

Artificial Intelligence, Computational Logic

DEDUCTION SYSTEMS

Lecture 5 ASP Solving II *slides adapted from Torsten Schaub [Gebser et al.(2012)]

Sarah Gaggl

Dresden, 25th June 2015

Outline

Conflict-driven nogood learning

3 Summary

Nogoods from logic programs via loop formulas

Let P be a normal logic program and recall that:

• For $L \subseteq atom(P)$, the external supports of L for P are

$$ES_{P}(L) = \{r \in P \mid head(r) \in L, body(r)^{+} \cap L = \emptyset\}$$

Nogoods from logic programs via loop formulas

Let P be a normal logic program and recall that:

• For $L \subseteq atom(P)$, the external supports of L for P are

 $ES_P(L) = \{r \in P \mid head(r) \in L, body(r)^+ \cap L = \emptyset\}$

• The (disjunctive) loop formula of *L* for *P* is

$$LF_P(L) = (\bigvee_{A \in L} A) \to (\bigvee_{r \in ES_P(L)} body(r))$$

$$\equiv (\bigwedge_{r \in ES_P(L)} \neg body(r)) \to (\bigwedge_{A \in L} \neg A)$$

 Note: The loop formula of *L* enforces all atoms in *L* to be false whenever *L* is not externally supported

Nogoods from logic programs via loop formulas

Let P be a normal logic program and recall that:

• For $L \subseteq atom(P)$, the external supports of L for P are

 $ES_{P}(L) = \{r \in P \mid head(r) \in L, body(r)^{+} \cap L = \emptyset\}$

• The (disjunctive) loop formula of *L* for *P* is

$$LF_P(L) = (\bigvee_{A \in L} A) \to (\bigvee_{r \in ES_P(L)} body(r))$$

$$\equiv (\bigwedge_{r \in ES_P(L)} \neg body(r)) \to (\bigwedge_{A \in L} \neg A)$$

- Note: The loop formula of *L* enforces all atoms in *L* to be false whenever *L* is not externally supported
- The external bodies of *L* for *P* are

$$EB_P(L) = \{body(r) \mid r \in ES_P(L)\}$$

Nogoods from logic programs loop nogoods

For a logic program *P* and some Ø ⊂ U ⊆ *atom*(*P*), define the loop nogood of an atom *a* ∈ U as

$$\lambda(a, U) = \{\mathbf{T}a, \mathbf{F}B_1, \dots, \mathbf{F}B_k\}$$

where $EB_{P}(U) = \{B_{1}, ..., B_{k}\}$

Nogoods from logic programs loop nogoods

 For a logic program P and some Ø ⊂ U ⊆ atom(P), define the loop nogood of an atom a ∈ U as

$$\lambda(a, U) = \{Ta, FB_1, \dots, FB_k\}$$

where $EB_{P}(U) = \{B_{1}, ..., B_{k}\}$

• We get the following set of loop nogoods for *P*:

$$\Lambda_P = \bigcup_{\emptyset \subset U \subseteq atom(P)} \{\lambda(a, U) \mid a \in U\}$$

Nogoods from logic programs loop nogoods

 For a logic program P and some Ø ⊂ U ⊆ atom(P), define the loop nogood of an atom a ∈ U as

$$\lambda(a, U) = \{Ta, FB_1, \dots, FB_k\}$$

where $EB_{P}(U) = \{B_{1}, ..., B_{k}\}$

• We get the following set of loop nogoods for *P*:

$$\Lambda_P = \bigcup_{\emptyset \subset U \subseteq atom(P)} \{\lambda(a, U) \mid a \in U\}$$

• The set Λ_P of loop nogoods denies cyclic support among true atoms

Example

• Consider the program

$$\begin{cases} x \leftarrow not \ y & u \leftarrow x \\ y \leftarrow not \ x & u \leftarrow v \\ v \leftarrow u, \ y \end{cases}$$

Example

• Consider the program

$$\begin{cases} x \leftarrow not \ y & u \leftarrow x \\ y \leftarrow not \ x & u \leftarrow v \\ y \leftarrow uot \ x & v \leftarrow u, y \end{cases}$$

• For *u* in the set {*u*, *v*}, we obtain the loop nogood:

$$\lambda(u, \{u, v\}) = \{Tu, F\{x\}\}$$

Example

• Consider the program

$$\left\{\begin{array}{ccc} x \leftarrow not \ y & u \leftarrow x \\ y \leftarrow not \ x & u \leftarrow v \\ y \leftarrow not \ x & v \leftarrow u, y \end{array}\right\}$$

• For *u* in the set {*u*, *v*}, we obtain the loop nogood:

$$\lambda(u, \{u, v\}) = \{Tu, F\{x\}\}$$

Similarly for v in $\{u, v\}$, we get:

$$\lambda(v, \{u, v\}) = \{Tv, F\{x\}\}$$

Characterization of stable models

Theorem

Let *P* be a logic program. Then, $X \subseteq atom(P)$ is a stable model of *P* iff $X = A^T \cap atom(P)$ for a (unique) solution *A* for $\Delta_P \cup \Lambda_P$

Characterization of stable models

Theorem

Let *P* be a logic program. Then, $X \subseteq atom(P)$ is a stable model of *P* iff $X = A^T \cap atom(P)$ for a (unique) solution *A* for $\Delta_P \cup \Lambda_P$

Some remarks

- Nogoods in Λ_P augment Δ_P with conditions checking for unfounded sets, in particular, those being loops
- While $|\Delta_P|$ is linear in the size of *P*, Λ_P may contain exponentially many (non-redundant) loop nogoods

Outline

Nogoods from loop formulas

2 Conflict-driven nogood learning

B Summary

Towards conflict-driven search

Boolean constraint solving algorithms pioneered for SAT led to:

- Traditional DPLL-style approach (DPLL stands for 'Davis-Putnam-Logemann-Loveland')
 - (Unit) propagation
 - (Chronological) backtracking
 - in ASP, eg smodels
- Modern CDCL-style approach (CDCL stands for 'Conflict-Driven Constraint Learning')
 - (Unit) propagation
 - Conflict analysis (via resolution)
 - Learning + Backjumping + Assertion
 - in ASP, eg clasp

DPLL-style solving

loop

propa	gate		// deterministically assign literals
if no c	conflic	then	
		•	then return solution
	else (decide	// non-deterministically assign some literal
else			
		level conflict then	return unsatisfiable
	else		
		backtrack flip	// unassign literals made after last decision // assign complement of last decision literal

CDCL-style solving

loop

propag	ate	// deterministically assign literals
if no co	onflict then	
	f all variables ass else decide	igned then return solution // non-deterministically assign some literal
else i	f top-level conflict	then return unsatisfiable
e	else	
	analyze backjump	// analyze conflict and add conflict constraint // unassign literals until conflict constraint is unit

Outline

Conflict-driven nogood learningCDNL-ASP Algorithm

- Nogood Propagation
- Conflict Analysis

Outline of CDNL-ASP algorithm

- Keep track of deterministic consequences by unit propagation on:
 - Program completion
 - Loop nogoods, determined and recorded on demand
 - Dynamic nogoods, derived from conflicts and unfounded sets

Outline of CDNL-ASP algorithm

- Keep track of deterministic consequences by unit propagation on:
 - Program completion
 - Loop nogoods, determined and recorded on demand
 - Dynamic nogoods, derived from conflicts and unfounded sets
- When a nogood in $\Delta_P \cup \nabla$ becomes violated:
 - Analyze the conflict by resolution (until reaching a Unique Implication Point, short: UIP)
 - Learn the derived conflict nogood δ
 - Backjump to the earliest (heuristic) choice such that the complement of the UIP is unit-resulting for δ
 - Assert the complement of the UIP and proceed (by unit propagation)

 $\begin{bmatrix} \Delta_P \\ [\Lambda_P] \\ [\nabla] \end{bmatrix}$

Outline of CDNL-ASP algorithm

- Keep track of deterministic consequences by unit propagation on:
 - Program completion
 - Loop nogoods, determined and recorded on demand
 - Dynamic nogoods, derived from conflicts and unfounded sets
- When a nogood in $\Delta_P \cup \nabla$ becomes violated:
 - Analyze the conflict by resolution (until reaching a Unique Implication Point, short: UIP)
 - Learn the derived conflict nogood δ
 - Backjump to the earliest (heuristic) choice such that the complement of the UIP is unit-resulting for δ
 - Assert the complement of the UIP and proceed (by unit propagation)
- Terminate when either:
 - Finding a stable model (a solution for $\Delta_P \cup \Lambda_P$)
 - Deriving a conflict independently of (heuristic) choices

Algorithm 1: CDNL-ASP

Input : A normal program P Output : A stable model of P or "no stable model" $A := \emptyset$ // assignment over $atom(P) \cup body(P)$ $\nabla := \emptyset$ // set of recorded nogoods dl := 0// decision level loop $(A, \nabla) := \mathsf{NogoodPropagation}(P, \nabla, A)$ if $\varepsilon \subset A$ for some $\varepsilon \in \Delta_P \cup \nabla$ then // conflict if $\max(\{dlevel(\sigma) \mid \sigma \in \varepsilon\} \cup \{0\}) = 0$ then return no stable model $(\delta, dl) := \text{ConflictAnalysis}(\varepsilon, P, \nabla, A)$ $\nabla := \nabla \cup \{\delta\}$ // (temporarily) record conflict nogood $A := A \setminus \{ \sigma \in A \mid dl < dlevel(\sigma) \}$ // backjumping else if $A^T \cup A^F = atom(P) \cup body(P)$ then // stable model return $A^T \cap atom(P)$ else // decision $\sigma_d := \text{Select}(P, \nabla, A)$ dl := dl + 1 $dlevel(\sigma_d) := dl$ $A := A \circ \sigma_d$

Observations

- Decision level *dl*, initially set to 0, is used to count the number of heuristically chosen literals in assignment *A*
- For a heuristically chosen literal $\sigma_d = Ta$ or $\sigma_d = Fa$, respectively, we require $a \in (atom(P) \cup body(P)) \setminus (A^T \cup A^F)$
- For any literal $\sigma \in A$, $dl(\sigma)$ denotes the decision level of σ , viz. the value dl had when σ was assigned

Observations

- Decision level *dl*, initially set to 0, is used to count the number of heuristically chosen literals in assignment *A*
- For a heuristically chosen literal $\sigma_d = Ta$ or $\sigma_d = Fa$, respectively, we require $a \in (atom(P) \cup body(P)) \setminus (A^T \cup A^F)$
- For any literal $\sigma \in A$, $dl(\sigma)$ denotes the decision level of σ , viz. the value dl had when σ was assigned
- A conflict is detected from violation of a nogood $\varepsilon \subseteq \Delta_P \cup \nabla$
- A conflict at decision level 0 (where *A* contains no heuristically chosen literals) indicates non-existence of stable models
- A nogood δ derived by conflict analysis is asserting, that is, some literal is unit-resulting for δ at a decision level k < dl

Observations

- Decision level *dl*, initially set to 0, is used to count the number of heuristically chosen literals in assignment *A*
- For a heuristically chosen literal $\sigma_d = Ta$ or $\sigma_d = Fa$, respectively, we require $a \in (atom(P) \cup body(P)) \setminus (A^T \cup A^F)$
- For any literal $\sigma \in A$, $dl(\sigma)$ denotes the decision level of σ , viz. the value dl had when σ was assigned
- A conflict is detected from violation of a nogood $\varepsilon \subseteq \Delta_P \cup \nabla$
- A conflict at decision level 0 (where *A* contains no heuristically chosen literals) indicates non-existence of stable models
- A nogood δ derived by conflict analysis is asserting, that is, some literal is unit-resulting for δ at a decision level k < dl
 - After learning δ and backjumping to decision level k, at least one literal is newly derivable by unit propagation
 - No explicit flipping of heuristically chosen literals !

$$P = \begin{cases} x \leftarrow not \ y & u \leftarrow x, y & v \leftarrow x & w \leftarrow not \ x, not \ y \\ y \leftarrow not \ x & u \leftarrow v & v \leftarrow u, y \end{cases}$$

dl	σ_d	$\overline{\sigma}$	δ

$$P = \begin{cases} x \leftarrow not \ y & u \leftarrow x, y & v \leftarrow x & w \leftarrow not \ x, not \ y \\ y \leftarrow not \ x & u \leftarrow v & v \leftarrow u, y \end{cases}$$

dl	σ_d	$\overline{\sigma}$	δ
1	Ти		

$$P = \begin{cases} x \leftarrow not \ y & u \leftarrow x, y & v \leftarrow x & w \leftarrow not \ x, not \ y \\ y \leftarrow not \ x & u \leftarrow v & v \leftarrow u, y \end{cases}$$

dl	σ_d	$\overline{\sigma}$	δ
1	Ти		
2	$F{not x, not y}$		

$$P = \begin{cases} x \leftarrow not \ y & u \leftarrow x, y & v \leftarrow x & w \leftarrow not \ x, not \ y \\ y \leftarrow not \ x & u \leftarrow v & v \leftarrow u, y \end{cases}$$

dl	σ_d	$\overline{\sigma}$	δ
1	Tu		
2	$F\{not x, not y\}$		
		Fw	$\{Tw, F\{not x, not y\}\} = \delta(w)$

$$P = \begin{cases} x \leftarrow not \ y & u \leftarrow x, y & v \leftarrow x & w \leftarrow not \ x, not \ y \\ y \leftarrow not \ x & u \leftarrow v & v \leftarrow u, y \end{cases}$$

σ_d	$\overline{\sigma}$	δ
Tu		
$F{not x, not y}$		
	Fw	$\{Tw, F\{not x, not y\}\} = \delta(w)$
$F\{not y\}$		
	$\frac{Tu}{F\{not x, not y\}}$	$ \frac{Tu}{F\{not x, not y\}} F_{w} $

$$P = \begin{cases} x \leftarrow not \ y & u \leftarrow x, y & v \leftarrow x & w \leftarrow not \ x, not \ y \\ y \leftarrow not \ x & u \leftarrow v & v \leftarrow u, y \end{cases}$$

dl	σ_d	$\overline{\sigma}$	δ
1	Ти		
2	$F\{not x, not y\}$		
		Fw	$\{Tw, F\{not x, not y\}\} = \delta(w)$
3	$F\{not y\}$		
		Fx	$\{Tx, F\{not y\}\} = \delta(x)$
		$F{x}$	$\{T\{x\}, Fx\} \in \Delta(\{x\})$
		$F\{x, y\}$	$\{T\{x,y\}, Fx\} \in \Delta(\{x,y\})$

$$P = \begin{cases} x \leftarrow not \ y & u \leftarrow x, y & v \leftarrow x & w \leftarrow not \ x, not \ y \\ y \leftarrow not \ x & u \leftarrow v & v \leftarrow u, y \end{cases}$$

dl	σ_d	$\overline{\sigma}$	δ]
1	Ти]
2	$F\{not x, not y\}$			1
		Fw	$\{Tw, F\{not x, not y\}\} = \delta(w)$	
3	$F\{not y\}$]
		Fx	$\{Tx, F\{not y\}\} = \delta(x)$	
		$F\{x\}$	$\{T\{x\}, Fx\} \in \Delta(\{x\})$	
		$F\{x, y\}$	$\{T\{x,y\}, Fx\} \in \Delta(\{x,y\})$	
		:	:	
			$\{Tu, F\{x\}, F\{x, y\}\} = \lambda(u, \{u, v\})$	X

$$P = \begin{cases} x \leftarrow not \ y & u \leftarrow x, y & v \leftarrow x & w \leftarrow not \ x, not \ y \\ y \leftarrow not \ x & u \leftarrow v & v \leftarrow u, y \end{cases}$$

dl	σ_{d}	$\overline{\sigma}$	δ
1	Ти		

$$P = \begin{cases} x \leftarrow not \ y & u \leftarrow x, y & v \leftarrow x & w \leftarrow not \ x, not \ y \\ y \leftarrow not \ x & u \leftarrow v & v \leftarrow u, y \end{cases}$$

σ_{d}	$\overline{\sigma}$	δ
Tu		
	Tx	$\{Tu, Fx\} \in \nabla$
		Tu

$$P = \begin{cases} x \leftarrow not \ y & u \leftarrow x, y & v \leftarrow x & w \leftarrow not \ x, not \ y \\ y \leftarrow not \ x & u \leftarrow v & v \leftarrow u, y \end{cases}$$

dl	σ_{d}	$\overline{\sigma}$	δ
1	Tu		
		Tx	$\{Tu, Fx\} \in \nabla$
		:	:
		Tv	$\{Fv, T\{x\}\} \in \Delta(v)$
		Fy	$\{Ty, F\{not x\}\} = \delta(y)$
		Fw	$\{Tw, F\{not x, not y\}\} = \delta(w)$

$$P = \begin{cases} x \leftarrow not \ y & u \leftarrow x, y & v \leftarrow x & w \leftarrow not \ x, not \ y \\ y \leftarrow not \ x & u \leftarrow v & v \leftarrow u, y \end{cases}$$

dl	σ_{d}	$\overline{\sigma}$	δ
1	Tu		
		Tx	$\{Tu, Fx\} \in \nabla$
		:	:
		Tv	$\{Fv, T\{x\}\} \in \Delta(v)$
		Fy	$\{Ty, F\{not x\}\} = \delta(y)$
		Fw	$\{Tw, F\{not x, not y\}\} = \delta(w)$

Outline

Conflict-driven nogood learning
CDNL-ASP Algorithm
Nogood Propagation

- Derive deterministic consequences via:
 - Unit propagation on Δ_P and ∇ ;
 - Unfounded sets $U \subseteq atom(P)$
- Note that U is unfounded if $EB_P(U) \subseteq A^F$
 - Note: For any $a \in U$, we have $(\lambda(a, U) \setminus \{Ta\}) \subseteq A$

- Derive deterministic consequences via:
 - Unit propagation on Δ_P and ∇ ;
 - Unfounded sets $U \subseteq atom(P)$
- Note that U is unfounded if $EB_P(U) \subseteq A^F$
 - Note: For any $a \in U$, we have $(\lambda(a, U) \setminus \{Ta\}) \subseteq A$
- An "interesting" unfounded set U satisfies:

$$\emptyset \subset U \subseteq (atom(P) \setminus A^F)$$

• Wrt a fixpoint of unit propagation,

- Derive deterministic consequences via:
 - Unit propagation on Δ_P and ∇ ;
 - Unfounded sets $U \subseteq atom(P)$
- Note that U is unfounded if $EB_P(U) \subseteq A^F$
 - Note: For any $a \in U$, we have $(\lambda(a, U) \setminus \{Ta\}) \subseteq A$
- An "interesting" unfounded set U satisfies:

$$\emptyset \subset U \subseteq (atom(P) \setminus A^F)$$

- Wrt a fixpoint of unit propagation, such an unfounded set contains some loop of *P*
 - Note: Tight programs do not yield "interesting" unfounded sets !

- Derive deterministic consequences via:
 - Unit propagation on Δ_P and ∇ ;
 - Unfounded sets $U \subseteq atom(P)$
- Note that U is unfounded if $EB_P(U) \subseteq A^F$
 - Note: For any $a \in U$, we have $(\lambda(a, U) \setminus \{Ta\}) \subseteq A$
- An "interesting" unfounded set U satisfies:

 $\emptyset \subset U \subseteq (atom(P) \setminus A^F)$

- Wrt a fixpoint of unit propagation, such an unfounded set contains some loop of *P*
 - Note: Tight programs do not yield "interesting" unfounded sets !
- Given an unfounded set U and some a ∈ U, adding λ(a, U) to ∇ triggers a conflict or further derivations by unit propagation
 - Note: Add loop nogoods atom by atom to eventually falsify all $a \in U$

Algorithm 2: NogoodPropagation

Requirements for UnfoundedSet

• Implementations of UnfoundedSet must guarantee the following for a result *U*

$$\bigcup_{FP} U \subseteq (atom(P) \setminus A^F)$$

$$EB_P(U) \subseteq A^F$$

 $U = \emptyset \text{ iff there is no nonempty unfounded subset of } (atom(P) \setminus A^F)$

Requirements for UnfoundedSet

- Implementations of UnfoundedSet must guarantee the following for a result *U*
 - $\begin{array}{ccc} 1 & U \subseteq (atom(P) \setminus A^F) \\ 2 & EB_P(U) \subseteq A^F \end{array}$
 - U = \emptyset iff there is no nonempty unfounded subset of $(atom(P) \setminus A^F)$
- Beyond that, there are various alternatives, such as:
 - Calculating the greatest unfounded set
 - Calculating unfounded sets within strongly connected components of the positive atom dependency graph of P
 - Usually, the latter option is implemented in ASP solvers

Example: NogoodPropagation

$$P = \begin{cases} x \leftarrow not \ y & u \leftarrow x, y & v \leftarrow x & w \leftarrow not \ x, not \ y \\ y \leftarrow not \ x & u \leftarrow v & v \leftarrow u, y \end{cases}$$

dl	σ_d	$\overline{\sigma}$	δ]
1	Ти]
2	$F{not x, not y}$			1
		Fw	$\{Tw, F\{not x, not y\}\} = \delta(w)$	
3	$F\{not y\}$			1
		F x	$\{Tx, F\{not y\}\} = \delta(x)$	
		$F\{x\}$	$\{T\{x\}, Fx\} \in \Delta(\{x\})$	
		$F\{x, y\}$	$\{T\{x, y\}, Fx\} \in \Delta(\{x, y\})$	
		$T\{not x\}$	$\{F\{not x\}, Fx\} = \delta(\{not x\})$	
		Ty	$\{F\{not y\}, Fy\} = \delta(\{not y\})$	
		$T\{v\}$	$\{Tu, F\{x, y\}, F\{v\}\} = \delta(u)$	
		$T\{u, y\}$	$\{F\{u, y\}, Tu, Ty\} = \delta(\{u, y\})$	
		Tv	$\{Fv, T\{u, y\}\} \in \Delta(v)$	
			$\{Tu, F\{x\}, F\{x, y\}\} = \lambda(u, \{u, v\})$	X

Outline

Conflict-driven nogood learningCDNL-ASP Algorithm

- Nogood Propagation
- Conflict Analysis

Outline of ConflictAnalysis

- Conflict analysis is triggered whenever some nogood δ ∈ Δ_P ∪ ∇ becomes violated, viz. δ ⊆ A, at a decision level dl > 0
 - Note that all but the first literal assigned at dl have been unit-resulting for nogoods $\varepsilon \in \Delta_P \cup \nabla$
 - If $\sigma \in \delta$ has been unit-resulting for ε , we obtain a new violated nogood by resolving δ and ε as follows:

 $(\delta \setminus \{\sigma\}) \cup (\varepsilon \setminus \{\overline{\sigma}\})$

Outline of ConflictAnalysis

- Conflict analysis is triggered whenever some nogood δ ∈ Δ_P ∪ ∇ becomes violated, viz. δ ⊆ A, at a decision level dl > 0
 - Note that all but the first literal assigned at dl have been unit-resulting for nogoods $\varepsilon \in \Delta_P \cup \nabla$
 - If $\sigma \in \delta$ has been unit-resulting for ε , we obtain a new violated nogood by resolving δ and ε as follows:

$(\delta \setminus \{\sigma\}) \cup (\varepsilon \setminus \{\overline{\sigma}\})$

- Resolution is directed by resolving first over the literal $\sigma \in \delta$ derived last, viz. $(\delta \setminus A[\sigma]) = \{\sigma\}$
 - Iterated resolution progresses in inverse order of assignment

Outline of ConflictAnalysis

- Conflict analysis is triggered whenever some nogood δ ∈ Δ_P ∪ ∇ becomes violated, viz. δ ⊆ A, at a decision level dl > 0
 - Note that all but the first literal assigned at dl have been unit-resulting for nogoods $\varepsilon \in \Delta_P \cup \nabla$
 - If $\sigma \in \delta$ has been unit-resulting for ε , we obtain a new violated nogood by resolving δ and ε as follows:

$(\delta \setminus \{\sigma\}) \cup (\varepsilon \setminus \{\overline{\sigma}\})$

- Resolution is directed by resolving first over the literal $\sigma \in \delta$ derived last, viz. $(\delta \setminus A[\sigma]) = \{\sigma\}$
 - Iterated resolution progresses in inverse order of assignment
- Iterated resolution stops as soon as it generates a nogood δ containing exactly one literal σ assigned at decision level dl
 - This literal σ is called First Unique Implication Point (First-UIP)
 - All literals in $(\delta \setminus \{\sigma\})$ are assigned at decision levels smaller than dl

Algorithm 3: ConflictAnalysis

Input	: A non-empty violated nogood δ , a normal program P , a set ∇ assignment A .	7 of nogoods, and an
Output	: A derived nogood and a decision level.	
loop		
let	$\sigma \in \delta \text{ such that } \delta \setminus A[\sigma] = \{\sigma\} \text{ in}$ $k := \max\{\{devel(\rho) \mid \rho \in \delta \setminus \{\sigma\}\} \cup \{0\}\} $ if $k = devel(\sigma) \text{ then}$ $ et \varepsilon \in \Delta_P \cup \nabla \text{ such that } \varepsilon \setminus A[\sigma] = \{\overline{\sigma}\} \text{ in}$ $ \delta := (\delta \setminus \{\sigma\}) \cup (\varepsilon \setminus \{\overline{\sigma}\})$	// resolution
	else return (δ, k)	// Tesolution

$$P = \begin{cases} x \leftarrow not \ y & u \leftarrow x, y & v \leftarrow x & w \leftarrow not \ x, not \ y \\ y \leftarrow not \ x & u \leftarrow v & v \leftarrow u, y \end{cases}$$

dl	σ_d	$\overline{\sigma}$	δ	
1	Ти			
2	$F{not x, not y}$			
		Fw	$\{Tw, F\{not x, not y\}\} = \delta(w)$	
3	$F\{not y\}$			
		Fx	$\{Tx, F\{not y\}\} = \delta(x)$	
		$F{x}$	$\{T\{x\}, Fx\} \in \Delta(\{x\})$	
		$F\{x, y\}$	$\{T\{x, y\}, Fx\} \in \Delta(\{x, y\})$	
		$T\{not x\}$	$\{F\{not x\}, Fx\} = \delta(\{not x\})$	
		Ty	$\{F\{not y\}, Fy\} = \delta(\{not y\})$	
		$T\{v\}$	$\{Tu, F\{x, y\}, F\{v\}\} = \delta(u)$	
		$T{u, y}$	$\{F\{u, y\}, Tu, Ty\} = \delta(\{u, y\})$	
		Tv	$\{Fv, T\{u, y\}\} \in \Delta(v)$	
			$\{\mathbf{T}u, \mathbf{F}\{x\}, \mathbf{F}\{x, y\}\} = \lambda(u, \{u, v\})$	X

$$P = \begin{cases} x \leftarrow not \ y & u \leftarrow x, y & v \leftarrow x & w \leftarrow not \ x, not \ y \\ y \leftarrow not \ x & u \leftarrow v & v \leftarrow u, y \end{cases}$$

dl	σ_d	$\overline{\sigma}$	δ	
1	Ти			
2	$F{not x, not y}$			
		Fw	$\{Tw, F\{not x, not y\}\} = \delta(w)$	
3	$F\{not y\}$			
		Fx	$\{Tx, F\{not y\}\} = \delta(x)$	
		$F{x}$	$\{T\{x\}, Fx\} \in \Delta(\{x\})$	
		$F\{x, y\}$	$\{T\{x, y\}, Fx\} \in \Delta(\{x, y\})$	
		$T\{not x\}$	$\{F\{not x\}, Fx\} = \delta(\{not x\})$	
		Ty	$\{F\{not y\}, Fy\} = \delta(\{not y\})$	
		$T\{v\}$	$\{Tu, F\{x, y\}, F\{v\}\} = \delta(u)$	
		$T\{u, y\}$	$\{F\{u, y\}, Tu, Ty\} = \delta(\{u, y\})$	
		Tv	$\{Fv, T\{u, y\}\} \in \Delta(v)$	
			$\{\mathbf{T}u, \mathbf{F}\{x\}, \mathbf{F}\{x, y\}\} = \lambda(u, \{u, v\})$	X

$$P = \begin{cases} x \leftarrow not \ y & u \leftarrow x, y & v \leftarrow x & w \leftarrow not \ x, not \ y \\ y \leftarrow not \ x & u \leftarrow v & v \leftarrow u, y \end{cases}$$

dl	σ_d	$\overline{\sigma}$	δ	
1	Ти			
2	$F{not x, not y}$			
		Fw	$\{Tw, F\{not x, not y\}\} = \delta(w)$	
3	$F\{not y\}$			
		Fx	$\{Tx, F\{not y\}\} = \delta(x)$	
		$F{x}$	$\{T\{x\}, Fx\} \in \Delta(\{x\})$	
		$F\{x, y\}$	$\{T\{x, y\}, Fx\} \in \Delta(\{x, y\})$	
		$T\{not x\}$	$\{F\{not x\}, Fx\} = \delta(\{not x\})$	
		Ty	$\{F\{not y\}, Fy\} = \delta(\{not y\})$	
		$T\{v\}$	$\{Tu, F\{x, y\}, F\{v\}\} = \delta(u)$	
		$T\{u, y\}$	$\{F\{u, y\}, Tu, Ty\} = \delta(\{u, y\})$	
		Tv	$\{Fv, T\{u, y\}\} \in \Delta(v)$	
			$\{Tu, F\{x\}, F\{x, y\}\} = \lambda(u, \{u, v\})$	X

$$P = \begin{cases} x \leftarrow not \ y & u \leftarrow x, y & v \leftarrow x & w \leftarrow not \ x, not \ y \\ y \leftarrow not \ x & u \leftarrow v & v \leftarrow u, y \end{cases}$$

dl	σ_d	$\overline{\sigma}$	δ	
1	Ти			
2	$F{not x, not y}$			
		Fw	$\{Tw, F\{not x, not y\}\} = \delta(w)$	
3	$F\{not y\}$			
		Fx	$\{Tx, F\{not y\}\} = \delta(x)$	
		$F\{x\}$	$\{T\{x\}, Fx\} \in \Delta(\{x\})$	
		$F\{x, y\}$	$\{T\{x, y\}, Fx\} \in \Delta(\{x, y\})$	
		$T\{not x\}$	$\{F\{not x\}, Fx\} = \delta(\{not x\})$	
		Ty	$\{F\{not y\}, Fy\} = \delta(\{not y\})$	
		$T\{v\}$	$\{Tu, F\{x, y\}, F\{v\}\} = \delta(u)$	
		$T{u, y}$	$\{F\{u, y\}, Tu, Ty\} = \delta(\{u, y\})$	
		Tv	$\{Fv, T\{u, y\}\} \in \Delta(v)$	
			$\{Tu, F\{x\}, F\{x, y\}\} = \lambda(u, \{u, v\})$	X

$$P = \begin{cases} x \leftarrow not \ y & u \leftarrow x, y & v \leftarrow x & w \leftarrow not \ x, not \ y \\ y \leftarrow not \ x & u \leftarrow v & v \leftarrow u, y \end{cases}$$

dl	σ_d	$\overline{\sigma}$	δ	
1	Ти			
2	$F\{not x, not y\}$			
		Fw	$\{Tw, F\{not x, not y\}\} = \delta(w)$	
3	$F\{not y\}$			
		Fx	$\{Tx, F\{not y\}\} = \delta(x)$	
		$F\{x\}$	$\{T\{x\}, Fx\} \in \Delta(\{x\})$	
		$F\{x, y\}$	$\{T\{x, y\}, Fx\} \in \Delta(\{x, y\})$	$\{Tu, Fx, F\{x\}\}$
		$T\{not x\}$	$\{F\{not x\}, Fx\} = \delta(\{not x\})$	
		Ty	$\{F\{not y\}, Fy\} = \delta(\{not y\})$	
		$T\{v\}$	$\{Tu, F\{x, y\}, F\{v\}\} = \delta(u)$	
		$T\{u, y\}$	$\{F\{u, y\}, Tu, Ty\} = \delta(\{u, y\})$	
		Tv	$\{Fv, T\{u, y\}\} \in \Delta(v)$	
			$\{\mathbf{T}u, \mathbf{F}\{x\}, \mathbf{F}\{x, y\}\} = \lambda(u, \{u, v\})$	×

$$P = \begin{cases} x \leftarrow not \ y & u \leftarrow x, y & v \leftarrow x & w \leftarrow not \ x, not \ y \\ y \leftarrow not \ x & u \leftarrow v & v \leftarrow u, y \end{cases}$$

dl	σ_d	$\overline{\sigma}$	δ	
1	Ти			
2	$F{not x, not y}$			
		Fw	$\{Tw, F\{not x, not y\}\} = \delta(w)$	
3	$F\{not y\}$			
		F x	$\{Tx, F\{not y\}\} = \delta(x)$	
		$F{x}$	$\{T\{x\}, Fx\} \in \Delta(\{x\})$	
		$F\{x, y\}$	$\{T\{x, y\}, Fx\} \in \Delta(\{x, y\})$	$\{Tu, Fx, F\{x\}\}$
		$T\{not x\}$	$\{F\{not x\}, Fx\} = \delta(\{not x\})$	
		Ty	$\{F\{not y\}, Fy\} = \delta(\{not y\})$	
		$T\{v\}$	$\{Tu, F\{x, y\}, F\{v\}\} = \delta(u)$	
		$T{u, y}$	$\{F\{u, y\}, Tu, Ty\} = \delta(\{u, y\})$	
		Tv	$\{Fv, T\{u, y\}\} \in \Delta(v)$	
			$\{\mathbf{T}u, \mathbf{F}\{x\}, \mathbf{F}\{x, y\}\} = \lambda(u, \{u, v\})$	×

$$P = \begin{cases} x \leftarrow not \ y & u \leftarrow x, y & v \leftarrow x & w \leftarrow not \ x, not \ y \\ y \leftarrow not \ x & u \leftarrow v & v \leftarrow u, y \end{cases}$$

dl	σ_d	$\overline{\sigma}$	δ	
1	Ти			
2	$F{not x, not y}$			
		F w	$\{Tw, F\{not x, not y\}\} = \delta(w)$	
3	$F\{not y\}$			
		Fx	$\{Tx, F\{not y\}\} = \delta(x)$	
		$F{x}$	$\{T\{x\}, Fx\} \in \Delta(\{x\})$	
		$F\{x, y\}$	$\{T\{x, y\}, Fx\} \in \Delta(\{x, y\})$	$\{Tu, Fx, F\{x\}\}$
		$T\{not x\}$	$\{F\{not x\}, Fx\} = \delta(\{not x\})$	
		Ty	$\{F\{not y\}, Fy\} = \delta(\{not y\})$	
		$T\{v\}$	$\{Tu, F\{x, y\}, F\{v\}\} = \delta(u)$	
		$T{u, y}$	$\{F\{u, y\}, Tu, Ty\} = \delta(\{u, y\})$	
		Tv	$\{Fv, T\{u, y\}\} \in \Delta(v)$	
			$\{\mathbf{T}u, \mathbf{F}\{x\}, \mathbf{F}\{x, y\}\} = \lambda(u, \{u, v\})$	×

$$P = \left\{ \begin{array}{ccc} x \leftarrow not \ y & u \leftarrow x, y & v \leftarrow x & w \leftarrow not \ x, not \ y \\ y \leftarrow not \ x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$

dl	σ_d	$\overline{\sigma}$	δ	
1	Ти			
2	$F{not x, not y}$			
		F w	$\{Tw, F\{not x, not y\}\} = \delta(w)$	
3	$F\{not y\}$			
		Fx	$\{Tx, F\{not y\}\} = \delta(x)$	
		$F{x}$	$\{T\{x\}, Fx\} \in \Delta(\{x\})$	$\{Tu, Fx\}$
		$F\{x, y\}$	$\{T\{x, y\}, Fx\} \in \Delta(\{x, y\})$	$\{\mathbf{T}u, \mathbf{F}x, \mathbf{F}\{x\}\}\$
		$T\{not x\}$	$\{F\{not x\}, Fx\} = \delta(\{not x\})$	
		Ty	$\{F\{not y\}, Fy\} = \delta(\{not y\})$	
		$T\{v\}$	$\{Tu, F\{x, y\}, F\{v\}\} = \delta(u)$	
		$T{u, y}$	$\{F\{u, y\}, Tu, Ty\} = \delta(\{u, y\})$	
		Tv	$\{Fv, T\{u, y\}\} \in \Delta(v)$	
			$\{\mathbf{T}u, \mathbf{F}\{x\}, \mathbf{F}\{x, y\}\} = \lambda(u, \{u, v\})$	×

$$P = \left\{ \begin{array}{ccc} x \leftarrow not \ y & u \leftarrow x, y & v \leftarrow x & w \leftarrow not \ x, not \ y \\ y \leftarrow not \ x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$

dl	σ_d	$\overline{\sigma}$	δ	
1	Ти			
2	$F{not x, not y}$			
		F w	$\{Tw, F\{not x, not y\}\} = \delta(w)$	
3	$F\{not y\}$			
		F x	$\{Tx, F\{not y\}\} = \delta(x)$	
		$F{x}$	$\{T\{x\}, Fx\} \in \Delta(\{x\})$	$\{Tu, Fx\}$
		$F\{x, y\}$	$\{T\{x, y\}, Fx\} \in \Delta(\{x, y\})$	$\{Tu, Fx, F\{x\}\}$
		$T\{not x\}$	$\{F\{not x\}, Fx\} = \delta(\{not x\})$	
		Ty	$\{F\{not y\}, Fy\} = \delta(\{not y\})$	
		$T\{v\}$	$\{Tu, F\{x, y\}, F\{v\}\} = \delta(u)$	
			$\{F\{u, y\}, Tu, Ty\} = \delta(\{u, y\})$	
		Tv	$\{Fv, T\{u, y\}\} \in \Delta(v)$	
			$\{\mathbf{T}u, \mathbf{F}\{x\}, \mathbf{F}\{x, y\}\} = \lambda(u, \{u, v\})$	×

$$P = \left\{ \begin{array}{ccc} x \leftarrow not \ y & u \leftarrow x, y & v \leftarrow x & w \leftarrow not \ x, not \ y \\ y \leftarrow not \ x & u \leftarrow v & v \leftarrow u, y \end{array} \right\}$$

dl	σ_d	$\overline{\sigma}$	δ	
1	Ти			
2	$F{not x, not y}$			
		F w	$\{Tw, F\{not x, not y\}\} = \delta(w)$	
3	$F\{not y\}$			
		F x	$\{Tx, F\{not y\}\} = \delta(x)$	
		$F{x}$	$\{T\{x\}, Fx\} \in \Delta(\{x\})$	$\{Tu, Fx\}$
		$F\{x, y\}$	$\{T\{x, y\}, Fx\} \in \Delta(\{x, y\})$	$\{Tu, Fx, F\{x\}\}$
		$T\{not x\}$	$\{F\{not x\}, Fx\} = \delta(\{not x\})$	
		Ty	$\{F\{not y\}, Fy\} = \delta(\{not y\})$	
		$T\{v\}$	$\{Tu, F\{x, y\}, F\{v\}\} = \delta(u)$	
			$\{F\{u, y\}, Tu, Ty\} = \delta(\{u, y\})$	
		Tv	$\{Fv, T\{u, y\}\} \in \Delta(v)$	
			$\{\mathbf{T}u, \mathbf{F}\{x\}, \mathbf{F}\{x, y\}\} = \lambda(u, \{u, v\})$	×

$$P = \begin{cases} x \leftarrow not \ y & u \leftarrow x, y & v \leftarrow x & w \leftarrow not \ x, not \ y \\ y \leftarrow not \ x & u \leftarrow v & v \leftarrow u, y \end{cases}$$

σ_{d}	$\overline{\sigma}$	δ
Tu		
	Tx	$\{Tu, Fx\} \in \nabla$
		Ти

$$P = \begin{cases} x \leftarrow not \ y & u \leftarrow x, y & v \leftarrow x & w \leftarrow not \ x, not \ y \\ y \leftarrow not \ x & u \leftarrow v & v \leftarrow u, y \end{cases}$$

dl	σ_{d}	$\overline{\sigma}$	δ
1	Tu		
		Tx	$\{Tu, Fx\} \in \nabla$
		:	:
			$(\mathbf{n} - \mathbf{n}(\mathbf{k})) = \mathbf{A}(\mathbf{k})$
		Tv	$\{Fv, T\{x\}\} \in \Delta(v)$
		Fy	$\{Ty, F\{not x\}\} = \delta(y)$
		Fw	$\{Tw, F\{not x, not y\}\} = \delta(w)$

- There always is a First-UIP at which conflict analysis terminates
 - In the worst, resolution stops at the heuristically chosen literal assigned at decision level *dl*

- There always is a First-UIP at which conflict analysis terminates
 - In the worst, resolution stops at the heuristically chosen literal assigned at decision level dl
- The nogood δ containing First-UIP σ is violated by A, viz. $\delta \subseteq A$
- We have $k = max(\{dl(\rho) \mid \rho \in \delta \setminus \{\sigma\}\} \cup \{0\}) < dl$

- There always is a First-UIP at which conflict analysis terminates
 - In the worst, resolution stops at the heuristically chosen literal assigned at decision level dl
- The nogood δ containing First-UIP σ is violated by A, viz. $\delta \subseteq A$
- We have $k = max(\{dl(\rho) \mid \rho \in \delta \setminus \{\sigma\}\} \cup \{0\}) < dl$
 - After recording δ in ∇ and backjumping to decision level k, $\overline{\sigma}$ is unit-resulting for δ !
 - Such a nogood δ is called asserting

- There always is a First-UIP at which conflict analysis terminates
 - In the worst, resolution stops at the heuristically chosen literal assigned at decision level dl
- The nogood δ containing First-UIP σ is violated by A, viz. $\delta \subseteq A$
- We have $k = max(\{dl(\rho) \mid \rho \in \delta \setminus \{\sigma\}\} \cup \{0\}) < dl$
 - After recording δ in ∇ and backjumping to decision level k, $\overline{\sigma}$ is unit-resulting for δ !
 - Such a nogood δ is called asserting
- Asserting nogoods direct conflict-driven search into a different region of the search space than traversed before, without explicitly flipping any heuristically chosen literal !

Outline

Summary

- Nogoods from loop formulas
- Conflict driven nogood learning
 - CDNL-ASP Algorithm
 - Nogood Propagation
 - Conflict Analysis

References

Martin Gebser, Benjamin Kaufmann Roland Kaminski, and Torsten Schaub. Answer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers, 2012. doi=10.2200/S00457ED1V01Y201211AIM019.

• See also: http://potassco.sourceforge.net