign some literal
else
if top-level conflict then return unsatisfiable else
backtrack // unassign literals made after last decision flip // assign complement of last decision literal

CDCL-style solving

loop
propagate
// deterministically assign literals
if no conflict then
if all variables assigned then return solution
else decide // non-deterministically assign some literal
else
if top-level conflict then return unsatisfiable else
analyze // analyze conflict and add conflict constraint backjump // unassign literals until conflict constraint is unit

Outline

(1) Nogoods from loop formulas

(2) Conflict-driven nogood learning

- CDNL-ASP Algorithm
- Nogood Propagation
- Conflict Analysis
(3) Summary

Outline of CDNL-ASP algorithm

- Keep track of deterministic consequences by unit propagation on:
- Program completion
- Loop nogoods, determined and recorded on demand
- Dynamic nogoods, derived from conflicts and unfounded sets

Outline of CDNL-ASP algorithm

- Keep track of deterministic consequences by unit propagation on:
- Program completion
- Loop nogoods, determined and recorded on demand
- Dynamic nogoods, derived from conflicts and unfounded sets
- When a nogood in $\Delta_{P} \cup \nabla$ becomes violated:
- Analyze the conflict by resolution (until reaching a Unique Implication Point, short: UIP)
- Learn the derived conflict nogood δ
- Backjump to the earliest (heuristic) choice such that the complement of the UIP is unit-resulting for δ
- Assert the complement of the UIP and proceed (by unit propagation)

Outline of CDNL-ASP algorithm

- Keep track of deterministic consequences by unit propagation on:
- Program completion
- Loop nogoods, determined and recorded on demand
- Dynamic nogoods, derived from conflicts and unfounded sets
- When a nogood in $\Delta_{P} \cup \nabla$ becomes violated:
- Analyze the conflict by resolution (until reaching a Unique Implication Point, short: UIP)
- Learn the derived conflict nogood δ
- Backjump to the earliest (heuristic) choice such that the complement of the UIP is unit-resulting for δ
- Assert the complement of the UIP and proceed (by unit propagation)
- Terminate when either:
- Finding a stable model (a solution for $\Delta_{P} \cup \Lambda_{P}$)
- Deriving a conflict independently of (heuristic) choices

Algorithm 1: CDNL-ASP

```
Input \(\quad:\) A normal program \(P\)
Output : A stable model of \(P\) or "no stable model"
```

```
\(A:=\emptyset \quad / /\) assignment over \(\operatorname{atom}(P) \cup \operatorname{body}(P)\)
```

$A:=\emptyset \quad / /$ assignment over $\operatorname{atom}(P) \cup \operatorname{body}(P)$
$\nabla:=\emptyset$ // set of recorded nogoods
$d l:=0$
loop
$(A, \nabla):=\operatorname{NogoodPropagation}(P, \nabla, A)$
if $\varepsilon \subseteq A$ for some $\varepsilon \in \Delta_{P} \cup \nabla$ then // conflict
if $\max (\{\operatorname{dlevel}(\sigma) \mid \sigma \in \varepsilon\} \cup\{0\})=0$ then return no stable model
$(\delta, d l):=$ ConflictAnalysis $(\varepsilon, P, \nabla, A)$
$\nabla:=\nabla \cup\{\delta\} \quad$ // (temporarily) record conflict nogood
$A:=A \backslash\{\sigma \in A \mid \operatorname{dl}<\operatorname{dlevel}(\sigma)\} \quad / /$ backjumping
else if $A^{T} \cup A^{F}=\operatorname{atom}(P) \cup \operatorname{body}(P)$ then // stable model
return $A^{\boldsymbol{T}} \cap \operatorname{atom}(P)$
else
$\sigma_{d}:=\operatorname{Select}(P, \nabla, A) \quad / /$ decision
$d l:=d l+1$
dlevel $\left(\sigma_{d}\right):=d l$
$A:=A \circ \sigma_{d}$

```

\section*{Observations}
- Decision level \(d l\), initially set to 0 , is used to count the number of heuristically chosen literals in assignment \(A\)
- For a heuristically chosen literal \(\sigma_{d}=\boldsymbol{T} a\) or \(\sigma_{d}=\boldsymbol{F} a\), respectively, we require \(a \in(\operatorname{atom}(P) \cup \operatorname{body}(P)) \backslash\left(A^{T} \cup A^{F}\right)\)
- For any literal \(\sigma \in A, d l(\sigma)\) denotes the decision level of \(\sigma\), viz. the value \(d l\) had when \(\sigma\) was assigned

\section*{Observations}
- Decision level \(d l\), initially set to 0 , is used to count the number of heuristically chosen literals in assignment \(A\)
- For a heuristically chosen literal \(\sigma_{d}=\boldsymbol{T} a\) or \(\sigma_{d}=\boldsymbol{F} a\), respectively, we require \(a \in(\operatorname{atom}(P) \cup \operatorname{body}(P)) \backslash\left(A^{T} \cup A^{F}\right)\)
- For any literal \(\sigma \in A, d l(\sigma)\) denotes the decision level of \(\sigma\), viz. the value \(d l\) had when \(\sigma\) was assigned
- A conflict is detected from violation of a nogood \(\varepsilon \subseteq \Delta_{P} \cup \nabla\)
- A conflict at decision level 0 (where \(A\) contains no heuristically chosen literals) indicates non-existence of stable models
- A nogood \(\delta\) derived by conflict analysis is asserting, that is, some literal is unit-resulting for \(\delta\) at a decision level \(k<d l\)

\section*{Observations}
- Decision level \(d l\), initially set to 0 , is used to count the number of heuristically chosen literals in assignment \(A\)
- For a heuristically chosen literal \(\sigma_{d}=\boldsymbol{T} a\) or \(\sigma_{d}=\boldsymbol{F} a\), respectively, we require \(a \in(\operatorname{atom}(P) \cup \operatorname{body}(P)) \backslash\left(A^{T} \cup A^{F}\right)\)
- For any literal \(\sigma \in A, d l(\sigma)\) denotes the decision level of \(\sigma\), viz. the value \(d l\) had when \(\sigma\) was assigned
- A conflict is detected from violation of a nogood \(\varepsilon \subseteq \Delta_{P} \cup \nabla\)
- A conflict at decision level 0 (where A contains no heuristically chosen literals) indicates non-existence of stable models
- A nogood \(\delta\) derived by conflict analysis is asserting, that is, some literal is unit-resulting for \(\delta\) at a decision level \(k<d l\)
- After learning \(\delta\) and backjumping to decision level \(k\), at least one literal is newly derivable by unit propagation
- No explicit flipping of heuristically chosen literals !

\section*{Example: CDNL-ASP}

Consider
\[
P=\left\{\begin{array}{llll}
x \leftarrow \operatorname{not} y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \operatorname{not} x, \text { not } y \\
y \leftarrow \operatorname{not} x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|l|l|l|}
\hline\(d l\) & \(\sigma_{d}\) & \(\bar{\sigma}\) \\
\hline & & \(\delta\) \\
\hline \hline & & \\
\hline & & \\
& & \\
& & \\
& & \\
& & \\
\hline
\end{tabular}

\section*{Example: CDNL-ASP}

Consider
\[
P=\left\{\begin{array}{llll}
x \leftarrow \operatorname{not} y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \operatorname{not} x, \text { not } y \\
y \leftarrow \operatorname{not} x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|l|ll|l|}
\hline\(d l\) & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\delta\) \\
\hline \hline 1 & \(\boldsymbol{T} u\) & & \\
\hline & & \\
& & \\
& & \\
& & \\
& & \\
\hline
\end{tabular}

\section*{Example: CDNL-ASP}

Consider
\[
P=\left\{\begin{array}{llll}
x \leftarrow \operatorname{not} y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \operatorname{not} x, \text { not } y \\
y \leftarrow \operatorname{not} x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|c|l|l|}
\hline\(d l\) & \(\sigma_{d}\) & \(\bar{\sigma}\) \\
\hline
\end{tabular}

\section*{Example: CDNL-ASP}

Consider
\[
P=\left\{\begin{array}{llll}
x \leftarrow \operatorname{not} y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \operatorname{not} x, \text { not } y \\
y \leftarrow \operatorname{not} x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|l|ll|l|}
\hline\(d l\) & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\delta\) \\
\hline \hline 1 & \(\boldsymbol{T} u\) & & \\
\hline 2 & \(\boldsymbol{F}\{\) not \(x\), not \(y\}\) & & \\
& & & \(\boldsymbol{F} w\)
\end{tabular}

\section*{Example: CDNL-ASP}

Consider
\[
P=\left\{\begin{array}{llll}
x \leftarrow \operatorname{not} y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \operatorname{not} x, \text { not } y \\
y \leftarrow \operatorname{not} x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|c|c|c|c|}
\hline \(d l\) & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\delta\) \\
\hline 1 & Tu & & \\
\hline 2 & \[
\boldsymbol{F}\{\text { not } x, \text { not } y\}
\] & \[
\boldsymbol{F} w
\] & \(\{\boldsymbol{T} w, \boldsymbol{F}\{\) not \(x\), not \(y\}\}=\delta(w)\) \\
\hline 3 & \(\boldsymbol{F}\{\) not \(y\}\) & & \\
\hline
\end{tabular}

\section*{Example: CDNL-ASP}

Consider
\[
P=\left\{\begin{array}{llll}
x \leftarrow \text { not } y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \text { not } x, \text { not } y \\
y \leftarrow \operatorname{not} x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|l|ll|l|}
\hline\(d l\) & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\delta\) \\
\hline \hline 1 & \(\boldsymbol{T} u\) & & \\
\hline 2 & \(\boldsymbol{F}\{\) not \(x\), not \(y\}\) & & \\
\hline 3 & \(\boldsymbol{F}\{\) not \(y\}\) & & \(\{\boldsymbol{T} w, \boldsymbol{F}\{\) not \(x\), not \(y\}\}=\delta(w)\) \\
& & \(\boldsymbol{F} x\) & \(\{\boldsymbol{T} x, \boldsymbol{F}\{\) not \(y\}\}=\delta(x)\) \\
& & \begin{tabular}{l}
\(\boldsymbol{F}\{x\}\) \\
\(\boldsymbol{F}\{x, y\}\)
\end{tabular} & \(\{\boldsymbol{T}\{x\}, \boldsymbol{F} x\} \in \Delta(\{x\})\) \\
& & & \\
\hline
\end{tabular}

\section*{Example: CDNL-ASP}

Consider
\[
P=\left\{\begin{array}{llll}
x \leftarrow \text { not } y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \text { not } x, \text { not } y \\
y \leftarrow \operatorname{not} x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|c|ll|l|}
\hline\(d l\) & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\delta\) \\
\hline \hline 1 & \(\boldsymbol{T} u\) & & \\
\hline 2 & \(\boldsymbol{F}\{\) not \(x\), not \(y\}\) & & \\
& & \(\boldsymbol{F} w\) & \(\{\boldsymbol{T} w, \boldsymbol{F}\{\) not \(x\), not \(y\}\}=\delta(w)\) \\
\hline 3 & \(\boldsymbol{F}\{\) not \(y\}\) & & \\
& & \(\boldsymbol{F} x\) & \(\{\boldsymbol{T} x, \boldsymbol{F}\{\) not \(y\}\}=\delta(x)\) \\
& & \(\boldsymbol{F}\{x\}\) & \(\{\boldsymbol{T}\{x\}, \boldsymbol{F} x\} \in \Delta(\{x\})\) \\
& & \(\boldsymbol{F}\{x, y\}\) & \(\{\boldsymbol{T}\{x, y\}, \boldsymbol{F} x\} \in \Delta(\{x, y\})\) \\
& & \(\vdots\) & \(\vdots\) \\
& & & \(\{\boldsymbol{T} u, \boldsymbol{F}\{x\}, \boldsymbol{F}\{x, y\}\}=\lambda(u,\{u, v\})\) \\
\hline
\end{tabular}

\section*{Example: CDNL-ASP}

Consider
\[
P=\left\{\begin{array}{llll}
x \leftarrow \text { not } y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \text { not } x, \text { not } y \\
y \leftarrow \operatorname{not} x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|c|ll|l|}
\hline\(d l\) & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\delta\) \\
\hline \hline 1 & \(\boldsymbol{T} u\) & & \\
& & \\
& & \\
& & \\
& & \\
\hline
\end{tabular}

\section*{Example: CDNL-ASP}

Consider
\[
P=\left\{\begin{array}{llll}
x \leftarrow \text { not } y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \text { not } x, \text { not } y \\
y \leftarrow \operatorname{not} x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|c|ll|l|}
\hline\(d l\) & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\delta\) \\
\hline \hline 1 & \(\boldsymbol{T} u\) & \(\boldsymbol{T} x\) & \(\{\boldsymbol{T} u, \boldsymbol{F} x\} \in \nabla\) \\
& & & \\
& & & \\
& & & \\
\hline
\end{tabular}

\section*{Example: CDNL-ASP}

Consider
\[
P=\left\{\begin{array}{llll}
x \leftarrow \text { not } y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \text { not } x, \text { not } y \\
y \leftarrow \operatorname{not} x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|c|ll|l|}
\hline\(d l\) & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\delta\) \\
\hline \hline 1 & \(\boldsymbol{T} u\) & & \\
& & \(\boldsymbol{T} x\) & \(\{\boldsymbol{T} u, \boldsymbol{F} x\} \in \nabla\) \\
& & \(\vdots\) & \(\vdots\) \\
& & \(\boldsymbol{T} v\) & \(\{\boldsymbol{F} v, \boldsymbol{T}\{x\}\} \in \Delta(v)\) \\
& & \(\boldsymbol{F y}\) & \(\{\boldsymbol{T} y, \boldsymbol{F}\{\) not \(x\}\}=\delta(y)\) \\
& & \(\boldsymbol{F} w\) & \(\{\boldsymbol{T} w, \boldsymbol{F}\{\) not \(x\), not \(y\}\}=\delta(w)\) \\
\hline
\end{tabular}

\section*{Example: CDNL-ASP}

Consider
\[
P=\left\{\begin{array}{llll}
x \leftarrow \text { not } y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \text { not } x, \text { not } y \\
y \leftarrow \operatorname{not} x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|c|ll|l|}
\hline\(d l\) & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\delta\) \\
\hline \hline 1 & \(\boldsymbol{T} u\) & & \\
& & \(\boldsymbol{T} x\) & \(\{\boldsymbol{T} u, \boldsymbol{F} x\} \in \nabla\) \\
& & \(\vdots\) & \(\vdots\) \\
& & \(\boldsymbol{T} v\) & \(\{\boldsymbol{F} v, \boldsymbol{T}\{x\}\} \in \Delta(v)\) \\
& & \(\boldsymbol{F y}\) & \(\{\boldsymbol{T} y, \boldsymbol{F}\{\) not \(x\}\}=\delta(y)\) \\
& & \(\{\boldsymbol{T} w, \boldsymbol{F}\{\) not \(x\), not \(y\}\}=\delta(w)\) \\
\hline
\end{tabular}

\section*{Outline}

\section*{(1) Nogoods from loop formulas}
(2) Conflict-driven nogood learning

CDNL-ASP Algorithm
- Nogood Propagation
- Conflict Analysis
(3) Summary

\section*{Outline of NogoodPropagation}
- Derive deterministic consequences via:
- Unit propagation on \(\Delta_{P}\) and \(\nabla\);
- Unfounded sets \(U \subseteq\) atom \((P)\)
- Note that \(U\) is unfounded if \(E B_{P}(U) \subseteq A^{F}\)
- Note: For any \(a \in U\), we have \((\lambda(a, U) \backslash\{\boldsymbol{T} a\}) \subseteq A\)

\section*{Outline of NogoodPropagation}
- Derive deterministic consequences via:
- Unit propagation on \(\Delta_{P}\) and \(\nabla\);
- Unfounded sets \(U \subseteq\) atom \((P)\)
- Note that \(U\) is unfounded if \(E B_{P}(U) \subseteq A^{F}\)
- Note: For any \(a \in U\), we have \((\lambda(a, U) \backslash\{\boldsymbol{T} a\}) \subseteq A\)
- An "interesting" unfounded set \(U\) satisfies:
\[
\emptyset \subset U \subseteq\left(\operatorname{atom}(P) \backslash A^{F}\right)
\]
- Wrt a fixpoint of unit propagation,

\section*{Outline of NogoodPropagation}
- Derive deterministic consequences via:
- Unit propagation on \(\Delta_{P}\) and \(\nabla\);
- Unfounded sets \(U \subseteq\) atom \((P)\)
- Note that \(U\) is unfounded if \(E B_{P}(U) \subseteq A^{F}\)
- Note: For any \(a \in U\), we have \((\lambda(a, U) \backslash\{\boldsymbol{T} a\}) \subseteq A\)
- An "interesting" unfounded set \(U\) satisfies:
\[
\emptyset \subset U \subseteq\left(\operatorname{atom}(P) \backslash A^{F}\right)
\]
- Wrt a fixpoint of unit propagation, such an unfounded set contains some loop of \(P\)
- Note: Tight programs do not yield "interesting" unfounded sets !

\section*{Outline of NogoodPropagation}
- Derive deterministic consequences via:
- Unit propagation on \(\Delta_{P}\) and \(\nabla\);
- Unfounded sets \(U \subseteq\) atom \((P)\)
- Note that \(U\) is unfounded if \(E B_{P}(U) \subseteq A^{F}\)
- Note: For any \(a \in U\), we have \((\lambda(a, U) \backslash\{\boldsymbol{T} a\}) \subseteq A\)
- An "interesting" unfounded set \(U\) satisfies:
\[
\emptyset \subset U \subseteq\left(\operatorname{atom}(P) \backslash A^{F}\right)
\]
- Wrt a fixpoint of unit propagation, such an unfounded set contains some loop of \(P\)
- Note: Tight programs do not yield "interesting" unfounded sets !
- Given an unfounded set \(U\) and some \(a \in U\), adding \(\lambda(a, U)\) to \(\nabla\) triggers a conflict or further derivations by unit propagation
- Note: Add loop nogoods atom by atom to eventually falsify all \(a \in U\)

\section*{Algorithm 2: NogoodPropagation}
```

Input $\quad:$ A normal program P, a set ∇ of nogoods, and an assignment A.
Output : An extended assignment and set of nogoods.
$U:=\emptyset \quad / /$ unfounded set
loop
repeat
if $\delta \subseteq A$ for some $\delta \in \Delta_{P} \cup \nabla$ then return $(A, \nabla) \quad / /$ conflict
$\Sigma:=\left\{\delta \in \Delta_{P} \cup \nabla \mid \delta \backslash A=\{\bar{\sigma}\}, \sigma \notin A\right\} \quad$ // unit-resulting nogoods
if $\Sigma \neq \emptyset$ then let $\bar{\sigma} \in \delta \backslash A$ for some $\delta \in \Sigma$ in
$\operatorname{dlevel}(\sigma):=\max (\{\operatorname{dlevel}(\rho) \mid \rho \in \delta \backslash\{\bar{\sigma}\}\} \cup\{0\})$
$A:=A \circ \sigma$
until $\Sigma=\emptyset$
if $\operatorname{loop}(P)=\emptyset$ then return (A, ∇)
$U:=U \backslash A^{F}$
if $U=\emptyset$ then $U:=\operatorname{UnfoundedSet}(P, A)$
if $U=\emptyset$ then return $(A, \nabla) \quad / /$ no unfounded set $\emptyset \subset U \subseteq \operatorname{atom}(P) \backslash A^{F}$
let $a \in U$ in
$\nabla:=\nabla \cup\left\{\{\boldsymbol{T} a\} \cup\left\{\boldsymbol{F B} \mid B \in E B_{p}(U)\right\}\right\} \quad / /$ record loop nogood

```

\section*{Requirements for UnfoundedSet}
- Implementations of UnfoundedSet must guarantee the following for a result \(U\)
(1) \(U \subseteq\left(\operatorname{atom}(P) \backslash A^{F}\right)\)
(2) \(E B_{P}(U) \subseteq A^{F}\)
(3) \(U=\emptyset\) iff there is no nonempty unfounded subset of \(\left(\operatorname{atom}(P) \backslash A^{F}\right)\)

\section*{Requirements for UnfoundedSet}
- Implementations of UnfoundedSet must guarantee the following for a result \(U\)
(1) \(U \subseteq\left(\operatorname{atom}(P) \backslash A^{F}\right)\)
(2) \(E B_{P}(U) \subseteq A^{F}\)
(3) \(U=\emptyset\) iff there is no nonempty unfounded subset of \(\left(\operatorname{atom}(P) \backslash A^{F}\right)\)
- Beyond that, there are various alternatives, such as:
- Calculating the greatest unfounded set
- Calculating unfounded sets within strongly connected components of the positive atom dependency graph of \(P\)
- Usually, the latter option is implemented in ASP solvers

\section*{Example: NogoodPropagation}

Consider
\[
P=\left\{\begin{array}{llll}
x \leftarrow \text { not } y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \text { not } x, \text { not } y \\
y \leftarrow \text { not } x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|c|ll|l|}
\hline\(d l\) & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\delta\) \\
\hline \hline 1 & \(\boldsymbol{T} u\) & & \\
\hline 2 & \(\boldsymbol{F}\{\) not \(x\), not \(y\}\) & & \\
& & \(\boldsymbol{F} w\) & \(\{\boldsymbol{T} w, \boldsymbol{F}\{\) not \(x\), not \(y\}\}=\delta(w)\) \\
\hline 3 & \(\boldsymbol{F}\{\) not \(y\}\) & & \\
& & \(\boldsymbol{F} x\) & \(\{\boldsymbol{T} x, \boldsymbol{F}\{\) not \(y\}\}=\delta(x)\) \\
& & \(\boldsymbol{F}\{x\}\) & \(\{\boldsymbol{T}\{x\}, \boldsymbol{F}\}\} \in \Delta(\{x\})\) \\
& & \(\boldsymbol{F}\{x, y\}\) & \(\{\boldsymbol{T}\{x, y\}, \boldsymbol{F} x\} \in \Delta(\{x, y\})\) \\
& & \(\boldsymbol{T}\{\) not \(x\}\) & \(\{\boldsymbol{F}\{\) not \(x\}, \boldsymbol{F} x\}=\delta(\{\) not \(x\})\) \\
& & \(\boldsymbol{T} y\) & \(\{\boldsymbol{F}\{\) not \(y\}, \boldsymbol{F} y\}=\delta(\{\) not \(y\})\) \\
& & \(\boldsymbol{T}\{v\}\) & \(\{\boldsymbol{T} u, \boldsymbol{F}\{x, y\}, \boldsymbol{F}\{v\}\}=\delta(u)\) \\
& & \(\boldsymbol{T}\{u, y\}\) & \(\{\boldsymbol{F}\{u, y\}, \boldsymbol{T} u, \boldsymbol{T} y\}=\delta(\{u, y\})\) \\
& & \(\boldsymbol{T} v\) & \(\{\boldsymbol{F} v, \boldsymbol{T}\{u, y\}\} \in \Delta(v)\) \\
& & & \(\{\boldsymbol{T} u, \boldsymbol{F}\{x\}, \boldsymbol{F}\{x, y\}\}=\lambda(u,\{u, v\})\) \\
& & & \\
\hline
\end{tabular}

\section*{Outline}

\section*{(1) Nogoods from loop formulas}
(2) Conflict-driven nogood learning
- CDNL-ASP Algorithm
- Nogood Propagation
- Conflict Analysis
(3) Summary

\section*{Outline of ConflictAnalysis}
- Conflict analysis is triggered whenever some nogood \(\delta \in \Delta_{P} \cup \nabla\) becomes violated, viz. \(\delta \subseteq A\), at a decision level \(d l>0\)
- Note that all but the first literal assigned at \(d l\) have been unit-resulting for nogoods \(\varepsilon \in \Delta_{P} \cup \nabla\)
- If \(\sigma \in \delta\) has been unit-resulting for \(\varepsilon\), we obtain a new violated nogood by resolving \(\delta\) and \(\varepsilon\) as follows:
\[
(\delta \backslash\{\sigma\}) \cup(\varepsilon \backslash\{\bar{\sigma}\})
\]

\section*{Outline of ConflictAnalysis}
- Conflict analysis is triggered whenever some nogood \(\delta \in \Delta_{P} \cup \nabla\) becomes violated, viz. \(\delta \subseteq A\), at a decision level \(d l>0\)
- Note that all but the first literal assigned at \(d l\) have been unit-resulting for nogoods \(\varepsilon \in \Delta_{P} \cup \nabla\)
- If \(\sigma \in \delta\) has been unit-resulting for \(\varepsilon\), we obtain a new violated nogood by resolving \(\delta\) and \(\varepsilon\) as follows:
\[
(\delta \backslash\{\sigma\}) \cup(\varepsilon \backslash\{\bar{\sigma}\})
\]
- Resolution is directed by resolving first over the literal \(\sigma \in \delta\) derived last, viz. \((\delta \backslash A[\sigma])=\{\sigma\}\)
- Iterated resolution progresses in inverse order of assignment

\section*{Outline of ConflictAnalysis}
- Conflict analysis is triggered whenever some nogood \(\delta \in \Delta_{P} \cup \nabla\) becomes violated, viz. \(\delta \subseteq A\), at a decision level \(d l>0\)
- Note that all but the first literal assigned at \(d l\) have been unit-resulting for nogoods \(\varepsilon \in \Delta_{P} \cup \nabla\)
- If \(\sigma \in \delta\) has been unit-resulting for \(\varepsilon\), we obtain a new violated nogood by resolving \(\delta\) and \(\varepsilon\) as follows:
\[
(\delta \backslash\{\sigma\}) \cup(\varepsilon \backslash\{\bar{\sigma}\})
\]
- Resolution is directed by resolving first over the literal \(\sigma \in \delta\) derived last, viz. \((\delta \backslash A[\sigma])=\{\sigma\}\)
- Iterated resolution progresses in inverse order of assignment
- Iterated resolution stops as soon as it generates a nogood \(\delta\) containing exactly one literal \(\sigma\) assigned at decision level \(d l\)
- This literal \(\sigma\) is called First Unique Implication Point (First-UIP)
- All literals in \((\delta \backslash\{\sigma\})\) are assigned at decision levels smaller than \(d l\)

\section*{Algorithm 3: ConflictAnalysis}
```

Input $\quad:$ A non-empty violated nogood δ, a normal program P, a set ∇ of nogoods, and an assignment A.
Output : A derived nogood and a decision level.
loop
let $\sigma \in \delta$ such that $\delta \backslash A[\sigma]=\{\sigma\}$ in
$k:=\max (\{\operatorname{dlevel}(\rho) \mid \rho \in \delta \backslash\{\sigma\}\} \cup\{0\})$
if $k=\operatorname{dlevel}(\sigma)$ then
let $\varepsilon \in \Delta_{P} \cup \nabla$ such that $\varepsilon \backslash A[\sigma]=\{\bar{\sigma}\}$ in
L $\delta:=(\delta \backslash\{\sigma\}) \cup(\varepsilon \backslash\{\bar{\sigma}\}) \quad$ // resolution
else return (δ, k)

```

\section*{Example: ConflictAnalysis}

Consider
\[
P=\left\{\begin{array}{llll}
x \leftarrow \text { not } y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \text { not } x, \text { not } y \\
y \leftarrow \operatorname{not} x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|c|c|c|c|}
\hline dl & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\delta\) \\
\hline 1 & Tu & & \\
\hline \multirow[t]{2}{*}{2} & \(\boldsymbol{F}\{\) not \(x\), not \(y\}\) & & \\
\hline & & Fw & \(\{\boldsymbol{T} w, \boldsymbol{F}\{\) not \(x\), not \(y\}\}=\delta(w)\) \\
\hline \multirow[t]{10}{*}{3} & \(\boldsymbol{F}\{\) not \(y\}\) & & \\
\hline & & \(\boldsymbol{F} x\) & \(\{\boldsymbol{T} x, \boldsymbol{F}\{\) not \(y\}\}=\delta(x)\) \\
\hline & & \(\boldsymbol{F}\{x\}\) & \(\{\boldsymbol{T}\{x\}, \boldsymbol{F} x\} \in \Delta(\{x\})\) \\
\hline & & \(\boldsymbol{F}\{x, y\}\) & \(\{\boldsymbol{T}\{x, y\}, \boldsymbol{F} x\} \in \Delta(\{x, y\})\) \\
\hline & & \(\boldsymbol{T}\) \{not \(x\) \} & \(\{\boldsymbol{F}\{\) not \(x\}, \boldsymbol{F} x\}=\delta(\{\) not \(x\})\) \\
\hline & & Ty & \(\{\boldsymbol{F}\{\) not \(y\}, \boldsymbol{F} y\}=\delta(\{\) not \(y\})\) \\
\hline & & \(\boldsymbol{T}\{v\}\) & \(\{\boldsymbol{T} u, \boldsymbol{F}\{x, y\}, \boldsymbol{F}\{v\}\}=\delta(u)\) \\
\hline & & \(\boldsymbol{T}\{u, y\}\) & \(\{\boldsymbol{F}\{u, y\}, \boldsymbol{T} u, \boldsymbol{T} y\}=\delta(\{u, y\})\) \\
\hline & & Tv & \(\{\boldsymbol{F} v, \boldsymbol{T}\{u, y\}\} \in \Delta(v)\) \\
\hline & & & \(\{\boldsymbol{T} u, \boldsymbol{F}\{x\}, \boldsymbol{F}\{x, y\}\}=\lambda(u,\{u, v\})\) \\
\hline
\end{tabular}

\section*{Example: ConflictAnalysis}

Consider
\[
P=\left\{\begin{array}{llll}
x \leftarrow \text { not } y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \text { not } x, \text { not } y \\
y \leftarrow \operatorname{not} x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|c|c|c|c|}
\hline dl & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\delta\) \\
\hline 1 & Tu & & \\
\hline \multirow[t]{2}{*}{2} & \(\boldsymbol{F}\{\) not \(x\), not \(y\}\) & & \\
\hline & & Fw & \(\{\boldsymbol{T} w, \boldsymbol{F}\{\) not \(x\), not \(y\}\}=\delta(w)\) \\
\hline \multirow[t]{10}{*}{3} & \(\boldsymbol{F}\{\) not \(y\}\) & & \\
\hline & & \(\boldsymbol{F} x\) & \(\{\boldsymbol{T} x, \boldsymbol{F}\{\) not \(y\}\}=\delta(x)\) \\
\hline & & \(\boldsymbol{F}\{x\}\) & \(\{\boldsymbol{T}\{x\}, \boldsymbol{F} x\} \in \Delta(\{x\})\) \\
\hline & & \(\boldsymbol{F}\{x, y\}\) & \(\{\boldsymbol{T}\{x, y\}, \boldsymbol{F} x\} \in \Delta(\{x, y\})\) \\
\hline & & \(\boldsymbol{T}\) \{not \(x\) \} & \(\{\boldsymbol{F}\{\) not \(x\}, \boldsymbol{F} x\}=\delta(\{\) not \(x\})\) \\
\hline & & Ty & \(\{\boldsymbol{F}\{\) not \(y\}, \boldsymbol{F} y\}=\delta(\{\) not \(y\})\) \\
\hline & & \(\boldsymbol{T}\{v\}\) & \(\{\boldsymbol{T} u, \boldsymbol{F}\{x, y\}, \boldsymbol{F}\{v\}\}=\delta(u)\) \\
\hline & & \(\boldsymbol{T}\{u, y\}\) & \(\{\boldsymbol{F}\{u, y\}, \boldsymbol{T} u, \boldsymbol{T} y\}=\delta(\{u, y\})\) \\
\hline & & \(\boldsymbol{T} v\) & \(\{\boldsymbol{F} v, \boldsymbol{T}\{u, y\}\} \in \Delta(v)\) \\
\hline & & & \(\{\boldsymbol{T} u, \boldsymbol{F}\{x\}, \boldsymbol{F}\{x, y\}\}=\lambda(u,\{u, v\})\) \\
\hline
\end{tabular}

\section*{Example: ConflictAnalysis}

Consider
\[
P=\left\{\begin{array}{llll}
x \leftarrow \text { not } y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \text { not } x, \text { not } y \\
y \leftarrow \operatorname{not} x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|c|c|c|c|}
\hline dl & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\delta\) \\
\hline 1 & Tu & & \\
\hline \multirow[t]{2}{*}{2} & \(\boldsymbol{F}\{\) not \(x\), not \(y\}\) & & \\
\hline & & Fw & \(\{\boldsymbol{T} w, \boldsymbol{F}\{\) not \(x\), not \(y\}\}=\delta(w)\) \\
\hline \multirow[t]{10}{*}{3} & \(\boldsymbol{F}\{\) not \(y\}\) & & \\
\hline & & \(\boldsymbol{F} x\) & \(\{\boldsymbol{T} x, \boldsymbol{F}\{\) not \(y\}\}=\delta(x)\) \\
\hline & & \(\boldsymbol{F}\{x\}\) & \(\{\boldsymbol{T}\{x\}, \boldsymbol{F} x\} \in \Delta(\{x\})\) \\
\hline & & \(\boldsymbol{F}\{x, y\}\) & \(\{\boldsymbol{T}\{x, y\}, \boldsymbol{F} x\} \in \Delta(\{x, y\})\) \\
\hline & & \(\boldsymbol{T}\) \{not \(x\) \} & \(\{\boldsymbol{F}\{\) not \(x\}, \boldsymbol{F} x\}=\delta(\{\) not \(x\})\) \\
\hline & & Ty & \(\{\boldsymbol{F}\{\) not \(y\}, \boldsymbol{F} y\}=\delta(\{\) not \(y\})\) \\
\hline & & \(\boldsymbol{T}\{v\}\) & \(\{\boldsymbol{T} u, \boldsymbol{F}\{x, y\}, \boldsymbol{F}\{v\}\}=\delta(u)\) \\
\hline & & \(\boldsymbol{T}\{u, y\}\) & \(\{\boldsymbol{F}\{u, y\}, \boldsymbol{T} u, \boldsymbol{T} y\}=\delta(\{u, y\})\) \\
\hline & & Tv & \(\{\boldsymbol{F} v, \boldsymbol{T}\{u, y\}\} \in \Delta(v)\) \\
\hline & & & \(\{\boldsymbol{T} u, \boldsymbol{F}\{x\}, \boldsymbol{F}\{x, y\}\}=\lambda(u,\{u, v\})\) \\
\hline
\end{tabular}

\section*{Example: ConflictAnalysis}

Consider
\[
P=\left\{\begin{array}{llll}
x \leftarrow \text { not } y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \text { not } x, \text { not } y \\
y \leftarrow \operatorname{not} x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|c|c|c|c|}
\hline dl & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\delta\) \\
\hline 1 & Tu & & \\
\hline 2 & \(\boldsymbol{F}\{\) not \(x\), not \(y\}\) & \(F_{w}\) & \\
\hline \multirow[t]{10}{*}{3} & \(\boldsymbol{F}\) \{not y \(\}\) & & \(\{\boldsymbol{T} w, \boldsymbol{F}\{\) not \(x\), not \(y\}\}=\delta(w)\) \\
\hline & & \(\boldsymbol{F} x\) & \(\{\boldsymbol{T} x, \boldsymbol{F}\{\) not \(y\}\}=\delta(x)\) \\
\hline & & \(\boldsymbol{F}\{x\}\) & \(\{\boldsymbol{T}\{x\}, \boldsymbol{F} x\} \in \Delta(\{x\})\) \\
\hline & & \(\boldsymbol{F}\{x, y\}\) & \(\{\boldsymbol{T}\{x, y\}, \boldsymbol{F} x\} \in \Delta(\{x, y\})\) \\
\hline & & \(\boldsymbol{T}\{\) not \(x\}\) & \(\{\boldsymbol{F}\{\) not \(x\}, \boldsymbol{F} x\}=\delta(\{\) not \(x\})\) \\
\hline & & Ty & \(\{\boldsymbol{F}\{\) not \(y\}, \boldsymbol{F} y\}=\delta(\{\) not \(y\})\) \\
\hline & & \(\boldsymbol{T}\{v\}\) & \(\{\boldsymbol{T} u, \boldsymbol{F}\{x, y\}, \boldsymbol{F}\{v\}\}=\delta(u)\) \\
\hline & & \(\boldsymbol{T}\{u, y\}\) & \(\{\boldsymbol{F}\{u, y\}, \boldsymbol{T} u, \boldsymbol{T} y\}=\delta(\{u, y\})\) \\
\hline & & Tv & \(\{\boldsymbol{F} v, \boldsymbol{T}\{u, y\}\} \in \Delta(v)\) \\
\hline & & & \(\{\boldsymbol{T} u, \boldsymbol{F}\{x\}, \boldsymbol{F}\{x, y\}\}=\lambda(u,\{u, v\})\) \\
\hline
\end{tabular}

\section*{Example: ConflictAnalysis}

Consider
\[
P=\left\{\begin{array}{llll}
x \leftarrow \text { not } y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \text { not } x, \text { not } y \\
y \leftarrow \operatorname{not} x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]


\section*{Example: ConflictAnalysis}

Consider
\[
P=\left\{\begin{array}{llll}
x \leftarrow \text { not } y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \text { not } x, \text { not } y \\
y \leftarrow \operatorname{not} x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]


\section*{Example: ConflictAnalysis}

Consider
\[
P=\left\{\begin{array}{llll}
x \leftarrow \text { not } y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \text { not } x, \text { not } y \\
y \leftarrow \operatorname{not} x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]


\section*{Example: ConflictAnalysis}

Consider
\[
P=\left\{\begin{array}{llll}
x \leftarrow \text { not } y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \text { not } x, \text { not } y \\
y \leftarrow \operatorname{not} x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]


\section*{Example: ConflictAnalysis}

Consider
\[
P=\left\{\begin{array}{llll}
x \leftarrow \text { not } y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \text { not } x, \text { not } y \\
y \leftarrow \operatorname{not} x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]


\section*{Example: ConflictAnalysis}

Consider
\[
P=\left\{\begin{array}{llll}
x \leftarrow \text { not } y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \text { not } x, \text { not } y \\
y \leftarrow \operatorname{not} x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]


\section*{Example: ConflictAnalysis ctd.}

Consider
\[
P=\left\{\begin{array}{llll}
x \leftarrow \text { not } y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \text { not } x, \text { not } y \\
y \leftarrow \operatorname{not} x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|c|ll|l|}
\hline\(d l\) & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\delta\) \\
\hline \hline 1 & \(\boldsymbol{T} u\) & \(\boldsymbol{T} x\) & \(\{\boldsymbol{T} u, \boldsymbol{F} x\} \in \nabla\) \\
& & & \\
& & & \\
& & & \\
\hline
\end{tabular}

\section*{Example: ConflictAnalysis ctd.}

Consider
\[
P=\left\{\begin{array}{llll}
x \leftarrow \text { not } y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \text { not } x, \text { not } y \\
y \leftarrow \operatorname{not} x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|c|ll|l|}
\hline\(d l\) & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\delta\) \\
\hline \hline 1 & \(\boldsymbol{T} u\) & & \\
& & \(\boldsymbol{T} x\) & \(\{\boldsymbol{T} u, \boldsymbol{F} x\} \in \nabla\) \\
& & \(\vdots\) & \(\vdots\) \\
& & \(\boldsymbol{T} v\) & \(\{\boldsymbol{F} v, \boldsymbol{T}\{x\}\} \in \Delta(v)\) \\
& & \(\boldsymbol{F y}\) & \(\{\boldsymbol{T} y, \boldsymbol{F}\{\) not \(x\}\}=\delta(y)\) \\
& & \(\{\boldsymbol{T} w, \boldsymbol{F}\{\) not \(x\), not \(y\}\}=\delta(w)\) \\
\hline
\end{tabular}

\section*{Remarks}
- There always is a First-UIP at which conflict analysis terminates
- In the worst, resolution stops at the heuristically chosen literal assigned at decision level \(d l\)

\section*{Remarks}
- There always is a First-UIP at which conflict analysis terminates
- In the worst, resolution stops at the heuristically chosen literal assigned at decision level \(d l\)
- The nogood \(\delta\) containing First-UIP \(\sigma\) is violated by \(A\), viz. \(\delta \subseteq A\)
- We have \(k=\max (\{d l(\rho) \mid \rho \in \delta \backslash\{\sigma\}\} \cup\{0\})<d l\)

\section*{Remarks}
- There always is a First-UIP at which conflict analysis terminates
- In the worst, resolution stops at the heuristically chosen literal assigned at decision level \(d l\)
- The nogood \(\delta\) containing First-UIP \(\sigma\) is violated by \(A\), viz. \(\delta \subseteq A\)
- We have \(k=\max (\{d l(\rho) \mid \rho \in \delta \backslash\{\sigma\}\} \cup\{0\})<d l\)
- After recording \(\delta\) in \(\nabla\) and backjumping to decision level \(k\), \(\bar{\sigma}\) is unit-resulting for \(\delta\) !
- Such a nogood \(\delta\) is called asserting

\section*{Remarks}
- There always is a First-UIP at which conflict analysis terminates
- In the worst, resolution stops at the heuristically chosen literal assigned at decision level \(d l\)
- The nogood \(\delta\) containing First-UIP \(\sigma\) is violated by \(A\), viz. \(\delta \subseteq A\)
- We have \(k=\max (\{d l(\rho) \mid \rho \in \delta \backslash\{\sigma\}\} \cup\{0\})<d l\)
- After recording \(\delta\) in \(\nabla\) and backjumping to decision level \(k\), \(\bar{\sigma}\) is unit-resulting for \(\delta\) !
- Such a nogood \(\delta\) is called asserting
- Asserting nogoods direct conflict-driven search into a different region of the search space than traversed before, without explicitly flipping any heuristically chosen literal !

\section*{Outline}
(1) Nogoods from loop formulas
(2) Conflict-driven nogood learning
(3) Summary

\section*{Summary}
- Nogoods from loop formulas
- Conflict driven nogood learning
- CDNL-ASP Algorithm
- Nogood Propagation
- Conflict Analysis

\section*{References}

Torin Martin Gebser, Benjamin Kaufmann Roland Kaminski, and Torsten Schaub.
Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers, 2012. doi=10.2200/S00457ED1V01Y201211AIM019.
- See also: http://potassco.sourceforge.net```

