
Artificial Intelligence, Computational Logic

DEDUCTION SYSTEMS

Lecture 5 ASP Solving II ∗slides adapted from Torsten
Schaub [Gebser et al.(2012)]

Sarah Gaggl

Dresden, 25th June 2015

Outline

1 Nogoods from loop formulas

2 Conflict-driven nogood learning

3 Summary

TU Dresden, 25th June 2015 DS slide 2 of 69

Nogoods from logic programs
via loop formulas

Let P be a normal logic program and recall that:
• For L ⊆ atom(P), the external supports of L for P are

ESP(L) = {r ∈ P | head(r) ∈ L, body(r)+ ∩ L = ∅}

• The (disjunctive) loop formula of L for P is

LFP(L) =
(∨

A∈LA
)
→
(∨

r∈ESP(L)body(r)
)

≡
(∧

r∈ESP(L)¬body(r)
)
→
(∧

A∈L¬A
)

– Note: The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported

• The external bodies of L for P are

EBP(L) = {body(r) | r ∈ ESP(L)}

TU Dresden, 25th June 2015 DS slide 3 of 69

Nogoods from logic programs
via loop formulas

Let P be a normal logic program and recall that:
• For L ⊆ atom(P), the external supports of L for P are

ESP(L) = {r ∈ P | head(r) ∈ L, body(r)+ ∩ L = ∅}

• The (disjunctive) loop formula of L for P is

LFP(L) =
(∨

A∈LA
)
→
(∨

r∈ESP(L)body(r)
)

≡
(∧

r∈ESP(L)¬body(r)
)
→
(∧

A∈L¬A
)

– Note: The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported

• The external bodies of L for P are

EBP(L) = {body(r) | r ∈ ESP(L)}

TU Dresden, 25th June 2015 DS slide 4 of 69

Nogoods from logic programs
via loop formulas

Let P be a normal logic program and recall that:
• For L ⊆ atom(P), the external supports of L for P are

ESP(L) = {r ∈ P | head(r) ∈ L, body(r)+ ∩ L = ∅}

• The (disjunctive) loop formula of L for P is

LFP(L) =
(∨

A∈LA
)
→
(∨

r∈ESP(L)body(r)
)

≡
(∧

r∈ESP(L)¬body(r)
)
→
(∧

A∈L¬A
)

– Note: The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported

• The external bodies of L for P are

EBP(L) = {body(r) | r ∈ ESP(L)}

TU Dresden, 25th June 2015 DS slide 5 of 69

Nogoods from logic programs
loop nogoods

• For a logic program P and some ∅ ⊂ U ⊆ atom(P),
define the loop nogood of an atom a ∈ U as

λ(a, U) = {Ta, FB1, . . . , FBk}

where EBP(U) = {B1, . . . , Bk}

• We get the following set of loop nogoods for P:

ΛP =
⋃
∅⊂U⊆atom(P){λ(a, U) | a ∈ U}

• The set ΛP of loop nogoods denies cyclic support among true atoms

TU Dresden, 25th June 2015 DS slide 6 of 69

Nogoods from logic programs
loop nogoods

• For a logic program P and some ∅ ⊂ U ⊆ atom(P),
define the loop nogood of an atom a ∈ U as

λ(a, U) = {Ta, FB1, . . . , FBk}

where EBP(U) = {B1, . . . , Bk}

• We get the following set of loop nogoods for P:

ΛP =
⋃
∅⊂U⊆atom(P){λ(a, U) | a ∈ U}

• The set ΛP of loop nogoods denies cyclic support among true atoms

TU Dresden, 25th June 2015 DS slide 7 of 69

Nogoods from logic programs
loop nogoods

• For a logic program P and some ∅ ⊂ U ⊆ atom(P),
define the loop nogood of an atom a ∈ U as

λ(a, U) = {Ta, FB1, . . . , FBk}

where EBP(U) = {B1, . . . , Bk}

• We get the following set of loop nogoods for P:

ΛP =
⋃
∅⊂U⊆atom(P){λ(a, U) | a ∈ U}

• The set ΛP of loop nogoods denies cyclic support among true atoms

TU Dresden, 25th June 2015 DS slide 8 of 69

Example
• Consider the program  x← not y

y← not x

u← x
u← v
v← u, y



• For u in the set {u, v}, we obtain the loop nogood:

λ(u, {u, v}) = {Tu, F{x}}

Similarly for v in {u, v}, we get:

λ(v, {u, v}) = {Tv, F{x}}

TU Dresden, 25th June 2015 DS slide 9 of 69

Example
• Consider the program  x← not y

y← not x

u← x
u← v
v← u, y


• For u in the set {u, v}, we obtain the loop nogood:

λ(u, {u, v}) = {Tu, F{x}}

Similarly for v in {u, v}, we get:

λ(v, {u, v}) = {Tv, F{x}}

TU Dresden, 25th June 2015 DS slide 10 of 69

Example
• Consider the program  x← not y

y← not x

u← x
u← v
v← u, y


• For u in the set {u, v}, we obtain the loop nogood:

λ(u, {u, v}) = {Tu, F{x}}

Similarly for v in {u, v}, we get:

λ(v, {u, v}) = {Tv, F{x}}

TU Dresden, 25th June 2015 DS slide 11 of 69

Characterization of stable models

Theorem
Let P be a logic program. Then,

X ⊆ atom(P) is a stable model of P iff
X = AT ∩ atom(P) for a (unique) solution A for ∆P ∪ ΛP

Some remarks
• Nogoods in ΛP augment ∆P with conditions checking

for unfounded sets, in particular, those being loops
• While |∆P| is linear in the size of P, ΛP may contain

exponentially many (non-redundant) loop nogoods

TU Dresden, 25th June 2015 DS slide 12 of 69

Characterization of stable models

Theorem
Let P be a logic program. Then,

X ⊆ atom(P) is a stable model of P iff
X = AT ∩ atom(P) for a (unique) solution A for ∆P ∪ ΛP

Some remarks
• Nogoods in ΛP augment ∆P with conditions checking

for unfounded sets, in particular, those being loops
• While |∆P| is linear in the size of P, ΛP may contain

exponentially many (non-redundant) loop nogoods

TU Dresden, 25th June 2015 DS slide 13 of 69

Outline

1 Nogoods from loop formulas

2 Conflict-driven nogood learning

3 Summary

TU Dresden, 25th June 2015 DS slide 14 of 69

Towards conflict-driven search

Boolean constraint solving algorithms pioneered for SAT led to:

• Traditional DPLL-style approach
(DPLL stands for ‘Davis-Putnam-Logemann-Loveland’)

– (Unit) propagation
– (Chronological) backtracking

– in ASP, eg smodels

• Modern CDCL-style approach
(CDCL stands for ‘Conflict-Driven Constraint Learning’)

– (Unit) propagation
– Conflict analysis (via resolution)
– Learning + Backjumping + Assertion

– in ASP, eg clasp

TU Dresden, 25th June 2015 DS slide 15 of 69

DPLL-style solving

loop
propagate // deterministically assign literals

if no conflict then
if all variables assigned then return solution
else decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

backtrack // unassign literals made after last decision
flip // assign complement of last decision literal

TU Dresden, 25th June 2015 DS slide 16 of 69

CDCL-style solving

loop
propagate // deterministically assign literals

if no conflict then
if all variables assigned then return solution
else decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit

TU Dresden, 25th June 2015 DS slide 17 of 69

Outline

1 Nogoods from loop formulas

2 Conflict-driven nogood learning
CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis

3 Summary

TU Dresden, 25th June 2015 DS slide 18 of 69

Outline of CDNL-ASP algorithm
• Keep track of deterministic consequences by unit propagation on:

– Program completion [∆P]
– Loop nogoods, determined and recorded on demand [ΛP]
– Dynamic nogoods, derived from conflicts and unfounded sets [∇]

• When a nogood in ∆P ∪∇ becomes violated:
– Analyze the conflict by resolution

(until reaching a Unique Implication Point, short: UIP)
– Learn the derived conflict nogood δ
– Backjump to the earliest (heuristic) choice such that the

complement of the UIP is unit-resulting for δ
– Assert the complement of the UIP and proceed

(by unit propagation)
• Terminate when either:

– Finding a stable model (a solution for ∆P ∪ ΛP)
– Deriving a conflict independently of (heuristic) choices

TU Dresden, 25th June 2015 DS slide 19 of 69

Outline of CDNL-ASP algorithm
• Keep track of deterministic consequences by unit propagation on:

– Program completion [∆P]
– Loop nogoods, determined and recorded on demand [ΛP]
– Dynamic nogoods, derived from conflicts and unfounded sets [∇]

• When a nogood in ∆P ∪∇ becomes violated:
– Analyze the conflict by resolution

(until reaching a Unique Implication Point, short: UIP)
– Learn the derived conflict nogood δ
– Backjump to the earliest (heuristic) choice such that the

complement of the UIP is unit-resulting for δ
– Assert the complement of the UIP and proceed

(by unit propagation)

• Terminate when either:
– Finding a stable model (a solution for ∆P ∪ ΛP)
– Deriving a conflict independently of (heuristic) choices

TU Dresden, 25th June 2015 DS slide 20 of 69

Outline of CDNL-ASP algorithm
• Keep track of deterministic consequences by unit propagation on:

– Program completion [∆P]
– Loop nogoods, determined and recorded on demand [ΛP]
– Dynamic nogoods, derived from conflicts and unfounded sets [∇]

• When a nogood in ∆P ∪∇ becomes violated:
– Analyze the conflict by resolution

(until reaching a Unique Implication Point, short: UIP)
– Learn the derived conflict nogood δ
– Backjump to the earliest (heuristic) choice such that the

complement of the UIP is unit-resulting for δ
– Assert the complement of the UIP and proceed

(by unit propagation)
• Terminate when either:

– Finding a stable model (a solution for ∆P ∪ ΛP)
– Deriving a conflict independently of (heuristic) choices

TU Dresden, 25th June 2015 DS slide 21 of 69

Algorithm 1: CDNL-ASP
Input : A normal program P
Output : A stable model of P or “no stable model”

A := ∅ // assignment over atom(P) ∪ body(P)
∇ := ∅ // set of recorded nogoods
dl := 0 // decision level

loop
(A,∇) := NogoodPropagation(P,∇, A)

if ε ⊆ A for some ε ∈ ∆P ∪ ∇ then // conflict

if max({dlevel(σ) | σ ∈ ε} ∪ {0}) = 0 then return no stable model
(δ, dl) := ConflictAnalysis(ε, P,∇, A)
∇ := ∇ ∪ {δ} // (temporarily) record conflict nogood
A := A \ {σ ∈ A | dl < dlevel(σ)} // backjumping

else if AT ∪ AF = atom(P) ∪ body(P) then // stable model
return AT ∩ atom(P)

else
σd := Select(P,∇, A) // decision
dl := dl + 1
dlevel(σd) := dl
A := A ◦ σd

TU Dresden, 25th June 2015 DS slide 22 of 69

Observations
• Decision level dl, initially set to 0, is used to count the number of

heuristically chosen literals in assignment A

• For a heuristically chosen literal σd = Ta or σd = Fa, respectively, we
require a ∈ (atom(P) ∪ body(P)) \ (AT ∪ AF)

• For any literal σ ∈ A, dl(σ) denotes the decision level of σ, viz. the value
dl had when σ was assigned

• A conflict is detected from violation of a nogood ε ⊆ ∆P ∪∇
• A conflict at decision level 0 (where A contains no heuristically chosen

literals) indicates non-existence of stable models
• A nogood δ derived by conflict analysis is asserting, that is,

some literal is unit-resulting for δ at a decision level k < dl
– After learning δ and backjumping to decision level k,

at least one literal is newly derivable by unit propagation
– No explicit flipping of heuristically chosen literals !

TU Dresden, 25th June 2015 DS slide 23 of 69

Observations
• Decision level dl, initially set to 0, is used to count the number of

heuristically chosen literals in assignment A

• For a heuristically chosen literal σd = Ta or σd = Fa, respectively, we
require a ∈ (atom(P) ∪ body(P)) \ (AT ∪ AF)

• For any literal σ ∈ A, dl(σ) denotes the decision level of σ, viz. the value
dl had when σ was assigned

• A conflict is detected from violation of a nogood ε ⊆ ∆P ∪∇
• A conflict at decision level 0 (where A contains no heuristically chosen

literals) indicates non-existence of stable models
• A nogood δ derived by conflict analysis is asserting, that is,

some literal is unit-resulting for δ at a decision level k < dl

– After learning δ and backjumping to decision level k,
at least one literal is newly derivable by unit propagation

– No explicit flipping of heuristically chosen literals !

TU Dresden, 25th June 2015 DS slide 24 of 69

Observations
• Decision level dl, initially set to 0, is used to count the number of

heuristically chosen literals in assignment A

• For a heuristically chosen literal σd = Ta or σd = Fa, respectively, we
require a ∈ (atom(P) ∪ body(P)) \ (AT ∪ AF)

• For any literal σ ∈ A, dl(σ) denotes the decision level of σ, viz. the value
dl had when σ was assigned

• A conflict is detected from violation of a nogood ε ⊆ ∆P ∪∇
• A conflict at decision level 0 (where A contains no heuristically chosen

literals) indicates non-existence of stable models
• A nogood δ derived by conflict analysis is asserting, that is,

some literal is unit-resulting for δ at a decision level k < dl
– After learning δ and backjumping to decision level k,

at least one literal is newly derivable by unit propagation
– No explicit flipping of heuristically chosen literals !

TU Dresden, 25th June 2015 DS slide 25 of 69

Example: CDNL-ASP

Consider

P =

{
x← not y
y← not x

u← x, y
u← v

v← x
v← u, y

w← not x, not y
}

dl σd σ δ

1 Tu
2 F{not x, not y}

Fw {Tw, F{not x, not y}} = δ(w)
3 F{not y}

Fx {Tx, F{not y}} = δ(x)
F{x} {T{x}, Fx} ∈ ∆({x})
F{x, y} {T{x, y}, Fx} ∈ ∆({x, y})
...

...
{Tu, F{x}, F{x, y}} = λ(u, {u, v}) 8

TU Dresden, 25th June 2015 DS slide 26 of 69

Example: CDNL-ASP

Consider

P =

{
x← not y
y← not x

u← x, y
u← v

v← x
v← u, y

w← not x, not y
}

dl σd σ δ

1 Tu

2 F{not x, not y}
Fw {Tw, F{not x, not y}} = δ(w)

3 F{not y}
Fx {Tx, F{not y}} = δ(x)
F{x} {T{x}, Fx} ∈ ∆({x})
F{x, y} {T{x, y}, Fx} ∈ ∆({x, y})
...

...
{Tu, F{x}, F{x, y}} = λ(u, {u, v}) 8

TU Dresden, 25th June 2015 DS slide 27 of 69

Example: CDNL-ASP

Consider

P =

{
x← not y
y← not x

u← x, y
u← v

v← x
v← u, y

w← not x, not y
}

dl σd σ δ

1 Tu
2 F{not x, not y}

Fw {Tw, F{not x, not y}} = δ(w)
3 F{not y}

Fx {Tx, F{not y}} = δ(x)
F{x} {T{x}, Fx} ∈ ∆({x})
F{x, y} {T{x, y}, Fx} ∈ ∆({x, y})
...

...
{Tu, F{x}, F{x, y}} = λ(u, {u, v}) 8

TU Dresden, 25th June 2015 DS slide 28 of 69

Example: CDNL-ASP

Consider

P =

{
x← not y
y← not x

u← x, y
u← v

v← x
v← u, y

w← not x, not y
}

dl σd σ δ

1 Tu
2 F{not x, not y}

Fw {Tw, F{not x, not y}} = δ(w)

3 F{not y}
Fx {Tx, F{not y}} = δ(x)
F{x} {T{x}, Fx} ∈ ∆({x})
F{x, y} {T{x, y}, Fx} ∈ ∆({x, y})
...

...
{Tu, F{x}, F{x, y}} = λ(u, {u, v}) 8

TU Dresden, 25th June 2015 DS slide 29 of 69

Example: CDNL-ASP

Consider

P =

{
x← not y
y← not x

u← x, y
u← v

v← x
v← u, y

w← not x, not y
}

dl σd σ δ

1 Tu
2 F{not x, not y}

Fw {Tw, F{not x, not y}} = δ(w)
3 F{not y}

Fx {Tx, F{not y}} = δ(x)
F{x} {T{x}, Fx} ∈ ∆({x})
F{x, y} {T{x, y}, Fx} ∈ ∆({x, y})
...

...
{Tu, F{x}, F{x, y}} = λ(u, {u, v}) 8

TU Dresden, 25th June 2015 DS slide 30 of 69

Example: CDNL-ASP

Consider

P =

{
x← not y
y← not x

u← x, y
u← v

v← x
v← u, y

w← not x, not y
}

dl σd σ δ

1 Tu
2 F{not x, not y}

Fw {Tw, F{not x, not y}} = δ(w)
3 F{not y}

Fx {Tx, F{not y}} = δ(x)
F{x} {T{x}, Fx} ∈ ∆({x})
F{x, y} {T{x, y}, Fx} ∈ ∆({x, y})

...
...
{Tu, F{x}, F{x, y}} = λ(u, {u, v}) 8

TU Dresden, 25th June 2015 DS slide 31 of 69

Example: CDNL-ASP

Consider

P =

{
x← not y
y← not x

u← x, y
u← v

v← x
v← u, y

w← not x, not y
}

dl σd σ δ

1 Tu
2 F{not x, not y}

Fw {Tw, F{not x, not y}} = δ(w)
3 F{not y}

Fx {Tx, F{not y}} = δ(x)
F{x} {T{x}, Fx} ∈ ∆({x})
F{x, y} {T{x, y}, Fx} ∈ ∆({x, y})
...

...
{Tu, F{x}, F{x, y}} = λ(u, {u, v}) 8

TU Dresden, 25th June 2015 DS slide 32 of 69

Example: CDNL-ASP

Consider

P =

{
x← not y
y← not x

u← x, y
u← v

v← x
v← u, y

w← not x, not y
}

dl σd σ δ

1 Tu

Tx {Tu, Fx} ∈ ∇
...

...
Tv {Fv, T{x}} ∈ ∆(v)
Fy {Ty, F{not x}} = δ(y)
Fw {Tw, F{not x, not y}} = δ(w)

TU Dresden, 25th June 2015 DS slide 33 of 69

Example: CDNL-ASP

Consider

P =

{
x← not y
y← not x

u← x, y
u← v

v← x
v← u, y

w← not x, not y
}

dl σd σ δ

1 Tu
Tx {Tu, Fx} ∈ ∇

...
...

Tv {Fv, T{x}} ∈ ∆(v)
Fy {Ty, F{not x}} = δ(y)
Fw {Tw, F{not x, not y}} = δ(w)

TU Dresden, 25th June 2015 DS slide 34 of 69

Example: CDNL-ASP

Consider

P =

{
x← not y
y← not x

u← x, y
u← v

v← x
v← u, y

w← not x, not y
}

dl σd σ δ

1 Tu
Tx {Tu, Fx} ∈ ∇
...

...
Tv {Fv, T{x}} ∈ ∆(v)
Fy {Ty, F{not x}} = δ(y)
Fw {Tw, F{not x, not y}} = δ(w)

TU Dresden, 25th June 2015 DS slide 35 of 69

Example: CDNL-ASP

Consider

P =

{
x← not y
y← not x

u← x, y
u← v

v← x
v← u, y

w← not x, not y
}

dl σd σ δ

1 Tu
Tx {Tu, Fx} ∈ ∇
...

...
Tv {Fv, T{x}} ∈ ∆(v)
Fy {Ty, F{not x}} = δ(y)
Fw {Tw, F{not x, not y}} = δ(w)

TU Dresden, 25th June 2015 DS slide 36 of 69

Outline

1 Nogoods from loop formulas

2 Conflict-driven nogood learning
CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis

3 Summary

TU Dresden, 25th June 2015 DS slide 37 of 69

Outline of NogoodPropagation
• Derive deterministic consequences via:

– Unit propagation on ∆P and ∇;
– Unfounded sets U ⊆ atom(P)

• Note that U is unfounded if EBP(U) ⊆ AF

– Note: For any a ∈ U, we have (λ(a, U) \ {Ta}) ⊆ A

• An “interesting” unfounded set U satisfies:

∅ ⊂ U ⊆ (atom(P) \ AF)

• Wrt a fixpoint of unit propagation,
such an unfounded set contains some loop of P

– Note: Tight programs do not yield “interesting” unfounded sets !
• Given an unfounded set U and some a ∈ U, adding λ(a, U) to ∇ triggers

a conflict or further derivations by unit propagation
– Note: Add loop nogoods atom by atom to eventually falsify all a ∈ U

TU Dresden, 25th June 2015 DS slide 38 of 69

Outline of NogoodPropagation
• Derive deterministic consequences via:

– Unit propagation on ∆P and ∇;
– Unfounded sets U ⊆ atom(P)

• Note that U is unfounded if EBP(U) ⊆ AF

– Note: For any a ∈ U, we have (λ(a, U) \ {Ta}) ⊆ A

• An “interesting” unfounded set U satisfies:

∅ ⊂ U ⊆ (atom(P) \ AF)

• Wrt a fixpoint of unit propagation,

such an unfounded set contains some loop of P
– Note: Tight programs do not yield “interesting” unfounded sets !

• Given an unfounded set U and some a ∈ U, adding λ(a, U) to ∇ triggers
a conflict or further derivations by unit propagation

– Note: Add loop nogoods atom by atom to eventually falsify all a ∈ U

TU Dresden, 25th June 2015 DS slide 39 of 69

Outline of NogoodPropagation
• Derive deterministic consequences via:

– Unit propagation on ∆P and ∇;
– Unfounded sets U ⊆ atom(P)

• Note that U is unfounded if EBP(U) ⊆ AF

– Note: For any a ∈ U, we have (λ(a, U) \ {Ta}) ⊆ A

• An “interesting” unfounded set U satisfies:

∅ ⊂ U ⊆ (atom(P) \ AF)

• Wrt a fixpoint of unit propagation,
such an unfounded set contains some loop of P

– Note: Tight programs do not yield “interesting” unfounded sets !

• Given an unfounded set U and some a ∈ U, adding λ(a, U) to ∇ triggers
a conflict or further derivations by unit propagation

– Note: Add loop nogoods atom by atom to eventually falsify all a ∈ U

TU Dresden, 25th June 2015 DS slide 40 of 69

Outline of NogoodPropagation
• Derive deterministic consequences via:

– Unit propagation on ∆P and ∇;
– Unfounded sets U ⊆ atom(P)

• Note that U is unfounded if EBP(U) ⊆ AF

– Note: For any a ∈ U, we have (λ(a, U) \ {Ta}) ⊆ A

• An “interesting” unfounded set U satisfies:

∅ ⊂ U ⊆ (atom(P) \ AF)

• Wrt a fixpoint of unit propagation,
such an unfounded set contains some loop of P

– Note: Tight programs do not yield “interesting” unfounded sets !
• Given an unfounded set U and some a ∈ U, adding λ(a, U) to ∇ triggers

a conflict or further derivations by unit propagation
– Note: Add loop nogoods atom by atom to eventually falsify all a ∈ U

TU Dresden, 25th June 2015 DS slide 41 of 69

Algorithm 2: NogoodPropagation
Input : A normal program P, a set∇ of nogoods, and an assignment A.
Output : An extended assignment and set of nogoods.

U := ∅ // unfounded set

loop
repeat

if δ ⊆ A for some δ ∈ ∆P ∪ ∇ then return (A,∇) // conflict
Σ := {δ ∈ ∆P ∪ ∇ | δ \ A = {σ},σ /∈ A} // unit-resulting nogoods
if Σ 6= ∅ then let σ ∈ δ \ A for some δ ∈ Σ in

dlevel(σ) := max({dlevel(ρ) | ρ ∈ δ \ {σ}} ∪ {0})
A := A ◦ σ

until Σ = ∅
if loop(P) = ∅ then return (A,∇)

U := U \ AF

if U = ∅ then U := UnfoundedSet(P, A)
if U = ∅ then return (A,∇) // no unfounded set ∅ ⊂ U ⊆ atom(P) \ AF

let a ∈ U in
∇ := ∇ ∪ {{Ta} ∪ {FB | B ∈ EBP(U)}} // record loop nogood

TU Dresden, 25th June 2015 DS slide 42 of 69

Requirements for UnfoundedSet
• Implementations of UnfoundedSet must guarantee the following for a

result U
1 U ⊆ (atom(P) \ AF)
2 EBP(U) ⊆ AF

3 U = ∅ iff there is no nonempty unfounded subset of (atom(P) \ AF)

• Beyond that, there are various alternatives, such as:
– Calculating the greatest unfounded set
– Calculating unfounded sets within strongly connected components

of the positive atom dependency graph of P

– Usually, the latter option is implemented in ASP solvers

TU Dresden, 25th June 2015 DS slide 43 of 69

Requirements for UnfoundedSet
• Implementations of UnfoundedSet must guarantee the following for a

result U
1 U ⊆ (atom(P) \ AF)
2 EBP(U) ⊆ AF

3 U = ∅ iff there is no nonempty unfounded subset of (atom(P) \ AF)

• Beyond that, there are various alternatives, such as:
– Calculating the greatest unfounded set
– Calculating unfounded sets within strongly connected components

of the positive atom dependency graph of P

– Usually, the latter option is implemented in ASP solvers

TU Dresden, 25th June 2015 DS slide 44 of 69

Example: NogoodPropagation

Consider

P =

{
x← not y
y← not x

u← x, y
u← v

v← x
v← u, y

w← not x, not y
}

dl σd σ δ

1 Tu
2 F{not x, not y}

Fw {Tw, F{not x, not y}} = δ(w)
3 F{not y}

Fx {Tx, F{not y}} = δ(x)
F{x} {T{x}, Fx} ∈ ∆({x})
F{x, y} {T{x, y}, Fx} ∈ ∆({x, y})
T{not x} {F{not x}, Fx} = δ({not x})
Ty {F{not y}, Fy} = δ({not y})
T{v} {Tu, F{x, y}, F{v}} = δ(u)
T{u, y} {F{u, y}, Tu, Ty} = δ({u, y})
Tv {Fv, T{u, y}} ∈ ∆(v)

{Tu, F{x}, F{x, y}} = λ(u, {u, v}) 8

TU Dresden, 25th June 2015 DS slide 45 of 69

Outline

1 Nogoods from loop formulas

2 Conflict-driven nogood learning
CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis

3 Summary

TU Dresden, 25th June 2015 DS slide 46 of 69

Outline of ConflictAnalysis
• Conflict analysis is triggered whenever some nogood δ ∈ ∆P ∪∇

becomes violated, viz. δ ⊆ A, at a decision level dl > 0
– Note that all but the first literal assigned at dl have been

unit-resulting for nogoods ε ∈ ∆P ∪∇
– If σ ∈ δ has been unit-resulting for ε, we obtain a new violated

nogood by resolving δ and ε as follows:

(δ \ {σ}) ∪ (ε \ {σ})

• Resolution is directed by resolving first over the literal σ ∈ δ derived last,
viz. (δ \ A[σ]) = {σ}

– Iterated resolution progresses in inverse order of assignment
• Iterated resolution stops as soon as it generates a nogood δ containing

exactly one literal σ assigned at decision level dl
– This literal σ is called First Unique Implication Point (First-UIP)
– All literals in (δ \ {σ}) are assigned at decision levels smaller

than dl

TU Dresden, 25th June 2015 DS slide 47 of 69

Outline of ConflictAnalysis
• Conflict analysis is triggered whenever some nogood δ ∈ ∆P ∪∇

becomes violated, viz. δ ⊆ A, at a decision level dl > 0
– Note that all but the first literal assigned at dl have been

unit-resulting for nogoods ε ∈ ∆P ∪∇
– If σ ∈ δ has been unit-resulting for ε, we obtain a new violated

nogood by resolving δ and ε as follows:

(δ \ {σ}) ∪ (ε \ {σ})

• Resolution is directed by resolving first over the literal σ ∈ δ derived last,
viz. (δ \ A[σ]) = {σ}

– Iterated resolution progresses in inverse order of assignment

• Iterated resolution stops as soon as it generates a nogood δ containing
exactly one literal σ assigned at decision level dl

– This literal σ is called First Unique Implication Point (First-UIP)
– All literals in (δ \ {σ}) are assigned at decision levels smaller

than dl

TU Dresden, 25th June 2015 DS slide 48 of 69

Outline of ConflictAnalysis
• Conflict analysis is triggered whenever some nogood δ ∈ ∆P ∪∇

becomes violated, viz. δ ⊆ A, at a decision level dl > 0
– Note that all but the first literal assigned at dl have been

unit-resulting for nogoods ε ∈ ∆P ∪∇
– If σ ∈ δ has been unit-resulting for ε, we obtain a new violated

nogood by resolving δ and ε as follows:

(δ \ {σ}) ∪ (ε \ {σ})

• Resolution is directed by resolving first over the literal σ ∈ δ derived last,
viz. (δ \ A[σ]) = {σ}

– Iterated resolution progresses in inverse order of assignment
• Iterated resolution stops as soon as it generates a nogood δ containing

exactly one literal σ assigned at decision level dl
– This literal σ is called First Unique Implication Point (First-UIP)
– All literals in (δ \ {σ}) are assigned at decision levels smaller

than dl

TU Dresden, 25th June 2015 DS slide 49 of 69

Algorithm 3: ConflictAnalysis
Input : A non-empty violated nogood δ, a normal program P, a set∇ of nogoods, and an

assignment A.
Output : A derived nogood and a decision level.

loop
let σ ∈ δ such that δ \ A[σ] = {σ} in

k := max({dlevel(ρ) | ρ ∈ δ \ {σ}} ∪ {0})
if k = dlevel(σ) then

let ε ∈ ∆P ∪ ∇ such that ε \ A[σ] = {σ} in
δ := (δ \ {σ}) ∪ (ε \ {σ}) // resolution

else return (δ, k)

TU Dresden, 25th June 2015 DS slide 50 of 69

Example: ConflictAnalysis

Consider

P =

{
x← not y
y← not x

u← x, y
u← v

v← x
v← u, y

w← not x, not y
}

dl σd σ δ
1 Tu
2 F{not x, not y}

Fw {Tw, F{not x, not y}} = δ(w)
3 F{not y}

Fx {Tx, F{not y}} = δ(x)
F{x} {T{x}, Fx} ∈ ∆({x})

{Tu, Fx}

F{x, y} {T{x, y}, Fx} ∈ ∆({x, y})

{Tu, Fx, F{x}}

T{not x} {F{not x}, Fx} = δ({not x})
Ty {F{not y}, Fy} = δ({not y})
T{v} {Tu, F{x, y}, F{v}} = δ(u)
T{u, y} {F{u, y}, Tu, Ty} = δ({u, y})
Tv {Fv, T{u, y}} ∈ ∆(v)

{Tu, F{x}, F{x, y}} = λ(u, {u, v}) 8

TU Dresden, 25th June 2015 DS slide 51 of 69

Example: ConflictAnalysis

Consider

P =

{
x← not y
y← not x

u← x, y
u← v

v← x
v← u, y

w← not x, not y
}

dl σd σ δ
1 Tu
2 F{not x, not y}

Fw {Tw, F{not x, not y}} = δ(w)
3 F{not y}

Fx {Tx, F{not y}} = δ(x)
F{x} {T{x}, Fx} ∈ ∆({x})

{Tu, Fx}

F{x, y} {T{x, y}, Fx} ∈ ∆({x, y})

{Tu, Fx, F{x}}

T{not x} {F{not x}, Fx} = δ({not x})
Ty {F{not y}, Fy} = δ({not y})
T{v} {Tu, F{x, y}, F{v}} = δ(u)
T{u, y} {F{u, y}, Tu, Ty} = δ({u, y})
Tv {Fv, T{u, y}} ∈ ∆(v)

{Tu, F{x}, F{x, y}} = λ(u, {u, v}) 8

TU Dresden, 25th June 2015 DS slide 52 of 69

Example: ConflictAnalysis

Consider

P =

{
x← not y
y← not x

u← x, y
u← v

v← x
v← u, y

w← not x, not y
}

dl σd σ δ
1 Tu
2 F{not x, not y}

Fw {Tw, F{not x, not y}} = δ(w)
3 F{not y}

Fx {Tx, F{not y}} = δ(x)
F{x} {T{x}, Fx} ∈ ∆({x})

{Tu, Fx}

F{x, y} {T{x, y}, Fx} ∈ ∆({x, y})

{Tu, Fx, F{x}}

T{not x} {F{not x}, Fx} = δ({not x})
Ty {F{not y}, Fy} = δ({not y})
T{v} {Tu, F{x, y}, F{v}} = δ(u)
T{u, y} {F{u, y}, Tu, Ty} = δ({u, y})
Tv {Fv, T{u, y}} ∈ ∆(v)

{Tu, F{x}, F{x, y}} = λ(u, {u, v}) 8

TU Dresden, 25th June 2015 DS slide 53 of 69

Example: ConflictAnalysis

Consider

P =

{
x← not y
y← not x

u← x, y
u← v

v← x
v← u, y

w← not x, not y
}

dl σd σ δ
1 Tu
2 F{not x, not y}

Fw {Tw, F{not x, not y}} = δ(w)
3 F{not y}

Fx {Tx, F{not y}} = δ(x)
F{x} {T{x}, Fx} ∈ ∆({x})

{Tu, Fx}

F{x, y} {T{x, y}, Fx} ∈ ∆({x, y})

{Tu, Fx, F{x}}

T{not x} {F{not x}, Fx} = δ({not x})
Ty {F{not y}, Fy} = δ({not y})
T{v} {Tu, F{x, y}, F{v}} = δ(u)
T{u, y} {F{u, y}, Tu, Ty} = δ({u, y})
Tv {Fv, T{u, y}} ∈ ∆(v)

{Tu, F{x}, F{x, y}} = λ(u, {u, v}) 8

TU Dresden, 25th June 2015 DS slide 54 of 69

Example: ConflictAnalysis

Consider

P =

{
x← not y
y← not x

u← x, y
u← v

v← x
v← u, y

w← not x, not y
}

dl σd σ δ
1 Tu
2 F{not x, not y}

Fw {Tw, F{not x, not y}} = δ(w)
3 F{not y}

Fx {Tx, F{not y}} = δ(x)
F{x} {T{x}, Fx} ∈ ∆({x})

{Tu, Fx}

F{x, y} {T{x, y}, Fx} ∈ ∆({x, y}) {Tu, Fx, F{x}}
T{not x} {F{not x}, Fx} = δ({not x})
Ty {F{not y}, Fy} = δ({not y})
T{v} {Tu, F{x, y}, F{v}} = δ(u)
T{u, y} {F{u, y}, Tu, Ty} = δ({u, y})
Tv {Fv, T{u, y}} ∈ ∆(v)

{Tu, F{x}, F{x, y}} = λ(u, {u, v}) 8

TU Dresden, 25th June 2015 DS slide 55 of 69

Example: ConflictAnalysis

Consider

P =

{
x← not y
y← not x

u← x, y
u← v

v← x
v← u, y

w← not x, not y
}

dl σd σ δ
1 Tu
2 F{not x, not y}

Fw {Tw, F{not x, not y}} = δ(w)
3 F{not y}

Fx {Tx, F{not y}} = δ(x)
F{x} {T{x}, Fx} ∈ ∆({x})

{Tu, Fx}

F{x, y} {T{x, y}, Fx} ∈ ∆({x, y}) {Tu, Fx, F{x}}
T{not x} {F{not x}, Fx} = δ({not x})
Ty {F{not y}, Fy} = δ({not y})
T{v} {Tu, F{x, y}, F{v}} = δ(u)
T{u, y} {F{u, y}, Tu, Ty} = δ({u, y})
Tv {Fv, T{u, y}} ∈ ∆(v)

{Tu, F{x}, F{x, y}} = λ(u, {u, v}) 8

TU Dresden, 25th June 2015 DS slide 56 of 69

Example: ConflictAnalysis

Consider

P =

{
x← not y
y← not x

u← x, y
u← v

v← x
v← u, y

w← not x, not y
}

dl σd σ δ
1 Tu
2 F{not x, not y}

Fw {Tw, F{not x, not y}} = δ(w)
3 F{not y}

Fx {Tx, F{not y}} = δ(x)
F{x} {T{x}, Fx} ∈ ∆({x})

{Tu, Fx}

F{x, y} {T{x, y}, Fx} ∈ ∆({x, y}) {Tu, Fx, F{x}}
T{not x} {F{not x}, Fx} = δ({not x})
Ty {F{not y}, Fy} = δ({not y})
T{v} {Tu, F{x, y}, F{v}} = δ(u)
T{u, y} {F{u, y}, Tu, Ty} = δ({u, y})
Tv {Fv, T{u, y}} ∈ ∆(v)

{Tu, F{x}, F{x, y}} = λ(u, {u, v}) 8

TU Dresden, 25th June 2015 DS slide 57 of 69

Example: ConflictAnalysis

Consider

P =

{
x← not y
y← not x

u← x, y
u← v

v← x
v← u, y

w← not x, not y
}

dl σd σ δ
1 Tu
2 F{not x, not y}

Fw {Tw, F{not x, not y}} = δ(w)
3 F{not y}

Fx {Tx, F{not y}} = δ(x)
F{x} {T{x}, Fx} ∈ ∆({x}) {Tu, Fx}
F{x, y} {T{x, y}, Fx} ∈ ∆({x, y}) {Tu, Fx, F{x}}
T{not x} {F{not x}, Fx} = δ({not x})
Ty {F{not y}, Fy} = δ({not y})
T{v} {Tu, F{x, y}, F{v}} = δ(u)
T{u, y} {F{u, y}, Tu, Ty} = δ({u, y})
Tv {Fv, T{u, y}} ∈ ∆(v)

{Tu, F{x}, F{x, y}} = λ(u, {u, v}) 8

TU Dresden, 25th June 2015 DS slide 58 of 69

Example: ConflictAnalysis

Consider

P =

{
x← not y
y← not x

u← x, y
u← v

v← x
v← u, y

w← not x, not y
}

dl σd σ δ
1 Tu
2 F{not x, not y}

Fw {Tw, F{not x, not y}} = δ(w)
3 F{not y}

Fx {Tx, F{not y}} = δ(x)
F{x} {T{x}, Fx} ∈ ∆({x}) {Tu, Fx}
F{x, y} {T{x, y}, Fx} ∈ ∆({x, y}) {Tu, Fx, F{x}}
T{not x} {F{not x}, Fx} = δ({not x})
Ty {F{not y}, Fy} = δ({not y})
T{v} {Tu, F{x, y}, F{v}} = δ(u)
T{u, y} {F{u, y}, Tu, Ty} = δ({u, y})
Tv {Fv, T{u, y}} ∈ ∆(v)

{Tu, F{x}, F{x, y}} = λ(u, {u, v}) 8

TU Dresden, 25th June 2015 DS slide 59 of 69

Example: ConflictAnalysis

Consider

P =

{
x← not y
y← not x

u← x, y
u← v

v← x
v← u, y

w← not x, not y
}

dl σd σ δ
1 Tu
2 F{not x, not y}

Fw {Tw, F{not x, not y}} = δ(w)
3 F{not y}

Fx {Tx, F{not y}} = δ(x)
F{x} {T{x}, Fx} ∈ ∆({x}) {Tu, Fx}
F{x, y} {T{x, y}, Fx} ∈ ∆({x, y}) {Tu, Fx, F{x}}
T{not x} {F{not x}, Fx} = δ({not x})
Ty {F{not y}, Fy} = δ({not y})
T{v} {Tu, F{x, y}, F{v}} = δ(u)
T{u, y} {F{u, y}, Tu, Ty} = δ({u, y})
Tv {Fv, T{u, y}} ∈ ∆(v)

{Tu, F{x}, F{x, y}} = λ(u, {u, v}) 8

TU Dresden, 25th June 2015 DS slide 60 of 69

Example: ConflictAnalysis ctd.

Consider

P =

{
x← not y
y← not x

u← x, y
u← v

v← x
v← u, y

w← not x, not y
}

dl σd σ δ

1 Tu
Tx {Tu, Fx} ∈ ∇

...
...

Tv {Fv, T{x}} ∈ ∆(v)
Fy {Ty, F{not x}} = δ(y)
Fw {Tw, F{not x, not y}} = δ(w)

TU Dresden, 25th June 2015 DS slide 61 of 69

Example: ConflictAnalysis ctd.

Consider

P =

{
x← not y
y← not x

u← x, y
u← v

v← x
v← u, y

w← not x, not y
}

dl σd σ δ

1 Tu
Tx {Tu, Fx} ∈ ∇
...

...
Tv {Fv, T{x}} ∈ ∆(v)
Fy {Ty, F{not x}} = δ(y)
Fw {Tw, F{not x, not y}} = δ(w)

TU Dresden, 25th June 2015 DS slide 62 of 69

Remarks
• There always is a First-UIP at which conflict analysis terminates

– In the worst, resolution stops at the heuristically chosen literal
assigned at decision level dl

• The nogood δ containing First-UIP σ is violated by A, viz. δ ⊆ A

• We have k = max({dl(ρ) | ρ ∈ δ \ {σ}} ∪ {0}) < dl
– After recording δ in ∇ and backjumping to decision level k,
σ is unit-resulting for δ !

– Such a nogood δ is called asserting
• Asserting nogoods direct conflict-driven search into a different region of

the search space than traversed before,
without explicitly flipping any heuristically chosen literal !

TU Dresden, 25th June 2015 DS slide 63 of 69

Remarks
• There always is a First-UIP at which conflict analysis terminates

– In the worst, resolution stops at the heuristically chosen literal
assigned at decision level dl

• The nogood δ containing First-UIP σ is violated by A, viz. δ ⊆ A

• We have k = max({dl(ρ) | ρ ∈ δ \ {σ}} ∪ {0}) < dl

– After recording δ in ∇ and backjumping to decision level k,
σ is unit-resulting for δ !

– Such a nogood δ is called asserting
• Asserting nogoods direct conflict-driven search into a different region of

the search space than traversed before,
without explicitly flipping any heuristically chosen literal !

TU Dresden, 25th June 2015 DS slide 64 of 69

Remarks
• There always is a First-UIP at which conflict analysis terminates

– In the worst, resolution stops at the heuristically chosen literal
assigned at decision level dl

• The nogood δ containing First-UIP σ is violated by A, viz. δ ⊆ A

• We have k = max({dl(ρ) | ρ ∈ δ \ {σ}} ∪ {0}) < dl
– After recording δ in ∇ and backjumping to decision level k,
σ is unit-resulting for δ !

– Such a nogood δ is called asserting

• Asserting nogoods direct conflict-driven search into a different region of
the search space than traversed before,
without explicitly flipping any heuristically chosen literal !

TU Dresden, 25th June 2015 DS slide 65 of 69

Remarks
• There always is a First-UIP at which conflict analysis terminates

– In the worst, resolution stops at the heuristically chosen literal
assigned at decision level dl

• The nogood δ containing First-UIP σ is violated by A, viz. δ ⊆ A

• We have k = max({dl(ρ) | ρ ∈ δ \ {σ}} ∪ {0}) < dl
– After recording δ in ∇ and backjumping to decision level k,
σ is unit-resulting for δ !

– Such a nogood δ is called asserting
• Asserting nogoods direct conflict-driven search into a different region of

the search space than traversed before,
without explicitly flipping any heuristically chosen literal !

TU Dresden, 25th June 2015 DS slide 66 of 69

Outline

1 Nogoods from loop formulas

2 Conflict-driven nogood learning

3 Summary

TU Dresden, 25th June 2015 DS slide 67 of 69

Summary
• Nogoods from loop formulas
• Conflict driven nogood learning

– CDNL-ASP Algorithm
– Nogood Propagation
– Conflict Analysis

TU Dresden, 25th June 2015 DS slide 68 of 69

References

Martin Gebser, Benjamin Kaufmann Roland Kaminski, and Torsten
Schaub.
Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan and Claypool Publishers, 2012.
doi=10.2200/S00457ED1V01Y201211AIM019.

• See also: http://potassco.sourceforge.net

TU Dresden, 25th June 2015 DS slide 69 of 69

http://potassco.sourceforge.net

	Nogoods from loop formulas
	Conflict-driven nogood learning
	CDNL-ASP Algorithm
	Nogood Propagation
	Conflict Analysis

	Summary

