

WCS and its Applications in Human Reasoning

Steffen Hölldobler International Center for Computational Logic Technische Universität Dresden Germany

- Introduction
- Weak Completion Semantics
- Applications
- Open Questions

Human Reasoning

- Kowalski: Computational Logic and Human Life: How to be Artificially Intelligent. Cambridge University Press: 2011
- Notice in London Underground
 - If there is an emergency then you press the alarm signal bottom The driver will stop if any part of the train is in a station

Human Reasoning

- ► Kowalski: Computational Logic and Human Life: How to be Artificially Intelligent. Cambridge University Press: 2011
- Notice in London Underground
 - If there is an emergency then you press the alarm signal bottom The driver will stop if any part of the train is in a station
- Observations
 - Intended meaning differs from literal meaning
 - ▶ Rigid adherence to classical logic is no help in modeling the examples
 - There seems to be a reasoning process towards more plausible meanings

Human Reasoning

- ► Kowalski: Computational Logic and Human Life: How to be Artificially Intelligent. Cambridge University Press: 2011
- Notice in London Underground
 - If there is an emergency then you press the alarm signal bottom The driver will stop if any part of the train is in a station
- Observations
 - Intended meaning differs from literal meaning
 - ▶ Rigid adherence to classical logic is no help in modeling the examples
 - > There seems to be a reasoning process towards more plausible meanings
 - The driver will stop the train in a station if the driver is alerted to an emergency and any part of the train is in the station

The Approach by Stenning and van Lambalgen

- Stenning, van Lambalgen: Human Reasoning and Cognititve Science MIT Press: 2008
- I. Reasoning towards an appropriate representation

▶ II. Reasoning with respect to the least model of the representation

The Approach by Stenning and van Lambalgen

- Stenning, van Lambalgen: Human Reasoning and Cognititve Science MIT Press: 2008
- I. Reasoning towards an appropriate representation
 - Logic programs
 - Conditionals are represented as licences for implications
- ▶ II. Reasoning with respect to the least model of the representation

The Approach by Stenning and van Lambalgen

- Stenning, van Lambalgen: Human Reasoning and Cognititve Science MIT Press: 2008
- I. Reasoning towards an appropriate representation
 - Logic programs
 - Conditionals are represented as licences for implications
- ▶ II. Reasoning with respect to the least model of the representation
 - > Some technical claims turned out to be false

Logic Programs

Program clauses

$$A \leftarrow B_1, \ldots, B_n \ (n > 0)$$
 $A \leftarrow \top$ $A \leftarrow \bot$

• Let \mathcal{P} be a finite datalog program and $g\mathcal{P}$ the set of its ground instances

Logic Programs

Program clauses

$$A \leftarrow B_1, \ldots, B_n \ (n > 0)$$
 $A \leftarrow \top$ $A \leftarrow \bot$

Let P be a finite datalog program and gP the set of its ground instances
Let S be a finite set of ground literals

$$def(\mathcal{S}, \mathcal{P}) = \{ \mathbf{A} \leftarrow body \in g\mathcal{P} \mid \mathbf{A} \in \mathcal{S} \lor \neg \mathbf{A} \in \mathcal{S} \}$$

Weak Completion

For each defined atom A, replace all clauses of the form

$$A \leftarrow body_1, \ldots, A \leftarrow body_m$$

occurring in $g\mathcal{P}$ by

$$A \leftarrow body_1 \lor \ldots \lor body_m$$

▶ Replace all occurrences of \leftarrow by \leftrightarrow

▶ The obtained program is called weak completion of *P* or *wcP*

Interpretations and Models

- Let F be a formula
- An interpretation is a mapping from the set of formulas into the set of truth values
- ▶ A model for *F* is an interpretation mapping *F* to ⊤

Łukasiewicz Logic

▶ Łukasiewicz: O logice trójwartościowej. Ruch Filozoficzny 5, 169-171: 1920

\wedge	T	U	\perp	\vee	T	U	\perp		\leftarrow	T	U	\perp	\leftrightarrow	T	U	\perp
Т	Т	U	\perp	T	T	Т	Т	-	Т	Т	Т	Т	Т	Т	U	\perp
U	U	U	\perp	U	T	U	U		U	U	Т	Т	U	U	Т	U
\perp	1	\perp	\perp	\perp	T	U	\perp		\perp	1	U	Т	\perp		U	Т

Łukasiewicz Logic

▶ Łukasiewicz: O logice trójwartościowej. Ruch Filozoficzny 5, 169-171: 1920

\wedge	T	U	\perp	V	T	U	\perp	\leftarrow	Т	U	\perp	\leftrightarrow	T	U	\perp
Т	Т	U	\bot	T	Т	Т	Т	Т	Т	Т	Т	Т	Т	U	1
U	U	U	\perp	U	Τ	U	U	U	U	Т	Т	U	U	Т	U
\perp		\perp	\perp	\perp	Τ	U	\perp	\perp	\perp	U	Т	\perp		U	Т
													1		

Let

 $\langle I^{\top}, I^{\perp} \rangle \quad \cap \quad \langle J^{\top}, J^{\perp} \rangle \quad = \quad \langle I^{\top} \cap J^{\top}, I^{\perp} \cap J^{\perp} \rangle$

Łukasiewicz Logic

▶ Łukasiewicz: O logice trójwartościowej. Ruch Filozoficzny 5, 169-171: 1920

\wedge	T	U	\perp	\vee	T	U	\perp	\leftarrow	T	U	\perp	\leftrightarrow	T	U	\perp
Т	Т	U	\bot	Т	Т	Т	Т	Т	Т	Т	Т	T	Т	U	
U	U	U	\perp	U		U	U	U	U	Т	Т	U	U	Т	U
\perp	1	\perp	\perp	\perp	T	U	\perp	\perp	1	U	Т	\perp		U	Т
Let			$\langle I^{ op}, I^{ op} \rangle$	⊥) r	ׂ ר (J ⊤,	$J^{\perp} angle$	_	(I ⊤ ∩	J ⊤,	I ⊥ ∩	$ J^{\perp} angle$			

 H., Kencana Ramli: Logic Programs under Three-Valued Łukasiewicz's Semantics In: Hill, Warren (eds), Logic Programming, LNCS 5649, 464-478: 2009

▶ Theorem 1 The intersection of all Ł-models of P is an Ł-model of P

INTERNATIONAL CENTER

FOR COMPUTATIONAL LOGIC

A Semantic Operator

 Stenning, van Lambalgen: Human Reasoning and Cognititve Science MIT Press: 2008

► $\Phi_{\mathcal{P}}(I) = \langle J^{\top}, J^{\perp} \rangle$, where $J^{\top} = \{A \mid \text{there exists } A \leftarrow body \in g\mathcal{P} \text{ with } I(body) = \top \}$ $J^{\perp} = \{A \mid \text{there exists } A \leftarrow body \in g\mathcal{P} \text{ and}$ for all $A \leftarrow body \in g\mathcal{P}$ we find $I(body) = \bot \}$

INTERNATIONAL CENTER

FOR COMPUTATIONAL LOGIC

A Semantic Operator

 Stenning, van Lambalgen: Human Reasoning and Cognititve Science MIT Press: 2008

► $\Phi_{\mathcal{P}}(I) = \langle J^{\top}, J^{\perp} \rangle$, where $J^{\top} = \{A \mid \text{there exists } A \leftarrow body \in g\mathcal{P} \text{ with } I(body) = \top \}$ $J^{\perp} = \{A \mid \text{there exists } A \leftarrow body \in g\mathcal{P} \text{ and}$ for all $A \leftarrow body \in g\mathcal{P}$ we find $I(body) = \bot \}$

 H., Kencana Ramli: Logic Programs under Three-Valued Łukasiewicz's Semantics In: Hill, Warren (eds), Logic Programming, LNCS 5649, 464-478: 2009

• Theorem 2 The least fixed point of $\Phi_{\mathcal{P}}$ is the least \underline{k} -model of $wc\mathcal{P}$

A Semantic Operator

- Stenning, van Lambalgen: Human Reasoning and Cognititve Science MIT Press: 2008
- ► $\Phi_{\mathcal{P}}(I) = \langle J^{\top}, J^{\perp} \rangle$, where $J^{\top} = \{A \mid \text{there exists } A \leftarrow body \in g\mathcal{P} \text{ with } I(body) = \top \}$ $J^{\perp} = \{A \mid \text{there exists } A \leftarrow body \in g\mathcal{P} \text{ and}$ for all $A \leftarrow body \in g\mathcal{P}$ we find $I(body) = \bot \}$
- H., Kencana Ramli: Logic Programs under Three-Valued Łukasiewicz's Semantics In: Hill, Warren (eds), Logic Programming, LNCS 5649, 464-478: 2009
- **Theorem 2** The least fixed point of $\Phi_{\mathcal{P}}$ is the least \pounds -model of $wc\mathcal{P}$
- ▶ Notation $\mathcal{M}_{\mathcal{P}}$ denotes the least Ł-model of $wc\mathcal{P}$ $\mathcal{P} \models_{wcs} F$ iff $\mathcal{M}_{\mathcal{P}}(F) = \top$

Contractions

- H., Kencana Ramli: Contraction Properties of a Semantic Operator for Human Reasoning. In: Li, Yen (eds), Proc. 5th Int. Conf. on Information 228-231: 2009
- **Theorem 3** If \mathcal{P} is acyclic, then $\Phi_{\mathcal{P}}$ is a contraction

Observation The theorem does not extend to acceptable programs

A Connectionist Realization

- H., Kencana Ramli: Logics and Networks for Human Reasoning In: Alippi et.al. (eds), Artificial Neural Networks – ICANN, LNCS 5649, 464-478: 2009
- ► Theorem 4 For each P there exists a recurrent connectionist network which will converge to a stable state representing M_P if initialized with the empty interpretation

Relation to Well-Founded Semantics

- Dietz, H., Wernhard: Modelling the Suppression Task under Weak Completion and Well-Founded Semantics. Journal of Applied Non-Classical Logics 24, 61-85: 2014
- ▶ Let $\mathcal{P}^+ = \mathcal{P} \setminus { \mathbf{A} \leftarrow \bot \mid \mathbf{A} \leftarrow \bot \in \mathcal{P} }$
- ▶ Let *u* be a new nullary relation symbol not occurring in *P*
- ▶ Let $\mathcal{P}^* = \mathcal{P}^+ \cup \{ B \leftarrow u \mid def(B, \mathcal{P}) = \emptyset \} \cup \{ u \leftarrow \neg u \}$
- ► Theorem 5 If \mathcal{P} does not contain a positive loop then $\mathcal{M}_{\mathcal{P}}$ and the well-founded model for \mathcal{P}^* coincide

Abduction

- ▶ Consider the abductive framework $\langle \mathcal{P}, \mathcal{A}_{\mathcal{P}}, \mathcal{IC}, \models_{wcs} \rangle$, where
 - $\triangleright \ \mathcal{A}_{\mathcal{P}} = \{ \mathbf{A} \leftarrow \top \mid def(\mathbf{A}, \mathcal{P}) = \emptyset \} \cup \{ \mathbf{A} \leftarrow \bot \mid def(\mathbf{A}, \mathcal{P}) = \emptyset \}$ is the set of abducibles
 - ▷ \mathcal{IC} is a finite set of integrity constraints, i.e., expressions of the form $\bot \leftarrow B_1 \land \ldots \land B_n$

Abduction

- ▶ Consider the abductive framework $\langle \mathcal{P}, \mathcal{A}_{\mathcal{P}}, \mathcal{IC}, \models_{wcs} \rangle$, where
 - $\triangleright \ \mathcal{A}_{\mathcal{P}} = \{ \mathbf{A} \leftarrow \top \mid def(\mathbf{A}, \mathcal{P}) = \emptyset \} \cup \{ \mathbf{A} \leftarrow \bot \mid def(\mathbf{A}, \mathcal{P}) = \emptyset \}$ is the set of abducibles
 - ▷ *IC* is a finite set of integrity constraints, i.e., expressions of the form $\bot \leftarrow B_1 \land \ldots \land B_n$
- An observation O is a set of ground literals
 - $\begin{array}{l} \triangleright \ \, \mathcal{O} \ \, \text{is explainable in } \langle \mathcal{P}, \mathcal{A}_{\mathcal{P}}, \mathcal{I}\mathcal{C}, \models_{wcs} \rangle \\ \text{iff there exists a minimal } \mathcal{E} \subseteq \mathcal{A}_{\mathcal{P}} \ \, \text{called explanation such that} \\ \mathcal{M}_{\mathcal{P} \cup \mathcal{E}} \ \, \text{satisfies } \mathcal{I}\mathcal{C} \ \, \text{and} \ \, \mathcal{P} \cup \mathcal{E} \models_{wcs} L \ \, \text{for each } L \in \mathcal{O} \end{array}$

Abduction

- ▶ Consider the abductive framework $\langle \mathcal{P}, \mathcal{A}_{\mathcal{P}}, \mathcal{IC}, \models_{wcs} \rangle$, where
 - $\triangleright \ \mathcal{A}_{\mathcal{P}} = \{ \mathbf{A} \leftarrow \top \mid def(\mathbf{A}, \mathcal{P}) = \emptyset \} \cup \{ \mathbf{A} \leftarrow \bot \mid def(\mathbf{A}, \mathcal{P}) = \emptyset \}$ is the set of abducibles
 - ▷ *IC* is a finite set of integrity constraints, i.e., expressions of the form $\bot \leftarrow B_1 \land \ldots \land B_n$

An observation O is a set of ground literals

- ▷ O is explainable in ⟨P, A_P, IC, ⊨_{wcs}⟩
 iff there exists a minimal E ⊆ A_P called explanation such that
 M_{P∪E} satisfies IC and P ∪ E ⊨_{wcs} L for each L ∈ O
- $\triangleright~\textbf{\textit{F}}$ follows creduluously from $\mathcal P$ and $\mathcal O$
 - iff there exists an explanantion \mathcal{E} such that $\mathcal{P} \cup \mathcal{E} \models_{wcs} F$
- $\triangleright~\textbf{\textit{F}}$ follows skeptically from $\mathcal P$ and $\mathcal O$
 - iff for all explanantions \mathcal{E} we find $\mathcal{P} \cup \mathcal{E} \models_{\textit{wcs}} F$

Revision

- Dietz, H. 2015: A New Computational Logic Approach to Reason with Conditionals. In: Calimeri et.al. (eds), Logic Programming and Nonmonotonic Reasoning, LPNMR, LNAI 9345: 2015
- ▶ Let S be a finite and consistent set of ground literals

 $\mathit{rev}(\mathcal{P},\mathcal{S}) = (\mathcal{P} \setminus \mathit{def}(\mathcal{S},\mathcal{P})) \cup \{ \mathbf{A} \leftarrow \top \mid \mathbf{A} \in \mathcal{S} \} \cup \{ \mathbf{A} \leftarrow \bot \mid \neg \mathbf{A} \in \mathcal{S} \}$

is called the revision of \mathcal{P} with respect to \mathcal{S}

Revision

- Dietz, H. 2015: A New Computational Logic Approach to Reason with Conditionals. In: Calimeri et.al. (eds), Logic Programming and Nonmonotonic Reasoning, LPNMR, LNAI 9345: 2015
- ▶ Let S be a finite and consistent set of ground literals

 $\mathit{rev}(\mathcal{P},\mathcal{S}) = (\mathcal{P} \setminus \mathit{def}(\mathcal{S},\mathcal{P})) \cup \{ \mathbf{A} \leftarrow \top \mid \mathbf{A} \in \mathcal{S} \} \cup \{ \mathbf{A} \leftarrow \bot \mid \neg \mathbf{A} \in \mathcal{S} \}$

is called the revision of ${\boldsymbol{\mathcal{P}}}$ with respect to ${\boldsymbol{\mathcal{S}}}$

Proposition 6

rev is nonmonotonic,

i.e., there exist \mathcal{P}, \mathcal{S} and F such that $\mathcal{P} \models_{wcs} F$ and $rev(\mathcal{P}, \mathcal{S}) \not\models_{wcs} F$

▷ If $\mathcal{M}_{\mathcal{P}}(L) = U$ for all $L \in S$, then *rev* is monotonic

$$\triangleright \ \mathcal{M}_{rev(\mathcal{P},\mathcal{S})}(\mathcal{S}) = \top$$

The Suppression Task – Part I

- ▶ Byrne: Suppressing Valid Inferences with Conditionals. Cognition 31, 61-83: 1989
- Conditionals
 - LE If she has an essay to write then she will study late in the library
 - LT If she has a textbook to read then she will study late in the library
 - LO If the library stays open then she will study late in the library
- Facts E She has an essay to write
 - ¬E She does not have an essay to write
- ► Will she study late in the library? □ yes □ no □ I don't know

INTERNATIONAL CENTER

FOR COMPUTATIONAL LOGIC

The Suppression Task – Part I

- ▶ Byrne: Suppressing Valid Inferences with Conditionals. Cognition 31, 61-83: 1989
- Conditionals
 - LE If she has an essay to write then she will study late in the library
 - LT If she has a textbook to read then she will study late in the library
 - LO If the library stays open then she will study late in the library
- Facts E She has an essay to write
 - ¬E She does not have an essay to write
- ► Will she study late in the library? □ yes □ no □ I don't know

Conditionals	Facts	Yes	No
LE	E	96%	
LE & LT	E	96%	
LE & LO	E	38%	
LE	¬Ε		46%
LE & LT	¬Ε		4%
LE & LO	¬Ε		63%

The Suppression Task – Part I

- ▶ Byrne: Suppressing Valid Inferences with Conditionals. Cognition 31, 61-83: 1989
- Conditionals
 - LE If she has an essay to write then she will study late in the library
 - LT If she has a textbook to read then she will study late in the library
 - LO If the library stays open then she will study late in the library
- Facts E She has an essay to write
 - ¬E She does not have an essay to write

► Will she study late in the library? □ yes □ no □ I don't know

Conditionals	Facts	Yes	No
LE	E	96%	
LE & LT	E	96%	
LE & LO	E	38%	
LE	¬Ε		46%
LE & LT	¬Ε		4%
LE & LO	¬Ε		63%

Classical logic is inadequat!

The Suppression Task – Part II

- Conditionals
 - LE If she has an essay to write then she will study late in the library
 - LT If she has a textbook to read then she will study late in the library
 - LO If the library stays open then she will study late in the library
- Facts L She will study late in the library
 - ¬L She will not study late in the library
- ▶ Has she an essay to write? □ yes □ no □ I don't know

The Suppression Task – Part II

- Conditionals
 - LE If she has an essay to write then she will study late in the library
 - LT If she has a textbook to read then she will study late in the library
 - LO If the library stays open then she will study late in the library
- Facts L She will study late in the library
 - ¬L She will not study late in the library
- ► Has she an essay to write? □ yes □ no □ I don't know

Conditionals	Facts	Yes	No	
LE	L	53%		
LE & LT	L	16%		
LE & LO	L	55%		
LE	¬L		69%	
LE & LT	¬L		69%	
LE & LO	¬L		44%	

Reasoning Towards an Appropriate Representation

- Stenning, van Lambalgen: Human Reasoning and Cognititve Science. MIT Press: 2008
- Represent conditionals as licences for implications

LE & E $\{\ell \leftarrow e \land \neg ab_1, ab_1 \leftarrow \bot, e \leftarrow \top\}$

Reasoning Towards an Appropriate Representation

- Stenning, van Lambalgen: Human Reasoning and Cognititve Science. MIT Press: 2008
- Represent conditionals as licences for implications

Reasoning Towards an Appropriate Representation

- Stenning, van Lambalgen: Human Reasoning and Cognititve Science. MIT Press: 2008
- Represent conditionals as licences for implications

Reason about additional premises

 $\mathsf{LE} \& \mathsf{LO} \& \mathsf{E} \quad \{\ell \leftarrow e \land \neg ab_1, \ ab_1 \leftarrow \neg o, \ \ell \leftarrow o \land \neg ab_2, \ ab_2 \leftarrow \neg e, \ e \leftarrow \top \}$

Reasoning with respect to the Least Ł-Model of $wc\mathcal{P}$

 H., Kencana Ramli: Logic Programs under Three-Valued Łukasiewicz's Semantics. In: Hill, Warren (eds), Logic Programming, LNCS 5649, 464-478: 2009

🕨 LE & E

$$wc\{\ell \leftarrow e \land \neg ab_1, ab_1 \leftarrow \bot, e \leftarrow \top\} = \{\ell \leftrightarrow e \land \neg ab_1, ab_1 \leftrightarrow \bot, e \leftrightarrow \top\}$$

- ▷ Its least Ł-model $\langle \{e, \ell\}, \{ab_1\} \rangle$ assigns \top to e, ℓ and \bot to ab_1
- It does entail *l*

INTERNATIONAL CENTER

FOR COMPUTATIONAL LOGIC

Reasoning with respect to the Least Ł-Model of $wc\mathcal{P}$

 H., Kencana Ramli: Logic Programs under Three-Valued Łukasiewicz's Semantics. In: Hill, Warren (eds), Logic Programming, LNCS 5649, 464-478: 2009

LE & E

$$wc\{\ell \leftarrow e \land \neg ab_1, ab_1 \leftarrow \bot, e \leftarrow \top\} = \{\ell \leftrightarrow e \land \neg ab_1, ab_1 \leftrightarrow \bot, e \leftrightarrow \top\}$$

- ▷ Its least Ł-model $\langle \{e, \ell\}, \{ab_1\} \rangle$ assigns \top to e, ℓ and \bot to ab_1
- ▷ It does entail ℓ

LE & LO & E

 $wc\{\ell \leftarrow e \land \neg ab_1, ab_1 \leftarrow \neg o, \ell \leftarrow o \land \neg ab_2, ab_2 \leftarrow \neg e, e \leftarrow \top \}$ = { $\ell \leftrightarrow (e \land \neg ab_1) \lor (o \land \neg ab_2), ab_1 \leftrightarrow \neg o, ab_2 \leftrightarrow \neg e, e \leftrightarrow \top \}$

- ▷ Its least Ł-model $\langle \{e\}, \{ab_2\} \rangle$ assigns \top to e, \perp to ab_2 , and U to ℓ, o, ab_1
- It does not entail l

Reasoning with respect to the Least Ł-Model of $wc\mathcal{P}$

 H., Kencana Ramli: Logic Programs under Three-Valued Łukasiewicz's Semantics. In: Hill, Warren (eds), Logic Programming, LNCS 5649, 464-478: 2009

LE & E

$$wc\{\ell \leftarrow e \land \neg ab_1, ab_1 \leftarrow \bot, e \leftarrow \top\} = \{\ell \leftrightarrow e \land \neg ab_1, ab_1 \leftrightarrow \bot, e \leftrightarrow \top\}$$

- ▷ Its least Ł-model $\langle \{e, \ell\}, \{ab_1\} \rangle$ assigns \top to e, ℓ and \bot to ab_1
- ▷ It does entail ℓ

LE & LO & E

 $wc\{\ell \leftarrow e \land \neg ab_1, ab_1 \leftarrow \neg o, \ell \leftarrow o \land \neg ab_2, ab_2 \leftarrow \neg e, e \leftarrow \top \}$ = { $\ell \leftrightarrow (e \land \neg ab_1) \lor (o \land \neg ab_2), ab_1 \leftrightarrow \neg o, ab_2 \leftrightarrow \neg e, e \leftrightarrow \top \}$

- ▷ Its least Ł-model $\langle \{e\}, \{ab_2\} \rangle$ assigns \top to e, \bot to ab_2 , and U to ℓ , o, ab_1
- It does not entail *l*
- WCS appears to be adequate!

Abduction

- H., Philipp, Wernhard: An Abductive Model for Human Reasoning In: Proceedings of the 10th International Symposium on Logical Formalizations of Commonsense Reasoning (CommonSense): 2011
- Dietz, H., Ragni: A Computational Logic Approach to the Suppression Task In: Proceedings of the 34th Annual Conference of the Cognitive Science Society, Miyake et.al. (eds.), 1500-1505: 2012
- Abduction is needed to solve part II of the suppression task
 - ▷ LE & LT & L
 $\{\ell \leftarrow e \land \neg ab_1, ab_1 \leftarrow \bot, \ell \leftarrow t \land \neg ab_2, ab_2 \leftarrow \bot\}$

 ▷ Observation
 ℓ

 ▷ Set of abducibles
 $\{e \leftarrow \top, e \leftarrow \bot, t \leftarrow \top, t \leftarrow \bot\}$

 ▷ Explanations
 $\{e \leftarrow \top\}$ and $\{t \leftarrow \top\}$

 ▷ Reasoning credulously we conclude e
 - Reasoning skeptically we cannot conclude e
 - Byrne 1989 only 16% conclude e

Abduction

- H., Philipp, Wernhard: An Abductive Model for Human Reasoning In: Proceedings of the 10th International Symposium on Logical Formalizations of Commonsense Reasoning (CommonSense): 2011
- Dietz, H., Ragni: A Computational Logic Approach to the Suppression Task In: Proceedings of the 34th Annual Conference of the Cognitive Science Society, Miyake et.al. (eds.), 1500-1505: 2012

Abduction is needed to solve part II of the suppression task

- ▷ LE & LT & L
 $\{\ell \leftarrow e \land \neg ab_1, ab_1 \leftarrow \bot, \ell \leftarrow t \land \neg ab_2, ab_2 \leftarrow \bot\}$

 ▷ Observation
 ℓ

 ▷ Set of abducibles
 $\{e \leftarrow \top, e \leftarrow \bot, t \leftarrow \top, t \leftarrow \bot\}$

 ▷ Explanations
 $\{e \leftarrow \top\}$ and $\{t \leftarrow \top\}$

 ▷ Reasoning credulously we conclude e
- Reasoning skeptically we cannot conclude e
- Byrne 1989 only 16% conclude e
- Skeptical reasoning appears to be adequate!

38

The Selection Task – Abstract Case

- Wason: Reasoning about a Rule The Quarterly Journal of Experimental Psychology 20, 273-281: 1968
- Consider cards which have a letter on one side and a number on the other side

Consider the rule:

if there is a D on one side, then there is a 3 on the other side

Which cards do you have to turn in order to show that the rule holds?

The Selection Task – Abstract Case

- Wason: Reasoning about a Rule The Quarterly Journal of Experimental Psychology 20, 273-281: 1968
- Consider cards which have a letter on one side and a number on the other side

Consider the rule:

if there is a D on one side, then there is a 3 on the other side

- Which cards do you have to turn in order to show that the rule holds?
 - Only 10% of the subjects give the logically correct solutions

The Selection Task – Social Case

- Griggs, Cox: The elusive thematic materials effect in the Wason selection task British Journal of Psychology 73, 407-420: 1982
- Consider cards which have a person's age on the one side and a drink on the other side

Consider the rule:

If a person is drinking beer, then the person must be over 19 years of age

Which cards do you have to turn in order to show that the rule holds?

The Selection Task – Social Case

- Griggs, Cox: The elusive thematic materials effect in the Wason selection task British Journal of Psychology 73, 407-420: 1982
- Consider cards which have a person's age on the one side and a drink on the other side

Consider the rule:

If a person is drinking beer, then the person must be over 19 years of age

- Which cards do you have to turn in order to show that the rule holds?
 - Most people solve this variant correctly

- The conditional is viewed as a belief
- Let D, F, 3, 7 be propositional variables denoting that the corresponding symbol is on one side
- ▶ Consider $\mathcal{P}_{ac} = \{3 \leftarrow D \land \neg ab_1, ab_1 \leftarrow \bot\}$ with $\mathcal{M}_{\mathcal{P}_{ac}} = \langle \emptyset, ab_1 \rangle$
- *M*_{*Pac*} does not explain any letter on a card
- ▶ The set of abducibles is $\{D \leftarrow \top, D \leftarrow \bot, F \leftarrow \top, F \leftarrow \bot, 7 \leftarrow \top, 7 \leftarrow \bot\}$

$$\begin{array}{c|c} \mathcal{O} & \mathcal{E} & \mathcal{M}_{\mathcal{P}_{ac} \cup \mathcal{E}} & \text{turn} \\ \hline D & \{D \leftarrow \top\} & \langle \{D, 3\}, ab_1 \rangle & \textit{yes} \end{array}$$

- The conditional is viewed as a belief
- ▶ Let *D*, *F*, 3, 7 be propositional variables denoting that the corresponding symbol is on one side
- ▶ Consider $\mathcal{P}_{ac} = \{3 \leftarrow D \land \neg ab_1, ab_1 \leftarrow \bot\}$ with $\mathcal{M}_{\mathcal{P}_{ac}} = \langle \emptyset, ab_1 \rangle$
- *M*_{*Pac*} does not explain any letter on a card
- ▶ The set of abducibles is $\{D \leftarrow \top, D \leftarrow \bot, F \leftarrow \top, F \leftarrow \bot, 7 \leftarrow \top, 7 \leftarrow \bot\}$

\mathcal{O}	ε	$\mathcal{M}_{\mathcal{P}_{\mathit{ac}} \cup \mathcal{E}}$	turn
D	$\{ D \leftarrow \top \}$	$\langle \{D,3\}, ab_1 \rangle$	yes
F	$\{F \leftarrow \top\}$	$\langle \textit{\textit{F}},\textit{\textit{ab}}_1 angle$	no

- The conditional is viewed as a belief
- Let D, F, 3, 7 be propositional variables denoting that the corresponding symbol is on one side
- ▶ Consider $\mathcal{P}_{ac} = \{3 \leftarrow D \land \neg ab_1, ab_1 \leftarrow \bot\}$ with $\mathcal{M}_{\mathcal{P}_{ac}} = \langle \emptyset, ab_1 \rangle$
- *M*_{*Pac*} does not explain any letter on a card
- ▶ The set of abducibles is $\{D \leftarrow \top, D \leftarrow \bot, F \leftarrow \top, F \leftarrow \bot, 7 \leftarrow \top, 7 \leftarrow \bot\}$

\mathcal{O}	ε	$\mathcal{M}_{\mathcal{P}_{\mathit{ac}} \cup \mathcal{E}}$	turn
D	$\{ D \leftarrow \top \}$	$\langle \{ \pmb{D}, \pmb{3} \}, \pmb{ab_1} \rangle$	yes
F	$\{ F \leftarrow \top \}$	$\langle \textit{\textit{F}},\textit{\textit{ab}}_1 angle$	no
3	$\{ \mathbf{D} \leftarrow \top \}$	$\langle \{ \pmb{D}, \pmb{3} \}, \pmb{ab_1} \rangle$	yes

- The conditional is viewed as a belief
- Let D, F, 3, 7 be propositional variables denoting that the corresponding symbol is on one side
- ▶ Consider $\mathcal{P}_{ac} = \{3 \leftarrow D \land \neg ab_1, ab_1 \leftarrow \bot\}$ with $\mathcal{M}_{\mathcal{P}_{ac}} = \langle \emptyset, ab_1 \rangle$
- *M*_{*Pac*} does not explain any letter on a card
- ▶ The set of abducibles is $\{D \leftarrow \top, D \leftarrow \bot, F \leftarrow \top, F \leftarrow \bot, 7 \leftarrow \top, 7 \leftarrow \bot\}$

\mathcal{O}	ε	$\mathcal{M}_{\mathcal{P}_{\mathit{ac}} \cup \mathcal{E}}$	turn
D	$\{ D \leftarrow \top \}$	$\langle \{ D, 3 \}, ab_1 \rangle$	yes
F	$\{F \leftarrow \top\}$	$\langle \textit{\textit{F}},\textit{\textit{ab}}_1 angle$	no
3	$\{ D \leftarrow \top \}$	$\langle \{ m{D}, m{3} \}, m{ab}_1 angle$	yes
7	$\{ \top ightarrow 7 \}$	$\langle 7, ab_1 angle$	no

- The conditional is viewed as a social constraint
- Let o and b be propositional variables denoting that the person is older than 19 years and is drinking beer, respectively
- ▶ The rule is encoded by $o \leftarrow b \land \neg ab_2 = F$
- We obtain

 $\begin{array}{c|c} case & \mathcal{P}_{sc} & \mathcal{M}_{\mathcal{P}_{sc}} & \mathcal{P}_{sc} \models_{wcs} F & turn \\ \hline beer & \{b \leftarrow \top, ab_2 \leftarrow \bot\} & \langle b, ab_2 \rangle & no & yes \end{array}$

- The conditional is viewed as a social constraint
- Let o and b be propositional variables denoting that the person is older than 19 years and is drinking beer, respectively
- ▶ The rule is encoded by $o \leftarrow b \land \neg ab_2 = F$
- We obtain

case	\mathcal{P}_{sc}	$\mathcal{M}_{\mathcal{P}_{sc}}$	$\mathcal{P}_{sc} \models_{wcs} F$	turn
beer	$\{b \leftarrow \top, ab_2 \leftarrow \bot\}$	$\langle m{b}, m{ab_2} angle$	no	yes
22yrs	$\{o \leftarrow \top, ab_2 \leftarrow \bot\}$	$\langle o, \textit{ab}_2 angle$	yes	no

- The conditional is viewed as a social constraint
- Let o and b be propositional variables denoting that the person is older than 19 years and is drinking beer, respectively
- ▶ The rule is encoded by $o \leftarrow b \land \neg ab_2 = F$
- We obtain

case	\mathcal{P}_{sc}	$\mathcal{M}_{\mathcal{P}_{sc}}$	$\mathcal{P}_{sc} \models_{wcs} F$	turn
beer	$\{b \leftarrow \top, ab_2 \leftarrow \bot\}$	$\langle m{b}, m{ab_2} angle$	no	yes
22yrs	$\{o \leftarrow \top, ab_2 \leftarrow \bot\}$	$\langle oldsymbol{o}, oldsymbol{ab_2} angle$	yes	no
coke	$\{ b \leftarrow \bot, \ ab_2 \leftarrow \bot \}$	$\langle \emptyset, \{ m{b}, m{ab_2} \} angle$	yes	no

- The conditional is viewed as a social constraint
- Let o and b be propositional variables denoting that the person is older than 19 years and is drinking beer, respectively
- ▶ The rule is encoded by $o \leftarrow b \land \neg ab_2 = F$
- We obtain

case	\mathcal{P}_{sc}	$\mathcal{M}_{\mathcal{P}_{sc}}$	$\mathcal{P}_{sc} \models_{wcs} F$	turn
beer	$\{b \leftarrow \top, ab_2 \leftarrow \bot\}$	$\langle m{b}, m{ab_2} angle$	no	yes
22yrs	$\{o \leftarrow \top, ab_2 \leftarrow \bot\}$	$\langle o, ab_2 angle$	yes	no
coke	$\{b \leftarrow \bot, ab_2 \leftarrow \bot\}$	$\langle \emptyset, \{ m{b}, m{ab}_2 \} angle$	yes	no
16yrs	$\{o \leftarrow \bot, ab_2 \leftarrow \bot\}$	$\langle \emptyset, \{ oldsymbol{o}, oldsymbol{ab_2} \} angle$	no	yes

A Computational Logic Approach to the Selection Task

- The computational logic approach to model human reasoning can be extended to adequately handle the selection task
 - if the social case is understood as a social constraint and
 - if the abstract case is understood as a belief
- ► Kowalski: Computational Logic and Human Life: How to be Artificially Intelligent. Cambridge University Press: 2011
- Dietz, H., Ragni: A Computational Logic Approach to the Abstract and the Social Case of the Selection Task. In: Proceedings of the 11th International Symposium on Logic Formalizations of Commonsense Reasoning: 2013

- How do humans reason with positive loops?
 - ▶ If they open the window, then they open the window
 - If they open the window, then it is cold If it is cold, then they wear their jackets If they wear their jackets, then they open the windows

- How do humans reason with positive loops?
 - > If they open the window, then they open the window
 - If they open the window, then it is cold If it is cold, then they wear their jackets If they wear their jackets, then they open the windows
- A psychological study
 - We presented conditionals with positive cycles of length one, two and three, and asked whether embedded propositions or their negations are entailed

length	yes	no (WFS)	I don't know (WCS)	response time
1	75%	0%	25 %	5257 msec
2	60 %	3%	37 %	11516 msec
3	55 %	4%	41 %	11680 msec

INTERNATIONAL CENTER

FOR COMPUTATIONAL LOGIC

- How do humans reason with positive loops?
 - If they open the window, then they open the window
 - If they open the window, then it is cold If it is cold, then they wear their jackets If they wear their jackets, then they open the windows
- A psychological study
 - We presented conditionals with positive cycles of length one, two and three, and asked whether embedded propositions or their negations are entailed

length	yes	no (WFS)	I don't know (WCS)	response time
1	75%	0%	25 %	5257 msec
2	60 %	3%	37 %	11516 msec
3	55 %	4%	41 %	11680 msec

Humans consider positive cycles of length one as facts

- How do humans reason with positive loops?
 - If they open the window, then they open the window
 - If they open the window, then it is cold If it is cold, then they wear their jackets If they wear their jackets, then they open the windows
- A psychological study
 - We presented conditionals with positive cycles of length one, two and three, and asked whether embedded propositions or their negations are entailed

length	yes	no (WFS)	I don't know (WCS)	response time
1	75%	0%	25 %	5257 msec
2	60 %	3%	37 %	11516 msec
3	55 %	4%	41 %	11680 msec

- Humans consider positive cycles of length one as facts
- > The longer the cycles, the more likely is the answer 'I don't know'

- How do humans reason with positive loops?
 - ▶ If they open the window, then they open the window
 - If they open the window, then it is cold If it is cold, then they wear their jackets If they wear their jackets, then they open the windows
- A psychological study
 - We presented conditionals with positive cycles of length one, two and three, and asked whether embedded propositions or their negations are entailed

length	yes	no (WFS)	I don't know (WCS)	response time
1	75%	0%	25 %	5257 msec
2	60 %	3%	37 %	11516 msec
3	55 %	4%	41 %	11680 msec

- Humans consider positive cycles of length one as facts
- The longer the cycles, the more likely is the answer 'I don't know'
- Almost nobody entailed negative propositions

- Pearl: Causality: Models, Reasoning, and Inference Cambridge University Press, New York, USA: 2000
- If the court orders an execution, then the captain will give the signal upon which rifleman A and B will shoot the prisoner; consequently, the prisoner will be dead

- Pearl: Causality: Models, Reasoning, and Inference Cambridge University Press, New York, USA: 2000
- If the court orders an execution, then the captain will give the signal upon which rifleman A and B will shoot the prisoner; consequently, the prisoner will be dead
- We assume that
 - the court's decision is unknown
 - both riflemen are accurate, alert and law-abiding
 - > the prisoner is unlikely to die from any other causes

- Pearl: Causality: Models, Reasoning, and Inference Cambridge University Press, New York, USA: 2000
- If the court orders an execution, then the captain will give the signal upon which rifleman A and B will shoot the prisoner; consequently, the prisoner will be dead
- We assume that
 - the court's decision is unknown
 - both riflemen are accurate, alert and law-abiding
 - > the prisoner is unlikely to die from any other causes
- Evaluate the following conditionals (true, false, unknown)

- Pearl: Causality: Models, Reasoning, and Inference Cambridge University Press, New York, USA: 2000
- If the court orders an execution, then the captain will give the signal upon which rifleman A and B will shoot the prisoner; consequently, the prisoner will be dead
- We assume that
 - the court's decision is unknown
 - both riflemen are accurate, alert and law-abiding
 - > the prisoner is unlikely to die from any other causes
- Evaluate the following conditionals (true, false, unknown)
 - If the prisoner is not dead, then the captain did not signal

- Pearl: Causality: Models, Reasoning, and Inference Cambridge University Press, New York, USA: 2000
- If the court orders an execution, then the captain will give the signal upon which rifleman A and B will shoot the prisoner; consequently, the prisoner will be dead
- We assume that
 - the court's decision is unknown
 - both riflemen are accurate, alert and law-abiding
 - the prisoner is unlikely to die from any other causes
- Evaluate the following conditionals (true, false, unknown)
 - If rifleman A shot, then rifleman B shot as well

- Pearl: Causality: Models, Reasoning, and Inference Cambridge University Press, New York, USA: 2000
- If the court orders an execution, then the captain will give the signal upon which rifleman A and B will shoot the prisoner; consequently, the prisoner will be dead
- We assume that
 - the court's decision is unknown
 - both riflemen are accurate, alert and law-abiding
 - the prisoner is unlikely to die from any other causes
- Evaluate the following conditionals (true, false, unknown)

> If rifleman A did not shoot, then the prisoner is not dead

- Pearl: Causality: Models, Reasoning, and Inference Cambridge University Press, New York, USA: 2000
- If the court orders an execution, then the captain will give the signal upon which rifleman A and B will shoot the prisoner; consequently, the prisoner will be dead
- We assume that
 - the court's decision is unknown
 - both riflemen are accurate, alert and law-abiding
 - > the prisoner is unlikely to die from any other causes
- Evaluate the following conditionals (true, false, unknown)

If the captain gave no signal and rifleman A decides to shoot, then the court did not order an execution

Let cond(C, D) be a conditional, P a program, and IC a finte set of integrity constraints

- ► Let *cond*(*C*, *D*) be a conditional, *P* a program, and *IC* a finte set of integrity constraints
- The rules

$$\triangleright \ \langle \mathcal{P}, \mathcal{IC}, \mathcal{C}, \mathcal{D} \rangle \longrightarrow_{t} \mathcal{M}_{\mathcal{P}}(\mathcal{D})$$

iff $\mathcal{M}_{\mathcal{P}}(\mathcal{C}) = \top$

- Let cond(C, D) be a conditional, P a program, and IC a finte set of integrity constraints
- The rules

$$\triangleright \langle \mathcal{P}, \mathcal{IC}, \mathcal{C}, \mathcal{D} \rangle \longrightarrow_{t} \mathcal{M}_{\mathcal{P}}(\mathcal{D})$$

iff $\mathcal{M}_{\mathcal{P}}(\mathcal{C}) = \top$

$$\triangleright \ \langle \mathcal{P}, \mathcal{IC}, \mathcal{C}, \mathcal{D} \rangle \longrightarrow_{\mathbf{C}} \langle \mathit{rev}(\mathcal{P}, \mathcal{S}), \mathcal{IC}, \mathcal{C} \setminus \mathcal{S}, \mathcal{D} \rangle$$

iff
$$\mathcal{M}_{\mathcal{P}}(\mathcal{C}) = \bot$$
, where $\mathcal{S} = \{L \in \mathcal{C} \mid \mathcal{M}_{\mathcal{P}}(L) = \bot\}$

INTERNATIONAL CENTER

FOR COMPUTATIONAL LOGIC

- ▶ Let *cond*(C, D) be a conditional, P a program, and *I*C a finte set of integrity constraints
- The rules

$$\triangleright \ \langle \mathcal{P}, \mathcal{IC}, \mathcal{C}, \mathcal{D} \rangle \longrightarrow_t \mathcal{M}_{\mathcal{P}}(\mathcal{D})$$

iff $\mathcal{M}_{\mathcal{P}}(\mathcal{C}) = \top$

$$\begin{array}{l} \triangleright \ \langle \mathcal{P}, \mathcal{IC}, \mathcal{C}, \mathcal{D} \rangle \longrightarrow_{c} \langle \mathit{rev}(\mathcal{P}, \mathcal{S}), \mathcal{IC}, \mathcal{C} \setminus \mathcal{S}, \mathcal{D} \rangle \\ \text{iff} \quad \mathcal{M}_{\mathcal{P}}(\mathcal{C}) = \bot, \text{ where } \mathcal{S} = \{ L \in \mathcal{C} \mid \mathcal{M}_{\mathcal{P}}(L) = \bot \} \end{array}$$

$$\triangleright \ \langle \mathcal{P}, \mathcal{IC}, \mathcal{C}, \mathcal{D} \rangle \longrightarrow_{a} \langle \mathcal{P} \cup \mathcal{E}, \mathcal{IC}, \mathcal{C}, \mathcal{D} \rangle$$

 $\begin{array}{l} \text{iff} \quad \mathcal{M}_{\mathcal{P}}(\mathcal{C}) = \mathsf{U}, \mathcal{O} \subseteq \mathcal{C}, \mathcal{O} \neq \emptyset, \text{ for each } L \in \mathcal{O} \text{ we find } \mathcal{M}_{\mathcal{P}}(L) = \mathsf{U}, \\ \text{ and } \mathcal{E} \text{ explains } \mathcal{O} \text{ in the abductive framework } \langle \mathcal{P}, \mathcal{A}_{\mathcal{P}}, \mathcal{IC}, \models_{wcs} \rangle \end{array}$

- Let cond(C, D) be a conditional, P a program, and IC a finte set of integrity constraints
- The rules

$$\triangleright \langle \mathcal{P}, \mathcal{IC}, \mathcal{C}, \mathcal{D} \rangle \longrightarrow_{t} \mathcal{M}_{\mathcal{P}}(\mathcal{D})$$
iff $\mathcal{M}_{\mathcal{P}}(\mathcal{C}) = \top$

$$\begin{array}{l} \triangleright \ \langle \mathcal{P}, \mathcal{IC}, \mathcal{C}, \mathcal{D} \rangle \longrightarrow_{\mathcal{C}} \langle \mathit{rev}(\mathcal{P}, \mathcal{S}), \mathcal{IC}, \mathcal{C} \setminus \mathcal{S}, \mathcal{D} \rangle \\ \text{iff} \quad \mathcal{M}_{\mathcal{P}}(\mathcal{C}) = \bot, \text{where } \mathcal{S} = \{ L \in \mathcal{C} \mid \mathcal{M}_{\mathcal{P}}(L) = \bot \} \end{array}$$

$$\triangleright \ \langle \mathcal{P}, \mathcal{IC}, \mathcal{C}, \mathcal{D} \rangle \longrightarrow_{\textit{a}} \langle \mathcal{P} \cup \mathcal{E}, \mathcal{IC}, \mathcal{C}, \mathcal{D} \rangle$$

- $\begin{array}{l} \text{iff} \quad \mathcal{M}_{\mathcal{P}}(\mathcal{C}) = \mathsf{U}, \mathcal{O} \subseteq \mathcal{C}, \mathcal{O} \neq \emptyset, \text{ for each } L \in \mathcal{O} \text{ we find } \mathcal{M}_{\mathcal{P}}(L) = \mathsf{U}, \\ \text{ and } \mathcal{E} \text{ explains } \mathcal{O} \text{ in the abductive framework } \langle \mathcal{P}, \mathcal{A}_{\mathcal{P}}, \mathcal{IC}, \models_{wcs} \rangle \end{array}$
- $\triangleright \ \langle \mathcal{P}, \mathcal{IC}, \mathcal{C}, \mathcal{D} \rangle \longrightarrow_{\textit{r}} \langle \textit{rev}(\mathcal{P}, \mathcal{S}), \mathcal{IC}, \mathcal{C} \setminus \mathcal{S}, \mathcal{D} \rangle$
 - $\begin{array}{ll} \text{iff} \quad \mathcal{M}_{\mathcal{P}}(\mathcal{C}) = \mathsf{U}, \, \mathcal{S} \subseteq \mathcal{C}, \, \mathcal{S} \neq \emptyset, \, \text{for each } L \in \mathcal{S} \text{ we find } \mathcal{M}_{\mathcal{P}}(L) = \mathsf{U}, \\ \text{ and } \mathcal{M}_{rev(\mathcal{P}, \mathcal{S})} \text{ satisfies } \mathcal{IC} \end{array}$

If the captain gave no signal and rifleman A decides to shoot, then the court did not order an execution

If the captain gave no signal and rifleman A decides to shoot, then the court did not order an execution

Steffen Hölldobler WCS and its Applications in Human Reasoning

If the captain gave no signal and rifleman A decides to shoot, then the court did not order an execution

	$\rightarrow_{r\{\bar{s},ra\}}$	$\rightarrow_{r\{\bar{s}\}} \rightarrow_{c\{ra\}}$	$\rightarrow r\{ra\} \rightarrow a\{\overline{s}\}$	$\rightarrow_{a\{\overline{s}\}} \rightarrow_{c\{ra\}}$	$\rightarrow_{a\{ra\}} \rightarrow_{c\{\bar{s}\}} \rightarrow_{c\{ra\}}$
s	\perp	1	\perp	\perp	
ra	Т	Т	Т	Т	Т
d	Т	Т	Т	Т	Т
rb	\perp	1	1	1	1
е	U	U	\perp	1	Т

If the captain gave no signal and rifleman A decides to shoot, then the court did not order an execution

ARSC – The Firing Squad Example

If the captain gave no signal and rifleman A decides to shoot, then the court did not order an execution

Open Questions

- Do humans reason with multi-valued logics and, if they do, which multi-valued logic are they using?
- Can an answer 'I don't know' be qualified as a truth value assignment or is it a meta-remark?
- What do we have to tell humans such that they fully understand the background information?
- Do humans apply abduction and/or revision if the condition of a conditional is unknown and, if they apply both, do they prefer one over the other?
- Do they prefer skeptical over creduluous abduction?
- Do they prefer minimal revision?
- How important is the order in which multiple conditions of a conditional are considered?
- Do humans consider abduction and/or revision steps which turn an indicative conditional into a subjunctive one?

