PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE

Lecture 7 ASP || *slides adapted from Torsten Schaub [Gebser et al.(2012)]

Sarah Gaggl

Dresden, 26th May and 2nd June 2017

Agenda

(1) Introduction
(2) Constraint Satisfaction (CSP)
(3) Uninformed Search versus Informed Search (Best First Search, A* Search, Heuristics)
4) Local Search, Stochastic Hill Climbing, Simulated Annealing
(5) Tabu Search

6 Answer-set Programming (ASP)
(7) Structural Decomposition Techniques (Tree/Hypertree Decompositions)
(8) Evolutionary Algorithms/ Genetic Algorithms

Overview ASP II

- Modeling
(1) Basic Modeling
(2) Methodology
- Language
(3) Motivation
(4) Core language
(5) Extended language
- Language Extensions

6 Two kinds of negation
(7) Disjunctive logic programs

- Computational Aspects
(9) Complexity

Modeling: Overview
(9) Basic Modeling
(2) Methodology

Outline

2 Methodology

Modeling and Interpreting

Modeling

- For solving a problem class C for a problem instance I, encode
(1) the problem instance I as a set P_{1} of facts and
(2) the problem class C as a set P_{C} of rules
such that the solutions to C for I can be (polynomially) extracted from the stable models of $P_{\mathbf{1}} \cup P_{\mathrm{C}}$
- P_{1} is (still) called problem instance
- P_{C} is often called the problem encoding
- An encoding P_{C} is uniform, if it can be used to solve all its problem instances
That is, $P_{\mathbf{C}}$ encodes the solutions to \mathbf{C} for any set $P_{\mathbf{1}}$ of facts

Outline

Basic methodology

Methodology
 Generate and Test (or: Guess and Check)

Generator Generate potential stable model candidates (typically through non-deterministic constructs)
Tester Eliminate invalid candidates (typically through integrity constraints)

Basic methodology

Methodology
Generate and Test (or: Guess and Check)
Generator Generate potential stable model candidates (typically through non-deterministic constructs)
Tester Eliminate invalid candidates (typically through integrity constraints)

Nutshell
Logic program $=$ Data + Generator + Tester $(+$ Optimizer $)$

Outline

Satisfiability testing

- Problem Instance: A propositional formula ϕ in CNF
- Problem Class: Is there an assignment of propositional variables to true and false such that a given formula ϕ is true

Satisfiability testing

- Problem Instance: A propositional formula ϕ in CNF
- Problem Class: Is there an assignment of propositional variables to true and false such that a given formula ϕ is true
- Example: Consider formula

$$
(a \vee \neg b) \wedge(\neg a \vee b)
$$

- Logic Program:

Generator
 $\{a, b\} \leftarrow$

Tester

$\leftarrow \quad$ not a, b
$\leftarrow \quad a$, not b

Stable models

$X_{1}=\{a, b\}$
$X_{2}=\{ \}$

Satisfiability testing

- Problem Instance: A propositional formula ϕ in CNF
- Problem Class: Is there an assignment of propositional variables to true and false such that a given formula ϕ is true
- Example: Consider formula

$$
(a \vee \neg b) \wedge(\neg a \vee b)
$$

- Logic Program:

Generator
 $\{a, b\} \leftarrow$

Tester

\leftarrow not a, b
$\leftarrow \quad a$, not b

Stable models

$X_{1}=\{a, b\}$
$X_{2}=\{ \}$

Satisfiability testing

- Problem Instance: A propositional formula ϕ in CNF
- Problem Class: Is there an assignment of propositional variables to true and false such that a given formula ϕ is true
- Example: Consider formula

$$
(a \vee \neg b) \wedge(\neg a \vee b)
$$

- Logic Program:

Generator
 $\{a, b\} \leftarrow$

Tester

\leftarrow not a, b
$\leftarrow \quad a$, not b

Stable models

$X_{1}=\{a, b\}$
$X_{2}=\{ \}$

Satisfiability testing

- Problem Instance: A propositional formula ϕ in CNF
- Problem Class: Is there an assignment of propositional variables to true and false such that a given formula ϕ is true
- Example: Consider formula

$$
(a \vee \neg b) \wedge(\neg a \vee b)
$$

- Logic Program:

Generator
 $\{a, b\} \leftarrow$

Tester

\leftarrow not a, b
$\leftarrow \quad a$, not b

Stable models

$X_{1}=\{a, b\}$
$X_{2}=\{ \}$

Outline

Methodology

- Satisfiability
- Queens
- Traveling Salesperson

The n-Queens Problem

Defining the Field

queens.lp

```
row (1..n).
col(1..n).
```

- Create file queens.lp
- Define the field
- n rows
- n columns

Defining the Field

Running ...

```
$ gringo queens.lp --const n=5 | clasp
Answer: 1
row(1) row(2) row(3) row(4) row(5) )
col(1) col(2) col(3) col(4) col(5)
SATISFIABLE
Models : 1
Time : 0.000
    Prepare : 0.000
    Prepro. : 0.000
    Solving : 0.000
```


Placing some Queens

queens.lp

```
row (1..n).
col(1..n).
{ queen(I,J) : row(I), col(J) }.
```

- Guess a solution candidate by placing some queens on the board

Placing some Queens

Running ...

```
$ gringo queens.lp --const n=5 | clasp 3
Answer: 1
row(1) row(2) row(3) row(4) row(5) )
col(1) col(2) col(3) col(4) col(5)
Answer: 2
row(1) row(2) row(3) row(4) row(5)
col(1) col(2) col(3) col(4) col(5) queen(1,1)
Answer: 3
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) queen(2,1)
SATISFIABLE
Models : 3+
...
```


Placing some Queens: Answer 1

Answer 1

Placing some Queens: Answer 2

Answer 2

Placing some Queens: Answer 3

Answer 3

Placing n Queens

queens.lp

```
row (1..n).
col(1..n).
{ queen(I,J) : row(I), col(J) }.
:- not n { queen(I,J) } n.
```

- Place exactly n queens on the board

Placing n Queens

Running ...

```
$ gringo queens.lp --const n=5 | clasp 2
Answer: 1
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) \
queen(5,1) queen(4,1) queen(3,1)
queen(2,1) queen(1,1)
Answer: 2
row(1) row(2) row(3) row(4) row(5)
col(1) col(2) col(3) col(4) col(5)
queen(1,2) queen(4,1) queen(3,1)
queen (2,1) queen(1,1)
...
```


Placing n Queens: Answer 1

Answer 1

Placing n Queens: Answer 2

Answer 2

Horizontal and Vertical Attack

queens.1p

```
row (1..n).
col(1..n).
{ queen(I,J) : row(I), col(J) }.
:- not n { queen(I,J) } n.
:- queen(I,J), queen(I, J'), J != J'.
```

- Forbid horizontal attacks

Horizontal and Vertical Attack

queens.lp

```
row(1..n).
col(1..n).
{ queen(I,J) : row(I), col(J) }.
:- not n { queen(I,J) } n.
:- queen(I,J), queen(I, J'), J != J'.
:- queen(I,J), queen(I',J), I != I'.
```

- Forbid horizontal attacks
- Forbid vertical attacks

Horizontal and Vertical Attack

Running ...

```
$ gringo queens.lp --const n=5 | clasp
Answer: 1
row(1) row(2) row(3) row(4) row(5)
col(1) col(2) col(3) col(4) col(5)
queen (5,5) queen (4,4) queen (3,3)
queen(2,2) queen(1,1)
```


Horizontal and Vertical Attack: Answer 1

Answer 1

Diagonal Attack

```
queens.lp
row (1..n).
col(1..n).
{ queen(I,J) : row(I), col(J) }.
:- not n { queen(I,J) } n.
:- queen(I,J), queen(I, J'), J != J'.
:- queen(I,J), queen (I',J), I != I'.
:- queen(I,J), queen(I', J'), (I,J) != (I', J'), I-J ==
I'
:- queen(I,J), queen(I', J'), (I,J) != (I', J'), I+J ==
I'}+\mp@subsup{J}{}{\prime}
```

- Forbid diagonal attacks

Diagonal Attack

Running ...

```
$ gringo queens.lp --const n=5 | clasp
Answer: 1
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5)
queen(4,5) queen(1,4) queen (3,3) queen (5,2) queen (2,1)
SATISFIABLE
Models : 1+
Time : 0.000
    Prepare : 0.000
    Prepro. : 0.000
    Solving : 0.000
```


Diagonal Attack: Answer 1

Answer 1

Optimizing

queens-opt.lp

```
1 { queen(I,1..n) } 1 :- I = 1..n.
1 { queen(1..n,J) } 1 :- J = 1..n.
    :- 2 { queen (D-J,J) }, D = 2..2*n.
    :- 2 { queen(D+J,J) }, D = 1-n..n-1.
```

- Encoding can be optimized
- Much faster to solve

And sometimes it rocks

```
$ clingo -c n=5000 queens-opt-diag.lp -config=jumpy -q -stats=3
clingo version 4.1.0
Solving...
SATISFIABLE
Models : 1+
Time : 3758.143s (Solving: 1905.22s 1st Model: 1896.20s Unsat: 0.00s)
CPU Time : 3758.320s
Choices : 288594554
Conflicts : 3442 (Analyzed: 3442)
Restarts : 17 (Average: 202.47 Last: 3442)
Model-Level : 7594728.0
Problems : 1 (Average Length: 0.00 Splits: 0)
Lemmas : 3442 (Deleted: 0)
    Binary : 0 (Ratio: 0.00%)
    Ternary : 0 (Ratio: 0.00%)
    Conflict : 3442 (Average Length: 229056.5 Ratio: 100.00%)
    Loop : 0 (Average Length: 0.0 Ratio: 0.00%)
    Other : 0 (Average Length: 0.0 Ratio: 0.00%)
Atoms : 75084857 (Original: 75069989 Auxiliary: 14868)
Rules : 100129956 (1: 50059992/100090100 2: 39990/29856 3: 10000/10000)
Bodies : 25090103
Equivalences : 125029999 (Atom=Atom: 50009999 Body=Body: O Other: 75020000)
Tight : Yes
Variables : 25024868 (Eliminated: 11781 Frozen: 25000000)
Constraints : 66664 (Binary: 35.6% Ternary: 0.0% Other: 64.4%)
Backjumps : 3442 (Average: 681.19 Max: 169512 Sum: 2344658)
    Executed : 3442 (Average: 681.19 Max: 169512 Sum: 2344658 Ratio: 100.00%)
    Bounded (Average; 0.00 Max: 0 Sum: 0 Ratio: 0.00%)
TUDresden, 26th'May and 2ndJune 2017% PSSAl Sum: slide 38% of 199
```


Outline

Methodology

- Satisfiability
- Queens
- Traveling Salesperson

Traveling Salesperson

Traveling Salesperson

```
node (1..6).
edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).
edge(4;(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).
```


Traveling Salesperson

```
node(1..6).
edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).
edge(4,(1;2)). edge(5,(3;4;6)). edge(6, (2;3;5)).
cost(1,2,2). cost(1,3,3). cost(1,4,1).
cost (2,4,2). cost (2,5,2). cost (2,6,4).
cost(3,1,3). cost(3,4,2). cost (3,5,2).
cost(4,1,1). cost (4,2,2).
cost(5,3,2). cost (5,4,2). cost (5,6,1).
cost(6,2,4). cost(6,3,3). cost (6,5,1).
```


Traveling Salesperson

```
node (1..6).
```

```
cost(1,2,2). cost(1,3,3). cost(1,4,1).
cost (2,4,2). cost (2,5,2). cost (2,6,4).
cost(3,1,3). cost (3,4,2). cost (3,5,2).
cost(4,1,1). cost (4,2,2).
cost(5,3,2). cost (5,4,2). cost (5,6,1).
cost(6,2,4). cost(6,3,3). cost (6,5,1).
edge(X,Y) :- cost(X,Y,_).
```


Traveling Salesperson

```
1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).
1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).
```


Traveling Salesperson

```
1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).
1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).
reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y), reached(X).
```


Traveling Salesperson

```
1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).
1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).
reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y), reached(X).
:- node(Y), not reached(Y).
```


Traveling Salesperson

```
1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).
1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).
reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y), reached(X).
:- node(Y), not reached(Y).
#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.
```


Language: Overview

Motivation
(4) Core language
(5) Extended language

Outline

4 Core language
5 Extended language

Basic language extensions

- The expressiveness of a language can be enhanced by introducing new constructs
- To this end, we must address the following issues:
- What is the syntax of the new language construct?
- What is the semantics of the new language construct?
- How to implement the new language construct?

Basic language extensions

- The expressiveness of a language can be enhanced by introducing new constructs
- To this end, we must address the following issues:
- What is the syntax of the new language construct?
- What is the semantics of the new language construct?
- How to implement the new language construct?
- A way of providing semantics is to furnish a translation removing the new constructs, eg. classical negation

Basic language extensions

- The expressiveness of a language can be enhanced by introducing new constructs
- To this end, we must address the following issues:
- What is the syntax of the new language construct?
- What is the semantics of the new language construct?
- How to implement the new language construct?
- A way of providing semantics is to furnish a translation removing the new constructs, eg. classical negation
- This translation might also be used for implementing the language extension

Outline

3 Motivation
(4) Core language

5 Extended language

Outline

3 Motivation

(4) Core language

- Integrity constraint
- Choice rule
- Cardinality rule
- Weight rule

5 Extended language

- Conditional literal
- Optimization statement

Integrity constraint

- Idea Eliminate unwanted solution candidates
- Syntax An integrity constraint is of the form

$$
\leftarrow a_{1}, \ldots, a_{m}, \text { not } a_{m+1}, \ldots, \text { not } a_{n}
$$

where $0 \leq m \leq n$ and each a_{i} is an atom for $1 \leq i \leq n$

- Example :- edge $(3,7)$, color $(3, \mathrm{red})$, color $(7, \mathrm{red})$.

Integrity constraint

- Idea Eliminate unwanted solution candidates
- Syntax An integrity constraint is of the form

$$
\leftarrow a_{1}, \ldots, a_{m}, \text { not } a_{m+1}, \ldots, \text { not } a_{n}
$$

where $0 \leq m \leq n$ and each a_{i} is an atom for $1 \leq i \leq n$

- Example :- edge $(3,7)$, color $(3, \mathrm{red})$, color $(7, \mathrm{red})$.
- Embedding The above integrity constraint can be turned into the normal rule

$$
x \leftarrow a_{1}, \ldots, a_{m}, \text { not } a_{m+1}, \ldots, \text { not } a_{n}, \text { not } x
$$

where x is a new symbol, that is, $x \notin \mathcal{A}$.

Outline

3 Motivation
(4) Core language

- Integrity constraint
- Choice rule
- Cardinality rule
- Weight rule

5 Extended language

- Conditional literal
- Optimization statement

Choice rule

- Idea Choices over subsets
- Syntax A choice rule is of the form

$$
\left\{a_{1}, \ldots, a_{m}\right\} \leftarrow a_{m+1}, \ldots, a_{n}, \text { not } a_{n+1}, \ldots, \text { not } a_{o}
$$

where $0 \leq m \leq n \leq o$ and each a_{i} is an atom for $1 \leq i \leq o$

Choice rule

- Idea Choices over subsets
- Syntax A choice rule is of the form

$$
\left\{a_{1}, \ldots, a_{m}\right\} \leftarrow a_{m+1}, \ldots, a_{n}, \text { not } a_{n+1}, \ldots, \text { not } a_{o}
$$

where $0 \leq m \leq n \leq o$ and each a_{i} is an atom for $1 \leq i \leq o$

- Informal meaning If the body is satisfied by the stable model at hand, then any subset of $\left\{a_{1}, \ldots, a_{m}\right\}$ can be included in the stable model

Choice rule

- Idea Choices over subsets
- Syntax A choice rule is of the form

$$
\left\{a_{1}, \ldots, a_{m}\right\} \leftarrow a_{m+1}, \ldots, a_{n}, \text { not } a_{n+1}, \ldots, \text { not } a_{o}
$$

where $0 \leq m \leq n \leq o$ and each a_{i} is an atom for $1 \leq i \leq o$

- Informal meaning If the body is satisfied by the stable model at hand, then any subset of $\left\{a_{1}, \ldots, a_{m}\right\}$ can be included in the stable model
- Example \{ buy(pizza); buy(wine); buy(corn) \} :- at(grocery).

Choice rule

- Idea Choices over subsets
- Syntax A choice rule is of the form

$$
\left\{a_{1}, \ldots, a_{m}\right\} \leftarrow a_{m+1}, \ldots, a_{n}, \text { not } a_{n+1}, \ldots, \text { not } a_{o}
$$

where $0 \leq m \leq n \leq o$ and each a_{i} is an atom for $1 \leq i \leq o$

- Informal meaning If the body is satisfied by the stable model at hand, then any subset of $\left\{a_{1}, \ldots, a_{m}\right\}$ can be included in the stable model
- Example \{ buy(pizza); buy(wine); buy(corn) \} :- at(grocery).
- Another Example $P=\{\{a\} \leftarrow b, b \leftarrow\}$ has two stable models: $\{b\}$ and $\{a, b\}$

Embedding in normal rules

- A choice rule of form

$$
\left\{a_{1}, \ldots, a_{m}\right\} \leftarrow a_{m+1}, \ldots, a_{n}, \text { not } a_{n+1}, \ldots, \text { not } a_{o}
$$

can be translated into $2 m+1$ normal rules

$$
\begin{array}{rlllll}
b & \leftarrow & a_{m+1}, \ldots, & a_{n}, \text { not } a_{n+1}, \ldots, \text { not } a_{o} \\
a_{1} & \leftarrow & b, \text { not } a_{1}^{\prime} & \ldots & a_{m} & \leftarrow \\
a_{1}^{\prime} & \leftarrow & b, \text { not } a_{m}^{\prime} \\
a_{1}^{\prime} & \text { not } a_{1} & \ldots & a_{m}^{\prime} & \leftarrow & \text { not } a_{m}
\end{array}
$$

by introducing new atoms $b, a_{1}^{\prime}, \ldots, a_{m}^{\prime}$.

Embedding in normal rules

- A choice rule of form

$$
\left\{a_{1}, \ldots, a_{m}\right\} \leftarrow a_{m+1}, \ldots, a_{n}, \text { not } a_{n+1}, \ldots, \text { not } a_{o}
$$

can be translated into $2 m+1$ normal rules

$$
\begin{array}{rlllll}
b & \leftarrow & a_{m+1}, \ldots, a_{n}, \text { not } a_{n+1}, \ldots, \text { not } a_{o} \\
a_{1} & \leftarrow & b, \text { not } a_{1}^{\prime} & \ldots & a_{m} & \leftarrow \\
a_{1}^{\prime} & \leftarrow & b, \text { not } a_{m}^{\prime} \\
a_{1}^{\prime} & \text { not } a_{1} & \ldots & a_{m}^{\prime} & \leftarrow & \text { not } a_{m}
\end{array}
$$

by introducing new atoms $b, a_{1}^{\prime}, \ldots, a_{m}^{\prime}$.

Embedding in normal rules

- A choice rule of form

$$
\left\{a_{1}, \ldots, a_{m}\right\} \leftarrow a_{m+1}, \ldots, a_{n}, \text { not } a_{n+1}, \ldots, \text { not } a_{o}
$$

can be translated into $2 m+1$ normal rules

$$
\begin{array}{rlllll}
b & \leftarrow & a_{m+1}, \ldots, & a_{n}, \text { not } a_{n+1}, \ldots, \text { not } a_{o} \\
a_{1} & \leftarrow & b, \text { not } a_{1}^{\prime} & \ldots & a_{m} & \leftarrow \\
a_{1}^{\prime} & \leftarrow & b, \text { not } a_{m}^{\prime} \\
a_{1}^{\prime} & \text { not } a_{1} & \ldots & a_{m}^{\prime} & \leftarrow & \text { not } a_{m}
\end{array}
$$

by introducing new atoms $b, a_{1}^{\prime}, \ldots, a_{m}^{\prime}$.

Outline

3 Motivation
(4) Core language

- Integrity constraint
- Choice rule
- Cardinality rule
- Weight rule

5 Extended language

- Conditional literal
- Optimization statement

Cardinality rule

- Idea Control (lower) cardinality of subsets
- Syntax A cardinality rule is the form

$$
a_{0} \leftarrow l\left\{a_{1}, \ldots, a_{m}, \text { not } a_{m+1}, \ldots, \text { not } a_{n}\right\}
$$

where $0 \leq m \leq n$ and each a_{i} is an atom for $1 \leq i \leq n$; l is a non-negative integer.

Cardinality rule

- Idea Control (lower) cardinality of subsets
- Syntax A cardinality rule is the form

$$
a_{0} \leftarrow l\left\{a_{1}, \ldots, a_{m}, \text { not } a_{m+1}, \ldots, \text { not } a_{n}\right\}
$$

where $0 \leq m \leq n$ and each a_{i} is an atom for $1 \leq i \leq n$; l is a non-negative integer.

- Informal meaning The head atom belongs to the stable model, if at least l elements of the body are included in the stable model
- Note l acts as a lower bound on the body

Cardinality rule

- Idea Control (lower) cardinality of subsets
- Syntax A cardinality rule is the form

$$
a_{0} \leftarrow l\left\{a_{1}, \ldots, a_{m}, \text { not } a_{m+1}, \ldots, \text { not } a_{n}\right\}
$$

where $0 \leq m \leq n$ and each a_{i} is an atom for $1 \leq i \leq n$; l is a non-negative integer.

- Informal meaning The head atom belongs to the stable model, if at least l elements of the body are included in the stable model
- Note l acts as a lower bound on the body
- Example

```
pass(c42) :- 2 { pass(a1); pass(a2); pass(a3) }.
```


Cardinality rule

- Idea Control (lower) cardinality of subsets
- Syntax A cardinality rule is the form

$$
a_{0} \leftarrow l\left\{a_{1}, \ldots, a_{m}, \text { not } a_{m+1}, \ldots, \text { not } a_{n}\right\}
$$

where $0 \leq m \leq n$ and each a_{i} is an atom for $1 \leq i \leq n$; l is a non-negative integer.

- Informal meaning The head atom belongs to the stable model, if at least l elements of the body are included in the stable model
- Note l acts as a lower bound on the body
- Example
- Another Example $P=\{a \leftarrow 1\{b, c\}, b \leftarrow\}$ has stable model $\{a, b\}$

Embedding in normal rules

- Replace each cardinality rule

$$
a_{0} \leftarrow l\left\{a_{1}, \ldots, a_{m}, \text { not } a_{m+1}, \ldots, \text { not } a_{n}\right\}
$$

by $a_{0} \leftarrow \operatorname{ctr}(1, l)$
where atom $\operatorname{ctr}(i, j)$ represents the fact that at least j of the literals having an equal or greater index than i, are in a stable model

Embedding in normal rules

- Replace each cardinality rule

$$
a_{0} \leftarrow l\left\{a_{1}, \ldots, a_{m}, \text { not } a_{m+1}, \ldots, \text { not } a_{n}\right\}
$$

by $a_{0} \leftarrow \operatorname{ctr}(1, l)$
where atom $\operatorname{ctr}(i, j)$ represents the fact that at least j of the literals having an equal or greater index than i, are in a stable model

- The definition of $c t r / 2$ is given for $0 \leq k \leq l$ by the rules

$$
\begin{aligned}
\operatorname{ctr}(i, k+1) & \leftarrow \operatorname{ctr}(i+1, k), a_{i} & & \\
\operatorname{ctr}(i, k) & \leftarrow \operatorname{ctr}(i+1, k) & & \text { for } 1 \leq i \leq m \\
\operatorname{ctr}(j, k+1) & \leftarrow \operatorname{ctr}(j+1, k), \text { not } a_{j} & & \\
\operatorname{ctr}(j, k) & \leftarrow \operatorname{ctr}(j+1, k) & & \text { for } m+1 \leq j \leq n \\
\operatorname{ctr}(n+1,0) & \leftarrow & &
\end{aligned}
$$

Embedding in normal rules

- Replace each cardinality rule

$$
a_{0} \leftarrow l\left\{a_{1}, \ldots, a_{m}, \text { not } a_{m+1}, \ldots, \text { not } a_{n}\right\}
$$

by $a_{0} \leftarrow \operatorname{ctr}(1, l)$
where atom $\operatorname{ctr}(i, j)$ represents the fact that at least j of the literals having an equal or greater index than i, are in a stable model

- The definition of $c t r / 2$ is given for $0 \leq k \leq l$ by the rules

$$
\begin{aligned}
\operatorname{ctr}(i, k+1) & \leftarrow \operatorname{ctr}(i+1, k), a_{i} & & \\
\operatorname{ctr}(i, k) & \leftarrow \operatorname{ctr}(i+1, k) & & \text { for } 1 \leq i \leq m \\
\operatorname{ctr}(j, k+1) & \leftarrow \operatorname{ctr}(j+1, k), \text { not } a_{j} & & \\
\operatorname{ctr}(j, k) & \leftarrow \operatorname{ctr}(j+1, k) & & \text { for } m+1 \leq j \leq n \\
\operatorname{ctr}(n+1,0) & \leftarrow & &
\end{aligned}
$$

Embedding in normal rules

- Replace each cardinality rule

$$
a_{0} \leftarrow l\left\{a_{1}, \ldots, a_{m}, \text { not } a_{m+1}, \ldots, \text { not } a_{n}\right\}
$$

by $a_{0} \leftarrow \operatorname{ctr}(1, l)$
where atom $\operatorname{ctr}(i, j)$ represents the fact that at least j of the literals having an equal or greater index than i, are in a stable model

- The definition of $c t r / 2$ is given for $0 \leq k \leq l$ by the rules

$$
\begin{aligned}
\operatorname{ctr}(i, k+1) & \leftarrow \operatorname{ctr}(i+1, k), a_{i} & & \\
\operatorname{ctr}(i, k) & \leftarrow \operatorname{ctr}(i+1, k) & & \text { for } 1 \leq i \leq m \\
\operatorname{ctr}(j, k+1) & \leftarrow \operatorname{ctr}(j+1, k), \text { not } a_{j} & & \\
\operatorname{ctr}(j, k) & \leftarrow \operatorname{ctr}(j+1, k) & & \text { for } m+1 \leq j \leq n \\
\operatorname{ctr}(n+1,0) & \leftarrow & &
\end{aligned}
$$

Embedding in normal rules

- Replace each cardinality rule

$$
a_{0} \leftarrow l\left\{a_{1}, \ldots, a_{m}, \text { not } a_{m+1}, \ldots, \text { not } a_{n}\right\}
$$

by $a_{0} \leftarrow \operatorname{ctr}(1, l)$
where atom $\operatorname{ctr}(i, j)$ represents the fact that at least j of the literals having an equal or greater index than i, are in a stable model

- The definition of $c t r / 2$ is given for $0 \leq k \leq l$ by the rules

$$
\begin{aligned}
\operatorname{ctr}(i, k+1) & \leftarrow \operatorname{ctr}(i+1, k), a_{i} & & \\
\operatorname{ctr}(i, k) & \leftarrow \operatorname{ctr}(i+1, k) & & \text { for } 1 \leq i \leq m \\
\operatorname{ctr}(j, k+1) & \leftarrow \operatorname{ctr}(j+1, k), \text { not } a_{j} & & \\
\operatorname{ctr}(j, k) & \leftarrow \operatorname{ctr}(j+1, k) & & \text { for } m+1 \leq j \leq n \\
\operatorname{ctr}(n+1,0) & \leftarrow & &
\end{aligned}
$$

Embedding in normal rules

- Replace each cardinality rule

$$
a_{0} \leftarrow l\left\{a_{1}, \ldots, a_{m}, \text { not } a_{m+1}, \ldots, \text { not } a_{n}\right\}
$$

by $a_{0} \leftarrow \operatorname{ctr}(1, l)$
where atom $\operatorname{ctr}(i, j)$ represents the fact that at least j of the literals having an equal or greater index than i, are in a stable model

- The definition of $c t r / 2$ is given for $0 \leq k \leq l$ by the rules

$$
\begin{aligned}
\operatorname{ctr}(i, k+1) & \leftarrow \operatorname{ctr}(i+1, k), a_{i} & & \\
\operatorname{ctr}(i, k) & \leftarrow \operatorname{ctr}(i+1, k) & & \text { for } 1 \leq i \leq m \\
\operatorname{ctr}(j, k+1) & \leftarrow \operatorname{ctr}(j+1, k), \text { not } a_{j} & & \\
\operatorname{ctr}(j, k) & \leftarrow \operatorname{ctr}(j+1, k) & & \text { for } m+1 \leq j \leq n \\
\operatorname{ctr}(n+1,0) & \leftarrow & &
\end{aligned}
$$

Embedding in normal rules

- Replace each cardinality rule

$$
a_{0} \leftarrow l\left\{a_{1}, \ldots, a_{m}, \text { not } a_{m+1}, \ldots, \text { not } a_{n}\right\}
$$

by $a_{0} \leftarrow \operatorname{ctr}(1, l)$
where atom $\operatorname{ctr}(i, j)$ represents the fact that at least j of the literals having an equal or greater index than i, are in a stable model

- The definition of $c t r / 2$ is given for $0 \leq k \leq l$ by the rules

$$
\begin{aligned}
\operatorname{ctr}(i, k+1) & \leftarrow \operatorname{ctr}(i+1, k), a_{i} & & \\
\operatorname{ctr}(i, k) & \leftarrow \operatorname{ctr}(i+1, k) & & \text { for } 1 \leq i \leq m \\
\operatorname{ctr}(j, k+1) & \leftarrow \operatorname{ctr}(j+1, k), \text { not } a_{j} & & \\
\operatorname{ctr}(j, k) & \leftarrow \operatorname{ctr}(j+1, k) & & \text { for } m+1 \leq j \leq n \\
\operatorname{ctr}(n+1,0) & \leftarrow & &
\end{aligned}
$$

An example

- Program $\{a \leftarrow, c \leftarrow 1\{a, b\}\}$ has the stable model $\{a, c\}$

An example

- Program $\{a \leftarrow, c \leftarrow 1\{a, b\}\}$ has the stable model $\{a, c\}$
- Translating the cardinality rule yields the rules

$$
\begin{aligned}
& c \leftarrow \\
& \operatorname{ctr}(1,2) \leftarrow \\
& \operatorname{ctr}(1,1) \\
& \operatorname{ctr}(1,1) \leftarrow \\
& \operatorname{ctr}(2,1), a \\
& \operatorname{ctr}(2,2) \leftarrow \\
& \operatorname{ctr}(2,1) \leftarrow \operatorname{ctr}(3,1), b \\
& \operatorname{ctr}(1,1) \leftarrow \\
& \operatorname{ctr}(3,1) \\
& \operatorname{ctr}(1,0) \leftarrow \\
& \operatorname{ctr}(2,0), a \\
& \operatorname{ctr}(2,1) \leftarrow \\
& \operatorname{ctr}(2,0) \leftarrow \operatorname{ctr}(3,0), b \\
& \operatorname{ctr}(3,0) \leftarrow \\
& \operatorname{ctr}(3,0) \\
& \leftarrow
\end{aligned}
$$

having stable model $\{a, \operatorname{ctr}(3,0), \operatorname{ctr}(2,0), \operatorname{ctr}(1,0), c \operatorname{tr}(1,1), c\}$

An example

- Program $\{a \leftarrow, c \leftarrow 1\{a, b\}\}$ has the stable model $\{a, c\}$
- Translating the cardinality rule yields the rules

$$
\begin{array}{rlll}
c & \leftarrow & \operatorname{ctr}(1,1) \\
\operatorname{ctr}(1,2) & \leftarrow & \operatorname{ctr}(2,1), a \\
\operatorname{ctr}(1,1) & \leftarrow & \operatorname{ctr}(2,1) \\
\operatorname{ctr}(2,2) & \leftarrow & \operatorname{ctr}(3,1), b \\
\operatorname{ctr}(2,1) & \leftarrow & \operatorname{ctr}(3,1) \\
\operatorname{ctr}(1,1) & \leftarrow & \operatorname{ctr}(2,0), a \\
\operatorname{ctr}(1,0) & \leftarrow & \operatorname{ctr}(2,0) \\
\operatorname{ctr}(2,1) & \leftarrow & \operatorname{ctr}(3,0), b \\
\operatorname{ctr}(2,0) & \leftarrow & \operatorname{ctr}(3,0) \\
\operatorname{ctr}(3,0) & \leftarrow
\end{array}
$$

having stable model $\{a, \operatorname{ctr}(3,0), \operatorname{ctr}(2,0), \operatorname{ctr}(1,0), c \operatorname{tr}(1,1), c\}$

An example

- Program $\{a \leftarrow, c \leftarrow 1\{a, b\}\}$ has the stable model $\{a, c\}$
- Translating the cardinality rule yields the rules

$$
\begin{aligned}
& c \leftarrow \\
& \operatorname{ctr}(1,2) \leftarrow \\
& \operatorname{ctr}(1,1) \\
& \operatorname{ctr}(1,1) \leftarrow \\
& \operatorname{ctr}(2,1), a \\
& \operatorname{ctr}(2,2) \leftarrow \\
& \operatorname{ctr}(2,1) \leftarrow \operatorname{ctr}(3,1), b \\
& \operatorname{ctr}(1,1) \leftarrow \\
& \operatorname{ctr}(3,1) \\
& \operatorname{ctr}(1,0) \leftarrow \\
& \operatorname{ctr}(2,0), a \\
& \operatorname{ctr}(2,1) \leftarrow \\
& \operatorname{ctr}(2,0) \leftarrow \operatorname{ctr}(3,0), b \\
& \operatorname{ctr}(3,0) \leftarrow \\
& \operatorname{ctr}(3,0) \\
& \leftarrow
\end{aligned}
$$

having stable model $\{a, \operatorname{ctr}(3,0), \operatorname{ctr}(2,0), \operatorname{ctr}(1,0), c \operatorname{tr}(1,1), c\}$

An example

- Program $\{a \leftarrow, c \leftarrow 1\{a, b\}\}$ has the stable model $\{a, c\}$
- Translating the cardinality rule yields the rules

$$
\begin{aligned}
& c \leftarrow \\
& \operatorname{ctr}(1,2) \leftarrow \\
& \operatorname{ctr}(1,1) \\
& \operatorname{ctr}(1,1) \leftarrow \\
& \operatorname{ctr}(2,1), a \\
& \operatorname{ctr}(2,2) \leftarrow \\
& \operatorname{ctr}(2,1) \leftarrow \operatorname{ctr}(3,1), b \\
& \operatorname{ctr}(1,1) \leftarrow \\
& \operatorname{ctr}(3,1) \\
& \operatorname{ctr}(1,0) \leftarrow \\
& \operatorname{ctr}(2,0), a \\
& \operatorname{ctr}(2,1) \leftarrow \\
& \operatorname{ctr}(2,0) \\
& \leftarrow \operatorname{ctr}(3,0), b \\
& \leftarrow \\
& c \operatorname{trt}(3,0) \leftarrow
\end{aligned}
$$

having stable model $\{a, \operatorname{ctr}(3,0), \operatorname{ctr}(2,0), \operatorname{ctr}(1,0), c \operatorname{tr}(1,1), c\}$

An example

- Program $\{a \leftarrow, c \leftarrow 1\{a, b\}\}$ has the stable model $\{a, c\}$
- Translating the cardinality rule yields the rules

$$
\begin{aligned}
& c \leftarrow \\
& \operatorname{ctr}(1,2) \leftarrow \\
& \operatorname{ctr}(1,1) \\
& \operatorname{ctr}(1,1) \leftarrow \\
& \operatorname{ctr}(2,1), a \\
& \operatorname{ctr}(2,2) \leftarrow \\
& \operatorname{ctr}(2,1) \leftarrow \operatorname{ctr}(3,1), b \\
& \operatorname{ctr}(1,1) \leftarrow \\
& \operatorname{ctr}(3,1) \\
& \operatorname{ctr}(1,0) \leftarrow \\
& \operatorname{ctr}(2,0), a \\
& \operatorname{ctr}(2,1) \leftarrow \\
& \operatorname{ctr}(2,0) \\
& \leftarrow \operatorname{ctr}(3,0), b \\
& \leftarrow \\
& \operatorname{ctr}(3,0) \leftarrow
\end{aligned}
$$

having stable model $\{a, \operatorname{ctr}(3,0), \operatorname{ctr}(2,0), \operatorname{ctr}(1,0), c \operatorname{tr}(1,1), c\}$

An example

- Program $\{a \leftarrow, c \leftarrow 1\{a, b\}\}$ has the stable model $\{a, c\}$
- Translating the cardinality rule yields the rules

$$
\begin{aligned}
& c \leftarrow \\
& \operatorname{ctr}(1,2) \leftarrow \\
& \operatorname{ctr}(1,1) \\
& \operatorname{ctr}(1,1) \leftarrow \\
& \operatorname{ctr}(2,1), a \\
& \operatorname{ctr}(2,2) \leftarrow \\
& \operatorname{ctr}(2,1) \leftarrow \operatorname{ctr}(3,1), b \\
& \operatorname{ctr}(1,1) \leftarrow \\
& \operatorname{ctr}(3,1) \\
& \operatorname{ctr}(1,0) \leftarrow \\
& \operatorname{ctr}(2,0), a \\
& \operatorname{ctr}(2,1) \leftarrow \\
& \operatorname{ctr}(2,0) \leftarrow \operatorname{ctr}(3,0), b \\
& \operatorname{ctr}(3,0) \leftarrow \\
& \operatorname{ctr}(3,0) \\
& \leftarrow
\end{aligned}
$$

having stable model $\{a, \operatorname{ctr}(3,0), \operatorname{ctr}(2,0), \operatorname{ctr}(1,0), c \operatorname{tr}(1,1), c\}$

... and vice versa

- A normal rule

$$
a_{0} \leftarrow a_{1}, \ldots, a_{m}, \text { not } a_{m+1}, \ldots, \text { not } a_{n}
$$

can be represented by the cardinality rule

$$
a_{0} \leftarrow n\left\{a_{1}, \ldots, a_{m}, \text { not } a_{m+1}, \ldots, \text { not } a_{n}\right\}
$$

Cardinality rules with upper bounds

- A rule of the form

$$
\begin{equation*}
a_{0} \leftarrow l\left\{a_{1}, \ldots, a_{m}, \text { not } a_{m+1}, \ldots, \text { not } a_{n}\right\} u \tag{1}
\end{equation*}
$$

where $0 \leq m \leq n$ and each a_{i} is an atom for $1 \leq i \leq n$; l and u are non-negative integers

Cardinality rules with upper bounds

- A rule of the form

$$
\begin{equation*}
a_{0} \leftarrow l\left\{a_{1}, \ldots, a_{m}, \text { not } a_{m+1}, \ldots, \text { not } a_{n}\right\} u \tag{1}
\end{equation*}
$$

where $0 \leq m \leq n$ and each a_{i} is an atom for $1 \leq i \leq n$; l and u are non-negative integers
stands for

$$
\begin{aligned}
a_{0} & \leftarrow b, \text { not } c \\
b & \leftarrow l\left\{a_{1}, \ldots, a_{m}, \text { not } a_{m+1}, \ldots, \text { not } a_{n}\right\} \\
c & \leftarrow u+1\left\{a_{1}, \ldots, a_{m}, \text { not } a_{m+1}, \ldots, \text { not } a_{n}\right\}
\end{aligned}
$$

where b and c are new symbols

Cardinality rules with upper bounds

- A rule of the form

$$
\begin{equation*}
a_{0} \leftarrow l\left\{a_{1}, \ldots, a_{m}, \text { not } a_{m+1}, \ldots, \text { not } a_{n}\right\} u \tag{1}
\end{equation*}
$$

where $0 \leq m \leq n$ and each a_{i} is an atom for $1 \leq i \leq n$; l and u are non-negative integers
stands for

$$
\begin{aligned}
a_{0} & \leftarrow b, \text { not } c \\
b & \leftarrow l\left\{a_{1}, \ldots, a_{m}, \text { not } a_{m+1}, \ldots, \text { not } a_{n}\right\} \\
c & \leftarrow u+1\left\{a_{1}, \ldots, a_{m}, \text { not } a_{m+1}, \ldots, \text { not } a_{n}\right\}
\end{aligned}
$$

where b and c are new symbols

- Note The single constraint in the body of the cardinality rule (1) is referred to as a cardinality constraint

Cardinality constraints

- Syntax A cardinality constraint is of the form

$$
l\left\{a_{1}, \ldots, a_{m}, \text { not } a_{m+1}, \ldots, \text { not } a_{n}\right\} u
$$

where $0 \leq m \leq n$ and each a_{i} is an atom for $1 \leq i \leq n$; l and u are non-negative integers

Cardinality constraints

- Syntax A cardinality constraint is of the form

$$
l\left\{a_{1}, \ldots, a_{m}, \text { not } a_{m+1}, \ldots, \text { not } a_{n}\right\} u
$$

where $0 \leq m \leq n$ and each a_{i} is an atom for $1 \leq i \leq n$; l and u are non-negative integers

- Informal meaning A cardinality constraint is satisfied by a stable model X, if the number of its contained literals satisfied by X is between l and u (inclusive)

Cardinality constraints

- Syntax A cardinality constraint is of the form

$$
l\left\{a_{1}, \ldots, a_{m}, \text { not } a_{m+1}, \ldots, \text { not } a_{n}\right\} u
$$

where $0 \leq m \leq n$ and each a_{i} is an atom for $1 \leq i \leq n$; l and u are non-negative integers

- Informal meaning A cardinality constraint is satisfied by a stable model X, if the number of its contained literals satisfied by X is between l and u (inclusive)
- In other words, if

$$
l \leq\left|\left(\left\{a_{1}, \ldots, a_{m}\right\} \cap X\right) \cup\left(\left\{a_{m+1}, \ldots, a_{n}\right\} \backslash X\right)\right| \leq u
$$

Cardinality constraints as heads

- A rule of the form

$$
l\left\{a_{1}, \ldots, a_{m}, \text { not } a_{m+1}, \ldots, \text { not } a_{n}\right\} u \leftarrow a_{n+1}, \ldots, a_{o}, \text { not } a_{o+1}, \ldots, \text { not } a_{p}
$$

where $0 \leq m \leq n \leq o \leq p$ and each a_{i} is an atom for $1 \leq i \leq p$; l and u are non-negative integers

Cardinality constraints as heads

- A rule of the form

$$
l\left\{a_{1}, \ldots, a_{m}, \text { not } a_{m+1}, \ldots, \text { not } a_{n}\right\} u \leftarrow a_{n+1}, \ldots, a_{o}, \text { not } a_{o+1}, \ldots, \text { not } a_{p}
$$

where $0 \leq m \leq n \leq o \leq p$ and each a_{i} is an atom for $1 \leq i \leq p$; l and u are non-negative integers
stands for

$$
\begin{aligned}
b & \leftarrow a_{n+1}, \ldots, a_{o}, \text { not } a_{o+1}, \ldots, \text { not } a_{p} \\
\left\{a_{1}, \ldots, a_{m}\right\} & \leftarrow b \\
c & \leftarrow l\left\{a_{1}, \ldots, a_{m}, \text { not } a_{m+1}, \ldots, \text { not } a_{n}\right\} u \\
& \leftarrow b, \text { not } c
\end{aligned}
$$

where b and c are new symbols

Cardinality constraints as heads

- A rule of the form

$$
l\left\{a_{1}, \ldots, a_{m}, \text { not } a_{m+1}, \ldots, \text { not } a_{n}\right\} u \leftarrow a_{n+1}, \ldots, a_{o}, \text { not } a_{o+1}, \ldots, \text { not } a_{p}
$$

where $0 \leq m \leq n \leq o \leq p$ and each a_{i} is an atom for $1 \leq i \leq p$; l and u are non-negative integers
stands for

$$
\begin{aligned}
b & \leftarrow a_{n+1}, \ldots, a_{o}, \text { not } a_{o+1}, \ldots, \text { not } a_{p} \\
\left\{a_{1}, \ldots, a_{m}\right\} & \leftarrow b \\
c & \leftarrow l\left\{a_{1}, \ldots, a_{m}, \text { not } a_{m+1}, \ldots, \text { not } a_{n}\right\} u \\
& \leftarrow b, \text { not } c
\end{aligned}
$$

where b and c are new symbols

- Example 1 (color(v42,red); color(v42,green); color(v42,blue) f1.

Outline

3 Motivation
(4) Core language

- Integrity constraint
- Choice rule
- Cardinality rule
- Weight rule

5 Extended language

- Conditional literal
- Optimization statement

Weight rule

- Syntax A weight rule is the form

$$
a_{0} \leftarrow l\left\{w_{1}: a_{1}, \ldots, w_{m}: a_{m}, w_{m+1}: \operatorname{not} a_{m+1}, \ldots, w_{n}: \operatorname{not} a_{n}\right\}
$$

where $0 \leq m \leq n$ and each a_{i} is an atom; l and w_{i} are integers for $1 \leq i \leq n$

- A weighted literal $w_{i}: \ell_{i}$ associates each literal ℓ_{i} with a weight w_{i}

Weight rule

- Syntax A weight rule is the form

$$
a_{0} \leftarrow l\left\{w_{1}: a_{1}, \ldots, w_{m}: a_{m}, w_{m+1}: \operatorname{not} a_{m+1}, \ldots, w_{n}: \operatorname{not} a_{n}\right\}
$$

where $0 \leq m \leq n$ and each a_{i} is an atom; l and w_{i} are integers for $1 \leq i \leq n$

- A weighted literal $w_{i}: \ell_{i}$ associates each literal ℓ_{i} with a weight w_{i}
- Note A cardinality rule is a weight rule where $w_{i}=1$ for $0 \leq i \leq n$

Weight constraints

- Syntax A weight constraint is of the form

$$
l\left\{w_{1}: a_{1}, \ldots, w_{m}: a_{m}, w_{m+1}: \operatorname{not} a_{m+1}, \ldots, w_{n}: \operatorname{not} a_{n}\right\} u
$$

where $0 \leq m \leq n$ and each a_{i} is an atom; l, u and w_{i} are integers for $1 \leq i \leq n$

Weight constraints

- Syntax A weight constraint is of the form

$$
l\left\{w_{1}: a_{1}, \ldots, w_{m}: a_{m}, w_{m+1}: \operatorname{not} a_{m+1}, \ldots, w_{n}: \operatorname{not} a_{n}\right\} u
$$

where $0 \leq m \leq n$ and each a_{i} is an atom;
l, u and w_{i} are integers for $1 \leq i \leq n$

- Meaning A weight constraint is satisfied by a stable model X, if

$$
l \leq\left(\sum_{1 \leq i \leq m, a_{i} \in X} w_{i}+\sum_{m<i \leq n, a_{i} \notin X} w_{i}\right) \leq u
$$

Weight constraints

- Syntax A weight constraint is of the form

$$
l\left\{w_{1}: a_{1}, \ldots, w_{m}: a_{m}, w_{m+1}: \operatorname{not} a_{m+1}, \ldots, w_{n}: \operatorname{not} a_{n}\right\} u
$$

where $0 \leq m \leq n$ and each a_{i} is an atom;
l, u and w_{i} are integers for $1 \leq i \leq n$

- Meaning A weight constraint is satisfied by a stable model X, if

$$
l \leq\left(\sum_{1 \leq i \leq m, a_{i} \in X} w_{i}+\sum_{m<i \leq n, a_{i} \notin X} w_{i}\right) \leq u
$$

- Note (Cardinality and) weight constraints amount to constraints on (count and) sum aggregate functions

Weight constraints

- Syntax A weight constraint is of the form

$$
l\left\{w_{1}: a_{1}, \ldots, w_{m}: a_{m}, w_{m+1}: \operatorname{not} a_{m+1}, \ldots, w_{n}: \operatorname{not} a_{n}\right\} u
$$

where $0 \leq m \leq n$ and each a_{i} is an atom;
l, u and w_{i} are integers for $1 \leq i \leq n$

- Meaning A weight constraint is satisfied by a stable model X, if

$$
l \leq\left(\sum_{1 \leq i \leq m, a_{i} \in X} w_{i}+\sum_{m<i \leq n, a_{i} \notin X} w_{i}\right) \leq u
$$

- Note (Cardinality and) weight constraints amount to constraints on (count and) sum aggregate functions
- Example

10 \{ 4:course(db); 6:course(ai); 8:course(project); 3:course(xml) \} 20

Outline

3 Motivation

4 Core language
(5) Extended language

Outline

3 Motivation

4 Core language

- Integrity constraint
- Choice rule
- Cardinality rule
- Weight rule
(5) Extended language
- Conditional literal
- Optimization statement

Conditional literals

- Syntax A conditional literal is of the form

$$
\ell: \ell_{1}, \ldots, \ell_{n}
$$

where ℓ and ℓ_{i} are literals for $0 \leq i \leq n$

- Informal meaning A conditional literal can be regarded as the list of elements in the set $\left\{\ell \mid \ell_{1}, \ldots, \ell_{n}\right\}$

Conditional literals

- Syntax A conditional literal is of the form

$$
\ell: \ell_{1}, \ldots, \ell_{n}
$$

where ℓ and ℓ_{i} are literals for $0 \leq i \leq n$

- Informal meaning A conditional literal can be regarded as the list of elements in the set $\left\{\ell \mid \ell_{1}, \ldots, \ell_{n}\right\}$
- Note The expansion of conditional literals is context dependent

Conditional literals

- Syntax A conditional literal is of the form

$$
\ell: \ell_{1}, \ldots, \ell_{n}
$$

where ℓ and ℓ_{i} are literals for $0 \leq i \leq n$

- Informal meaning A conditional literal can be regarded as the list of elements in the set $\left\{\ell \mid \ell_{1}, \ldots, \ell_{n}\right\}$
- Note The expansion of conditional literals is context dependent
- Example Given 'p(1..3). q(2).'

```
r(x):p(x), notq(X) :- r(x):p(x), notq(X); 1{r(x):p(x), notq(X)}.
```

is instantiated to

```
r(1); r(3) :- r(1),r(3), 1 {r(1),r(3) }.
```


Conditional literals

- Syntax A conditional literal is of the form

$$
\ell: \ell_{1}, \ldots, \ell_{n}
$$

where ℓ and ℓ_{i} are literals for $0 \leq i \leq n$

- Informal meaning A conditional literal can be regarded as the list of elements in the set $\left\{\ell \mid \ell_{1}, \ldots, \ell_{n}\right\}$
- Note The expansion of conditional literals is context dependent
- Example Given 'p(1..3). q(2).'

```
r(x):p(X), notq(X) :- r(X):p(X), notq(X); 1{r(x):p(X), notq(X)}.
```

is instantiated to

```
r(1); r(3) :-r(1),r(3), 1 {r(1),r(3)}.
```


Conditional literals

- Syntax A conditional literal is of the form

$$
\ell: \ell_{1}, \ldots, \ell_{n}
$$

where ℓ and ℓ_{i} are literals for $0 \leq i \leq n$

- Informal meaning A conditional literal can be regarded as the list of elements in the set $\left\{\ell \mid \ell_{1}, \ldots, \ell_{n}\right\}$
- Note The expansion of conditional literals is context dependent
- Example Given 'p(1..3). q(2).'

```
r(X):p(X), notq(X) :- r(x):p(X), notq(X); 1{r(x):p(X), notq(X)}.
```

is instantiated to

```
r(1); r(3) :-r(1),r(3), 1 {r(1),r(3)}.
```


Conditional literals

- Syntax A conditional literal is of the form

$$
\ell: \ell_{1}, \ldots, \ell_{n}
$$

where ℓ and ℓ_{i} are literals for $0 \leq i \leq n$

- Informal meaning A conditional literal can be regarded as the list of elements in the set $\left\{\ell \mid \ell_{1}, \ldots, \ell_{n}\right\}$
- Note The expansion of conditional literals is context dependent
- Example Given 'p(1..3). q(2).'

```
r(X):p(X), notq(X) :- r(X):p(X), notq(X); 1{r(X):p(X), notq(X)}.
```

is instantiated to

```
r(1); r(3) :-r(1),r(3), 1 {r(1),r(3)}.
```


Conditional literals

- Syntax A conditional literal is of the form

$$
\ell: \ell_{1}, \ldots, \ell_{n}
$$

where ℓ and ℓ_{i} are literals for $0 \leq i \leq n$

- Informal meaning A conditional literal can be regarded as the list of elements in the set $\left\{\ell \mid \ell_{1}, \ldots, \ell_{n}\right\}$
- Note The expansion of conditional literals is context dependent
- Example Given 'p(1..3). q(2).'

```
r(x):p(x), notq(X) :- r(x):p(x), notq(X); 1{r(x):p(x), notq(X)}.
```

is instantiated to

```
r(1); r(3) :-r(1),r(3), 1 {r(1),r(3)}.
```


Outline

(3) Motivation

(4) Core language

- Integrity constraint
- Choice rule
- Cardinality rule
- Weight rule
(5) Extended language
- Conditional literal
- Optimization statement

Optimization statement

- Idea Express (multiple) cost functions subject to minimization and/or maximization
- Syntax A minimize statement is of the form

$$
\text { minimize }\left\{w_{1} @ p_{1}: \ell_{1}, \ldots, w_{n} @ p_{n}: \ell_{n}\right\} .
$$

where each ℓ_{i} is a literal; and w_{i} and p_{i} are integers for $1 \leq i \leq n$

Optimization statement

- Idea Express (multiple) cost functions subject to minimization and/or maximization
- Syntax A minimize statement is of the form

$$
\text { minimize }\left\{w_{1} @ p_{1}: \ell_{1}, \ldots, w_{n} @ p_{n}: \ell_{n}\right\} .
$$

where each ℓ_{i} is a literal; and w_{i} and p_{i} are integers for $1 \leq i \leq n$
Priority levels, p_{i}, allow for representing lexicographically ordered minimization objectives

Optimization statement

- Idea Express (multiple) cost functions subject to minimization and/or maximization
- Syntax A minimize statement is of the form

$$
\text { minimize }\left\{w_{1} @ p_{1}: \ell_{1}, \ldots, w_{n} @ p_{n}: \ell_{n}\right\} .
$$

where each ℓ_{i} is a literal; and w_{i} and p_{i} are integers for $1 \leq i \leq n$
Priority levels, p_{i}, allow for representing lexicographically ordered minimization objectives

- Meaning A minimize statement is a directive that instructs the ASP solver to compute optimal stable models by minimizing a weighted sum of elements

Optimization statement

- A maximize statement of the form

$$
\begin{aligned}
& \qquad \operatorname{maximize}\left\{w_{1} @ p_{1}: \ell_{1}, \ldots, w_{n} @ p_{n}: \ell_{n}\right\} \\
& \text { stands for minimize }\left\{-w_{1} @ p_{1}: \ell_{1}, \ldots,-w_{n} @ p_{n}: \ell_{n}\right\}
\end{aligned}
$$

Optimization statement

- A maximize statement of the form

$$
\begin{aligned}
& \qquad \operatorname{maximize}\left\{w_{1} @ p_{1}: \ell_{1}, \ldots, w_{n} @ p_{n}: \ell_{n}\right\} \\
& \text { stands for minimize }\left\{-w_{1} @ p_{1}: \ell_{1}, \ldots,-w_{n} @ p_{n}: \ell_{n}\right\}
\end{aligned}
$$

- Example When configuring a computer, we may want to maximize hard disk capacity, while minimizing price

```
#maximize { 250@1:hd(1), 500@1:hd(2), 750@1:hd(3), 1000@1:hd(4) }.
#minimize { 30@2:hd(1), 40@2:hd(2), 60@2:hd(3), 80@2:hd(4) }.
```

The priority levels indicate that (minimizing) price is more important than (maximizing) capacity

Language Extensions: Overview

Outline

(6) Two kinds of negation

7 Disjunctive logic programs

Motivation

- Classical versus default negation
- Symbol \neg and not

Motivation

- Classical versus default negation
- Symbol \neg and not
- Idea
- $\neg a \approx \neg a \in X$
- not $a \approx a \notin X$

Motivation

- Classical versus default negation
- Symbol \neg and not
- Idea
- $\neg a \approx \neg a \in X$
- not $a \approx a \notin X$
- Example
- cross $\leftarrow \neg$ train
- cross \leftarrow not train

Classical negation

- We consider logic programs in negation normal form
- That is, classical negation is applied to atoms only

Classical negation

- We consider logic programs in negation normal form
- That is, classical negation is applied to atoms only
- Given an alphabet \mathcal{A} of atoms, let $\overline{\mathcal{A}}=\{\neg a \mid a \in \mathcal{A}\}$ such that $\mathcal{A} \cap \overline{\mathcal{A}}=\emptyset$

Classical negation

- We consider logic programs in negation normal form
- That is, classical negation is applied to atoms only
- Given an alphabet \mathcal{A} of atoms, let $\overline{\mathcal{A}}=\{\neg a \mid a \in \mathcal{A}\}$ such that $\mathcal{A} \cap \overline{\mathcal{A}}=\emptyset$
- Given a program P over \mathcal{A}, classical negation is encoded by adding

$$
P^{\urcorner}=\{a \leftarrow b, \neg b \mid a \in(\mathcal{A} \cup \overline{\mathcal{A}}), b \in \mathcal{A}\}
$$

Classical negation

- Given an alphabet \mathcal{A} of atoms, let $\overline{\mathcal{A}}=\{\neg a \mid a \in \mathcal{A}\}$ such that $\mathcal{A} \cap \overline{\mathcal{A}}=\emptyset$
- Given a program P over \mathcal{A}, classical negation is encoded by adding

$$
P^{\urcorner}=\{a \leftarrow b, \neg b \mid a \in(\mathcal{A} \cup \overline{\mathcal{A}}), b \in \mathcal{A}\}
$$

- A set X of atoms is a stable model of a program P over $\mathcal{A} \cup \overline{\mathcal{A}}$, if X is a stable model of $P \cup P^{\urcorner}$

An example

- The program

$$
P=\{a \leftarrow \text { not } b, b \leftarrow \operatorname{not} a\} \cup\{c \leftarrow b, \neg c \leftarrow b\}
$$

An example

- The program

$$
P=\{a \leftarrow \text { not } b, b \leftarrow \text { not } a\} \cup\{c \leftarrow b, \neg c \leftarrow b\}
$$

induces

$$
P^{\urcorner}=\left\{\begin{array}{rrrrrrrrr}
a & \leftarrow & a, \neg a & a & \leftarrow & b, \neg b & a & \leftarrow & c, \neg c \\
\neg a & \leftarrow & a, \neg a & \neg a & \leftarrow & b, \neg b & \neg a & \leftarrow & c, \neg c \\
b & \leftarrow & a, \neg a & b & \leftarrow & b, \neg b & b & \leftarrow & c, \neg c \\
\neg b & \leftarrow & a, \neg a & \neg b & \leftarrow & b, \neg b & \neg b & \leftarrow & c, \neg c \\
c & \leftarrow & a, \neg a & c & \leftarrow & b, \neg b & c & \leftarrow & c, \neg c \\
\neg c & \leftarrow & a, \neg a & \neg c & \leftarrow & b, \neg b & \neg c & \leftarrow & c, \neg c
\end{array}\right\}
$$

An example

- The program

$$
P=\{a \leftarrow \text { not } b, b \leftarrow \text { not } a\} \cup\{c \leftarrow b, \neg c \leftarrow b\}
$$

induces

$$
P^{\urcorner}=\left\{\begin{array}{rrrrrrrrr}
a & \leftarrow & a, \neg a & a & \leftarrow & b, \neg b & a & \leftarrow & c, \neg c \\
\neg a & \leftarrow & a, \neg a & \neg a & \leftarrow & b, \neg b & \neg a & \leftarrow & c, \neg c \\
b & \leftarrow & a, \neg a & b & \leftarrow & b, \neg b & b & \leftarrow & c, \neg c \\
\neg b & \leftarrow & a, \neg a & \neg b & \leftarrow & b, \neg b & \neg b & \leftarrow & c, \neg c \\
c & \leftarrow & a, \neg a & c & \leftarrow & b, \neg b & c & \leftarrow & c, \neg c \\
\neg c & \leftarrow & a, \neg a & \neg c & \leftarrow & b, \neg b & \neg c & \leftarrow & c, \neg c
\end{array}\right\}
$$

- The stable models of P are given by the ones of $P \cup P\urcorner$, viz $\{a\}$

Properties

- The only inconsistent stable "model" is $X=\mathcal{A} \cup \overline{\mathcal{A}}$

Properties

- The only inconsistent stable "model" is $X=\mathcal{A} \cup \overline{\mathcal{A}}$
- Note Strictly speaking, an inconsistent set like $\mathcal{A} \cup \overline{\mathcal{A}}$ is not a model

Properties

- The only inconsistent stable "model" is $X=\mathcal{A} \cup \overline{\mathcal{A}}$
- Note Strictly speaking, an inconsistent set like $\mathcal{A} \cup \overline{\mathcal{A}}$ is not a model
- For a logic program P over $\mathcal{A} \cup \overline{\mathcal{A}}$, exactly one of the following two cases applies:
(1) All stable models of P are consistent or
(2) $X=\mathcal{A} \cup \overline{\mathcal{A}}$ is the only stable model of P

Train spotting

- $P_{1}=\{$ cross \leftarrow not train $\}$
- $P_{2}=\{$ cross $\leftarrow \neg$ train $\}$
- $P_{3}=\{$ cross $\leftarrow \neg$ train, \neg train $\leftarrow\}$
- $P_{4}=\{$ cross $\leftarrow \neg$ train, \neg train \leftarrow, \neg cross $\leftarrow\}$
- $P_{5}=\{$ cross $\leftarrow \neg$ train, \neg train \leftarrow not train $\}$
- $P_{6}=\{$ cross $\leftarrow \neg$ train, \neg train \leftarrow not train, \neg cross $\leftarrow\}$

Train spotting

- $P_{1}=\{$ cross \leftarrow not train $\}$
- stable model: $\{$ cross $\}$

Train spotting

- $P_{2}=\{$ cross $\leftarrow \neg$ train $\}$

Train spotting

- $P_{2}=\{$ cross $\leftarrow \neg$ train $\}$
- stable model: \emptyset

Train spotting

- $P_{3}=\{$ cross $\leftarrow \neg$ train, \neg train $\leftarrow\}$

Train spotting

- $P_{3}=\{$ cross $\leftarrow \neg$ train, \neg train $\leftarrow\}$
- stable model: \{cross, \rightarrow train $\}$

Train spotting

- $P_{4}=\{$ cross $\leftarrow \neg$ train, \neg train \leftarrow, \neg cross $\leftarrow\}$

Train spotting

- $P_{4}=\{$ cross $\leftarrow \neg$ train, \neg train \leftarrow, \neg cross $\leftarrow\}$
- stable model: $\{$ cross,\neg cross, train, \neg train $\}$ inconsistent as $\mathcal{A} \cup \overline{\mathcal{A}}$

Train spotting

- $P_{5}=\{$ cross $\leftarrow \neg$ train, \neg train \leftarrow not train $\}$

Train spotting

- $P_{5}=\{$ cross $\leftarrow \neg$ train, \neg train \leftarrow not train $\}$
- stable model: \{cross, \neg train $\}$

Train spotting

- $P_{6}=\{$ cross $\leftarrow \neg$ train, \neg train \leftarrow not train, \neg cross $\leftarrow\}$

Train spotting

- $P_{6}=\{$ cross $\leftarrow \neg$ train, \neg train \leftarrow not train, \neg cross $\leftarrow\}$
- no stable model

Train spotting

- $P_{1}=\{$ cross \leftarrow not train $\}$
- stable model: $\{$ cross $\}$
- $P_{2}=\{$ cross $\leftarrow \neg$ train $\}$
- stable model: \emptyset
- $P_{3}=\{$ cross $\leftarrow \neg$ train, \neg train $\leftarrow\}$
- stable model: \{cross, \rightarrow train $\}$
- $P_{4}=\{$ cross $\leftarrow \neg$ train, \neg train \leftarrow, \neg cross $\leftarrow\}$
- stable model: $\{$ cross, \neg cross, train, \neg train $\}$ inconsistent as $\mathcal{A} \cup \overline{\mathcal{A}}$
- $P_{5}=\{$ cross $\leftarrow \neg$ train, \neg train \leftarrow not train $\}$
- stable model: \{cross, \neg train $\}$
- $P_{6}=\{$ cross $\leftarrow \neg$ train, \neg train \leftarrow not train, \neg cross $\leftarrow\}$
- no stable model

Default negation in rule heads

- We consider logic programs with default negation in rule heads

Default negation in rule heads

- We consider logic programs with default negation in rule heads
- Given an alphabet \mathcal{A} of atoms, let $\widetilde{\mathcal{A}}=\{\widetilde{a} \mid a \in \mathcal{A}\}$ such that $\mathcal{A} \cap \widetilde{\mathcal{A}}=\emptyset$

Default negation in rule heads

- We consider logic programs with default negation in rule heads
- Given an alphabet \mathcal{A} of atoms, let $\widetilde{\mathcal{A}}=\{\widetilde{a} \mid a \in \mathcal{A}\}$ such that $\mathcal{A} \cap \widetilde{\mathcal{A}}=\emptyset$
- Given a program P over \mathcal{A}, consider the program

$$
\begin{aligned}
& \widetilde{P}=\{r \in P \mid \operatorname{head}(r) \neq \text { not } a\} \\
& \cup\{\leftarrow \operatorname{body}(r) \cup\{\operatorname{not} \widetilde{a}\} \mid r \in P \text { and } \operatorname{head}(r)=\operatorname{not} a\} \\
& \cup\{\widetilde{a} \leftarrow \operatorname{not} a \mid r \in P \text { and } \operatorname{head}(r)=\text { not } a\}
\end{aligned}
$$

Default negation in rule heads

- Given an alphabet \mathcal{A} of atoms, let $\widetilde{\mathcal{A}}=\{\widetilde{a} \mid a \in \mathcal{A}\}$ such that $\mathcal{A} \cap \widetilde{\mathcal{A}}=\emptyset$
- Given a program P over \mathcal{A}, consider the program

$$
\begin{aligned}
& \widetilde{P}=\{r \in P \mid \operatorname{head}(r) \neq \text { not } a\} \\
& \cup \cup\{\leftarrow \operatorname{body}(r) \cup\{\operatorname{not} \widetilde{a}\} \mid r \in P \text { and } \operatorname{head}(r)=\operatorname{not} a\} \\
& \cup\{\widetilde{a} \leftarrow \operatorname{not} a \mid r \in P \text { and } \operatorname{head}(r)=\operatorname{not} a\}
\end{aligned}
$$

- A set X of atoms is a stable model of a program P (with default negation in rule heads) over \mathcal{A},
if $X=Y \cap \mathcal{A}$ for some stable model Y of \widetilde{P} over $\mathcal{A} \cup \widetilde{\mathcal{A}}$

Outline

6 Two kinds of negation
(7) Disjunctive logic programs

Disjunctive logic programs

- A disjunctive rule, r, is of the form

$$
a_{1} ; \ldots ; a_{m} \leftarrow a_{m+1}, \ldots, a_{n}, \text { not } a_{n+1}, \ldots, \text { not } a_{o}
$$

where $0 \leq m \leq n \leq o$ and each a_{i} is an atom for $0 \leq i \leq o$

- A disjunctive logic program is a finite set of disjunctive rules

Disjunctive logic programs

- A disjunctive rule, r, is of the form

$$
a_{1} ; \ldots ; a_{m} \leftarrow a_{m+1}, \ldots, a_{n}, \text { not } a_{n+1}, \ldots, \text { not } a_{o}
$$

where $0 \leq m \leq n \leq o$ and each a_{i} is an atom for $0 \leq i \leq o$

- A disjunctive logic program is a finite set of disjunctive rules
- Notation

$$
\begin{aligned}
\operatorname{head}(r) & =\left\{a_{1}, \ldots, a_{m}\right\} \\
\operatorname{body}(r) & =\left\{a_{m+1}, \ldots, a_{n}, \operatorname{not} a_{n+1}, \ldots, \operatorname{not} a_{o}\right\} \\
\operatorname{body}(r)^{+} & =\left\{a_{m+1}, \ldots, a_{n}\right\} \\
\operatorname{body}(r)^{-} & =\left\{a_{n+1}, \ldots, a_{o}\right\} \\
\operatorname{atom}(P) & =\bigcup_{r \in P}\left(\operatorname{head}(r) \cup \operatorname{body}(r)^{+} \cup \operatorname{body}(r)^{-}\right) \\
\operatorname{body}(P) & =\{\operatorname{body}(r) \mid r \in P\}
\end{aligned}
$$

Disjunctive logic programs

- A disjunctive rule, r, is of the form

$$
a_{1} ; \ldots ; a_{m} \leftarrow a_{m+1}, \ldots, a_{n}, \text { not } a_{n+1}, \ldots, \text { not } a_{o}
$$

where $0 \leq m \leq n \leq o$ and each a_{i} is an atom for $0 \leq i \leq o$

- A disjunctive logic program is a finite set of disjunctive rules
- Notation

$$
\begin{aligned}
\operatorname{head}(r) & =\left\{a_{1}, \ldots, a_{m}\right\} \\
\operatorname{body}(r) & =\left\{a_{m+1}, \ldots, a_{n}, \operatorname{not} a_{n+1}, \ldots, \operatorname{not} a_{o}\right\} \\
\operatorname{body}(r)^{+} & =\left\{a_{m+1}, \ldots, a_{n}\right\} \\
\operatorname{body}(r)^{-} & =\left\{a_{n+1}, \ldots, a_{o}\right\} \\
\operatorname{atom}(P) & =\bigcup_{r \in P}\left(\operatorname{head}(r) \cup \operatorname{body}(r)^{+} \cup \operatorname{body}(r)^{-}\right) \\
\operatorname{body}(P) & =\{\operatorname{body}(r) \mid r \in P\}
\end{aligned}
$$

- A program is called positive if $\operatorname{body}(r)^{-}=\emptyset$ for all its rules

Stable models

- Positive programs
- A set X of atoms is closed under a positive program P iff for any $r \in P$, head $(r) \cap X \neq \emptyset$ whenever $\operatorname{body}(r)^{+} \subseteq X$
- X corresponds to a model of P (seen as a formula)
- The set of all \subseteq-minimal sets of atoms being closed under a positive program P is denoted by $\min _{\subseteq}(P)$
- $\min _{\subseteq} \subseteq(P)$ corresponds to the \subseteq-minimal models of P (ditto)

Stable models

- Positive programs
- A set X of atoms is closed under a positive program P iff for any $r \in P$, head $(r) \cap X \neq \emptyset$ whenever $\operatorname{body}(r)^{+} \subseteq X$
- X corresponds to a model of P (seen as a formula)
- The set of all \subseteq-minimal sets of atoms being closed under a positive program P is denoted by $\min _{\subseteq}(P)$
- $\min _{\subseteq}(P)$ corresponds to the \subseteq-minimal models of P (ditto)
- Disjunctive programs
- The reduct, P^{X}, of a disjunctive program P relative to a set X of atoms is defined by

$$
P^{X}=\left\{\operatorname{head}(r) \leftarrow \operatorname{body}(r)^{+} \mid r \in P \text { and } \operatorname{body}(r)^{-} \cap X=\emptyset\right\}
$$

Stable models

- Positive programs
- A set X of atoms is closed under a positive program P iff for any $r \in P$, head $(r) \cap X \neq \emptyset$ whenever $\operatorname{body}(r)^{+} \subseteq X$
- X corresponds to a model of P (seen as a formula)
- The set of all \subseteq-minimal sets of atoms being closed under a positive program P is denoted by $\min _{\subseteq}(P)$
- $\min _{\subseteq}(P)$ corresponds to the \subseteq-minimal models of P (ditto)
- Disjunctive programs
- The reduct, P^{X}, of a disjunctive program P relative to a set X of atoms is defined by

$$
P^{X}=\left\{\operatorname{head}(r) \leftarrow \operatorname{body}(r)^{+} \mid r \in P \text { and } \operatorname{body}(r)^{-} \cap X=\emptyset\right\}
$$

- A set X of atoms is a stable model of a disjunctive program P, if $X \in \min _{\subseteq}\left(P^{X}\right)$

A "positive" example

$$
P=\left\{\begin{array}{lll}
a & \leftarrow & \\
b ; c & \leftarrow & a
\end{array}\right\}
$$

A "positive" example

$$
P=\left\{\begin{array}{lll}
a & \leftarrow & \\
b ; c & \leftarrow & a
\end{array}\right\}
$$

- The sets $\{a, b\},\{a, c\}$, and $\{a, b, c\}$ are closed under P

A "positive" example

$$
P=\left\{\begin{array}{lll}
a & \leftarrow & \\
b ; c & \leftarrow & a
\end{array}\right\}
$$

- The sets $\{a, b\},\{a, c\}$, and $\{a, b, c\}$ are closed under P
- We have $\min _{\subseteq}(P)=\{\{a, b\},\{a, c\}\}$

Graph coloring (reloaded)

```
node(1..6).
edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).
edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).
color(X,r) ; color(X,b) ; color(X,g) :- node(X).
:- edge(X,Y), color(X,C), color(Y,C).
```


Graph coloring (reloaded)

```
node(1..6).
edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).
edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).
col(r). col(b). col(g).
color(X,C) : col(C) :- node(X).
:- edge(X,Y), color(X,C), color(Y,C).
```


More Examples

- $P_{1}=\{a ; b ; c \leftarrow\}$

More Examples

- $P_{1}=\{a ; b ; c \leftarrow\}$
- stable models $\{a\},\{b\}$, and $\{c\}$

More Examples

- $P_{2}=\{a ; b ; c \leftarrow, \leftarrow a\}$

More Examples

- $P_{2}=\{a ; b ; c \leftarrow, \leftarrow a\}$
- stable models $\{b\}$ and $\{c\}$

More Examples

- $P_{3}=\{a ; b ; c \leftarrow, \leftarrow a, b \leftarrow c, c \leftarrow b\}$

More Examples

- $P_{3}=\{a ; b ; c \leftarrow, \leftarrow a, b \leftarrow c, c \leftarrow b\}$
- stable model $\{b, c\}$

More Examples

- $P_{4}=\{a ; b \leftarrow c, b \leftarrow$ not a, not $c, a ; c \leftarrow$ not $b\}$

More Examples

- $P_{4}=\{a ; b \leftarrow c, b \leftarrow$ not a, not $c, a ; c \leftarrow$ not $b\}$
- stable models $\{a\}$ and $\{b\}$

More Examples

- $P_{1}=\{a ; b ; c \leftarrow\}$
- stable models $\{a\},\{b\}$, and $\{c\}$
- $P_{2}=\{a ; b ; c \leftarrow, \leftarrow a\}$
- stable models $\{b\}$ and $\{c\}$
- $P_{3}=\{a ; b ; c \leftarrow, \leftarrow a, b \leftarrow c, c \leftarrow b\}$
- stable model $\{b, c\}$
- $P_{4}=\{a ; b \leftarrow c, b \leftarrow$ not a, not $c, a ; c \leftarrow$ not $b\}$
- stable models $\{a\}$ and $\{b\}$

Some properties

- A disjunctive logic program may have zero, one, or multiple stable models
- If X is a stable model of a disjunctive logic program P, then X is a model of P (seen as a formula)
- If X and Y are stable models of a disjunctive logic program P, then $X \not \subset Y$

Some properties

- A disjunctive logic program may have zero, one, or multiple stable models
- If X is a stable model of a disjunctive logic program P, then X is a model of P (seen as a formula)
- If X and Y are stable models of a disjunctive logic program P, then $X \not \subset Y$
- If $A \in X$ for some stable model X of a disjunctive logic program P, then there is a rule $r \in P$ such that $\operatorname{body}(r)^{+} \subseteq X, \operatorname{body}(r)^{-} \cap X=\emptyset$, and $\operatorname{head}(r) \cap X=\{A\}$

An example with variables

$$
P=\left\{\begin{array}{lll}
a(1,2) & \leftarrow \\
b(X) ; c(Y) & \leftarrow a(X, Y), \operatorname{not} c(Y)
\end{array}\right\}
$$

An example with variables

$$
\begin{aligned}
P & =\left\{\begin{array}{lll}
a(1,2) & \leftarrow & \\
b(X) ; c(Y) & \leftarrow & a(X, Y), \text { not } c(Y)
\end{array}\right\} \\
\operatorname{ground}(P) & =\left\{\begin{array}{lll}
a(1,2) & \leftarrow & \\
b(1) ; c(1) & \leftarrow & a(1,1), \text { not } c(1) \\
b(1) ; c(2) & \leftarrow & a(1,2), \text { not } c(2) \\
b(2) ; c(1) & \leftarrow & a(2,1), \text { not } c(1) \\
b(2) ; c(2) & \leftarrow & a(2,2), \text { not } c(2)
\end{array}\right\}
\end{aligned}
$$

An example with variables

$$
\begin{aligned}
P & =\left\{\begin{array}{lll}
a(1,2) & \leftarrow & \\
b(X) ; c(Y) & \leftarrow & a(X, Y), \text { not } c(Y)
\end{array}\right\} \\
\operatorname{ground}(P) & =\left\{\begin{array}{lll}
a(1,2) & \leftarrow & \\
b(1) ; c(1) & \leftarrow & a(1,1), \text { not } c(1) \\
b(1) ; c(2) & \leftarrow & a(1,2), \text { not } c(2) \\
b(2) ; c(1) & \leftarrow & a(2,1), \text { not } c(1) \\
b(2) ; c(2) & \leftarrow & a(2,2), \text { not } c(2)
\end{array}\right\}
\end{aligned}
$$

For every stable model X of P, we have

- $a(1,2) \in X$ and
- $\{a(1,1), a(2,1), a(2,2)\} \cap X=\emptyset$

An example with variables

$$
\operatorname{ground}(P)=\left\{\begin{array}{lll}
a(1,2) & \leftarrow & \\
b(1) ; c(1) & \leftarrow & a(1,1), \text { not } c(1) \\
b(1) ; c(2) & \leftarrow & a(1,2), \text { not } c(2) \\
b(2) ; c(1) & \leftarrow & a(2,1), \text { not } c(1) \\
b(2) ; c(2) & \leftarrow & a(2,2), \text { not } c(2)
\end{array}\right\}
$$

An example with variables

$$
\operatorname{ground}(P)=\left\{\begin{array}{lll}
a(1,2) & \leftarrow & \\
b(1) ; c(1) & \leftarrow & a(1,1), \text { not } c(1) \\
b(1) ; c(2) & \leftarrow & a(1,2), \text { not } c(2) \\
b(2) ; c(1) & \leftarrow & a(2,1), \text { not } c(1) \\
b(2) ; c(2) & \leftarrow a(2,2), \text { not } c(2)
\end{array}\right\}
$$

- Consider $X=\{a(1,2), b(1)\}$

An example with variables

$$
\operatorname{ground}(P)^{X}=\left\{\begin{array}{lll}
a(1,2) & \leftarrow & \\
b(1) ; c(1) & \leftarrow & a(1,1) \\
b(1) ; c(2) & \leftarrow a(1,2) \\
b(2) ; c(1) & \leftarrow a(2,1) \\
b(2) ; c(2) & \leftarrow a(2,2)
\end{array}\right\}
$$

- Consider $X=\{a(1,2), b(1)\}$

An example with variables

$$
\operatorname{ground}(P)^{X}=\left\{\begin{array}{lll}
a(1,2) & \leftarrow & \\
b(1) ; c(1) & \leftarrow & a(1,1) \\
b(1) ; c(2) & \leftarrow a(1,2) \\
b(2) ; c(1) & \leftarrow a(2,1) \\
b(2) ; c(2) & \leftarrow a(2,2)
\end{array}\right\}
$$

- Consider $X=\{a(1,2), b(1)\}$
- We get $\min _{\subseteq}\left(\operatorname{ground}(P)^{X}\right)=\{\{a(1,2), b(1)\},\{a(1,2), c(2)\}\}$

An example with variables

$$
\operatorname{ground}(P)^{X}=\left\{\begin{array}{lcc}
a(1,2) & \leftarrow & \\
b(1) ; c(1) & \leftarrow & a(1,1) \\
b(1) ; c(2) & \leftarrow & a(1,2) \\
b(2) ; c(1) & \leftarrow a(2,1) \\
b(2) ; c(2) & \leftarrow a(2,2)
\end{array}\right\}
$$

- Consider $X=\{a(1,2), b(1)\}$
- We get $\min _{\subseteq}\left(\operatorname{ground}(P)^{X}\right)=\{\{a(1,2), b(1)\},\{a(1,2), c(2)\}\}$
- X is a stable model of P because $X \in \min _{\subseteq}\left(\operatorname{ground}(P)^{X}\right)$

An example with variables

$$
\operatorname{ground}(P)=\left\{\begin{array}{lll}
a(1,2) & \leftarrow & \\
b(1) ; c(1) & \leftarrow & a(1,1), \text { not } c(1) \\
b(1) ; c(2) & \leftarrow & a(1,2), \text { not } c(2) \\
b(2) ; c(1) & \leftarrow & a(2,1), \text { not } c(1) \\
b(2) ; c(2) & \leftarrow & a(2,2), \text { not } c(2)
\end{array}\right\}
$$

An example with variables

$$
\operatorname{ground}(P)=\left\{\begin{array}{lll}
a(1,2) & \leftarrow & \\
b(1) ; c(1) & \leftarrow & a(1,1), \text { not } c(1) \\
b(1) ; c(2) & \leftarrow & a(1,2), \text { not } c(2) \\
b(2) ; c(1) & \leftarrow & a(2,1), \text { not } c(1) \\
b(2) ; c(2) & \leftarrow & a(2,2), \text { not } c(2)
\end{array}\right\}
$$

- Consider $X=\{a(1,2), c(2)\}$

An example with variables

$$
\operatorname{ground}(P)^{X}=\left\{\begin{array}{lll}
a(1,2) & \leftarrow & \\
b(1) ; c(1) & \leftarrow & a(1,1) \\
b(2) ; c(1) & \leftarrow & a(2,1)
\end{array}\right\}
$$

- Consider $X=\{a(1,2), c(2)\}$

An example with variables

$$
\operatorname{ground}(P)^{X}=\left\{\begin{array}{lll}
a(1,2) & \leftarrow & \\
b(1) ; c(1) & \leftarrow & a(1,1) \\
b(2) ; c(1) & \leftarrow & a(2,1)
\end{array}\right\}
$$

- Consider $X=\{a(1,2), c(2)\}$
- We get $\min _{\subseteq}\left(\operatorname{ground}(P)^{X}\right)=\{\{a(1,2)\}\}$

An example with variables

$$
\operatorname{ground}(P)^{X}=\left\{\begin{array}{lll}
a(1,2) & \leftarrow & \\
b(1) ; c(1) & \leftarrow & a(1,1) \\
b(2) ; c(1) & \leftarrow & a(2,1)
\end{array}\right\}
$$

- Consider $X=\{a(1,2), c(2)\}$
- We get $\min _{\subseteq}\left(\operatorname{ground}(P)^{X}\right)=\{\{a(1,2)\}\}$
- X is no stable model of P because $X \notin \min _{\subseteq}\left(\operatorname{ground}(P)^{X}\right)$

Default negation in rule heads

- Consider disjunctive rules of the form

$$
\begin{aligned}
& \quad a_{1} ; \ldots ; a_{m} ; \text { not } a_{m+1} ; \ldots ; \text { not } a_{n} \leftarrow a_{n+1}, \ldots, a_{o}, \text { not } a_{o+1}, \ldots, \text { not } a_{p} \\
& \text { where } 0 \leq m \leq n \leq o \leq p \text { and each } a_{i} \text { is an atom for } 0 \leq i \leq p
\end{aligned}
$$

Default negation in rule heads

- Consider disjunctive rules of the form

$$
a_{1} ; \ldots ; a_{m} ; \text { not } a_{m+1} ; \ldots ; \text { not } a_{n} \leftarrow a_{n+1}, \ldots, a_{o}, \text { not } a_{o+1}, \ldots, \text { not } a_{p}
$$

where $0 \leq m \leq n \leq o \leq p$ and each a_{i} is an atom for $0 \leq i \leq p$

- Given a program P over \mathcal{A}, consider the program

$$
\begin{aligned}
\widetilde{P}= & \left\{\text { head }(r)^{+} \leftarrow \operatorname{body}(r) \cup\left\{\operatorname{not} \widetilde{a} \mid a \in \operatorname{head}(r)^{-}\right\} \mid r \in P\right\} \\
& \cup\left\{\widetilde{a} \leftarrow \text { not } a \mid r \in P \text { and } a \in \operatorname{head}(r)^{-}\right\}
\end{aligned}
$$

Default negation in rule heads

- Consider disjunctive rules of the form

$$
a_{1} ; \ldots ; a_{m} ; \text { not } a_{m+1} ; \ldots ; \text { not } a_{n} \leftarrow a_{n+1}, \ldots, a_{o}, \text { not } a_{o+1}, \ldots, \text { not } a_{p}
$$

where $0 \leq m \leq n \leq o \leq p$ and each a_{i} is an atom for $0 \leq i \leq p$

- Given a program P over \mathcal{A}, consider the program

$$
\begin{aligned}
\widetilde{P}= & \left\{\text { head }(r)^{+} \leftarrow \operatorname{body}(r) \cup\left\{\operatorname{not} \widetilde{a} \mid a \in \operatorname{head}(r)^{-}\right\} \mid r \in P\right\} \\
& \cup\left\{\widetilde{a} \leftarrow \text { not } a \mid r \in P \text { and } a \in \operatorname{head}(r)^{-}\right\}
\end{aligned}
$$

- A set X of atoms is a stable model of a disjunctive program P (with default negation in rule heads) over \mathcal{A}, if $X=Y \cap \mathcal{A}$ for some stable model Y of \widetilde{P} over $\mathcal{A} \cup \widetilde{\mathcal{A}}$

An example

- The program

$$
P=\{a ; \text { not } a \leftarrow\}
$$

An example

- The program

$$
P=\{a ; \text { not } a \leftarrow\}
$$

yields

$$
\widetilde{P}=\{a \leftarrow \operatorname{not} \widetilde{a}\} \cup\{\widetilde{a} \leftarrow \text { not } a\}
$$

An example

- The program

$$
P=\{a ; \text { not } a \leftarrow\}
$$

yields

$$
\widetilde{P}=\{a \leftarrow \operatorname{not} \widetilde{a}\} \cup\{\widetilde{a} \leftarrow \text { not } a\}
$$

- \widetilde{P} has two stable models, $\{a\}$ and $\{\widetilde{a}\}$

An example

- The program

$$
P=\{a ; \text { not } a \leftarrow\}
$$

yields

$$
\widetilde{P}=\{a \leftarrow \operatorname{not} \widetilde{a}\} \cup\{\widetilde{a} \leftarrow \text { not } a\}
$$

- \widetilde{P} has two stable models, $\{a\}$ and $\{\widetilde{a}\}$
- This induces the stable models $\{a\}$ and \emptyset of P

Computational Aspects: Overview

Outline

Complexity

Let a be an atom and X be a set of atoms

Complexity

Let a be an atom and X be a set of atoms

- For a positive normal logic program P :
- Deciding whether X is the stable model of P is P -complete
- Deciding whether a is in the stable model of P is P -complete

Complexity

Let a be an atom and X be a set of atoms

- For a positive normal logic program P :
- Deciding whether X is the stable model of P is P -complete
- Deciding whether a is in the stable model of P is P -complete
- For a normal logic program P :
- Deciding whether X is a stable model of P is P -complete
- Deciding whether a is in a stable model of P is NP-complete

Complexity

Let a be an atom and X be a set of atoms

- For a positive normal logic program P :
- Deciding whether X is the stable model of P is P -complete
- Deciding whether a is in the stable model of P is P -complete
- For a normal logic program P :
- Deciding whether X is a stable model of P is P -complete
- Deciding whether a is in a stable model of P is NP-complete
- For a normal logic program P with optimization statements:
- Deciding whether X is an optimal stable model of P is co-NP-complete
- Deciding whether a is in an optimal stable model of P is Δ_{2}^{p}-complete

Complexity

Let a be an atom and X be a set of atoms

- For a positive disjunctive logic program P :
- Deciding whether X is a stable model of P is co-NP-complete
- Deciding whether a is in a stable model of P is NP ${ }^{N P}$-complete
- For a disjunctive logic program P :
- Deciding whether X is a stable model of P is co-NP-complete
- Deciding whether a is in a stable model of P is NP ${ }^{N P}$-complete
- For a disjunctive logic program P with optimization statements:
- Deciding whether X is an optimal stable model of P is co-NP ${ }^{N P}$-complete
- Deciding whether a is in an optimal stable model of P is Δ_{3}^{p}-complete

Complexity

Let a be an atom and X be a set of atoms

- For a positive disjunctive logic program P :
- Deciding whether X is a stable model of P is co-NP-complete
- Deciding whether a is in a stable model of P is NP ${ }^{N P}$-complete
- For a disjunctive logic program P :
- Deciding whether X is a stable model of P is co-NP-complete
- Deciding whether a is in a stable model of P is NP ${ }^{N P}$-complete
- For a disjunctive logic program P with optimization statements:
- Deciding whether X is an optimal stable model of P is co-NP ${ }^{N P}$-complete
- Deciding whether a is in an optimal stable model of P is Δ_{3}^{p}-complete
- For a propositional theory Φ :
- Deciding whether X is a stable model of Φ is co-NP-complete
- Deciding whether a is in a stable model of Φ is $N P^{N P}$-complete

References

Torin Martin Gebser, Benjamin Kaufmann Roland Kaminski, and Torsten Schaub.
Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers, 2012. doi=10.2200/S00457ED1V01Y201211AIM019.

- See also: http://potassco.sourceforge.net

