
Display to Labeled Proofs and Back Again for Tense
Logics

AGATA CIABATTONI, TIM LYON, and REVANTHA RAMANAYAKE, Technische Universität
Wien, Austria
ALWEN TIU, The Australian National University, Australia

We introduce translations between display calculus proofs and labeled calculus proofs in the context of tense
logics. First, we show that every derivation in the display calculus for the minimal tense logic Kt extended
with general path axioms can be effectively transformed into a derivation in the corresponding labeled calculus.
Concerning the converse translation, we show that for Kt extended with path axioms, every derivation in the
corresponding labeled calculus can be put into a special form that is translatable to a derivation in the associated
display calculus. A key insight in this converse translation is a canonical representation of display sequents as
labeled polytrees. The latter, which represent equivalence classes of display sequents modulo display postulates,
also shed light on related correspondence results for tense logics.

Additional Key Words and Phrases: Nested calculus, Labeled calculus, Display calculus, Effective translations,
Tense logic, Modal logic

ACM Reference Format:
Agata Ciabattoni, Tim Lyon, Revantha Ramanayake, and Alwen Tiu. 2020. Display to Labeled Proofs and Back
Again for Tense Logics. 1, 1 (June 2020), 31 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
A crucial question for any logic is if it possesses an analytic calculus. An analytic calculus consists of
rules that decompose a formula of the logic in a stepwise manner, and can be exploited to prove certain
metalogical properties as well as develop automated reasoning methods. Since its introduction in the
1930’s, Gentzen’s sequent calculus (and equivalently, the tableaux calculus) has been a preferred
formalism for constructing analytic calculi due to its simplicity. Unfortunately, this simplicity is also
an obstacle: the formalism is not expressive enough to present many logics of interest. In response,
many proof-theoretic formalisms extending the syntactic elements of the sequent calculus have
been introduced over the last 30 years. Of particular interest in this paper are the formalisms of
the labeled calculus [28, 29, 36], nested calculus [6, 21, 26], and display calculus [1, 22]. Each
formalism extends the sequent calculus in a seemingly unique way, suggesting distinct strengths,
weaknesses, and expressive powers. There are trade-offs in employing one formalism as opposed to
another, motivating a study of the interrelationships between the current patchwork (see, e.g. [32]) of
proof systems.

Authors’ addresses: Agata Ciabattoni, agata@logic.at; Tim Lyon, lyon@logic.at; Revantha Ramanayake, revantha@logic.at,
Technische Universität Wien, Institut für Logic and Computation, Favoritenstaße 9-11, Wien, 1040, Austria; Alwen Tiu,
alwen.tiu@anu.edu.au, The Australian National University, College of Engineering and Computer Science, 108 North Road,
Canberra, ACT, 2601, Australia.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
XXXX-XXXX/2020/6-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: June 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Ciabattoni and Lyon, et al.

In this paper, we consider proof calculi for a special class of multi-modal logics: extensions of
the minimal tense logic Kt with general path axioms Π𝐴 → Σ𝐴 (Π, Σ ∈ {^,_}∗). Tense logics
incorporate modalities that reference what is true in successor (^) and predecessor states (_). Such
logics are used to model temporal notions having to do with future and past states of affairs. This
class of logics provides a good case study for our proof-theoretic investigations since it includes
many interesting/well-known logics and possesses a diverse proof theory.

Numerous analytic proof calculi have been presented for extensions of Kt such as labeled calculi [3,
4], nested calculi [17], and display calculi [21, 22, 37]. Since the term nested sequent has been used
in the literature to refer to slightly different objects, this is a good time to clarify our terminology. In
this paper:

Nested sequent: Any term generated via the BNF grammar 𝑋 ::= 𝐴 | 𝑋,𝑋 | ◦{𝑋 } | •{𝑋 }
where 𝐴 is a tense formula. Note that this extends the typical definition of a nested sequent
in the proof theory literature for modal (rather than tense) logics that uses a single nesting
operator (e.g., the grammar for traditional nested sequents is usually given by the following
BNF grammar: 𝑋 ::= 𝐴 | 𝑋,𝑋 | [𝑋]).

Shallow nested calculus (used here interchangeably1 with display calculus) A proof calculus
built from nested sequents in the sense above, where display rules are used to unpack (‘display’)
a formula nested under ◦ and • to bring it to the top-level, where the inference rules operate.

Deep nested calculus: A proof calculus built from nested sequents in the sense above where the
display rules are dispensed with, and the inference rules can apply inside arbitrary nestings
of ◦ and • (i.e. deep inference is implemented).

Deep nested calculi are better suited than shallow nested calculi for proving e.g. decidability [5, 17]
and interpolation [24], due to the absence of the hard-to-control display rules that expand the proof-
search space. Both shallow and deep nested calculi are typically internal in the sense that each
sequent in a proof can be interpreted as a formula of the logic, whereas labeled calculi often appear
to be external in the sense that the sequents cannot generally be interpreted as a formula of the logic
(and use a language that explicitly encodes the semantics).

An effective way to relate calculi is by defining translations, i.e. functions that stepwise transform
any proof in a calculus into a proof of the same formula in another calculus. A crucial feature of
such functions is that the structural properties of the derivation are preserved in the translation.
Such embeddings permit the transfer of certain proof theoretic results, thus alleviating the need for
independent proofs in each system, e.g. [14, 18, 25]. Moreover, they shed light on the role of certain
syntactic features in proof calculi, and on the general problem of characterizing the relationships
between different syntactic and semantic presentations of a logic [31].

In [9] we obtained translations from shallow nested calculi to labeled calculi for Scott-Lemmon
axiomatic extensions (_ℎ^𝑖𝐴→ ^ 𝑗_𝑘𝐴 with ℎ, 𝑖, 𝑗, 𝑘 ∈ N) of Kt. This paper extends these results to
a larger set of tense logics, and answers an open question posed in that paper regarding the existence
of labeled to nested translations for extensions of Kt.

We first show how to translate derivations in shallow nested calculi into derivations in labeled
calculi for all general path extensions of Kt. The reverse translation—from labeled to shallow
nested—employs more sophisticated techniques and is only obtained for path axiom—Π𝐴→ ⟨?⟩𝐴
(Π ∈ {^,_}∗ and ⟨?⟩ ∈ {^,_})—extensions of Kt. The labeled sequents used in deriving theorems
for path extensions of Kt are interpretable as a nested sequent, permitting a translation from labeled to
shallow nested sequent proofs. This translation witnesses a relation between the relational semantics
and algebraic semantics (see e.g. [2, 16]) for tense logics: the labeled calculi are clearly underpinned

1The alternative term shallow nested sequent for display calculus is due to [17] whose motivation was to contrast the shallow
inference rules of the display calculus with a proof calculus that uses deep inference instead.

, Vol. 1, No. 1, Article . Publication date: June 2020.

Display to Labeled Proofs and Back Again for Tense Logics 3

by the relational semantics; the shallow nested calculi, on the other hand, employ display rules that
encode the algebraic residuation property between _ (and ^) in the antecedent and □ (and ■, resp.)
in the succedent of an implication. Indeed, the display rules have no analog in the labeled calculi
since the premise and conclusion translate to the same labeled sequent (see Lemma 3.9).

The ability to display any formula nested under structural connectives using the display rules is
a crucial part in Belnap’s [1] proof of cut-elimination for arbitrary display calculi. However, the
display rules greatly expand the proof search space, in particular when these rules interact with
other structural rules (e.g. contraction) or structural rules that capture the modal/tense axioms of the
formalized logic. In [17], the authors show how to translate display calculi to deep nested calculi,
eliminating the display rules by employing deep inference. In our translation from display calculi
to labeled calculi, display rules are not translated to inference rules; rather, they are dealt with by
changing the representation of the nested sequent. The key idea is that a nested sequent can naturally
be interpreted as a labeled sequent whose binary relation between labels forms a polytree (i.e. a
directed graph whose underlying undirected graph is a tree). The polytree interpretation of a nested
sequent has a crucial property that it is invariant under display rules—applications of display rules
to a nested sequent do not change its labeled polytree translation. Thus, display-equivalent nested
sequents have a canonical representation as a labeled polytree sequent. This representation also sheds
light on the correspondence results between shallow and deep nested calculi for tense logics [17]. In
particular, we show that the admissibility of display rules is independent from the admissibility of
structural rules capturing the path axioms in tense logics, something that was not observed in their
nested calculi. This polytree representation also significantly simplifies the proof of interpolation
result for the class of path extensions of Kt [24].

Given that labeled polytree sequents correspond closely to nested sequents, one strategy to translate
a labeled calculus to a shallow nested calculus is to translate a subset of the labeled calculus where
all sequents are polytree sequents, and then show that the latter is complete, i.e. that it proves the
same set of theorems as the unrestricted labeled calculi. One issue with this approach is that the
property of being a polytree is not closed under some structural rules in labeled calculi, i.e. there
could be instances of a rule where one of the premises is not a polytree but the conclusion is. To get
around this issue, when translating from labeled to shallow nested, we first put our given derivation
into a special form that makes use of so-called propagation rules [7, 17, 25, 34]. Such rules allow us
to eliminate certain structural rules from our labeled calculi and their derivations; this results in an
internal or refined variant of the labeled calculus that—interestingly—inherits the nice properties
of the original external calculus. This methodology of eliminating structural rules to obtain refined
calculi is of practical value in its own right [23]. In this paper, the methodology is used to provide
a translation from labeled to shallow nested; however, this method is also useful in that it yields
calculi suitable for proof-search and proving interpolation [24, 25]. Furthermore, this new form
of the derivation permits a stepwise translation into a derivation of a deep nested calculus, from
which, methods in [17] may be applied to further translate the proof into a proof of the corresponding
shallow nested calculus. Our proof of admissibility of structural rules, in favor of propagation rules,
for path axioms follows a similar methodology to that used in [17], with one notable difference:
in their work, the admissibility of display rules needs to be proved for every extension with path
axioms, whereas in our case, admissibility of display rules is independent of the extensions, since the
polytree representation makes the display rules superfluous. Our result thus suggests that perhaps
display rules should be viewed as structural properties of sequents rather than as structural properties
of proofs. This is analogous to, for example, internalizing the exchange rule as a property of sequents
(i.e. commutativity and associativity of comma in the sequent).

The paper is structured as follows: Section 2 introduces the class of tense logics considered along
with their associated shallow nested, labeled, and deep nested calculi. Section 3 presents labeled

, Vol. 1, No. 1, Article . Publication date: June 2020.

4 Ciabattoni and Lyon, et al.

polytrees which are used to give the translation from nested notation to labeled notation as well as
the reverse. In Section 4, we provide an effective translation from shallow nested proofs to labeled
proofs for all general path extensions of Kt. Section 5 gives the reverse translation from labeled
proofs to shallow nested proofs for path extensions of Kt. Section 6 discusses consequences and
potential applications.

We summarize below the calculi considered in this paper and illustrate the effective proof-
transformations (which transform the shape of a derivation and preserve the language of the calculus;
indicated by a dotted arrow) and translations (which not only transform the shape of the derivation,
but translate the language of the calculus; indicated by solid arrow) obtained in this paper.

Base Calculi and Extensions (𝐺𝑃 general path axioms, 𝑃 path axioms):
Base Calc. Type Gen. Path Str. Rules Path Str. Rules Propagation Rules
G3Kt [3, 9] labeled LabSt(GP) LabSt(P) LabPr(P)
SKT [17] Shal. Nes. NestSt(GP) NestSt(P)
DKT [17] Deep Nes. DeepPr(P)

Effective Transformations/Translations:

G3Kt + LabSt(GP) G3Kt + LabSt(P) 𝐿𝑒𝑚. 5.15 //

𝑇ℎ𝑚. 5.20
��

G3Kt + LabPr(P)

𝐿𝑒𝑚. 5.18
��

SKT + NestSt(GP)

𝑇ℎ𝑚. 4.3

OO

SKT + NestSt(P)

𝑇ℎ𝑚. 4.3

YY

DKT + DeepPr(P)
𝐿𝑒𝑚. 2.21

oo

2 NESTED AND LABELED CALCULI FOR TENSE LOGICS
For convenience, we take the language LKt as consisting of formulae in negation normal form. In
particular, formulae are built from the literals 𝑝 and 𝑝 using the ∧, ∨, ^, □, _, and ■ operators. Note
that all results hold also for the full language where the ¬,→, and↔ operators as taken as primitive.
The language LKt is explicitly defined via the following BNF grammar:

𝐴 ::= 𝑝 | 𝑝 | 𝐴 ∧𝐴 | 𝐴 ∨𝐴 | □𝐴 | ^𝐴 | ■𝐴 | _𝐴
Intuitively, we interpret □𝐴 as claiming that the formula 𝐴 holds at every point in the immediate

future, whereas ■𝐴 is interpreted as claiming that 𝐴 holds at every point in the immediate past.
Similarly, we interpret the formula ^𝐴 as claiming that 𝐴 holds at some point in the immediate
future, while _𝐴 intuitively means that 𝐴 holds at some point in the immediate past.

Define 𝐴 inductively as follows.

(1) If 𝐴 = 𝑝, then 𝐴 = 𝑝;
(2) If 𝐴 = 𝑝, then 𝐴 = 𝑝;
(3) If 𝐴 = 𝐵 ∧𝐶, then 𝐴 = 𝐵 ∨𝐶;
(4) If 𝐴 = 𝐵 ∨𝐶, then 𝐴 = 𝐵 ∧𝐶;

(5) If 𝐴 = □𝐵, then 𝐴 = ^𝐵;
(6) If 𝐴 = ^𝐵, then 𝐴 = □𝐵;
(7) If 𝐴 = ■𝐵, then 𝐴 = _𝐵;
(8) If 𝐴 = _𝐵, then 𝐴 = ■𝐵.

We define the negation ¬𝐴 of formula 𝐴 as 𝐴, the conditional 𝐴→ 𝐵 as 𝐴 ∨ 𝐵, and the biconditional
𝐴↔ 𝐵 as 𝐴→ 𝐵 ∧ 𝐵 → 𝐴.

The tense logic Kt—a conservative extension of the normal modal logic K—is typically axioma-
tized as shown below (see, e.g. [2, 8]).

𝐴→ (𝐵 → 𝐴) (¬𝐵 → ¬𝐴) → (𝐴→ 𝐵) (𝐴→ (𝐵 → 𝐶)) → ((𝐴→ 𝐵) → (𝐴→ 𝐶))

𝐴→ □_𝐴 𝐴→ ■^𝐴 □𝐴↔ ¬^¬𝐴 ■𝐴↔ ¬_¬𝐴 𝐴

□𝐴
𝐴

■𝐴

, Vol. 1, No. 1, Article . Publication date: June 2020.

Display to Labeled Proofs and Back Again for Tense Logics 5

□(𝐴→ 𝐵) → (□𝐴→ □𝐵) ■(𝐴→ 𝐵) → (■𝐴→ ■𝐵) 𝐴 𝐴→ 𝐵

𝐵
As mentioned previously, the logics we consider in this paper are extensions of Kt with general path

axioms of the form ⟨?⟩1 ...⟨?⟩𝑛𝐴→ ⟨?⟩𝑛+1 ...⟨?⟩𝑛+𝑚𝐴 where each ⟨?⟩𝑗 is either ^ or _. Occasionally,
we may use ⟨𝐹 ⟩, ⟨𝐺⟩, . . . to represent either a ^ or a _. Also, note that when 𝑛 = 0, the antecedent
of the path axiom is free of diamonds (i.e. it is of the form 𝐴→ ⟨?⟩1...⟨?⟩𝑚𝐴), and when𝑚 = 0, the
consequent is free of diamonds (i.e. it is of the form ⟨?⟩1 ...⟨?⟩𝑛𝐴 → 𝐴). We will use the notation
Π𝐴→ Σ𝐴 to represent such axioms. This class of axioms contains many well-known axioms such as
reflexivity 𝐴→ ^𝐴, confluence _^𝐴→ ^_𝐴, and partial-functionality _^𝐴→ 𝐴. We will use
𝐺𝑃 to denote an arbitrary set of general path axioms and write Kt +𝐺𝑃 to mean the minimal tense
logic Kt extended with the axioms from 𝐺𝑃 ; note that this notation extends straightforwardly to any
set 𝑆 of formulae, i.e. Kt + 𝑆 will be used to represent extensions of Kt with the formulae from 𝑆 , as
well as the corresponding logic (i.e. the set of theorems). Last, we let Kt + 𝑆 ⊢ 𝐴 denote that 𝐴 is a
theorem of the logic Kt + 𝑆 .

Path axioms are general path axioms where the consequent of the axiom is restricted to a single-
diamond formula, i.e. any formula of the form ⟨?⟩1...⟨?⟩𝑛𝐴→ ⟨?⟩𝑛+1𝐴 is a path axiom. We focus on
this class of axioms because the translation methods presented in this paper only allow us to translate
derivations from labeled to nested for the logics Kt + 𝑃 , where 𝑃 is an arbitrary set of path axioms.
Nevertheless, this class of axioms still contains well-known axioms such as transitivity ^^𝐴→ ^𝐴,
symmetry _𝐴→ ^𝐴, and Euclideanity _^𝐴→ ^𝐴.

2.1 Shallow Nested (Display) Calculi for Tense Logics
We will present Goré et al.’s [17] shallow nested calculus SKT for Kt. This calculus can be seen as a
one-sided version of Kracht’s [22] display calculus for Kt, and also as a variant of Kashima’s [21]
calculus.

The shallow nested calculus is modular in the sense that certain axiomatic extensions of Kt can be
captured by adding equivalent structural rules to SKT. Moreover, SKT allows for a uniform proof
of cut-elimination where cut is eliminable from any derivation of SKT extended with any number
of substitution-closed linear structural rules (see [17] for details). This makes the shallow nested
calculus a good candidate for capturing large classes of tense logics in a unified, cut-free manner. The
nested sequents of SKT are generated by the following grammar where 𝐴 is a tense formula in LKt.

𝑋 ::= 𝜀 | 𝐴 | 𝑋,𝑋 | ◦{𝑋 } | •{𝑋 }
We assume comma to commute and associate, meaning, for example, that we may freely re-write a
nested sequent of the form 𝑋,𝑌, 𝑍 as 𝑍,𝑋,𝑌 when performing derivations in SKT. Also, 𝜀 represents
the empty string or empty sequent, which acts as an identity element for comma (e.g. we identify 𝑋, 𝜀

with 𝑋), and so, 𝜀 will be implicit in nested sequents, but not explicitly appear.
A characteristic of nested sequents is that each can be translated into an equivalent formula in the

language LKt, that is, each connective introduced in the language of nested sequents acts as a proxy
for a logical connective (cf. [1, 17, 22]). The interpretation I of a nested sequent as a tense formula
is defined as follows:

(1) I(𝜀) = ⊤
(2) I(𝐴) = 𝐴 for 𝐴 ∈ LKt

(3) I(𝑋,𝑌) = I(𝑋) ∨ I(𝑌)
(4) I(◦{𝑋 }) = □I(𝑋)

(5) I(•{𝑋 }) = ■I(𝑋)

It will occasionally be useful to refer to the substructures of a nested sequent 𝑋 . We say that a
sequent 𝑌 is a substructure of 𝑋 if and only if 𝑌 ∈ 𝔖(𝑋), where the set of substructures of 𝑋 , written
𝔖(𝑋), is inductively defined as follows:

, Vol. 1, No. 1, Article . Publication date: June 2020.

6 Ciabattoni and Lyon, et al.

(1) 𝔖(𝜀) = ∅
(2) 𝔖(𝐴) = {𝐴} for 𝐴 ∈ LKt

(3) 𝔖(𝑋) = {𝑋 } ∪𝔖(𝑌) ∪𝔖(𝑍), if 𝑋 = 𝑌, 𝑍

(4) 𝔖(𝑋) = {𝑋 } ∪𝔖(𝑌), if 𝑋 = ◦{𝑌 } or •{𝑌 }

Definition 2.1 (The Calculus SKT [17]).
(id)

𝑋, 𝑝, 𝑝
𝑋,𝐴, 𝐵 (∨)
𝑋,𝐴 ∨ 𝐵

𝑋,𝐴 𝑋, 𝐵 (∧)
𝑋,𝐴 ∧ 𝐵

𝑋,𝑌,𝑌 (c)
𝑋,𝑌

𝑋 (w)
𝑋,𝑌

𝑋, ◦{𝑌 } (rf)•{𝑋 }, 𝑌
𝑋, •{𝑌 } (rp)◦{𝑋 }, 𝑌

𝑋, •{𝐴} (■)
𝑋,■𝐴

𝑋, ◦{𝐴} (□)
𝑋,□𝐴

𝑋, •{𝑌,𝐴},_𝐴 (_)
𝑋, •{𝑌 },_𝐴

𝑋, ◦{𝑌,𝐴},^𝐴 (^)
𝑋, ◦{𝑌 },^𝐴

SKT is referred to as a shallow nested sequent calculus because (i) the ◦{·} and •{·} provide
(two types of) nestings and (ii) all the rules are shallow in the sense that they operate at the root or
top-level of the sequent (i.e. rules are only applied to formulae or structures that do not occur within
nestings).

Definition 2.2 (Display Property). A calculus has the display property if it contains a set of rules
(called display rules) such that for any sequent 𝑋 containing a substructure 𝑌 , there exists a sequent 𝑍
such that 𝑌, 𝑍 is derivable from 𝑋 using only the display rules.

The display property states that any substructure in 𝑋 can be brought to the top level using the
display rules. The calculus SKT has the display property when {(rp), (rf)} is chosen to be the set
of display rules, i.e., the residuation rules (rp) and (rf) serve as the display rules in SKT. A pair of
nested sequents are display equivalent when they are mutually derivable using only the display rules.
The display property is significant since it is a crucial component in the proof of cut-elimination
(see [1]).

A modular method of obtaining a cut-free extension of the base calculus for Kt by a large class of
axioms inclusive of the general path axioms was introduced in [22] (see also [10]). Following [22],
we present the rule (GP) corresponding to a general path axiom ⟨?⟩1...⟨?⟩𝑛𝐴→ ⟨?⟩𝑛+1...⟨?⟩𝑛+𝑚𝐴:

𝑋,★𝑛+1{...★𝑛+𝑚 {𝑌 }...} (GP)
𝑋,★1{...★𝑛 {𝑌 }...}

Here if ⟨?⟩𝑗 = ^ then ★𝑗 = ◦, and if ⟨?⟩𝑗 = _ then ★𝑗 = •.
Since path axioms form a proper subclass of the general path axioms, the rule (GP) can be

specialized to the rule (Path) for any given path axiom ⟨?⟩1...⟨?⟩𝑛𝐴→ ⟨?⟩𝑛+1𝐴:
𝑋,★𝑛+1{𝑌 } (Path)

𝑋,★1{...★𝑛 {𝑌 }...}
THEOREM 2.3 ([17]). The (cut) rule

𝑋,𝐴 𝐴,𝑌 (cut)
𝑋,𝑌

is admissible in SKT + NestSt(GP).

THEOREM 2.4 ([35]). Kt +𝐺𝑃 ⊢ 𝐴 iff 𝐴 is derivable in SKT + NestSt(GP).

2.2 Labeled Calculi for Tense Logics
Labeled sequents [13, 27] generalize Gentzen sequents by the prefixing of state variables to formulae
occurring in the sequent and by making the relational semantics explicit in the syntax. labeled
sequents are defined via the BNF grammar below:

Λ ::= 𝜀 | 𝑥 : 𝐴 | Λ,Λ | 𝑅𝑥𝑦,Λ

, Vol. 1, No. 1, Article . Publication date: June 2020.

Display to Labeled Proofs and Back Again for Tense Logics 7

where 𝐴 ∈ LKt, and 𝑥 and 𝑦 are among a denumerable set 𝑥,𝑦, 𝑧, . . . of labels. We often write a
labeled sequent Λ as R, Γ where R consists of the relational atoms of the form 𝑅𝑥𝑦 occurring in Λ
and Γ consists of the labeled formulae of the form 𝑥 : 𝐴 occurring in Λ. Additionally, characters such
as R,Q, . . . will be used to denote (multisets of) relational atoms and Greek letters such as Γ,Δ, . . .
will be used to denote (multisets of) labeled formulae. As in the case of nested sequents, we assume
that comma commutes and associates, meaning that each labeled sequent Λ can indeed be written in
the form above, and also assume that 𝜀 represents the empty string or empty sequent, which acts as an
identity element for comma and occurs only implicitly in labeled sequents.

A labeled sequent can be viewed as a directed graph (defined using R) with formulae decorating
each node [9]. Note that in a labeled sequent Λ = R, Γ commas between relational atoms are
interpreted conjunctively, the comma between R and Γ is interpreted as an implication, and the
commas between the labeled formulae in Γ are interpreted disjunctively.

Viganò [36] constructed labeled sequent calculi for non-classical logics whose semantics are
defined by Horn formulae. Negri [28] extended the method to generate cut-free and contraction-free
labeled sequent calculi for the large family of modal logics whose Kripke semantics are defined by
geometric (first-order) formulae. The proof of cut-elimination is general in the sense that it applies
uniformly to every modal logic defined by geometric formulae; this result has been extended to
intermediate and other non-classical logics [3, 11] and to arbitrary first-order formulae [12].

We begin by extending in the natural way the usual labeled sequent calculus for K to a labeled
sequent calculus for Kt.

Definition 2.5 (The labeled sequent calculus G3Kt [3, 9]).

(id)
R, 𝑥 : 𝑝, 𝑥 : 𝑝, Γ

R, 𝑥 : 𝐴, 𝑥 : 𝐵, Γ (∨)R, 𝑥 : 𝐴 ∨ 𝐵, Γ
R, 𝑥 : 𝐴, Γ R, 𝑥 : 𝐵, Γ (∧)R, 𝑥 : 𝐴 ∧ 𝐵, Γ

R, 𝑅𝑥𝑦,𝑦 : 𝐴, Γ
(□)∗R, 𝑥 : □𝐴, Γ

R, 𝑅𝑥𝑦,𝑦 : 𝐴, 𝑥 : ^𝐴, Γ
(^)R, 𝑅𝑥𝑦, 𝑥 : ^𝐴, Γ

R, 𝑅𝑦𝑥,𝑦 : 𝐴, Γ
(■)∗R, 𝑥 : ■𝐴, Γ

R, 𝑅𝑦𝑥,𝑦 : 𝐴, 𝑥 : _𝐴, Γ
(_)R, 𝑅𝑦𝑥, 𝑥 : _𝐴, Γ

The (□) and (■) rules have a side condition: (∗) the variable 𝑦 does not occur in the conclusion.
When a variable is not allowed to occur in the conclusion of an inference, we refer to it as an
eigenvariable.

A general path axiom is a Sahlqvist formula, and hence it has a first-order frame correspondent
which can be computed—even in the case of tense logics (see [2]). Following the method in [28], the
labeled structural rule (GP) corresponding to a general path axiom Π𝐴→ Σ𝐴 is obtained below. Here
RΠ𝑥𝑦 = 𝑅 ⟨?⟩1𝑥𝑦1, ..., 𝑅 ⟨?⟩𝑚𝑦𝑚𝑦 for Π = ⟨?⟩1 ...⟨?⟩𝑚 , RΣ𝑥𝑦 = 𝑅 ⟨?⟩1𝑥𝑧1, ..., 𝑅 ⟨?⟩𝑛𝑦𝑛𝑦 for Σ = ⟨?⟩1...⟨?⟩𝑛,
𝑅^𝑥𝑦 = 𝑅𝑥𝑦, and 𝑅_𝑥𝑦 = 𝑅𝑦𝑥 .

R,RΠ𝑥𝑦,RΣ𝑥𝑦, Γ (GP)∗R,RΠ𝑥𝑦, Γ

This rule also has a side condition: (∗) all variables occurring in the relational atoms RΣ𝑥𝑦 with the
exception of 𝑥 and 𝑦 are eigenvariables.

REMARK 2.6. In the rule above, some care is needed in the boundary cases when Π or Σ are
empty strings of diamonds. The table below specifies the instances of the rule depending on whether
the string is non-empty (marked with +), or empty (marked with 𝜖):

, Vol. 1, No. 1, Article . Publication date: June 2020.

8 Ciabattoni and Lyon, et al.

Π Σ Premise Conclusion
+ + R, 𝑅Π𝑥𝑦, 𝑅Σ𝑥𝑦, Γ R, 𝑅Π𝑥𝑦, Γ
+ 𝜖 R,Q,Q[𝑥/𝑦], 𝑅Π𝑥𝑦,Δ[𝑥/𝑦],Δ, Γ R,Q, 𝑅Π𝑥𝑦,Δ, Γ
𝜖 + R, 𝑅Σ𝑥𝑥, Γ R, Γ
𝜖 𝜖 R, Γ R, Γ

Note that when Π = 𝜖 or Σ = 𝜖, 𝑅Π𝑥𝑦 and 𝑅Σ𝑥𝑦 are taken to be 𝑥 = 𝑦. For the second, third, and
fourth entries in the table, the equality symbols that arise have been eliminated through substitutions
and suitable argumentation. This argumentation can be formalized using the equality and substitution
rules specified by Negri [28].

As explained in [28], a calculus does not immediately permit admissibility of contraction when
extended with structural rules. Nevertheless, this obstacle can be overcome through adherence to the
closure condition. Whenever a substitution of variables in the (GP) structural rule brings about a
duplication of relational atoms in RΠ𝑥𝑦, we add another instance of the rule with this duplication
contracted. We therefore enforce the following condition on structural extensions of G3Kt:

Closure Condition: Let RΠ𝑥𝑦 = RΠ′𝑥𝑢, 𝑅 ⟨?⟩𝑢𝑣, 𝑅 ⟨?⟩𝑢𝑣,RΠ′′𝑢𝑦. If an extension of G3Kt with a
structural rule (GP) contains a rule instance of the form:

R,RΠ′𝑥𝑢, 𝑅 ⟨?⟩𝑢𝑣, 𝑅 ⟨?⟩𝑢𝑣,RΠ′′𝑣𝑦,RΣ𝑥𝑦, Γ (GP)R,RΠ′𝑥𝑢, 𝑅 ⟨?⟩𝑢𝑣, 𝑅 ⟨?⟩𝑢𝑣,RΠ′′𝑣𝑦, Γ

then the following instance of the rule (with 𝑅 ⟨?⟩𝑢𝑣 contracted in both premise and conclusion):
R,RΠ′𝑥𝑢, 𝑅 ⟨?⟩𝑢𝑣,RΠ′′𝑣𝑦,RΣ𝑥𝑦, Γ (GP‡)R,RΠ′𝑥𝑢, 𝑅 ⟨?⟩𝑢𝑣,RΠ′′𝑣𝑦, Γ

is also added to the calculus (with ‡ indicating that the rule was obtained via the closure condition).
Note that variable substitutions can only bring about a finite number of rule instances possessing

duplications. Hence, the closure condition adds finitely many structural rules and is therefore
unproblematic. Whenever we consider extensions of G3Kt with structural rules, we always assume
that this condition has been met.

Since particular attention will be paid to the class of path axioms (specifically in section 5.2), we
also explicitly give the structural rule (Path) which is an instance of (GP) and corresponds to a path
axiom Π𝐴→ ⟨?⟩𝐴:

R, 𝑅Π𝑥𝑦, 𝑅 ⟨?⟩𝑥𝑦, Γ (Path)R, 𝑅Π𝑥𝑦, Γ
We use the name LabSt(GP) to represent the set of labeled structural rules corresponding to a

set 𝐺𝑃 of general path axioms and the name LabSt(P) to refer to the set of labeled structural rules
corresponding to a set 𝑃 of path axioms.

It is straightforward to apply the arguments and methods concerning labeled calculi for modal and
tense logics, presented in [3, 28], to conclude the following:

LEMMA 2.7. The following rules are admissible in G3Kt + LabSt(GP):
R,Q,Q,Δ,Δ, Γ (c)R,Q,Δ, Γ

R, Γ (w)R,Q, Γ,Δ
R, Γ, 𝑥 : 𝐴 R, Γ, 𝑥 : 𝐴 (cut)R, Γ

THEOREM 2.8. Kt +𝐺𝑃 ⊢ 𝐴 iff 𝑥 : 𝐴 is derivable in G3Kt + LabSt(GP).

2.3 Deep Nested Calculi for Tense Logics
In this section we present Goré et al.’s [17] deep nested calculus DKT for Kt, as well as extensions
of DKT with inference rules—referred to as propagation rules—that correspond to the class of path

, Vol. 1, No. 1, Article . Publication date: June 2020.

Display to Labeled Proofs and Back Again for Tense Logics 9

axioms. Although we will show how to translate shallow nested derivations into labeled derivations
for the logics Kt +𝐺𝑃 , we consider path axioms here because the reverse translation from labeled
proofs to shallow nested proofs is only known for the smaller class of logics Kt + 𝑃 . The deep nested
calculi presented here will be used to facilitate and simplify the reverse translation.

Our calculi make use of nested sequents from the same language as SKT. Every nested sequent
𝑋 := 𝑌, ◦{𝑍1}, ..., ◦{𝑍𝑛}, •{𝑊1}, ..., •{𝑊𝑚} (𝑌 contains no nesting) may be represented as a tree with
two types of edges [17, 21]. The tree of 𝑋 , denoted 𝑡𝑟𝑒𝑒 (𝑋), is shown below:

𝑌

◦ ◦ ◦ • • •

𝑡𝑟𝑒𝑒 (𝑍1) . . . 𝑡𝑟𝑒𝑒 (𝑍𝑛) 𝑡𝑟𝑒𝑒 (𝑊1) . . . 𝑡𝑟𝑒𝑒 (𝑊𝑚)
A nested sequent that contains holes in place of formulae is called a context. Like nested sequents,
contexts may be represented as trees, but where nodes are additionally labeled with holes. A context
with a single hole is written as 𝑋 [] and a context with multiple holes is written as 𝑋 [] · · · []. We
may compose a context with sequents to obtain a sequent (e.g. 𝑋 [𝑌1] · · · [𝑌𝑛] is a sequent where
𝑋 [] · · · [] is a multi-hole context and 𝑌1, ..., 𝑌𝑛 are sequents); graphically, this corresponds to fusing
the root of the tree of each sequent with the node in the context where the associated hole occurs.
Note that this notation is the opposite of what is often used for nested sequent calculi for modal
logics in the literature, though is consistent with the notation used in the literature for nested sequent
calculi for tense logics (cf. [17]).

When representing a context graphically, each hole will label a unique node in the corresponding
tree. For a single-hole context we write 𝑋 []𝑖 to indicate the node 𝑖 where the hole occurs, and for a
multi-hole context we write 𝑋 []𝑖1 · · · []𝑖𝑛 to indicate the unique nodes in the tree that correspond to
each hole.

Definition 2.9 (The Calculus DKT [17]2).

(id)
𝑋 [𝑝, 𝑝]

𝑋 [𝐴,𝑌] 𝑋 [𝐵,𝑌] (∧)
𝑋 [𝐴 ∧ 𝐵,𝑌]

𝑋 [𝐴, 𝐵,𝑌] (∨)
𝑋 [𝐴 ∨ 𝐵,𝑌]

𝑋 [■𝐴, •{𝐴}] (■)
𝑋 [■𝐴]

𝑋 [•{𝑌,𝐴},_𝐴] (_1)
𝑋 [•{𝑌 },_𝐴]

𝑋 [◦{𝑌,_𝐴}, 𝐴] (_2)
𝑋 [◦{𝑌,_𝐴}]

𝑋 [□𝐴, ◦{𝐴}] (□)
𝑋 [□𝐴]

𝑋 [◦{𝑌,𝐴},^𝐴] (^1)
𝑋 [◦{𝑌 },^𝐴]

𝑋 [•{𝑌,^𝐴}, 𝐴] (^2)
𝑋 [•{𝑌,^𝐴}]

We now aim to define propagation rules for deep nested calculi. To do this, we follow the work in
[17] and first introduce path axiom inverses, compositions of path axioms, and the completion of a
set of path axioms in order to define the corresponding set of equivalent propagation rules. Additions
of these propagation rules to DKT will yield cut-free, sound, and complete deep nested calculi for
logics Kt + 𝑃 . Note that we define ⟨?⟩−1 = ^ if ⟨?⟩ = _, and ⟨?⟩−1 = _, if ⟨?⟩ = ^.

Definition 2.10 (Path Axiom Inverse [17]). If 𝐹 is a path axiom of the form ⟨?⟩𝐹1 ...⟨?⟩𝐹𝑛𝐴→ ⟨?⟩𝐹𝐴,
then we define the inverse of 𝐹 to be

𝐼 (𝐹) = ⟨?⟩−1
𝐹𝑛
...⟨?⟩−1

𝐹1
𝐴→ ⟨?⟩−1

𝐹
𝐴

Given a set of path axioms 𝑃 , we define the set of inverses to be the set 𝐼 (𝑃) = {𝐼 (𝐹) | 𝐹 ∈ 𝑃}.
2As shown in [17], copying the principal formula in the (□) and (■) rules is useful when performing proof-search, despite
being unnecessary for completeness of the calculus. Still, we make use of the same rules here since we will leverage methods
presented in [17] that make use of the calculus DKT in the form above.

, Vol. 1, No. 1, Article . Publication date: June 2020.

10 Ciabattoni and Lyon, et al.

Definition 2.11 (Composition of Path Axioms [17]). Given two path axioms
𝐹 = ⟨?⟩𝐹1 ...⟨?⟩𝐹𝑛𝐴→ ⟨?⟩𝐹𝐴 and 𝐺 = ⟨?⟩𝐺1 ...⟨?⟩𝐺𝑚

𝐴→ ⟨?⟩𝐺𝐴
we say 𝐹 is composable with 𝐺 at 𝑖 iff ⟨?⟩𝐹 = ⟨?⟩𝐺𝑖

. We define the composition
𝐹 ⊲𝑖 𝐺 = ⟨?⟩𝐺1 ...⟨?⟩𝐺𝑖−1 ⟨?⟩𝐹1 ...⟨?⟩𝐹𝑛 ⟨?⟩𝐺𝑖+1 ...⟨?⟩𝐺𝑚

𝐴→ ⟨?⟩𝐺𝐴
when 𝐹 is composable with 𝐺 at 𝑖.

Using these individual compositions, we define the following set of compositions:
𝐹 ⊲𝐺 = {𝐹 ⊲𝑖 𝐺 | F is composable with G at i}

Example 2.12. As an example, we can compose the axiom ^^𝐴 → _𝐴 with _^𝐴 → ^𝐴 to
obtain ^^^𝐴→ ^𝐴.

Definition 2.13 (Completion [17]). The completion of a set 𝑃 of path axioms, written 𝑃∗, is the
smallest set of path axioms containing 𝑃 such that

(1) ^𝐴→ ^𝐴,_𝐴→ _𝐴 ∈ 𝑃∗

(2) If 𝐹,𝐺 ∈ 𝑃∗ and 𝐹 is composable with 𝐺 , then 𝐹 ⊲𝐺 ⊆ 𝑃∗.

After introducing further notions necessary to define the propagation rules, we will give examples
showing the significance of defining the rules relative to the completion of a set of path axioms,
rather than defining the rules relative to just the given set of path axioms. As will be shown, without
defining the rules relative to the completion, the corresponding set of rules would not be enough to
achieve completeness of the resulting calculus.

Let us now recall the notion of a propagation graph and the notion of a path in a propagation
graph from [17]. We introduce these concepts using the diamond rules of DKT as an example. The
diamond rules (^1), (^2), (_1), (_2) can be read bottom-up as propagating formulae to nodes in the
tree of a sequent.

For example, the (^1) rule propagates an 𝐴 to a node along a ◦-edge, whereas the (^2) rule
propagates an 𝐴 backward along a •-edge. Similarly, the (_1) rule propagates an 𝐴 forward to a node
along a •-edge, and the (_2) rule propagates an 𝐴 backward along a ◦-edge. These movements are
represented in the diagram below:

𝑋

◦
^

��
•
_

��
𝑌

_

EE

𝑍
^

ZZ

This understanding of how formulae are propagated is crucial to define the propagation rules for
deep nested calculi. In fact, as will be explained below, each path axiom can be read as an instruction
that expresses how to propagate a formula along some path. We therefore give a precise definition of
the propagation graph of a sequent, which explicitly specifies how formulae may move when being
propagated throughout the tree of a sequent.

Definition 2.14 (Propagation Graph [17]). Let 𝑋 be a nested sequent where 𝑁 is the set of nodes
in 𝑡𝑟𝑒𝑒 (𝑋). We define the propagation graph 𝑃𝐺 (𝑋) = (𝑁, 𝐸) of 𝑋 to be the directed graph with the
set of nodes 𝑁 , and where the set of edges 𝐸 are labeled with either a ^ or _ as follows:

(1) For every node 𝑛 ∈ 𝑁 and ◦-child𝑚 of 𝑛, we have a labeled edge (𝑛,𝑚,^) ∈ 𝐸 and a labeled
edge (𝑚,𝑛,_) ∈ 𝐸.

(2) For every node 𝑛 ∈ 𝑁 and •-child𝑚 of 𝑛, we have a labeled edge (𝑛,𝑚,_) ∈ 𝐸 and a labeled
edge (𝑚,𝑛,^) ∈ 𝐸.

, Vol. 1, No. 1, Article . Publication date: June 2020.

Display to Labeled Proofs and Back Again for Tense Logics 11

LEMMA 2.15. Suppose that 𝑋 and 𝑌 are display equivalent nested sequents. Then, 𝑃𝐺 (𝑋) =
𝑃𝐺 (𝑌).

PROOF. We prove the result by induction on the minimum number of display inferences needed
to derive 𝑌 from 𝑋 .

Base case. Assume w.l.o.g. that 𝑋 = 𝑍, ◦{𝑊 } and 𝑌 = •{𝑍 },𝑊 so that 𝑌 is derivable from 𝑋

with a single application of a display rule. Let 𝑃𝐺 (𝑍) = (𝑁1, 𝐸1) and 𝑃𝐺 (𝑊) = (𝑁2, 𝐸2) with 𝑛1 the
root of 𝑡𝑟𝑒𝑒 (𝑍) and 𝑛2 the root of 𝑡𝑟𝑒𝑒 (𝑊). Observe that 𝑃𝐺 (𝑋) = (𝑁, 𝐸), where 𝑁 = 𝑁1 ∪ 𝑁2 and
𝐸 = 𝐸1 ∪ 𝐸2 ∪ {(𝑛1, 𝑛2,^), (𝑛2, 𝑛1,_)}, which is identical to 𝑃𝐺 (𝑌) by definition.

Inductive step. Suppose that 𝑛 + 1 is the minimum number of display inferences needed to derive
𝑌 from 𝑋 . It follows that there exists a nested sequent 𝑍 such that 𝑍 is derivable from 𝑋 with one
display inference, and 𝑌 is derivable from 𝑍 with 𝑛 applications of the display rules. By the base
case we know that 𝑃𝐺 (𝑋) = 𝑃𝐺 (𝑍), and by the inductive hypothesis, 𝑃𝐺 (𝑍) = 𝑃𝐺 (𝑌). □

Definition 2.16 (Path [17]). A path is a sequence of nodes and diamonds (labeling edges) of the
form:

𝑛1, ⟨?⟩1, 𝑛2, ⟨?⟩2, ..., ⟨?⟩𝑘−1, 𝑛𝑘

in the propagation graph 𝑃𝐺 (𝑋) such that 𝑛𝑖 is connected to 𝑛𝑖+1 by an edge labeled with ⟨?⟩𝑖 .
Note that we allow repetitions of nodes along a path (e.g. 𝑛,^,𝑚,_, 𝑛 is a path). For a given
path 𝜋 = 𝑛1, ⟨?⟩1, 𝑛2, ⟨?⟩2, ...⟨?⟩𝑘−1, 𝑛𝑘 , we define the string of 𝜋 to be the string of diamonds Π =

⟨?⟩1⟨?⟩2 ...⟨?⟩𝑘−1.

Definition 2.17 (Deep Nested Propagation Rules [17]). Let 𝑃 be a set of path axioms. The set of
propagation rules DeepPr(P) contains all rules of the form:

𝑋 [⟨?⟩𝐴]𝑖 [𝐴]𝑗
𝑋 [⟨?⟩𝐴]𝑖 [∅]𝑗

where there is a path 𝜋 from 𝑖 to 𝑗 in the propagation graph of the premise and Π𝐴 → ⟨?⟩𝐴 ∈
(𝑃 ∪ 𝐼 (𝑃))∗ with Π the string of 𝜋 .

It should be noted that two different sets 𝑃 and 𝑃 ′ of path axioms can generate the same set of
propagation rules, i.e. (𝑃 ∪ 𝐼 (𝑃))∗ = (𝑃 ′ ∪ 𝐼 (𝑃 ′))∗. For example, both {𝐴→ ^𝐴,_^𝐴→ ^𝐴} and
{𝐴→ ^𝐴,_𝐴→ ^𝐴,^^𝐴→ ^𝐴} yield the same set of propagation rules, which would provide
a deep nested calculus for tense S5.

Example 2.18 (Necessity of Inverses). Let us now demonstrate why inverses must be taken into
account when defining propagation rules. Suppose that we did not define the set of propagation rules
relative to the set ({^^𝐴→ ^𝐴} ∪ {__𝐴→ _𝐴})∗, but rather, we defined the set of propagation
rules relative to the set {^^𝐴→ ^𝐴}∗. All propagation rules in this restricted set are of the form
below (where there is a path of the form 𝑖,^, . . . ,^, 𝑗 of length 𝑛 ≥ 1 from 𝑖 to 𝑗):

𝑋 [^𝐴]𝑖 [𝐴]𝑗
𝑋 [^𝐴]𝑖 [∅]𝑗

We now explain why this restricted set of propagation rules–that does not take inverses into
account—leads to an incomplete calculus. Below, we attempt to give a root-first derivation of
𝐼 (^^𝑝 → ^𝑝) = __𝑝 → _𝑝, which is a theorem of the logic Kt + ^^𝐴 → ^𝐴 and should
therefore be derivable:

, Vol. 1, No. 1, Article . Publication date: June 2020.

12 Ciabattoni and Lyon, et al.

•{•{𝑝}},_𝑝
•{■𝑝},_𝑝
■■𝑝,_𝑝

■■𝑝 ∨ _𝑝. =
__𝑝 → _𝑝

Observe that no propagation rule from the restricted set is applicable to the top sequent of the
derivation because no propagation rule acts along a path of the form 𝑖, _, . . . ,_, 𝑗 . However, if we
allow ourselves to define the propagation rules relative to the set ({^^𝐴→ ^𝐴}∪{__𝐴→ _𝐴})∗,
then we also have the following rules in our calculus (where there is a path of the form 𝑖,_, . . . ,_, 𝑗
of length 𝑛 ≥ 1 from 𝑖 to 𝑗):

𝑋 [_𝐴]𝑖 [𝐴]𝑗
𝑋 [_𝐴]𝑖 [∅]𝑗

Using this rule we can complete the derivation by deriving the top sequent of the above derivation
from the initial sequent •{•{𝑝, 𝑝}},_𝑝:

(id)
•{•{𝑝, 𝑝}},_𝑝
•{•{𝑝}},_𝑝

Example 2.19 (Necessity of Compositions). Suppose we are given the set 𝑃 = {^_^𝐴 →
^𝐴,^^𝐴→ _𝐴}. One of the composition formulae derivable in the logic Kt+𝑃 is ^^^^𝐴→ ^𝐴.
Our example below demonstrates the necessity of defining DeepPr(P) relative to the completion
(𝑃 ∪ 𝐼 (𝑃))∗ (which takes into account compositions) instead of just 𝑃 .

If we define our propagation rules relative to just 𝑃 , then we will have the following two propagation
rules in our calculus:

𝑋 [^𝐴]𝑖 [𝐴]𝑗
𝑋 [^𝐴]𝑖 [∅]𝑗

𝑋 [_𝐴]𝑘 [𝐴]𝑛
𝑋 [_𝐴]𝑘 [∅]𝑛

The left rule is applicable when there is a path of the form 𝑖, ^, 𝑛1, _, 𝑛2, ^, 𝑗 from node 𝑖 to 𝑗 ,
and the right rule is applicable when there is a path of the form 𝑘, ^, 𝑛1, ^, 𝑛 from 𝑘 to 𝑛 in the
respective propagation graphs.

We now attempt to derive ^^^^𝑝 → ^𝑝, and show that no sequence of rules applied backward
can give a proof of the formula:

◦{◦{◦{◦{𝑝}}}},^𝑝
□□□□𝑝,^𝑝

□□□□𝑝 ∨ ^𝑝. =
^^^^𝑝 → ^𝑝

None of the rules in DKT or in the restricted set of propagation rules are bottom-up applicable
to the top sequent. However, since ^^^^𝐴 → ^𝐴 ∈ (𝑃 ∪ 𝐼 (𝑃))∗, if we allow the addition of
propagation rules to correspond to axioms in (𝑃∪𝐼 (𝑃))∗ rather than just 𝑃 , then we have the following
rule in our calculus (where there is a path of the form 𝑐, ^, 𝑛1, ^, 𝑛2, ^, 𝑛3, ^, 𝑝 from 𝑐 to 𝑝):

𝑋 [^𝐴]𝑐 [𝐴]𝑝
𝑋 [^𝐴]𝑐 [∅]𝑝

This can be used to prove the formula ^^^^𝑝 → ^𝑝 by deriving the top sequent in the above
derivation from the initial sequent ◦{◦{◦{◦{𝑝, 𝑝}}}},^𝑝:

(id)
◦{◦{◦{◦{𝑝, 𝑝}}}},^𝑝
◦{◦{◦{◦{𝑝}}}},^𝑝

LEMMA 2.20 ([17]). The following rules are admissible in DKT + DeepPr(P):

, Vol. 1, No. 1, Article . Publication date: June 2020.

Display to Labeled Proofs and Back Again for Tense Logics 13

𝑋 [𝑌] (w)
𝑋 [𝑌, 𝑍]

𝑋 [𝑌,𝑌] (c)
𝑋 [𝑌]

𝑋, ◦{𝑌 } (rf)•{𝑋 }, 𝑌
𝑋, •{𝑌 } (rp)◦{𝑋 }, 𝑌

LEMMA 2.21 ([17]). Let 𝑃 be a set of path axioms. Every derivation in SKT + NestSt(P) of a
sequent Γ is [effectively] transformable to a derivation in DKT + DeepPr(P), and vice-versa.

We have added the word “effectively” to indicate that the proof in [17] is algorithmic. The forward
direction of the above lemma is shown by induction on the height of the given derivation ([17,
Lem. 6.13]), and the reverse direction follows from the fact that SKT + NestSt(P) can mimic propa-
gation rules ([17, Lem. 6.12]). Also, observe that the above lemma implies cut-free completeness for
each deep nested calculus DKT + DeepPr(P).

THEOREM 2.22 ([17]). Let 𝑃 be a set of path axioms. Kt + 𝑃 ⊢ 𝐴 iff 𝐴 is cut-free derivable in
DKT + DeepPr(P).

3 NESTED SEQUENTS AND LABELED POLYTREES
In this section we show how to translate (back and forth) a nested sequent into a labeled polytree
(called a labeled UT in [9]). These graphical structures facilitate the translations between nested and
labeled proofs.

We write𝑉 = 𝑉1 ⊔𝑉2 to mean that𝑉 = 𝑉1 ∪𝑉2 and𝑉1 ∩𝑉2 = ∅. The multiset union of multisets 𝑀1
and 𝑀2 is denoted 𝑀1 ⊎ 𝑀2. A labeling function 𝐿 is a map from a set 𝑉 to a multiset of tense
formulae. For labeling functions 𝐿1 and 𝐿2 on the sets 𝑉1 and 𝑉2 respectively, let 𝐿1 ∪ 𝐿2 be the
labeling function on 𝑉1 ∪𝑉2 defined as follows:

(𝐿1 ∪ 𝐿2) (𝑥) =


𝐿1 (𝑥) 𝑥 ∈ 𝑉1, 𝑥 ∉ 𝑉2

𝐿2 (𝑥) 𝑥 ∉ 𝑉1, 𝑥 ∈ 𝑉2

𝐿1 (𝑥) ⊎ 𝐿2 (𝑥) 𝑥 ∈ 𝑉1, 𝑥 ∈ 𝑉2

A labeled graph (𝑉 , 𝐸, 𝐿) is a directed graph (𝑉 , 𝐸) equipped with a labeling function 𝐿 on 𝑉 .

Definition 3.1 (Labeled Graph Isomorphism). We say that two labeled graphs 𝐺1 = (𝑉1, 𝐸1, 𝐿1)
and 𝐺2 = (𝑉2, 𝐸2, 𝐿2) are isomorphic (written 𝐺1 � 𝐺2) if and only if there is a function 𝑓 : 𝑉1 → 𝑉2
such that:
(i) 𝑓 is bijective;
(ii) for every 𝑥,𝑦 ∈ 𝑉1, (𝑥,𝑦) ∈ 𝐸1 iff (𝑓 𝑥, 𝑓 𝑦) ∈ 𝐸2;
(iii) for every 𝑥 ∈ 𝑉1, 𝐿1 (𝑥) = 𝐿2 (𝑓 𝑥).

Definition 3.2 (Labeled Polytree). A labeled polytree is a labeled graph whose underlying (i.e.
undirected) graph is a tree, i.e. there exists exactly one path of undirected edges between every pair
of distinct nodes.

Example 3.3. The following two graphs represent labeled polytrees, where each node is decorated
with a multiset 𝑀𝑖 of formulae:

𝑦

𝑀1

��
𝑧

𝑀2 //
𝑤

𝑀3 //
𝑥

𝑀4

𝑦

𝑀2

����

𝑢

𝑀4

��
𝑣

𝑀1

𝑥

𝑀3

Polytrees have been discussed in the graph theory literature and have also found applications in
computer science [20, 33].

, Vol. 1, No. 1, Article . Publication date: June 2020.

14 Ciabattoni and Lyon, et al.

3.1 Interpreting a Nested Sequent as a Labeled Polytree
Every nested sequent has a natural interpretation as a labeled tree with two types of directed edges:
◦→ and

•→ [17, 21]. If we interpret every directed edge 𝛼
•→ 𝛽 as the directed edge 𝛼

◦← 𝛽, we can
then interpret every nested sequent as a connected labeled graph with a single type of directed edge
(so we can drop the ◦ symbol altogether). Moreover, it is easy to see that its underlying graph (i.e. the
undirected graph obtained by treating all edges as undirected) is a tree, and that every nested sequent
can be interpreted naturally as a labeled polytree.

Example 3.4 (Transforming a Nested Sequent into a Labeled Sequent). First interpret the nested
sequent 𝐴, ◦{𝐵, •{}}, •{𝐷, 𝐸, •{𝐹 }, ◦{𝐺}} as the labeled tree with two types of directed edges, below
left. Next, convert the labeled tree to a labeled polytree (with a single type of directed edge) by
reading each 𝛼

•→ 𝛽 as 𝛼 ← 𝛽 (below right) and remove the ◦-typing from the remaining edges.

𝑥

𝐴

◦
��

•
��

𝑦

𝐵

•
��

𝑤

𝐷, 𝐸

•
��

◦
��

𝑧

∅
𝑢

𝐹

𝑣

𝐺

𝑥

𝐴

��𝑦

𝐵

𝑤

𝐷, 𝐸

^^

��
𝑧

∅

OO

𝑢

𝐹

@@

𝑣

𝐺

For concreteness let us formally define the map 𝔏 from a nested sequent to a labeled polytree.

Definition 3.5 (The Translation 𝔏). Let N<N denote the set of finite sequences on N; we will use
such sequences as subscripts on labels in our definition below. We use strings 𝜔 of natural numbers
to denote elements of N<N, i.e., 𝜔 = 𝑛0 · · ·𝑛𝑘 ∈ N<N where 𝑛0, . . . , 𝑛𝑘 ∈ N. Define the depth of a
nested sequent to be the maximum nesting depth in the sequent. For 𝜔 ∈ N<N and a nested sequent 𝑋 ,
define the map 𝔏𝑥𝜔 (𝑋) recursively on the depth of 𝑋 .

(1) Depth is 0: 𝑋 = 𝐴0, . . . , 𝐴𝑚 . A pictorial representation is given below right.

𝔏𝑥𝜔 (𝐴0, . . . , 𝐴𝑚) = ({𝑥𝜔 }, ∅, {(𝑥𝜔 , {𝐴0, . . . , 𝐴𝑚})})
𝑥𝜔

𝐴0, . . . , 𝐴𝑚

(2) Depth is positive: 𝑋 = 𝐴0, . . . , 𝐴𝑚,♥0{𝑌0}, . . . ,♥𝑛{𝑌𝑛} where ♥𝑗 ∈ {◦, •} and 0 ≤ 𝑗 ≤ 𝑛.
Since each 𝑌𝑗 has strictly smaller depth than 𝑋 , each 𝔏𝑥𝜔𝑗

(𝑌𝑗) = (𝑉𝑗 , 𝐸 𝑗 , 𝐿𝑗) (for 0 ≤ 𝑗 ≤ 𝑛)
is well-defined. Also, by construction, the sets {𝑥𝜔 },𝑉0, . . ., and 𝑉𝑛 are pairwise disjoint. We
define 𝔏𝑥𝜔 (𝑋) = (𝑉 , 𝐸, 𝐿) as follows:

𝑉 = {𝑥𝜔 } ∪𝑉0 ∪ . . . ∪𝑉𝑛
𝐸 = {(𝑥𝜔 , 𝑥𝜔 𝑗) | ♥𝑗 = ◦} ∪ {(𝑥𝜔 𝑗 , 𝑥𝜔) | ♥𝑗 = •} ∪ 𝐸0 ∪ . . . ∪ 𝐸𝑛
𝐿 = {(𝑥𝜔 , {𝐴0, . . . , 𝐴𝑚})} ∪ 𝐿0 ∪ . . . ∪ 𝐿𝑛

A pictorial representation is given below. The orientation of the arrows is determined by ♥𝑗 .
If ♥𝑗 = ◦ then the arrow directs away from 𝑥𝜔 ; if ♥𝑗 = • then the arrow directs toward 𝑥𝜔 :

, Vol. 1, No. 1, Article . Publication date: June 2020.

Display to Labeled Proofs and Back Again for Tense Logics 15

𝔏𝑥𝜔0 (𝑌0) . . . 𝔏𝑥𝜔𝑛
(𝑌𝑛)

𝑥𝜔

𝐴0, . . . , 𝐴𝑚

♥0

♥𝑛−1♥1

♥𝑛

Example 3.6. The labeled polytree𝔏𝑥0 (𝑋) = (𝑉 , 𝐸, 𝐿) of the nested sequent𝑋 = 𝐴, ◦{𝐵, •{𝐶}}, •{𝐷}
is shown below:

𝑥000

𝐶 //
𝑥00

𝐵

𝑥0

𝐴oo
𝑥01

𝐷oo

In practice we use lower case letters without subscripts to denote labels, such as 𝑥 , 𝑦, 𝑧, etc.

Definition 3.7 (Labeled Polytree Merge and Subgraph). Let 𝐺 ⊕𝑥 𝐻 denote the labeled polytree
obtained as the graph union of labeled polytrees𝐺 and 𝐻 that have a single vertex 𝑥 in common, such
that the label of 𝑥 in 𝐺 ⊕𝑥 𝐻 (i.e. the multiset of tense formulae that 𝑥 maps to under the labeling
function of 𝐺 ⊕𝑥 𝐻) is the union of the labels of the vertex 𝑥 in 𝐺 and in 𝐻 . We refer to 𝐺 ⊕𝑥 𝐻 as
the merge of two polytrees.

We say that a 𝐻 is a labeled polytree subgraph of a labeled polytree 𝐺 if and only if there exists a
labeled polytree 𝐻 ′ such that 𝐺 = 𝐻 ′ ⊕𝑥 𝐻 . We use 𝐺 [𝐻]𝑥 both as a name for the labeled polytree 𝐺
and to denote that 𝐻 is a labeled polytree subgraph of 𝐺 .

Example 3.8. The labeled polytree 𝐺 [𝐻]𝑥 = 𝐻 ′ ⊕𝑥 𝐻 , where 𝑥 is the common vertex between 𝐻 ′

and 𝐻 , is shown below left. The top labeled polytree below right is 𝐻 ′ and the other is 𝐻 .
𝑧

𝑀3

��𝑦

𝑀2

𝑥

𝑀 ⊎ 𝑁

``

��
𝑤

𝑀1

OO

𝑢

𝑁1

>>

𝑣

𝑁2

𝑧

𝑀3

��𝑦

𝑀2

𝑥

𝑀

^^

𝑤

𝑀1

OO

𝑥

𝑁

��
𝑢

𝑁1

@@

𝑣

𝑁2

For any labeled polytree (𝑉 , 𝐸, 𝐿), there exist partitions 𝑉 = 𝑉1 ⊔ {𝑥} ⊔𝑉2, 𝐸 = 𝐸1 ⊔ 𝐸2, and 𝐿 =

𝐿1∪𝐿2, such that𝐺 [𝐻]𝑥 = 𝐻 ′⊕𝑥𝐻 = (𝑉 , 𝐸, 𝐿) with 𝐻 ′ = (𝑉1⊔{𝑥}, 𝐸1, 𝐿1) and 𝐻 = (𝑉2⊔{𝑥}, 𝐸2, 𝐿2).
Clearly, 𝐿(𝑥) = 𝐿1 (𝑥) ⊎ 𝐿2 (𝑥), and 𝐻 ′ and 𝐻 are labeled polytrees. In other words, we view 𝐻 in
𝐺 [𝐻]𝑥 = 𝐻 ′ ⊕𝑥 𝐻 as the redex and 𝐻 ′ as the context.

Since nested sequents may be interpreted as trees with two types of edges (◦-edges and •-edges),
they possess a root node, whereas labeled polytrees do not possess a root in general. Nevertheless,
the underlying tree structure of a labeled polytree permits us to view any node as the root, and the
lemma below ensures that we obtain isomorphic labeled polytrees via the display rules regardless of
the node where we begin the translation.

Note that the label 𝑥 in 𝔏𝑥 simply denotes the name of the starting vertex of the translation
so 𝔏𝑥 (𝑋) � 𝔏𝑦 (𝑋) for all labels 𝑥 and 𝑦, and all nested sequents 𝑋 .

, Vol. 1, No. 1, Article . Publication date: June 2020.

16 Ciabattoni and Lyon, et al.

LEMMA 3.9. For every label 𝑥 , and any nested sequents 𝑋 and 𝑌 : 𝔏𝑥 (𝑋, ◦{𝑌 }) � 𝔏𝑥 (•{𝑋 }, 𝑌).

PROOF. Observe that 𝔏𝑥 (𝑋, ◦{𝑌 }) is isomorphic to the labeled polytree obtained from the disjoint
union of 𝔏𝑥 (𝑋) and 𝔏𝑦 (𝑌) by the addition of an edge (𝑥,𝑦). Meanwhile 𝔏𝑥 (•{𝑋 }, 𝑌) is isomorphic
to the labeled polytree obtained from the disjoint union of 𝔏𝑦 (𝑋) and 𝔏𝑥 (𝑌) by the addition of an
edge (𝑦, 𝑥). The result follows because 𝔏𝑥 (𝑋) � 𝔏𝑦 (𝑋) and 𝔏𝑦 (𝑌) � 𝔏𝑥 (𝑌). □

Henceforth we write 𝔏 instead of 𝔏𝑥 to reduce clutter when the name of the starting vertex is not
important.

COROLLARY 3.10. For all labels 𝑥 and 𝑦, and nested sequents 𝑋 and 𝑌 , if 𝑋 and 𝑌 are display
equivalent, then 𝔏𝑥 (𝑋) � 𝔏𝑦 (𝑌).

PROOF. By repeated application of Lemma 3.9. □

3.2 Interpreting a Labeled Polytree as a Nested Sequent
Given a labeled polytree 𝐺 = (𝑉 , 𝐸, 𝐿) we first pick a vertex 𝑥 ∈ 𝑉 to compute the nested sequent
𝔑𝑥 (𝐺). If 𝐸 = ∅, then 𝔑𝑥 (𝐺) = 𝐿(𝑥) is the desired nested sequent. Otherwise, for all 𝑛 forward
looking edges (𝑥,𝑦𝑖) ∈ 𝐸 (with 1 ≤ 𝑖 ≤ 𝑛) where 𝑦𝑖 is the root of 𝐻𝑖 , and for all 𝑘 backward looking
edges (𝑧 𝑗 , 𝑥) ∈ 𝐸 (with 1 ≤ 𝑗 ≤ 𝑘) where 𝑧 𝑗 is the root of 𝐻 ′𝑗 , we define the image of 𝔑𝑥 (𝐺) as the
nested sequent

𝐿(𝑥), ◦{𝔑𝑦1 (𝐻1)}, . . . , ◦{𝔑𝑦𝑛 (𝐻𝑛)}, •{𝔑𝑧1 (𝐻 ′1)}, . . . , •{𝔑𝑧𝑘 (𝐻 ′𝑘)}

Since the labeled polytrees 𝐻1, . . . , 𝐻𝑛, 𝐻
′
1, . . . , 𝐻

′
𝑘

are smaller than 𝐺 , the recursive definition of 𝔑 is
well-founded.

LEMMA 3.11. For any labeled polytree 𝐺 = (𝑉 , 𝐸, 𝐿), and for any vertices 𝑥,𝑦 ∈ 𝑉 , the nested
sequent 𝔑𝑥 (𝐺) is derivable from 𝔑𝑦 (𝐺) via the display rules (rf) and (rp).

PROOF. We prove the result by induction on the length of the (unique) path 𝑑𝑖𝑠𝑡 (𝑥,𝑦) between 𝑥

and 𝑦. When 𝑑𝑖𝑠𝑡 (𝑥,𝑦) = 0 we have 𝑥 = 𝑦 and the claim holds.
Base case. Suppose that 𝑑𝑖𝑠𝑡 (𝑥,𝑦) = 1. There are two cases to consider: either there is a forward

edge from 𝑥 to 𝑦, or there is a backward edge from 𝑥 to 𝑦. Without loss of generality, we consider
only the first case. It follows that if there is a forward edge connecting 𝑥 to 𝑦, then since 𝔑𝑥 (𝐺) is of
the form 𝑋, ◦{𝑌 }, then 𝔑𝑦 (𝐺) = •{𝑋 }, 𝑌 . It is easy to see that both sequents are display equivalent.

Inductive step. Suppose that 𝑑𝑖𝑠𝑡 (𝑥,𝑦) = 𝑛 + 1. Let 𝑧 represent the node one edge away from 𝑥

along the 𝑛 + 1 path to 𝑦. By the base case, 𝔑𝑥 (𝐺) and 𝔑𝑧 (𝐺) are display equivalent, and since the
distance from 𝑧 to 𝑦 is 𝑛, we have that 𝔑𝑧 (𝐺) is also display equivalent to 𝔑𝑦 (𝐺) by the induction
hypothesis. Hence, 𝔑𝑥 (𝐺) is display equivalent to 𝔑𝑦 (𝐺). □

When translating a labeled polytree we must choose a vertex as the starting point of our translation.
This lemma states that all nested sequents obtained from choosing a different vertex to translate
from are mutually derivable from one another, i.e. they are derivable from each other by use of the
display rules (rp) and (rf) only (hence, they are display equivalent). Due to this fact, we will omit
the subscript when contextually permissible and simply write 𝔑 as the translation function.

To clarify the translation procedure, we provide an example below of the various nested sequents
obtained from translating at a different initial vertex.

Example 3.12. Suppose we are given the labeled polytree 𝐺 = (𝑉 , 𝐸, 𝐿) where 𝑉 = {𝑥,𝑦, 𝑧},
𝐸 = {(𝑥,𝑦), (𝑧, 𝑥)}, 𝐿(𝑥) = {𝐴}, 𝐿(𝑦) = {𝐵,𝐶}, and 𝐿(𝑧) = {𝐷}. A pictorial representation of the
labeled polytree 𝐺 is given on the left with the corresponding nested sequent translations on the right:

, Vol. 1, No. 1, Article . Publication date: June 2020.

Display to Labeled Proofs and Back Again for Tense Logics 17

𝑦

𝐵,𝐶

𝑥

𝐴oo
𝑧

𝐷oo
𝔑𝑥 (𝐺) = 𝐴, ◦{𝐵,𝐶}, •{𝐷}
𝔑𝑦 (𝐺) = 𝐵,𝐶, •{𝐴, •{𝐷}}
𝔑𝑧 (𝐺) = 𝐷, ◦{𝐴, ◦{𝐵,𝐶}}

The following lemma ensures that the pieces 𝑋 and 𝑌 of the nested sequent 𝔑𝑥 (𝐺 [𝐻]𝑥) =

𝔑𝑥 (𝐻 ′ ⊕𝑥 𝐻) = 𝑋,𝑌 and the pieces 𝐻 and 𝐻 ′ of the labeled polytree 𝔏𝑥 (𝑋,𝑌) = 𝐺 [𝐻]𝑥 = 𝐻 ′ ⊕𝑥 𝐻
correctly map to each other under our translation functions.

LEMMA 3.13. (i) For every 𝑋 and 𝑌 , 𝔏𝑥 (𝑋,𝑌) is the labeled polytree 𝐺 [𝐻]𝑥 = 𝐻 ′ ⊕𝑥 𝐻 where
𝐻 ′ is the labeled polytree 𝔏𝑥 (𝑋) and 𝐻 is the labeled polytree 𝔏𝑥 (𝑌).

(ii) For every labeled polytree 𝐺 [𝐻]𝑥 = 𝐻 ′ ⊕𝑥 𝐻 , 𝔑𝑥 (𝐺 [𝐻]𝑥) is a nested sequent of the form 𝑋,𝑌

where 𝑋 = 𝔑𝑥 (𝐻 ′) and 𝑌 = 𝔑𝑥 (𝐻).

PROOF. By construction of 𝔏 and 𝔑. □

4 FROM SHALLOW NESTED TO LABELED CALCULI
We answer the following question: given a derivation D of 𝐴 in SKT + NestSt(GP), is there a
derivation D ′ of 𝑥 : 𝐴 in G3Kt + LabSt(GP) that is effectively related to D? The constraint that the
new derivation is effectively related is crucial, for otherwise one could trivially relate D ′ with the
derivation D as obtained from the following equivalences:

∃D(⊢DSKT+NestSt(GP) 𝐴) iff Kt +𝐺𝑃 ⊢ 𝐴 iff ∃D ′(⊢D′G3Kt+LabSt(GP) 𝑥 : 𝐴)

By “effectively related” we mean a local (i.e. rule by rule) transformation on D that is sensitive to
its structure and ultimately yields a G3Kt + LabSt(GP) derivation of 𝑥 : 𝐴. In contrast, a relation
between derivations in SKT + NestSt(GP) and G3Kt + LabSt(GP) obtained solely from the above
equivalences would not be sensitive to the structure of the derivation due to the existential operators.

4.1 Transforming a Labeled Graph 𝐺 = (𝑉 , 𝐸, 𝐿) into a Labeled Sequent R, Γ
Define R = {𝑅𝑥𝑦 | (𝑥,𝑦) ∈ 𝐸} and

Γ =
⊎
𝑥 ∈𝑉

𝑥 : 𝐿(𝑥)

where 𝑥 : 𝐿(𝑥) represents the multiset 𝐿(𝑥) with each formula prepended with a label 𝑥 .

Example 4.1. The labeled graph 𝐺 = (𝑉 , 𝐸, 𝐿) where 𝑉 = {𝑥,𝑦, 𝑧}, 𝐸 = {(𝑥,𝑦), (𝑧, 𝑥)}, 𝐿(𝑥) =
{𝐴}, 𝐿(𝑦) = {𝐵}, and 𝐿(𝑧) = {𝐶} corresponds to the labeled sequent 𝑅𝑥𝑦, 𝑅𝑧𝑥, 𝑥 : 𝐴,𝑦 : 𝐵, 𝑧 : 𝐶.

4.2 Transforming a Labeled Sequent R, Γ into a Labeled Graph (𝑉 , 𝐸, 𝐿)
Let 𝑉 be the set of all labels occurring in R, Γ. Define

𝐸 = {(𝑥,𝑦) | 𝑅𝑥𝑦 ∈ R} 𝐿(𝑥) = {𝐴 | 𝑥 : 𝐴 ∈ Γ}

Example 4.2. The labeled sequent 𝑅𝑥𝑦, 𝑅𝑦𝑧, 𝑅𝑢𝑥, 𝑥 : 𝐴, 𝑧 : 𝐵, 𝑧 : 𝐶,𝑢 : 𝐷 becomes the labeled
graph 𝐺 = (𝑉 , 𝐸, 𝐿) where 𝑉 = {𝑥,𝑦, 𝑧,𝑢}, 𝐸 = {(𝑥,𝑦), (𝑦, 𝑧), (𝑢, 𝑥)}, 𝐿(𝑥) = {𝐴}, 𝐿(𝑦) = ∅,
𝐿(𝑧) = {𝐵,𝐶} and 𝐿(𝑢) = {𝐷}.

The reader will observe that the translations are obtained rather directly. This is because the main
difference between a labeled graph and a labeled sequent is notation. Therefore, for a given nested
sequent 𝑋 , we let 𝔏(𝑋) also represent the labeled sequent obtained from the labeled polytree of 𝑋 .
We follow this convention for the remainder of the paper and let 𝔏(𝑋) represent a labeled sequent.

Combining the previous results we obtain:

, Vol. 1, No. 1, Article . Publication date: June 2020.

18 Ciabattoni and Lyon, et al.

THEOREM 4.3. Let 𝐺𝑃 be set of general path axioms. If D is a derivation of 𝑋 in SKT +
NestSt(GP), then there is an effective translation of D to a derivation D ′ of 𝔏(𝑋) in G3Kt +
LabSt(GP).

PROOF. We prove the result by induction on the height of the given derivation.
Base case. The translation of an initial sequent𝑌, 𝑝, 𝑝 in SKT+NestSt(GP) gives the initial sequent

𝔏𝑥 (𝑌), 𝑥 : 𝑝, 𝑥 : 𝑝 in G3Kt + LabSt(GP), which proves the base case.
Inductive step. We show the inductive step for the rules (∨), (■), (^), (rp), and (GP). When a

weakening or contraction occurs in the given derivation D ′, we invoke Lemma 2.7.

𝑌,𝐴, 𝐵 (∨)
𝑌,𝐴 ∨ 𝐵

𝔏𝑥 (𝑌), 𝑥 : 𝐴, 𝑥 : 𝐵 (∨)
𝔏𝑥 (𝑌), 𝑥 : 𝐴 ∨ 𝐵

𝑌, •{𝐴} (■)
𝑌,■𝐴

𝔏𝑥 (𝑌), 𝑅𝑦𝑥,𝑦 : 𝐴
(■)

𝔏𝑥 (𝑌), 𝑥 : ■𝐴

𝑌, ◦{𝑍,𝐴},^𝐴 (^)
𝑌, ◦{𝑍 },^𝐴

𝔏𝑥 (𝑌),𝔏𝑦 (𝑍), 𝑅𝑥𝑦, 𝑥 : ^𝐴,𝑦 : 𝐴
(^)

𝔏𝑥 (𝑌),𝔏𝑦 (𝑍), 𝑅𝑥𝑦, 𝑥 : ^𝐴

𝑌, •{𝑍 } (rp)◦{𝑌 }, 𝑍
𝔏𝑦 (𝑌, •{𝑍 }). Lem. 3.9
𝔏𝑧 (◦{𝑌 }, 𝑍)

𝑌,★𝑛+1{...★𝑛+𝑚 {𝑍 }...} (GP)
𝑌,★1{...★𝑛 {𝑍 }...}

𝔏𝑥 (𝑌),RΣ𝑥𝑦,𝔏𝑦 (𝑍)
Lem. 2.7

𝔏𝑥 (𝑌),RΠ𝑥𝑦,RΣ𝑥𝑦,𝔏𝑦 (𝑍) (GP)
𝔏𝑥 (𝑌),RΠ𝑥𝑦,𝔏𝑦 (𝑍)

Because 𝔏𝑦 (𝑌, •{𝑍 }) and 𝔏𝑧 (◦{𝑌 }, 𝑍) are isomorphic, the premise and conclusion of (rp) can be
mapped to the same labeled sequent (thus, the two will be identical), and hence no rule is used for
translating (rp). In the above, this is denoted by the dotted line. □

Example 4.4. We translate a derivation of _^𝑝 → ^_𝑝 in SKT + 𝑁𝑒𝑠𝑡𝑆𝑡 ({_^𝑝 → ^_𝑝}) to
a derivation in G3Kt + 𝐿𝑎𝑏𝑆𝑡 ({_^𝑝 → ^_𝑝}).

_𝑝, •{𝑝, 𝑝}, •{^_𝑝}
(_)

_𝑝, •{𝑝}, •{^_𝑝} (rp)◦{_𝑝, •{𝑝}},^_𝑝
(^)◦{•{𝑝}},^_𝑝
(GP)•{◦{𝑝}},^_𝑝 (rp)◦{𝑝}, ◦{^_𝑝}
(□)

□𝑝, ◦{^_𝑝}
(rf)•{□𝑝},^_𝑝
(■)

■□𝑝,^_𝑝
(∨)

■□𝑝 ∨ ^_𝑝. =
_^𝑝 → ^_𝑝

𝑅𝑥𝑢, 𝑅𝑧𝑢, 𝑅𝑦𝑥, 𝑅𝑦𝑧, 𝑧 : 𝑝, 𝑥 : ^_𝑝,𝑢 : _𝑝, 𝑧 : 𝑝
(_)

𝑅𝑥𝑢, 𝑅𝑧𝑢, 𝑅𝑦𝑥, 𝑅𝑦𝑧, 𝑧 : 𝑝, 𝑥 : ^_𝑝,𝑢 : _𝑝
(^)

𝑅𝑥𝑢, 𝑅𝑧𝑢, 𝑅𝑦𝑥, 𝑅𝑦𝑧, 𝑧 : 𝑝, 𝑥 : ^_𝑝
(GP)

𝑅𝑦𝑥, 𝑅𝑦𝑧, 𝑧 : 𝑝, 𝑥 : ^_𝑝
(□)

𝑅𝑦𝑥,𝑦 : □𝑝, 𝑥 : ^_𝑝
(■)

𝑥 : ■□𝑝, 𝑥 : ^_𝑝
(∨)

𝑥 : ■□𝑝 ∨ ^_𝑝. =
_^𝑝 → ^_𝑝

COROLLARY 4.5. Let 𝑀 ⊆ {Π𝐴 → Σ𝐴 | Π, Σ ∈ {^}∗} be a set of modal general path axioms.
Every derivation in the shallow nested calculus SKT − {(■), (_)} + 𝑁𝑒𝑠𝑡𝑆𝑡 (𝑀) is translatable to a
derivation in the labeled calculus G3Kt − {(■), (_)} + 𝐿𝑎𝑏𝑆𝑡 (𝑀).

The above corollary shows that our translations also hold for the modal (non-tense) fragments of
the logics we consider. As detailed in the conclusion, this is useful since one can prove conservativity

, Vol. 1, No. 1, Article . Publication date: June 2020.

Display to Labeled Proofs and Back Again for Tense Logics 19

of the display calculi SKT − {(■), (_)} + 𝑁𝑒𝑠𝑡𝑆𝑡 (𝑀) over their modal fragments by translating
derivations into G3Kt − {(■), (_)} + 𝐿𝑎𝑏𝑆𝑡 (𝑀) and invoking the soundness of the labeled calculus.

5 FROM LABELED TO SHALLOW NESTED CALCULI
In this section, we address the converse question: translating labeled proofs into shallow nested
proofs, which will be achieved by translating through the deep nested calculi DKT + DeepPr(P). In
the base case for Kt when 𝐺𝑃 = ∅, i.e. for the calculus G3Kt, it is fairly straightforward to effectively
translate labeled derivations into nested derivations. As will be argued in Lemma 5.2, every derivation
in G3Kt which proves a labeled theorem of the form 𝑥 : 𝐴, consists solely of labeled sequents which
are translatable into nested notation. After providing the translation from G3Kt to SKT, we explain a
problem that arises when attempting to translate derivations from extensions of G3Kt to extensions
of SKT, and how we solve this problem for path extensions of Kt.

The central issue complicating the reverse translation from labeled to nested for general path
extensions of Kt is that structural rule extensions of G3Kt allow for non-translatable labeled sequents
to occur in derivations. In other words, general path structural rules allow one to derive theorems with
labeled sequents not in the domain of the translation function given in Section 3.2. This complication
arises since our translation is only defined for labeled polytree sequents, and not for labeled sequents
in general. Nevertheless, we can overcome this obstacle when considering labeled calculi for Kt
extended with propagation rules for path axioms since every derivation can be transformed into one
containing only (translatable) labeled sequents, i.e. labeled polytree sequents. In Section 5.2, we
explain this proof transformation procedure, followed by the translation from G3Kt + LabSt(P) to
SKT +NestSt(P) that leverages DKT +DeepPr(P) to facilitate the translation. Note that although the
translation presented here takes a detour through a deep nested calculus, a direct translation from
labeled to shallow nested could be provided; still, we opt for the latter approach since it allows us to
exploit results from [17] that simplify our work.

5.1 Translating the Base Calculus
We first consider the converse translation for the base calculus G3Kt.

Definition 5.1 (Labeled Polytree Sequent). A labeled polytree sequent is a labeled sequent whose
graph is a labeled polytree.

LEMMA 5.2. Every labeled derivation in G3Kt of 𝑥 : 𝐴 consists solely of labeled polytree
sequents.

PROOF. We argue by contradiction. Let D be a derivation of 𝑥 : 𝐴 in G3Kt and suppose there
is a labeled sequent R, Γ in D that is not a labeled polytree sequent. By definition, the underlying
undirected graph of the graph of R, Γ is not a tree. It follows that the graph of R, Γ is not connected
or contains an undirected cycle.

If the graph of R, Γ is not connected then by inspection of the rules of G3Kt, the graph of every
sequent below R, Γ in D is disconnected, including the graph of 𝑥 : 𝐴, which is a contradiction.

On the other hand, if it is connected then the graph of R, Γ must contain an undirected cycle. Since
the derivation ends with a single labeled formula 𝑥 : 𝐴, it must be the case that every relational atom
(and hence the undirected cycle) is deleted ultimately. The only rules that delete relational atoms
in G3Kt are the (□) and (■). However, the eigenvariable condition in these rules are not satisfied
for labels occurring in a undirected cycle, so the undirected cycle cannot be eliminated. Hence, we
obtain a contradiction.

It follows that every sequent occurring in a G3Kt derivation of 𝑥 : 𝐴 must be a labeled polytree
sequent. □

, Vol. 1, No. 1, Article . Publication date: June 2020.

20 Ciabattoni and Lyon, et al.

The observation that G3Kt is complete relative to derivations consisting solely of labeled polytree
sequents is useful for our translation work. Recognizing that this fact generalizes to the setting where
we extend G3Kt with propagation rules, allows us to easily translate our labeled derivations into
deep nested derivations, and then leverage Lemma 2.21 to complete the effective translation from
labeled to shallow nested.

LEMMA 5.3. Every derivation in G3Kt consisting solely of labeled polytree sequents, can be
effectively translated to a derivation in DKT.

PROOF. We prove this by induction on the height of the given derivation.
Base case. The translation of an initial sequent R, 𝑥 : 𝑝, 𝑥 : 𝑝, Γ in G3Kt gives an initial sequent

𝔑(R, 𝑥 : 𝑝, 𝑥 : 𝑝, Γ) = 𝑋 [𝑝, 𝑝] in DKT which proves the base case.
Inductive step. We show the inductive step for the rules (∨), (■), and (^); all remaining cases

are similar. In the (∨) case, the 𝑌 that occurs in the translated derivation is the multiset of formulae
from Γ labeled with 𝑥 .

R, Γ, 𝑥 : 𝐴, 𝑥 : 𝐵 (∨)R, Γ, 𝑥 : 𝐴 ∨ 𝐵

𝔑(R, Γ, 𝑥 : 𝐴, 𝑥 : 𝐵). =
𝑋 [𝐴, 𝐵,𝑌] (∨)
𝑋 [𝐴 ∨ 𝐵,𝑌]. =

𝔑(R, Γ, 𝑥 : 𝐴 ∨ 𝐵)

R, 𝑅𝑦𝑥,𝑦 : 𝐴, Γ
(■)R, 𝑥 : ■𝐴, Γ

𝔑(R, 𝑅𝑦𝑥,𝑦 : 𝐴, Γ). =
𝑋 [•{𝐴}]

lem. 2.20
𝑋 [■𝐴, •{𝐴}] (■)

𝑋 [■𝐴]. =
𝔑(R, 𝑥 : ■𝐴, Γ)

For the (^) case, there are two possible inferences in DKT depending on the node we translate
from in the premise of the last inference in the G3Kt derivation. Note that in the first translated
derivation 𝑌 stands for all formulae in Γ labeled with 𝑦, and in the second translated derivation 𝑍

stands for all formulae from Γ labeled with 𝑥 .

R, 𝑅𝑥𝑦, 𝑥 : ^𝐴,𝑦 : 𝐴, Γ
(^)R, 𝑅𝑥𝑦, 𝑥 : ^𝐴, Γ

𝔑𝑧1 (R, 𝑅𝑥𝑦, 𝑥 : ^𝐴,𝑦 : 𝐴, Γ). =
𝑋 [◦{𝑌,𝐴},^𝐴] (^1)
𝑋 [◦{𝑌 },^𝐴]. =

𝔑𝑧1 (R, 𝑅𝑥𝑦, 𝑥 : ^𝐴, Γ)

𝔑𝑧2 (R, 𝑅𝑥𝑦, 𝑥 : ^𝐴,𝑦 : 𝐴, Γ). =
𝑋 [•{𝑍,^𝐴}, 𝐴] (^2)
𝑋 [•{𝑍,^𝐴}]. =

𝔑𝑧2 (R, 𝑅𝑥𝑦, 𝑥 : ^𝐴, Γ)

When we translate from a node 𝑧1 in R, Γ that must pass through 𝑥 to reach 𝑦 in the graph of
R, Γ, then we apply the (^1) inference, and when we translate from a node 𝑧2 in R, Γ that must pass
through 𝑦 to reach 𝑥 in the graph of R, Γ, we apply the (^2) inference. □

THEOREM 5.4. Every derivation in G3Kt of a formula 𝑥 : 𝐴 is effectively translatable to a
derivation of 𝐴 in SKT.

PROOF. Let D be a a derivation in G3Kt of a formula 𝑥 : 𝐴. By Lemma 5.2, D consists solely of
labeled polytree sequents. Hence, by Lemma 5.3 we can effectively (i.e. algorithmically) transform
D into a derivation D ′ in DKT, and so, by Lemma 2.21 we can effectively transform D ′ into a
derivation in SKT. The composition of these two effective transformations give the desired effective
transformation. □

, Vol. 1, No. 1, Article . Publication date: June 2020.

Display to Labeled Proofs and Back Again for Tense Logics 21

The above argument does not always work for extensions of G3Kt because additional structural
rules may be capable of removing cycles in the following sense: the graph of the premise might have
a cycle yet the graph of the conclusion might not (this was not the case for any rule in G3Kt). For
instance, consider the rule for the confluence axiom _^𝐴→ ^_𝐴:

R, 𝑅𝑥𝑢, 𝑅𝑧𝑢, 𝑅𝑦𝑥, 𝑅𝑦𝑧, Γ
(Conf)R, 𝑅𝑦𝑥, 𝑅𝑦𝑧, Γ

In a rule instance of (Conf), the graph of the premise necessarily contains a cycle. However, it
need not be the case that the graph of the conclusion contains a cycle. As a consequence, a labeled
derivation of a labeled formula 𝑥 : 𝐴 in G3Kt + (Conf) may contain labeled sequents that are not
labeled polytree sequents. Therefore, such a derivation is not immediately translatable to a derivation
in SKT + (Conf) via our methods because the derivation may contain sequents that are not in the
domain of our translation.

For all general path extensions of Kt, every shallow nested derivation can be translated into a
labeled derivation; this fact implies that the space of shallow nested derivations corresponds to a
subspace of the space of labeled derivations. Derivations of theorems in our labeled calculi may
contain labeled sequents that are not labeled polytree sequents, showing that labeled derivations
contain structures that go beyond those of the nested formalism. Nevertheless, we may invoke
techniques present in [17, 25] to pre-process each labeled derivation (in a labeled calculus for Kt
extended with path axioms 𝑃) in such a way that each is translatable to a shallow nested derivation,
thus answering an open question in [9].

5.2 Translating the Path Axiom Extension
We now show that the labeled calculus can be internalized (also referred to as refinement in [25])
for Kt + 𝑃 (where 𝑃 represents a set of path axioms), meaning that we can effectively transform
any G3Kt + LabSt(P) derivation of a labeled formula into one where every sequent is a labeled
polytree sequent (and is therefore interpretable as a formula in LKt via the function 𝔑 and the
function I from Section 2.1). This internalization of proofs is interesting in its own right, and
is also helpful in that the resulting labeled derivation is easily translatable into a derivation in
DKT + DeepPr(P). From there, we can invoke Lemma 2.21 to conclude the existence of an effective
translation from G3Kt + LabSt(P) derivations to SKT + NestSt(P) derivations (since composing two
effective procedures gives an effective procedure).

The method of transforming every derivation in G3Kt+LabSt(P) into a derivation consisting solely
of labeled polytree sequents relies on the addition of propagation rules LabPr(P) to the calculus
(cf. [17, 25, 34]). Such propagation rules simulate the (Path) rules, preserve disconnected and cyclic
structures downwards in a derivation, and, equivalently, preserve labeled polytree structure bottom-up
in a derivation. The latter properties are significant because they allow us to make an argument
similar to the one made in Lemma 5.2, where we argue by contradiction that every labeled sequent
occurring in a given derivation of a labeled formula 𝑥 : 𝐴 must be a labeled polytree sequent.

The main technical lemma in this section is Lemma 5.12, where we show that in the presence
of propagation rules LabPr(P), the structural rules LabSt(P) in G3Kt + LabSt(P) can be eliminated
from any proof. This allows for the effective transformation of any proof in an (unrestricted) labeled
calculus G3Kt + LabSt(P) into a proof in the associated internal labeled calculus G3Kt + LabPr(P)
(Lemma 5.15). Proofs in the internal calculi G3Kt + LabPr(P) can then be effectively translated into
derivations in DKT + DeepPr(P). Once we prove these claims, we obtain an effective translation
from the labeled calculus G3Kt + LabSt(P) to the nested calculus SKT + NestSt(P) via Lemma 2.21.

The proof of admissibility of structural rules LabSt(P) in the presence of propagation rules
LabPr(P) (Lemma 5.12) bears some resemblance to the proof of admissibility of structural rules

, Vol. 1, No. 1, Article . Publication date: June 2020.

22 Ciabattoni and Lyon, et al.

NestSt(P) for DeepPr(P) in the deep nested calculi of [17]. There is, however, a crucial difference in
our result compared to that of [17]. In their work, an additional admissibility result needs to be proved
for every path axiom extension: the admissibility of all display rules. By contrast, this additional
admissibility result need not be proved in the labeled setting as they are not applicable to the labeled
calculi—display rules are all absent in the labeled calculi. This mismatch results in an interesting
observation regarding Goré et al.’s translation from SKT +NestSt(P) to DKT +DeepPr(P). Consider
the following transformations of a proof of a nested sequent in SKT + NestSt(P) to a proof of the
same sequent in DKT +DeepPr(P): one done directly in a nested calculus, the other through a detour
in the associated labeled calculus. Note that step (3) is given by [17, Lem. 6.14] and step (5) is trivial
as any derivation in G3Kt + LabSt(P) is a derivation in G3Kt + LabSt(P) + LabPr(P).

SKT + NestSt(P)
(4) 𝑇ℎ𝑚. 4.3 (+ 𝐿𝑒𝑚. 2.7) //

(1)
��

G3Kt + LabSt(P)

(5)
��

DKT + NestSt(P) + DeepPr(P) + {(rf), (rp), (c), (w)}

(2) 𝐿𝑒𝑚. 2.20
��

G3Kt + LabSt(P) + LabPr(P)

(6) 𝐿𝑒𝑚. 5.14

��

DKT + NestSt(P) + DeepPr(P)

(3)
��

DKT + DeepPr(P) G3Kt + LabPr(P)
(7) 𝐿𝑒𝑚. 5.19

oo

The direct translation from SKT+NestSt(P) to DKT+DeepPr(P) in [17] is described on the left path
in the above diagram; it starts with the trivial observation (1) that DKT + NestSt(P) + DeepPr(P) +
{(rf), (rp), (c), (w)} subsumes SKT + NestSt(P); followed by (2) the admissibility of display rules,
contraction (c), and weakening (w); and finally, (3) the admissibility of structural rules for path
axioms. The detour through labeled calculus takes care of the display rules and the (c) and (w)
structural rules at step (4), where the admissibility of display rules is built into the canonical
representation of nested sequents as polytrees (Corollary 3.10) and is completely independent of
any extension with path axioms. This independence is not obviously observed in the transformation
through the nested calculi. In fact, the designs of the propagation rules in the deep nested calculi in
[17] take into account all possible interactions between display postulates and the path axioms and
that leads to a proliferation of inference rules, e.g., for every propagation rule going downward in
the syntax tree, there needs to be a symmetric version that propagates upward the tree. The proofs
of admissibility of display rules in [17] in DKT and its extensions then need to consider all these
cases, each of which is essentially the same. Moving to the labelled polytree sequent representation
cuts the propagation rules by a half, and brings out the essence of a proof more clearly. These
observations suggest that the syntax of the nested calculi is unnecessarily bureaucratic in the sense
that the syntactic structures of nested sequents obscure certain identities on proofs.3

For another demonstration of bureaucracy of nested sequent proofs (in comparison to labeled
polytree sequent proofs): take a proof Π of the nested sequent ◦{Γ},Δ. In proving admissibility of
display postulates for DKT, Gore et al. applied a transformation (see the proof of Lemma 4.3 in [17])
to Π to obtain another proof Π′ of Γ, •{Δ}. Clearly Π and Π′ are distinct proofs in any extension
of DKT, as they have distinct end sequents. But it can be shown that they both map to the same
proof in the polytree representation (i.e., by simply replacing ^1 and ^2 rules in DKT with ^ rule in

3See e.g., [15] on the broader context of the use of the phrase “bureaucracy” in proof theory.

, Vol. 1, No. 1, Article . Publication date: June 2020.

Display to Labeled Proofs and Back Again for Tense Logics 23

labelled sequent calculus, and _1 and _2 with _). The distinction in the nested sequent proofs Π
and Π′ arises from the choice of which node in the nested sequent tree is to be designated as the root
node; in the polytree representation this distinction does not arise, as there is no special node to be
designated as the root node.

Let us now define the labeled propagation rules.

Definition 5.5 (Propagation Graph of a Labeled Sequent). Let R, Γ be a labeled sequent where 𝑁

is the set of labels occurring in the sequent. We define the propagation graph 𝑃𝐺 (R, Γ) = (𝑁, 𝐸) to
be the directed graph with the set of nodes 𝑁 and where 𝐸 is a set of labeled edges that are labeled
with either a ^ or _ as follows: For every 𝑅𝑥𝑦 ∈ R, we have a labeled edge (𝑥,𝑦,^) ∈ 𝐸 and a
labeled edge (𝑦, 𝑥,_) ∈ 𝐸. Given that 𝑃𝐺 (R, Γ) = (𝑁, 𝐸), we will often write 𝑥 ∈ 𝑃𝐺 (R, Γ) to mean
𝑥 ∈ 𝑁 , and (𝑥,𝑦,^) ∈ 𝑃𝐺 (R, Γ) or (𝑦, 𝑥,_) ∈ 𝑃𝐺 (R, Γ) to mean (𝑥,𝑦,^) ∈ 𝐸 or (𝑦, 𝑥,_) ∈ 𝐸,
respectively.

Definition 5.6 (Labeled Propagation Rules). Let 𝑃 be a set of path axioms. The set of propagation
rules LabPr(P) contains all rules of the form:

R, 𝑥 : ⟨?⟩𝐴,𝑦 : 𝐴, Γ (Prop)R, 𝑥 : ⟨?⟩𝐴, Γ
where there is a path 𝜋 from 𝑥 to 𝑦 in the propagation graph of the premise and Π𝐴 → ⟨?⟩𝐴 ∈
(𝑃 ∪ 𝐼 (𝑃))∗ with Π the string of 𝜋 .4

We now prove that we can effectively transform any derivation in G3Kt + LabSt(P) + LabPr(P)
into a derivation in G3Kt + LabPr(P). This inevitably yields an effective transformation from proofs
in G3Kt + LabSt(P) to proofs in G3Kt + LabPr(P) (and eventually to SKT + NestSt(P)) in the
following way: Given a derivation in G3Kt + LabSt(P), we show that we can permute the topmost
inference of a labeled structural rule (Path) upwards into the initial sequents to eliminate the use
of the rule. This provides a proof in G3Kt + LabSt(P) + LabPr(P) since the LabPr(P) rules may be
used in the permutation process to simulate the eliminated LabSt(P) rule. By permuting away all
labeled structural rules (Path) ∈ LabSt(P) from the derivation, we then effectively obtain a proof in
G3Kt + LabPr(P), which we will show below contains exclusively labeled polytree sequents when
the end sequent is a labeled polytree sequent. The last thing that we will show in this section is how
to effectively translate G3Kt + LabPr(P) derivations into DKT + DeepPr(P) derivations; this result,
in conjunction with Lemma 2.21, gives the desired effective translation and result.

LEMMA 5.7. For any structural rule (Path) defined relative to a path axiom Π𝐴→ ⟨?⟩𝐴:
R,RΠ𝑥𝑦, 𝑅 ⟨?⟩𝑥𝑦, Γ (Path)R,RΠ𝑥𝑦, Γ

there exists a path 𝜋 in 𝑃𝐺 (R,RΠ𝑥𝑦, 𝑅 ⟨?⟩𝑥𝑦, Γ) from 𝑥 to 𝑦 whose string is Π as well as a path from
𝑥 to 𝑦 whose string is ⟨?⟩.

PROOF. Follows from the definition of (Path) and the definition of a propagation graph of a
labeled sequent. □

Since our labeled calculi must satisfy the closure condition (cf. Section 2.2) we also must take
into account the translation of structural rules obtained by the condition. Therefore, we introduce the
closure function and prove a couple lemmata sufficient to conclude the translation of such rules.

Definition 5.8 (The Closure Function Cl[s]). Let R,RΠ𝑥𝑦, 𝑅 ⟨?⟩𝑥𝑦, Γ be a labeled sequent, and let
[s] = [𝑦1/𝑥1...𝑦𝑛/𝑥𝑛] represent a substitution of the labels 𝑥1, . . . , 𝑥𝑛 for the labels 𝑦1, . . . , 𝑦𝑛 , where
all such labels occur in RΠ𝑥𝑦, 𝑅 ⟨?⟩𝑥𝑦. We define
4Note that path and string are defined the same here as for nested sequents.

, Vol. 1, No. 1, Article . Publication date: June 2020.

24 Ciabattoni and Lyon, et al.

Cl[s] (R,RΠ𝑥𝑦, 𝑅 ⟨?⟩𝑥𝑦, Γ)
to be the sequent where duplicates of relational atoms in (RΠ𝑥𝑦) [s] are contracted.

Example 5.9. For example, if [s] = [𝑦/𝑤], then Cl[s] (𝑅𝑥𝑦, 𝑅𝑥𝑤, 𝑅𝑤𝑧, 𝑅𝑦𝑧, 𝑅𝑦𝑧, 𝑅𝑥𝑧, 𝑥 : 𝑝) =
𝑅𝑥𝑦, 𝑅𝑦𝑧, 𝑅𝑥𝑧, 𝑥 : 𝑝. Observe that the duplicate occurrences of 𝑅𝑥𝑦 and 𝑅𝑦𝑧 have been contracted
after the substitution has been applied.

LEMMA 5.10. Let the structural rule (Path) (below left) be defined relative to the axiom Π𝐴→
⟨?⟩𝐴 and the substitution instance (below right) be an instance of the rule obtained via the closure
condition. Moreover, assume that the substitution [s] = [𝑦1/𝑥1, . . . , 𝑦𝑛/𝑥𝑛] with all such labels
occurring in RΠ𝑥𝑦, 𝑅 ⟨?⟩𝑥𝑦.

R,RΠ𝑥𝑦, 𝑅 ⟨?⟩𝑥𝑦, Γ (Path)R,RΠ𝑥𝑦, Γ

Cl[s] (R,RΠ𝑥𝑦, 𝑅 ⟨?⟩𝑥𝑦, Γ) (Path‡)Cl[s] (R,RΠ𝑥𝑦, Γ)
Every path that occurs in 𝑃𝐺 (RΠ𝑥𝑦) and 𝑃𝐺 (R ⟨?⟩𝑥𝑦) between 𝑥 and𝑦 occurs in 𝑃𝐺 (Cl[s] (RΠ𝑥𝑦))

and 𝑃𝐺 (Cl[s] (R ⟨?⟩𝑥𝑦)) between 𝑥 [s] and 𝑦 [s], respectively.

PROOF. To prove the claim, we show the existence of a simulation 𝔅 from 𝑃𝐺 (RΠ𝑥𝑦) to
𝑃𝐺 (Cl[s] (RΠ𝑥𝑦)).5 In other words, we want to show that there exists a set 𝔅 such that if (𝑢, 𝑣, ⟨?⟩) ∈
𝑃𝐺 (RΠ𝑥𝑦) and (𝑢,𝑢 ′) ∈ 𝔅 with 𝑢, 𝑣 ∈ 𝑃𝐺 (RΠ𝑥𝑦) and 𝑢 ′ ∈ 𝑃𝐺 (Cl[s] (RΠ𝑥𝑦)), then there exists a
𝑣 ′ ∈ 𝑃𝐺 (Cl[s] (RΠ𝑥𝑦)) such that (𝑣, 𝑣 ′) ∈ 𝔅 and (𝑢 ′, 𝑣 ′, ⟨?⟩) ∈ 𝑃𝐺 (Cl[s] (RΠ𝑥𝑦)). We define 𝔅 as
shown below, and prove afterwards that it has the property mentioned above, i.e. it is a simulation.

𝔅 :=

{
(𝑥𝑖 , 𝑦𝑖) ∈ 𝔅 if 𝑤 = 𝑥𝑖 ∈ {𝑥1, ..., 𝑥𝑛};
(𝑤,𝑤) ∈ 𝔅 otherwise.

Assume that (𝑢, 𝑣, ⟨?⟩) ∈ 𝑃𝐺 (RΠ𝑥𝑦) with (𝑢,𝑢 ′) ∈ 𝔅. It follows that 𝑅 ⟨?⟩𝑢𝑣 must be in RΠ𝑥𝑦. By
definition, 𝑢 ′ = 𝑢 [s] and 𝑣 ′ = 𝑣 [s], and notice further that 𝑅 ⟨?⟩𝑢 ′𝑣 ′ must occur in Cl[s] (RΠ𝑥𝑦) since
the only operations applied are variable substitutions and contractions. Hence, by the definition of 𝔅,
(𝑣, 𝑣 ′) ∈ 𝔅, and by the definition of a propagation graph, (𝑢 ′, 𝑣 ′, ⟨?⟩) ∈ 𝑃𝐺 (Cl[s] (RΠ𝑥𝑦)).

The argument is similar for 𝑃𝐺 (R ⟨?⟩𝑥𝑦) and 𝑃𝐺 (Cl[s] (R ⟨?⟩𝑥𝑦)). □

LEMMA 5.11. Let [s] = [𝑦1/𝑥1, . . . , 𝑦𝑛/𝑥𝑛] with all such labels occurring in RΠ𝑥𝑦, 𝑅 ⟨?⟩𝑥𝑦. For
any structural rule obtained via the closure condition on a rule (Path) defined relative to a path
axiom Π𝐴→ ⟨?⟩𝐴:

Cl[s] (R,RΠ𝑥𝑦, 𝑅 ⟨?⟩𝑥𝑦, Γ) (Path‡)Cl[s] (R,RΠ𝑥𝑦, Γ)
there exists a path 𝜋 in the propagation graph of the premise from 𝑥 [s] to 𝑦 [s] whose string is Π as
well as a path from 𝑥 [s] to 𝑦 [s] whose string is ⟨?⟩.

PROOF. Follows from Lemmata 5.7 and 5.10. □

LEMMA 5.12. Let 𝑃 be a set of path axioms, (Path) ∈ LabSt(P), (Prop) ∈ LabPr(P), and
RΠ𝑢𝑣 := 𝑅 ⟨𝐺1 ⟩𝑢𝑧1, . . . , 𝑅 ⟨𝐺𝑛 ⟩𝑧𝑛𝑣 . Suppose we are given a derivation that ends with:

R,RΠ𝑢𝑣, 𝑅 ⟨𝐺 ⟩𝑢𝑣, 𝑥 : ⟨𝐹 ⟩𝐴,𝑦 : 𝐴, Γ
(Prop)R,RΠ𝑢𝑣, 𝑅 ⟨𝐺 ⟩𝑢𝑣, 𝑥 : ⟨𝐹 ⟩𝐴, Γ

(Path)R,RΠ𝑢𝑣, 𝑥 : ⟨𝐹 ⟩𝐴, Γ
where RΠ𝑢𝑣 = 𝑅 ⟨𝐺1 ⟩𝑢𝑧1, . . . , 𝑅 ⟨𝐺𝑛 ⟩𝑧𝑛𝑣 is active in the (Path) inference. Then, there exists a propaga-
tion rule (Prop) ′ ∈ LabPr(P) such that the (Path) rule may be permuted upwards followed by an
instance of (Prop) ′ to derive the same end sequent:
5See [2] for a discussion on simulations.

, Vol. 1, No. 1, Article . Publication date: June 2020.

Display to Labeled Proofs and Back Again for Tense Logics 25

R,RΠ𝑢𝑣, 𝑅 ⟨𝐺 ⟩𝑢𝑣, 𝑥 : ⟨𝐹 ⟩𝐴,𝑦 : 𝐴, Γ
(Path)R,RΠ𝑢𝑣, 𝑥 : ⟨𝐹 ⟩𝐴,𝑦 : 𝐴, Γ (Prop) ′R,RΠ𝑢𝑣, 𝑥 : ⟨𝐹 ⟩𝐴, Γ

Note that (Path) may represent a structural rule obtained via the closure condition, and (Prop) and
(Path) may correspond to different path axioms.

PROOF. Suppose we are given a derivation ending with a (Prop) inference followed by a (Path)
inference and let R ′ = R, 𝑅 ⟨𝐺1 ⟩𝑢𝑧1, . . . , 𝑅 ⟨𝐺𝑛 ⟩𝑧𝑛𝑣 . Moreover, due to the application of (Prop), there
exists a path 𝜋 of the form 𝑥, ⟨𝐹1⟩, . . . , ⟨𝐹𝑛⟩, 𝑦 from 𝑥 to 𝑦 in 𝑃𝐺 (R ′, 𝑅𝑢𝑣, 𝑥 : ⟨𝐹 ⟩𝐴,𝑦 : 𝐴, Γ). In the
case where the relational atom 𝑅 ⟨𝐺 ⟩𝑢𝑣 principal in (Path) does not lay along the path 𝜋 used in
applying (Prop), the two rules may be freely permuted since there is no interaction between the two.

We therefore assume that the relational atom 𝑅 ⟨𝐺 ⟩𝑢𝑣 lies along the path 𝜋 from 𝑥 to 𝑦. By this
assumption, we know that there exists an axiom 𝐹 = ⟨𝐹1⟩ · · · ⟨𝐹𝑚⟩𝐴 → ⟨𝐹 ⟩𝐴 = Π𝐴 → ⟨𝐹 ⟩𝐴 ∈
(𝑃 ∪ 𝐼 (𝑃))∗ where Π = ⟨𝐹1⟩ · · · ⟨𝐹𝑚⟩ is the string of the path 𝜋 . Moreover, by our assumption that
(Path) deletes the relational atom 𝑅 ⟨𝐺 ⟩𝑢𝑣 that occurs along the path 𝜋 , the structural rule (Path)
corresponds to a path axiom 𝐺 = ⟨𝐺1⟩ · · · ⟨𝐺𝑛⟩𝐴→ ⟨𝐺⟩𝐴 where ⟨𝐺⟩ = ⟨𝐹𝑖⟩ for some 𝑖 ∈ {1, . . . ,𝑚}.
To prove the claim we must show that there exists a path 𝜎 from 𝑥 to 𝑦 in 𝑃𝐺 (R ′, 𝑥 : ⟨𝐹 ⟩𝐴,𝑦 : 𝐴, Γ)
such that Σ𝑝 → ⟨𝐹 ⟩𝑝 ∈ (𝑃 ∪ 𝐼 (𝑃))∗ with Σ the string of the path 𝜎 . We construct the path 𝜎 as
follows: (i) replace each 𝑢, ⟨𝐺⟩, 𝑣 in 𝜋 with 𝑢, ⟨𝐺1⟩, 𝑧1, . . . , 𝑧𝑛, ⟨𝐺𝑛⟩, 𝑣 , and (ii) replace each 𝑣, ⟨𝐺⟩−1, 𝑢

in 𝜋 with 𝑣, ⟨𝐺𝑛⟩−1, 𝑧𝑛, . . . , 𝑧1, ⟨𝐺1⟩−1, 𝑢. Taking Σ to be the string of 𝜎 , we know that Σ𝐴→ ⟨𝐹 ⟩𝐴 ∈
(𝑃 ∪ 𝐼 (𝑃))∗ since the operations performed in steps (i) and (ii) above correspond to compositions of
the axioms 𝐺 and 𝐼 (𝐺) with 𝐹 . Let (Prop) ′ be the propagation rule corresponding to the path axiom
Σ𝐴→ ⟨𝐹 ⟩𝐴. Since the path 𝜎 only relies on relational atoms in R ′, the rule (Prop) ′ may be applied
after (Path). □

Example 5.13. We give an example of permuting a structural rule (Path) above a propagation rule
(Prop). Let 𝑃 := {𝐹,𝐺} with 𝐹 := ^_𝐴 → ^𝐴 and 𝐺 := _^^𝐴 → _𝐴, where our propagation
rules are defined relative to (𝑃 ∪ 𝐼 (𝑃))∗. Let the application of (Prop) correspond to the axiom 𝐹 and
the application of (Path) correspond to 𝐺 . Our derivation is given below left with the propagation
graph of the initial sequent below right:

(id)
𝑅𝑥𝑣, 𝑅𝑥𝑧, 𝑅𝑧𝑦, 𝑅𝑦𝑣, 𝑥 : ^𝑝,𝑦 : 𝑝,𝑦 : 𝑝 (Prop)

𝑅𝑥𝑣, 𝑅𝑥𝑧, 𝑅𝑧𝑦, 𝑅𝑦𝑣, 𝑥 : ^𝑝,𝑦 : 𝑝
(Path)

𝑅𝑥𝑣, 𝑅𝑥𝑧, 𝑅𝑧𝑦, 𝑥 : ^𝑝,𝑦 : 𝑝

^𝑝
𝑥

��

//

^

��

^
)) ∅
𝑣

_

_

ii

∅
𝑧 //

_

XX

^

55
𝑝, 𝑝

𝑦

^

FF

_
uu

OO

The (Prop) rule is applicable to the top sequent above because of the path 𝑥 ,^,𝑣 ,_,𝑦 whose string is
^_, which occurs in the antecedent of 𝐹 . However, we can see that the structural rule (Path) deletes
the relational atom 𝑅𝑦𝑣 that gives rise to this path. If we were to apply the (Path) rule first (as shown
below left), the conclusion would have the propagation graph shown below right:

, Vol. 1, No. 1, Article . Publication date: June 2020.

26 Ciabattoni and Lyon, et al.

(id)
𝑅𝑥𝑣, 𝑅𝑥𝑧, 𝑅𝑧𝑦, 𝑅𝑦𝑣, 𝑥 : ^𝑝,𝑦 : 𝑝,𝑦 : 𝑝

(Path)
𝑅𝑥𝑣, 𝑅𝑥𝑧, 𝑅𝑧𝑦, 𝑥 : ^𝑝,𝑦 : 𝑝,𝑦 : 𝑝

^𝑝
𝑥

��

//

^

��

^
)) ∅
𝑣

_

jj

∅
𝑧 //

_

WW

^
44

𝑝, 𝑝

𝑦

_
uu

We construct a new path from 𝑥 to 𝑦 following the procedure explained in Lemma 5.12 by
replacing 𝑣,_, 𝑦 with 𝑣,_, 𝑥,^, 𝑧,^, 𝑦 to obtain the path 𝑥,^, 𝑣,_, 𝑥,^, 𝑧,^, 𝑦. Observe that the
axiom 𝐺 ⊲2 𝐹 = ^_^^𝐴→ ^𝐴 is an element of the completion (𝑃 ∪ 𝐼 (𝑃))∗. Thus, there exists a
propagation rule (Prop) ′ corresponding to ^_^^𝐴→ ^𝐴 which may be applied to the end sequent
above to obtain the desired conclusion.

LEMMA 5.14. Every derivation in G3Kt + LabSt(P) + LabPr(P) can be effectively transformed
into a derivation in G3Kt + LabPr(P).

PROOF. We argue the result by induction on the height of the given derivation in G3Kt+LabSt(P)+
LabPr(P); we consider the topmost application of (Path) ∈ LabSt(P) (the general result where there
are 𝑛 rules of LabSt(P) in our derivation is immediately obtained by applying the given procedure
and successively deleting the topmost occurrences).

Base case. Suppose the rule (Path) is used on an axiom in G3Kt + LabSt(P) + LabPr(P):

R,RΠ𝑥𝑦, 𝑅𝑥𝑦, 𝑧 : 𝑝, 𝑧 : 𝑝, Γ
R,RΠ𝑥𝑦, 𝑧 : 𝑝, 𝑧 : 𝑝, Γ

Then, it is easy to see that the conclusion is an axiom as well regardless of if 𝑧 = 𝑥 , 𝑧 = 𝑦, or
𝑥 ≠ 𝑧 ≠ 𝑦.

Inductive step. We show that (Path) ∈ LabSt(P) can be permuted upward with each rule in
G3Kt + LabPr(P):

(i) Permuting (∨) with (Path):

R,RΠ𝑥𝑦, 𝑅𝑥𝑦, , 𝑧 : 𝐴, 𝑧 : 𝐵, Γ
(∨)R,RΠ𝑥𝑦, 𝑅𝑥𝑦, 𝑧 : 𝐴 ∨ 𝐵, Γ
(Path)R,RΠ𝑥𝑦, 𝑧 : 𝐴 ∨ 𝐵, Γ

R,RΠ𝑥𝑦, 𝑅𝑥𝑦, 𝑧 : 𝐴, 𝑧 : 𝐵, Γ
(Path)R,RΠ𝑥𝑦, 𝑧 : 𝐴, 𝑧 : 𝐵, Γ
(∨)R,RΠ𝑥𝑦, 𝑧 : 𝐴 ∨ 𝐵, Γ

(ii) Permuting (∧) with (Path):

R,RΠ𝑥𝑦, 𝑅𝑥𝑦, 𝑥 : 𝐴, Γ R,RΠ𝑥𝑦, 𝑅𝑥𝑦, 𝑥 : 𝐵, Γ
(∧)R,RΠ𝑥𝑦, 𝑅𝑥𝑦, 𝑥 : 𝐴 ∧ 𝐵, Γ

(Path)R,RΠ𝑥𝑦, 𝑥 : 𝐴 ∧ 𝐵, Γ

R,RΠ𝑥𝑦, 𝑅𝑥𝑦, 𝑧 : 𝐴, Γ
(Path)R,RΠ𝑥𝑦, 𝑧 : 𝐴, Γ

R,RΠ𝑥𝑦, 𝑅𝑥𝑦, 𝑧 : 𝐵, Γ
(Path)R,RΠ𝑥𝑦, 𝑧 : 𝐵, Γ
(∧)R,RΠ𝑥𝑦, 𝑧 : 𝐴 ∧ 𝐵, Γ

, Vol. 1, No. 1, Article . Publication date: June 2020.

Display to Labeled Proofs and Back Again for Tense Logics 27

(iii) Permuting (■) with (Path):

R,RΠ𝑥𝑦, 𝑅𝑥𝑦, 𝑅𝑣𝑢, 𝑣 : 𝐴, Γ
(■)R,RΠ𝑥𝑦, 𝑅𝑥𝑦,𝑢 : ■𝐴, Γ
(Path)R,RΠ𝑥𝑦,𝑢 : ■𝐴, Γ

R,RΠ𝑥𝑦, 𝑅𝑥𝑦, 𝑅𝑣𝑢, 𝑣 : 𝐴, Γ
(Path)R,RΠ𝑥𝑦, 𝑅𝑣𝑢, 𝑣 : 𝐴, Γ
(■)R,RΠ𝑥𝑦,𝑢 : ■𝐴, Γ

(iv) Permuting (□) with (Path):
R,RΠ𝑥𝑦, 𝑅𝑥𝑦, 𝑅𝑢𝑣, 𝑣 : 𝐴, Γ

(□)R,RΠ𝑥𝑦, 𝑅𝑥𝑦,𝑢 : □𝐴, Γ
(Path)R,RΠ𝑥𝑦,𝑢 : □𝐴, Γ

R,RΠ𝑥𝑦, 𝑅𝑥𝑦, 𝑅𝑢𝑣, 𝑣 : 𝐴, Γ
(Path)R,RΠ𝑥𝑦, 𝑅𝑢𝑣, 𝑣 : 𝐴, Γ
(□)R,RΠ𝑥𝑦,𝑢 : □𝐴, Γ

(v) Permuting (_) with (Path): We consider the case where 𝑅𝑥𝑦 is used in both rules; the other
cases are easily shown.

R,RΠ𝑥𝑦, 𝑅𝑥𝑦, 𝑥 : 𝐴,𝑦 : _𝐴, Γ
(_)R,RΠ𝑥𝑦, 𝑅𝑥𝑦,𝑦 : _𝐴, Γ

(Path)R,RΠ𝑥𝑦,𝑦 : _𝐴, Γ

R,RΠ𝑥𝑦, 𝑅𝑥𝑦, 𝑥 : 𝐴,𝑦 : _𝐴, Γ
(Path)R,RΠ𝑥𝑦, 𝑥 : 𝐴,𝑦 : _𝐴, Γ (Prop)R,RΠ𝑥𝑦,𝑦 : _𝐴, Γ

(vi) Permuting (^) with (Path): Similar to the last case we only consider when 𝑅𝑥𝑦 is used in
both rules.

R,RΠ𝑥𝑦, 𝑅𝑥𝑦,𝑦 : 𝐴, 𝑥 : ^𝐴, Γ
(^)R,RΠ𝑥𝑦, 𝑅𝑥𝑦, 𝑥 : ^𝐴, Γ

(Path)R,RΠ𝑥𝑦, 𝑥 : ^𝐴, Γ

R,RΠ𝑥𝑦, 𝑅𝑥𝑦,𝑦 : 𝐴, 𝑥 : ^𝐴, Γ
(Path)R,RΠ𝑥𝑦,𝑦 : 𝐴, 𝑥 : ^𝐴, Γ (Prop)R,RΠ𝑥𝑦, 𝑥 : ^𝐴, Γ

(vii) Permuting (Prop) with (Path): Follows from Lemma 5.12. □

LEMMA 5.15. Let 𝑃 be a set of path axioms. Every derivation in G3Kt + LabSt(P) can be
effectively transformed into a derivation in G3Kt + LabPr(P).

PROOF. Consider a derivation D in G3Kt + LabSt(P). By making use of the proof transformation
procedure of the previous lemma we obtain a proof in G3Kt + LabPr(P). □

LEMMA 5.16. Let 𝑃 be a set of path axioms. Every G3Kt + LabPr(P) proof of a labeled polytree
sequent consists solely of labeled polytree sequents.

PROOF. Similar to the proof of Lemma 5.2. Observe that all rules of G3Kt + LabPr(P) preserve
disconnectivity and cycles downward in an inference. □

LEMMA 5.17. For any labeled polytree sequent R, Γ with a path 𝜋 from a label 𝑥 to a label 𝑦 in
its propagation graph, the path 𝜋 exists in 𝑃𝐺 (𝔑𝑧 (R, Γ)) from 𝑥 to 𝑦 (where 𝑧 is an arbitrary node
in R, Γ).

PROOF. Let R, Γ be a labeled polytree sequent with a path 𝜋 from 𝑥 to 𝑦 in its propagation graph.
We translate R, Γ to a nested sequent relative to the node 𝑥 and let the nodes in 𝑃𝐺 (𝔑𝑥 (R, Γ)) be
the same as those in the given labeled polytree sequent. Note that by Lemma 3.11, translating R, Γ
relative to any label yields a display equivalent sequent, and by Lemma 2.15 the propagation graphs
of all such sequents are identical. Therefore, the claim will hold regardless of the node chosen to
translate from. We now prove the claim by induction on the length of the path connecting 𝑥 and 𝑦.

Base case. For the case when the path from 𝑥 to 𝑦 is of length 0, our labeled polytree sequent is of
the form R, Γ so the string of the path from 𝑥 to 𝑦 = 𝑥 in 𝑃𝐺 (𝔑𝑥 (R, Γ)) is 𝜖. We also prove the case
when the path from 𝑥 to 𝑦 is of length 1 since it simplifies the proof of the inductive step. Suppose

, Vol. 1, No. 1, Article . Publication date: June 2020.

28 Ciabattoni and Lyon, et al.

that there is a forward edge from 𝑥 to 𝑦, that is, 𝜋 = 𝑥,^, 𝑦 (the case when there is a backward edge
from 𝑥 to 𝑦 is similar). Then, 𝔑𝑥 (R, Γ) will be a nested sequent with a ◦-edge from 𝑥 to 𝑦, and so the
labeled edge (𝑥,𝑦,^) is in the propagation graph.

Inductive step. Suppose there is a path 𝑥, ..., 𝑧, ⟨?⟩, 𝑦 from 𝑥 to 𝑦 of length 𝑛 + 1. Therefore, there
is a path of length 𝑛 from 𝑥 to 𝑧, and a path of length 1 from 𝑧 to 𝑦 in 𝑃𝐺 (R, Γ). By the inductive
hypothesis, the path from 𝑥 to 𝑧 occurs in 𝔑𝑥 (R, Γ). By the base case, the path 𝑧, ⟨?⟩, 𝑦 also occurs in
𝔑𝑥 (R, Γ). Therefore, the path 𝑥, ..., 𝑧, ⟨?⟩, 𝑦 is in 𝔑𝑥 (R, Γ). □

LEMMA 5.18. Every derivation of a sequent R, Γ in G3Kt+LabPr(P) consisting solely of labeled
polytree sequents, can be effectively translated to a derivation of 𝔑(R, Γ) in DKT + DeepPr(P).

PROOF. We extend the proof of Lemma 5.3 and include the inductive case for translating propaga-
tion inferences.

If we assume that a labeled propagation rule is used last in the given derivation, then there must be
a corresponding axiom Π𝑝 → ⟨?⟩𝑝 ∈ (𝑃 ∪ 𝐼 (𝑃))∗ whose antecedent allows for an application of the
rule. This axiom will also define a deep nested propagation rule:

R, 𝑥 : ⟨?⟩𝐴,𝑦 : 𝐴, Γ (Prop)R, 𝑥 : ⟨?⟩𝐴, Γ
𝑋 [⟨?⟩𝐴]𝑥 [𝐴]𝑦 (Prop)
𝑋 [⟨?⟩𝐴]𝑥 [∅]𝑦

By Lemma 5.17, the propagation rule may be applied in the deep nested proof because the path 𝜋

from 𝑥 to 𝑦 (whose string is Π) exists in the propagation graph of the premise 𝔑(R, 𝑥 : ⟨?⟩𝐴,𝑦 : 𝐴, Γ)
= 𝑋 [⟨?⟩𝐴]𝑥 [𝐴]𝑦 . □

LEMMA 5.19. Every derivation of a labeled polytree sequent R, Γ in G3Kt + LabPr(P) can be
effectively transformed into a derivation of 𝔑(R, Γ) in DKT + DeepPr(P).

PROOF. Let D be our derivation of R, Γ in G3Kt + LabPr(P). By Lemma 5.16, we know that
every sequent occurring in D will be a labeled polytree sequent. By the previous lemma, we may
effectively translate this derivation into a derivation in DKT + DeepPr(P). □

THEOREM 5.20. Every derivation of a labeled polytree sequent R, Γ in G3Kt + LabSt(P) is
effectively translatable to a derivation of 𝔑(R, Γ) in SKT + NestSt(P).

PROOF. By Lemma 5.15 we know that every derivation D of a labeled polytree sequent R, Γ in
G3Kt + LabSt(P) is effectively transformable to a derivation D ′ of R, Γ in G3Kt + LabPr(P). By
Lemma 5.19, there is an effective translation of D ′ to a proof D ′′ of 𝔑(R, Γ) in DKT + DeepPr(P).
Lemma 2.21 implies that we can effectively translate D ′′ in DKT +DeepPr(P) into a derivationD ′′′
of 𝔑(R, Γ) in SKT+NestSt(P). The composition of effective procedures gives an effective procedure,
which gives the result. □

Note that the application of Lemma 2.20 in the above theorem is a rather heavy proof-theoretic
transformation since it invokes cut-elimination. Nevertheless, the output derivation is still effectively
related since cut-elimination is a local procedure.

6 CONCLUDING REMARKS
One consequence of our work is a methodology for proving the conservativity of shallow nested (i.e.
display) calculi under the deletion of certain logical rules. For example, if SKT + 𝑁𝑒𝑠𝑡𝑆𝑡 (𝐴→ ^𝐴)
is a (sound and complete) shallow nested calculus for the logic Kt +𝐴→ ^𝐴, is SKT− {(■), (_)} +
𝑁𝑒𝑠𝑡𝑆𝑡 (𝐴→ ^𝐴) a (sound and complete) shallow nested calculus for K +𝐴→ ^𝐴? Notice that a
derivation in the latter calculus may contain a sequent with the structural connective •{·} even though
the corresponding logical connective ■ is not an operator in the (■,_-free) language of K +𝐴→ ^𝐴

, Vol. 1, No. 1, Article . Publication date: June 2020.

Display to Labeled Proofs and Back Again for Tense Logics 29

(meaning that a sequent such as ◦{•{𝑝}, •{𝑞}} cannot be interpreted as a formula). Therefore, care
must be taken when attempting to identify the logic obtained under the deletion of logical rules for
connectives ♥1, . . . ,♥𝑛, since structural connectives that act as proxies for ♥1, . . . ,♥𝑛 will still be
present in sequents and therefore may give the calculus increased expressive power.

A general solution which establishes the conservativity of display calculi for tense logics over
their modal fragments, by making use of algebraic semantics, has been presented in [19]. Our work
obtains this result syntactically in the context of tense logics with modal general path axioms by
exploiting the translations developed in the previous sections (Corollary 4.5). This subsumes the
conservativity results in [17], for the more restricted set of modal path axioms.

Another interesting consequence of our work is the suggestion of a potential methodology for
constructing labeled calculi suitable for proof-search and for proving decidability of the associated
logics. The labeled calculus formalism offers a uniform method for obtaining cut-, contraction-, and
weakening-admissible calculi for a large class of logics [28, 30]. The drawback of such calculi is that
they contain structural rules which are not immediately well-suited for proof-search; if the rules are
applied naïvely bottom-up, then proof-search may not terminate, or backtracking may be needed.
Therefore, auxiliary results concerning a bound on the number of times a rule needs to be applied is
required to ensure termination, see, e.g. [28]. Nevertheless, the method presented here of internalizing
labeled calculi for path extensions of Kt shows that such structural rules can be eliminated from a
labeled derivation in the presence of appropriate, auxiliary inference rules. This opens up an avenue
for future research and gives rise to new questions: for what other logics can labeled structural rules
be eliminated in favor of rules better adapted for proof-search? Is there an effective procedure for
determining such rules? Note that this procedure has been investigated in [23, 25] and has shown
that the method of refining labeled calculi is applicable to a variety of logics.

Moreover, the obtained internalized labeled calculi lend themselves nicely to uniformly proving
interpolation for the class of path extensions of Kt [24]. As explained in Section 5.2, labeled polytrees
provide a canonical representation of nested sequents that encode the polytree structure in the
multiset R of relational atoms, and the decorations of the nodes as the labeled formulae in Γ. Such a
representation makes it easier to define a generalized notion of interpolant, and to observe useful
relationships between such interpolants (e.g. a generalized notion of duality via the (cut) rule) [24].

The relationship between Kripke frames and the algebraic semantics for modal logics is well-
studied (see e.g. [2]). Because labeled calculi are based on the former, and shallow nested (display)
calculi on the latter, the bi-directional translations established in this work can be interpreted as
demonstrating this relationship concretely, at the level of an inference rule.

ACKNOWLEDGMENTS
This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No 689176. Work additionally
supported by the FWF projects: START Y544-N23, I 2982, and W1255-N23.

REFERENCES
[1] N. D. Belnap, Jr. Display logic. J. Philos. Logic, 11(4):375–417, 1982.
[2] P. Blackburn, M. de Rijke, and Y. Venema. Modal logic, volume 53 of Cambridge Tracts in Theoretical Computer

Science. Cambridge University Press, 2001.
[3] B. Boretti. Proof Analysis in Temporal Logic. PhD thesis, University of Milan, 2008.
[4] B. Boretti and S. Negri. On the finitization of priorean linear time. In SILFS 2007, Proceedings of the International

Conference of the Italian Society for Logic and Philosophy of Science. College Publications, 2009.
[5] K. Brünnler. Deep sequent systems for modal logic. In Advances in modal logic. Vol. 6, pages 107–119. Coll. Publ.,

London, 2006.

, Vol. 1, No. 1, Article . Publication date: June 2020.

30 Ciabattoni and Lyon, et al.

[6] R. A. Bull. Cut elimination for propositional dynamic logic without *. Z. Math. Logik Grundlag. Math., 38(2):85–100,
1992.

[7] M. A. Castilho, L. F. del Cerro, O. Gasquet, and A. Herzig. Modal tableaux with propagation rules and structural rules.
Fundam. Inform., 32(3-4):281–297, 1997.

[8] A. Chagrov and M. Zakharyashchev. Modal companions of intermediate propositional logics. Studia Logica, 51(1):49–82,
1992.

[9] A. Ciabattoni, T. Lyon, and R. Ramanayake. From display to labelled proofs for tense logics. In S. Artemov and
A. Nerode, editors, Logical Foundations Of Computer Science (LFCS 2018), volume 10703, pages 120–139, Cham,
2018. Springer International Publishing.

[10] A. Ciabattoni and R. Ramanayake. Power and limits of structural display rules. ACM Trans. Comput. Logic, 17(3):1–39,
Feb. 2016.

[11] R. Dyckhoff and S. Negri. Proof analysis in intermediate logics. Arch. Math. Log., 51(1-2):71–92, 2012.
[12] R. Dyckhoff and S. Negri. Geometrization of first-order logic. The Bulletin of Symbolic Logic, 21:123–163, 2015.
[13] M. Fitting. Proof methods for modal and intuitionistic logics, volume 169 of Synthese Library. D. Reidel Publishing

Co., Dordrecht, 1983.
[14] M. Fitting. Prefixed tableaus and nested sequents. Ann. Pure Appl. Logic, 163(3):291–313, 2012.
[15] J.-Y. Girard. Towards a geometry of interaction. In Categories in Computer Science and Logic, pages 69–108. AMS,

1989.
[16] R. Goré. Substructural logics on display. Log. J. IGPL, 6(3):451–504, 1998.
[17] R. Goré, L. Postniece, and A. Tiu. On the correspondence between display postulates and deep inference in nested

sequent calculi for tense logics. Log. Methods Comput. Sci., 7(2):2:8, 38, 2011.
[18] R. Goré and R. Ramanayake. Labelled tree sequents, tree hypersequents and nested (deep) sequents. In Advances in

modal logic, Vol. 9. College Publications, 2012.
[19] G. Greco, M. Ma, A. Palmigiano, A. Tzimoulis, and Z. Zhao. Unified correspondence as a proof-theoretic tool. Journal

of Logic and Computation, 2016.
[20] J. F. Huete and L. M. de Campos. Learning causal polytrees. In European Conference on Symbolic and Quantitative

Approaches to Reasoning and Uncertainty, pages 180–185. Springer, 1993.
[21] R. Kashima. Cut-free sequent calculi for some tense logics. Studia Logica, 53(1):119–135, 1994.
[22] M. Kracht. Power and weakness of the modal display calculus. In Proof theory of modal logic (Hamburg, 1993),

volume 2 of Appl. Log. Ser., pages 93–121. Kluwer Acad. Publ., Dordrecht, 1996.
[23] T. Lyon. On deriving nested calculi for intuitionistic logics from semantic systems. In Logical Foundations of Computer

Science - International Symposium, LFCS 2020, Deerfield Beach, FL, USA, January 4-7, 2020, Proceedings, pages
177–194, 2020.

[24] T. Lyon, A. Tiu, R. Goré, and R. Clouston. Syntactic interpolation for tense logics and bi-intuitionistic logic via nested
sequents. In 28th EACSL Annual Conference on Computer Science Logic, CSL 2020, January 13-16, 2020, Barcelona,
Spain, pages 28:1–28:16, 2020.

[25] T. Lyon and K. van Berkel. Automating agential reasoning: Proof-calculi and syntactic decidability for STIT logics. In
PRIMA 2019: Principles and Practice of Multi-Agent Systems - 22nd International Conference, Turin, Italy, October
28-31, 2019, Proceedings, pages 202–218, 2019.

[26] S. Marin and L. Strassburger. Label-free modular systems for classical and intuitionistic modal logics. In AiML 2014,
LNCS. Springer, 2014.

[27] G. Mints. Indexed systems of sequents and cut-elimination. J. Philos. Logic, 26(6):671–696, 1997.
[28] S. Negri. Proof analysis in modal logic. J. Philos. Logic, 34(5-6):507–544, 2005.
[29] S. Negri. Proof analysis in non-classical logics. In Logic Colloquium 2005, volume 28 of Lect. Notes Log., pages

107–128. Assoc. Symbol. Logic, Urbana, IL, 2008.
[30] S. Negri. Proof analysis beyond geometric theories: from rule systems to systems of rules. Journal of Logic and

Computation, 26(2):513–537, 2016.
[31] E. Pimentel. A semantical view of proof systems. In L. S. Moss, R. de Queiroz, and M. Martinez, editors, Logic,

Language, Information, and Computation, pages 61–76, Berlin, Heidelberg, 2018. Springer Berlin Heidelberg.
[32] F. Poggiolesi. Display calculi and other modal calculi: a comparison. Synthese, 173(3):259–279, Apr 2010.
[33] G. Rebane and J. Pearl. The recovery of causal poly-trees from statistical data. arXiv preprint arXiv:1304.2736, 2013.
[34] A. Simpson. The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD thesis, University of Edinburgh, 1994.
[35] A. Tiu, E. Ianovski, and R. Goré. Grammar logics in nested sequent calculus: Proof theory and decision procedures.

In Advances in Modal Logic 9, papers from the ninth conference on "Advances in Modal Logic," held in Copenhagen,
Denmark, 22-25 August 2012, pages 516–537, 2012.

[36] L. Viganò. Labelled non-classical logics. Kluwer Academic Publishers, Dordrecht, 2000. With a foreword by Dov M.
Gabbay.

, Vol. 1, No. 1, Article . Publication date: June 2020.

Display to Labeled Proofs and Back Again for Tense Logics 31

[37] H. Wansing. Displaying modal logic, volume 3 of Trends in Logic—Studia Logica Library. Kluwer Academic Publishers,
Dordrecht, 1998.

, Vol. 1, No. 1, Article . Publication date: June 2020.

	Abstract
	1 Introduction
	2 Nested and Labeled Calculi for Tense Logics
	2.1 Shallow Nested (Display) Calculi for Tense Logics
	2.2 Labeled Calculi for Tense Logics
	2.3 Deep Nested Calculi for Tense Logics

	3 Nested Sequents and Labeled Polytrees
	3.1 Interpreting a Nested Sequent as a Labeled Polytree
	3.2 Interpreting a Labeled Polytree as a Nested Sequent

	4 From Shallow Nested to Labeled Calculi
	4.1 Transforming a Labeled Graph G = (V,E,L) into a Labeled Sequent R,
	4.2 Transforming a Labeled Sequent R, into a Labeled Graph (V,E,L)

	5 From Labeled to Shallow Nested Calculi
	5.1 Translating the Base Calculus
	5.2 Translating the Path Axiom Extension

	6 Concluding Remarks
	Acknowledgments
	References

