Exercise 8: Datalog

Database Theory
2020-06-08
Maximilian Marx, David Carral

Exercise 1

Exercise. A graph is planar if it can be drawn on the plane without intersections of edges. For example, the following graph A is planar, while graph B is not:

Figure: A

Figure: B

1. Can the graphs A and B be distinguished by a FO query?
2. Show that planarity is not FO-definable by using locality.

Exercise 1

Exercise. A graph is planar if it can be drawn on the plane without intersections of edges. For example, the following graph A is planar, while graph B is not:

Figure: A

Figure: B

1. Can the graphs A and B be distinguished by a FO query?
2. Show that planarity is not FO-definable by using locality.

Solution.

Exercise 1

Exercise. A graph is planar if it can be drawn on the plane without intersections of edges. For example, the following graph A is planar, while graph B is not:

Figure: A

Figure: B

1. Can the graphs A and B be distinguished by a FO query?
2. Show that planarity is not FO-definable by using locality.

Solution.

1. This query matches B but not A :

$$
\exists x, y, z, w, v . \mathrm{E}(x, y) \wedge \mathrm{E}(y, z) \wedge \mathrm{E}(z, w) \wedge \mathrm{E}(w, x) \wedge \mathrm{E}(x, v) \wedge \mathrm{E}(y, v) \wedge \mathrm{E}(z, v) \wedge \mathrm{E}(w, v) \wedge \mathrm{E}(x, z) \wedge \mathrm{E}(y, w)
$$

Exercise 1

Exercise. A graph is planar if it can be drawn on the plane without intersections of edges. For example, the following graph A is planar, while graph B is not:

Figure: A

Figure: B

1. Can the graphs A and B be distinguished by a FO query?
2. Show that planarity is not FO-definable by using locality.

Solution.

1. This query matches B but not A :

$$
\exists x, y, z, w, v . \mathrm{E}(x, y) \wedge \mathrm{E}(y, z) \wedge \mathrm{E}(z, w) \wedge \mathrm{E}(w, x) \wedge \mathrm{E}(x, v) \wedge \mathrm{E}(y, v) \wedge \mathrm{E}(z, v) \wedge \mathrm{E}(w, v) \wedge \mathrm{E}(x, z) \wedge \mathrm{E}(y, w)
$$

2. For φ with quantifier rank r, consider counterexamples of size $d=3^{r}$:

Exercise 2

Exercise. Consider the example Datalog program from the lecture:
(a) Father(alice,bob)
(b) Mother(alice,carla)
(c) Mother(evan,carla)
(d) Father(carla,david)

$$
\begin{array}{rlrl}
\operatorname{Parent}(x, y) & \leftarrow \operatorname{Father}(x, y) & \quad(1) \\
\operatorname{Parent}(x, y) & \leftarrow \operatorname{Mother}(x, y) & \quad(2) \\
\text { Ancestor }(x, y) & \leftarrow \operatorname{Parent}(x, y) & & \quad(3)
\end{array}
$$

$$
\begin{align*}
\operatorname{Ancestor}(x, z) & \leftarrow \operatorname{Parent}(x, y) \wedge \operatorname{Ancestor}(y, z) \tag{4}\\
\text { SameGeneration }(x, x) & \leftarrow \tag{5}\\
\text { SameGeneration }(x, y) & \leftarrow \operatorname{Parent}(x, v) \wedge \operatorname{Parent}(y, w) \tag{6}\\
& \wedge \text { SameGeneration }(v, w)
\end{align*}
$$

1. Give a proof tree for SameGeneration(evan, alice).
2. Compute the sets $T_{P}^{0}, T_{P}^{1}, T_{P}^{2}, \ldots$ When is the fixed point reached?

Exercise 2

Exercise. Consider the example Datalog program from the lecture:
(a) Father(alice,bob)
(b) Mother(alice,carla)
(c) Mother(evan,carla)
(d) Father(carla,david)

$$
\begin{aligned}
\text { Parent }(x, y) & \leftarrow \operatorname{Father}(x, y) \\
\operatorname{Parent}(x, y) & \leftarrow \operatorname{Mother}(x, y) \\
\text { Ancestor }(x, y) & \leftarrow \operatorname{Parent}(x, y)
\end{aligned}
$$

$$
\begin{align*}
\operatorname{Ancestor}(x, z) & \leftarrow \operatorname{Parent}(x, y) \wedge \operatorname{Ancestor}(y, z) \tag{4}\\
\text { SameGeneration }(x, x) & \leftarrow \tag{5}\\
\text { SameGeneration }(x, y) & \leftarrow \operatorname{Parent}(x, v) \wedge \operatorname{Parent}(y, w) \tag{6}\\
& \wedge \text { SameGeneration }(v, w)
\end{align*}
$$

1. Give a proof tree for SameGeneration(evan, alice).
2. Compute the sets $T_{P}^{0}, T_{P}^{1}, T_{P}^{2}, \ldots$ When is the fixed point reached? Solution.

Exercise 2

Exercise. Consider the example Datalog program from the lecture:
(a) Father(alice,bob)
(b) Mother(alice,carla)
(c) Mother(evan,carla)

$$
\begin{array}{rlrl}
\operatorname{Parent}(x, y) & \leftarrow \operatorname{Father}(x, y) & \quad(1) \\
\operatorname{Parent}(x, y) & \leftarrow \operatorname{Mother}(x, y) & & (2) \\
\text { Ancestor }(x, y) & \leftarrow \operatorname{Parent}(x, y) & \quad(3) \tag{3}
\end{array}
$$

SameGeneration $(x, x) \leftarrow$
SameGeneration $(x, y) \leftarrow \operatorname{Parent}(x, v) \wedge \operatorname{Parent}(y, w)$ \wedge SameGeneration (v, w)

1. Give a proof tree for SameGeneration(evan, alice).
2. Compute the sets $T_{P}^{0}, T_{P}^{1}, T_{P}^{2}, \ldots$ When is the fixed point reached?

Solution.

1.

Exercise 2

Exercise. Consider the example Datalog program from the lecture:
(a) Father(alice,bob)
(b) Mother(alice,carla)
(c) Mother(evan,carla)
(d) Father(carla,david)

$$
\begin{array}{rlrl}
\operatorname{Parent}(x, y) & \leftarrow \operatorname{Father}(x, y) & \quad(1) \\
\operatorname{Parent}(x, y) & \leftarrow \operatorname{Mother}(x, y) & \quad(2) \\
\text { Ancestor }(x, y) & \leftarrow \operatorname{Parent}(x, y) & & \quad(3)
\end{array}
$$

$$
\begin{align*}
\operatorname{Ancestor}(x, z) & \leftarrow \operatorname{Parent}(x, y) \wedge \operatorname{Ancestor}(y, z) \tag{4}\\
\text { SameGeneration }(x, x) & \leftarrow \tag{5}\\
\text { SameGeneration }(x, y) & \leftarrow \operatorname{Parent}(x, v) \wedge \operatorname{Parent}(y, w) \tag{6}\\
& \wedge \text { SameGeneration }(v, w)
\end{align*}
$$

1. Give a proof tree for SameGeneration(evan, alice).
2. Compute the sets $T_{P}^{0}, T_{P}^{1}, T_{P}^{2}, \ldots$ When is the fixed point reached?

Solution.

2.

$$
T_{P}^{0}=\varnothing
$$

Exercise 2

Exercise. Consider the example Datalog program from the lecture:
(a) Father(alice,bob)
(b) Mother(alice,carla)
(c) Mother(evan,carla)

$$
\begin{aligned}
\operatorname{Parent}(x, y) & \leftarrow \operatorname{Father}(x, y) & \quad(1) \\
\text { Parent }(x, y) & \leftarrow \operatorname{Mother}(x, y) & \quad(2) \\
\text { Ancestor }(x, y) & \leftarrow \operatorname{Parent}(x, y) & \quad(3)
\end{aligned}
$$

$$
\begin{align*}
\operatorname{Ancestor}(x, z) & \leftarrow \operatorname{Parent}(x, y) \wedge \operatorname{Ancestor}(y, z) \tag{4}\\
\text { SameGeneration }(x, x) & \leftarrow \tag{5}\\
\text { SameGeneration }(x, y) & \leftarrow \operatorname{Parent}(x, v) \wedge \operatorname{Parent}(y, w) \tag{6}\\
& \wedge \text { SameGeneration }(v, w)
\end{align*}
$$

1. Give a proof tree for SameGeneration(evan, alice).
2. Compute the sets $T_{P}^{0}, T_{P}^{1}, T_{P}^{2}, \ldots$ When is the fixed point reached?

Solution.

2.

$T_{P}^{0}=\varnothing$
$T_{P}^{1}=\{$ Father(alice,bob), Mother(alice,carla), Mother(evan,carla), Father(carla,david) $\}$

Exercise 2

Exercise. Consider the example Datalog program from the lecture:
(a) Father(alice,bob)
(b) Mother(alice,carla)
(c) Mother(evan,carla)

$$
\begin{align*}
\operatorname{Parent}(x, y) & \leftarrow \operatorname{Father}(x, y) & & (1) \\
\operatorname{Parent}(x, y) & \leftarrow \operatorname{Mother}(x, y) & & (2) \\
\text { Ancestor }(x, y) & \leftarrow \operatorname{Parent}(x, y) & & (3) \tag{3}
\end{align*}
$$

1. Give a proof tree for SameGeneration(evan, alice).
2. Compute the sets $T_{P}^{0}, T_{P}^{1}, T_{P}^{2}, \ldots$ When is the fixed point reached?

Solution.

2.

$T_{P}^{0}=\varnothing$
$T_{P}^{1}=\{$ Father(alice,bob), Mother(alice,carla), Mother(evan,carla), Father(carla,david) $\}$
$T_{P}^{2}=T_{P}^{1} \cup\{$ Parent(alice,bob), Parent(alice,carla), Parent(evan,carla), Parent(carla,david),
SameGeneration(alice,alice), SameGeneration(bob,bob), SameGeneration(carla,carla), SameGeneration(david,david), SameGeneration(evan,evan) \}

Exercise 2

Exercise. Consider the example Datalog program from the lecture:

(a) Father(alice,bob)
(b) Mother(alice,carla)
(c) Mother(evan,carla)

$$
\begin{align*}
\operatorname{Parent}(x, y) & \leftarrow \operatorname{Father}(x, y) & & (1) \\
\operatorname{Parent}(x, y) & \leftarrow \operatorname{Mother}(x, y) & & (2) \\
\text { Ancestor }(x, y) & \leftarrow \operatorname{Parent}(x, y) & & (3) \tag{6}
\end{align*}
$$

$$
\begin{equation*}
\operatorname{Ancestor}(x, z) \leftarrow \operatorname{Parent}(x, y) \wedge \operatorname{Ancestor}(y, z) \tag{4}
\end{equation*}
$$

SameGeneration $(x, x) \leftarrow$
SameGeneration $(x, y) \leftarrow \operatorname{Parent}(x, v) \wedge \operatorname{Parent}(y, w)$ \wedge SameGeneration (v, w)

1. Give a proof tree for SameGeneration(evan, alice).
2. Compute the sets $T_{P}^{0}, T_{P}^{1}, T_{P}^{2}, \ldots$ When is the fixed point reached?

Solution.

2.

$T_{P}^{0}=\varnothing$
$T_{P}^{1}=\{$ Father(alice,bob), Mother(alice,carla), Mother(evan,carla), Father(carla,david) $\}$
$T_{P}^{2}=T_{P}^{1} \cup\{$ Parent(alice,bob), Parent(alice,carla), Parent(evan,carla), Parent(carla,david),
SameGeneration(alice,alice), SameGeneration(bob,bob), SameGeneration(carla,carla), SameGeneration(david,david), SameGeneration(evan,evan) \}
$T_{P}^{3}=T_{P}^{2} \cup\{$ Ancestor(alice,bob), Ancestor(alice,carla), Ancestor(evan,carla), Ancestor(carla,david),
SameGeneration(alice,evan), SameGeneration(evan,alice) \}

Exercise 2

Exercise. Consider the example Datalog program from the lecture:

(a) Father(alice,bob)
(b) Mother(alice,carla)
(c) Mother(evan,carla)

$$
\begin{array}{rlrl}
\operatorname{Parent}(x, y) & \leftarrow \operatorname{Father}(x, y) & \quad(1) \\
\operatorname{Parent}(x, y) & \leftarrow \operatorname{Mother}(x, y) & \quad(2) \\
\text { Ancestor }(x, y) & \leftarrow \operatorname{Parent}(x, y) & \quad & (3) \tag{3}
\end{array}
$$

(d) Father(carla,david)

1. Give a proof tree for SameGeneration(evan, alice).
2. Compute the sets $T_{P}^{0}, T_{P}^{1}, T_{P}^{2}, \ldots$ When is the fixed point reached?

Solution.

2.

$T_{P}^{0}=\varnothing$
$T_{P}^{1}=\{$ Father(alice,bob), Mother(alice,carla), Mother(evan,carla), Father(carla,david) $\}$
$T_{P}^{2}=T_{P}^{1} \cup\{$ Parent(alice,bob), Parent(alice,carla), Parent(evan,carla), Parent(carla,david),
SameGeneration(alice,alice), SameGeneration(bob,bob), SameGeneration(carla,carla), SameGeneration(david,david), SameGeneration(evan,evan) \}
$T_{P}^{3}=T_{P}^{2} \cup\{$ Ancestor(alice,bob), Ancestor(alice,carla), Ancestor(evan,carla), Ancestor(carla,david),
SameGeneration(alice,evan), SameGeneration(evan,alice) \}
$T_{P}^{4}=T_{P}^{3} \cup\{$ Ancestor(alice,david), Ancestor(evan,david) $\}=T_{P}^{5}$

Exercise 2

Exercise. Consider the example Datalog program from the lecture:

(a) Father(alice,bob)
(b) Mother(alice,carla)
(c) Mother(evan,carla)

$$
\begin{array}{rlrl}
\operatorname{Parent}(x, y) & \leftarrow \operatorname{Father}(x, y) & \quad(1) \\
\operatorname{Parent}(x, y) & \leftarrow \operatorname{Mother}(x, y) & \quad(2) \\
\text { Ancestor }(x, y) & \leftarrow \operatorname{Parent}(x, y) & \quad & (3) \tag{3}
\end{array}
$$

(d) Father(carla,david)

1. Give a proof tree for SameGeneration(evan, alice).
2. Compute the sets $T_{P}^{0}, T_{P}^{1}, T_{P}^{2}, \ldots$ When is the fixed point reached?

Solution.

2.

$T_{P}^{0}=\varnothing$
$T_{P}^{1}=\{$ Father(alice,bob), Mother(alice,carla), Mother(evan,carla), Father(carla,david) $\}$
$T_{P}^{2}=T_{P}^{1} \cup\{$ Parent(alice,bob), Parent(alice,carla), Parent(evan,carla), Parent(carla,david),
SameGeneration(alice,alice), SameGeneration(bob,bob), SameGeneration(carla,carla), SameGeneration(david,david), SameGeneration(evan,evan) \}
$T_{P}^{3}=T_{P}^{2} \cup\{$ Ancestor(alice,bob), Ancestor(alice,carla), Ancestor(evan,carla), Ancestor(carla,david),
SameGeneration(alice,evan), SameGeneration(evan,alice) \}
$T_{P}^{4}=T_{P}^{3} \cup\{$ Ancestor(alice,david), Ancestor(evan,david) $\}=T_{P}^{5}=T_{P}^{\infty}$

Exercise 3

Exercise. Consider databases that encode a labelled, directed graph by means of a ternary EDB predicate e ("edge"). The first two parameters are the source and target nodes of the edge, while the third parameter is its label. For example, the edge $m \xrightarrow{a} n$ would be represented by the fact e(m, n, a). Moreover, assume that only constants a and b are used as labels. Can you express the following queries using Datalog?

1. "Which nodes in the graph are reachable from the node n ?"
2. "Are all nodes of the graph reachable from the node n ?"
3. "Does the graph have a directed cycle?"
4. "Does the graph have a path that is labelled by a palindrome?" (a palindrome is a word that reads the same forwards and backwards)
5. "Is the connected component that contains the node $n 2$-colourable?"
6. "Is the graph 2-colourable?"
7. "Which pairs of nodes are connected by a path with an even number of a labels?"
8. "Which pairs of nodes are connected by a path with the same number of a and b labels?"
9. "Is there a pair of nodes that is connected by two distinct paths?"

Exercise 3

Exercise. Consider databases that encode a labelled, directed graph by means of a ternary EDB predicate e ("edge"). The first two parameters are the source and target nodes of the edge, while the third parameter is its label. For example, the edge $m \xrightarrow{a} n$ would be represented by the fact e(m, n, a). Moreover, assume that only constants a and b are used as labels. Can you express the following queries using Datalog?

1. "Which nodes in the graph are reachable from the node n ?"
2. "Are all nodes of the graph reachable from the node n ?"
3. "Does the graph have a directed cycle?"
4. "Does the graph have a path that is labelled by a palindrome?"
(a palindrome is a word that reads the same forwards and backwards)
5. "Is the connected component that contains the node $n 2$-colourable?"
6. "Is the graph 2-colourable?"
7. "Which pairs of nodes are connected by a path with an even number of a labels?"
8. "Which pairs of nodes are connected by a path with the same number of a and b labels?"
9. "Is there a pair of nodes that is connected by two distinct paths?"

Solution.

Exercise 3

Exercise. Consider databases that encode a labelled, directed graph by means of a ternary EDB predicate e ("edge"). The first two parameters are the source and target nodes of the edge, while the third parameter is its label. For example, the edge $m \xrightarrow{a} n$ would be represented by the fact e(m, n, a). Moreover, assume that only constants a and b are used as labels. Can you express the following queries using Datalog?

1. "Which nodes in the graph are reachable from the node n ?"
2. "Are all nodes of the graph reachable from the node n ?"
3. "Does the graph have a directed cycle?"
4. "Does the graph have a path that is labelled by a palindrome?"
(a palindrome is a word that reads the same forwards and backwards)
5. "Is the connected component that contains the node $n 2$-colourable?"
6. "Is the graph 2-colourable?"
7. "Which pairs of nodes are connected by a path with an even number of a labels?"
8. "Which pairs of nodes are connected by a path with the same number of a and b labels?"
9. "Is there a pair of nodes that is connected by two distinct paths?"

Solution.

1.

$$
\begin{aligned}
\operatorname{Reachable}(x, y) & \leftarrow \mathrm{e}(x, y, v) \\
\operatorname{Reachable}(x, z) & \leftarrow \mathrm{e}(x, y, v) \wedge \operatorname{Reachable}(y, z) \\
\operatorname{Ans}(x) & \leftarrow \operatorname{Reachable}(n, x)
\end{aligned}
$$

Exercise 3

Exercise. Consider databases that encode a labelled, directed graph by means of a ternary EDB predicate e ("edge"). The first two parameters are the source and target nodes of the edge, while the third parameter is its label. For example, the edge $m \xrightarrow{a} n$ would be represented by the fact e(m, n, a). Moreover, assume that only constants a and b are used as labels. Can you express the following queries using Datalog?

1. "Which nodes in the graph are reachable from the node n ?"
2. "Are all nodes of the graph reachable from the node n ?"
3. "Does the graph have a directed cycle?"
4. "Does the graph have a path that is labelled by a palindrome?"
(a palindrome is a word that reads the same forwards and backwards)
5. "Is the connected component that contains the node $n 2$-colourable?"
6. "Is the graph 2-colourable?"
7. "Which pairs of nodes are connected by a path with an even number of a labels?"
8. "Which pairs of nodes are connected by a path with the same number of a and b labels?"
9. "Is there a pair of nodes that is connected by two distinct paths?"

Solution.

2. Not expressible, since Datalog is monotone: any query that is true for some set of ground facts I is also true for every set of ground facts $J \supseteq I$, but the query is true on $I=\{e(n, n, a)\}$, but not on $J=I \cup\{e(m, m, b)\}$.

Exercise 3

Exercise. Consider databases that encode a labelled, directed graph by means of a ternary EDB predicate e ("edge"). The first two parameters are the source and target nodes of the edge, while the third parameter is its label. For example, the edge $m \xrightarrow{a} n$ would be represented by the fact e(m, n, a). Moreover, assume that only constants a and b are used as labels. Can you express the following queries using Datalog?

1. "Which nodes in the graph are reachable from the node n ?"
2. "Are all nodes of the graph reachable from the node n ?"
3. "Does the graph have a directed cycle?"
4. "Does the graph have a path that is labelled by a palindrome?"
(a palindrome is a word that reads the same forwards and backwards)
5. "Is the connected component that contains the node $n 2$-colourable?"
6. "Is the graph 2-colourable?"
7. "Which pairs of nodes are connected by a path with an even number of a labels?"
8. "Which pairs of nodes are connected by a path with the same number of a and b labels?"
9. "Is there a pair of nodes that is connected by two distinct paths?"

Solution.

3.

$$
\begin{aligned}
\operatorname{Reachable}(x, y) & \leftarrow \mathrm{e}(x, y, v) \\
\operatorname{Reachable}(x, z) & \leftarrow \mathrm{e}(x, y, v) \wedge \operatorname{Reachable}(y, z) \\
\operatorname{Ans}() & \leftarrow \operatorname{Reachable}(x, x)
\end{aligned}
$$

Exercise 3

Exercise. Consider databases that encode a labelled, directed graph by means of a ternary EDB predicate e ("edge"). The first two parameters are the source and target nodes of the edge, while the third parameter is its label. For example, the edge $m \xrightarrow{a} n$ would be represented by the fact e(m, n, a). Moreover, assume that only constants a and b are used as labels. Can you express the following queries using Datalog?

1. "Which nodes in the graph are reachable from the node n ?"
2. "Are all nodes of the graph reachable from the node n ?"
3. "Does the graph have a directed cycle?"
4. "Does the graph have a path that is labelled by a palindrome?"
(a palindrome is a word that reads the same forwards and backwards)
5. "Is the connected component that contains the node $n 2$-colourable?"
6. "Is the graph 2-colourable?"
7. "Which pairs of nodes are connected by a path with an even number of a labels?"
8. "Which pairs of nodes are connected by a path with the same number of a and b labels?"
9. "Is there a pair of nodes that is connected by two distinct paths?"

Solution.

4.

$$
\begin{array}{lc}
\text { Reachable }(x, y) \leftarrow \mathrm{e}(x, y, v) & \operatorname{Reachable}(x, z) \leftarrow \mathrm{e}(x, y, a), \text { Reachable }(y, w), \mathrm{e}(w, z, a) \\
\operatorname{Reachable}(x, z) \leftarrow \mathrm{e}(x, y, b), \text { Reachable }(y, w), \mathrm{e}(w, z, b) & \operatorname{Ans}() \leftarrow \operatorname{Reachable}(x, y)
\end{array}
$$

Exercise 3

Exercise. Consider databases that encode a labelled, directed graph by means of a ternary EDB predicate e ("edge"). The first two parameters are the source and target nodes of the edge, while the third parameter is its label. For example, the edge $m \xrightarrow{a} n$ would be represented by the fact e(m, n, a). Moreover, assume that only constants a and b are used as labels. Can you express the following queries using Datalog?

1. "Which nodes in the graph are reachable from the node n ?"
2. "Are all nodes of the graph reachable from the node n ?"
3. "Does the graph have a directed cycle?"
4. "Does the graph have a path that is labelled by a palindrome?"
(a palindrome is a word that reads the same forwards and backwards)
5. "Is the connected component that contains the node $n 2$-colourable?"
6. "Is the graph 2-colourable?"
7. "Which pairs of nodes are connected by a path with an even number of a labels?"
8. "Which pairs of nodes are connected by a path with the same number of a and b labels?"
9. "Is there a pair of nodes that is connected by two distinct paths?"

Solution.

5. Not expressible; consider $I=\{\mathrm{e}(n, 1, a), \mathrm{e}(1,2, a)\}$ and $J=I \cup\{\mathrm{e}(2, n, a)\}$.

Exercise 3

Exercise. Consider databases that encode a labelled, directed graph by means of a ternary EDB predicate e ("edge"). The first two parameters are the source and target nodes of the edge, while the third parameter is its label. For example, the edge $m \xrightarrow{a} n$ would be represented by the fact e(m, n, a). Moreover, assume that only constants a and b are used as labels. Can you express the following queries using Datalog?

1. "Which nodes in the graph are reachable from the node n ?"
2. "Are all nodes of the graph reachable from the node n ?"
3. "Does the graph have a directed cycle?"
4. "Does the graph have a path that is labelled by a palindrome?"
(a palindrome is a word that reads the same forwards and backwards)
5. "Is the connected component that contains the node $n 2$-colourable?"
6. "Is the graph 2-colourable?"
7. "Which pairs of nodes are connected by a path with an even number of a labels?"
8. "Which pairs of nodes are connected by a path with the same number of a and b labels?"
9. "Is there a pair of nodes that is connected by two distinct paths?"

Solution.

6. Not expressible; consider $I=\{\mathrm{e}(n, 1, a), \mathrm{e}(1,2, a)\}$ and $J=I \cup\{\mathrm{e}(2, n, a)\}$.

Exercise 3

Exercise. Consider databases that encode a labelled, directed graph by means of a ternary EDB predicate e ("edge"). The first two parameters are the source and target nodes of the edge, while the third parameter is its label. For example, the edge $m \xrightarrow{a} n$ would be represented by the fact e(m, n, a). Moreover, assume that only constants a and b are used as labels. Can you express the following queries using Datalog?

1. "Which nodes in the graph are reachable from the node n ?"
2. "Are all nodes of the graph reachable from the node n ?"
3. "Does the graph have a directed cycle?"
4. "Does the graph have a path that is labelled by a palindrome?"
(a palindrome is a word that reads the same forwards and backwards)
5. "Is the connected component that contains the node $n 2$-colourable?"
6. "Is the graph 2-colourable?"
7. "Which pairs of nodes are connected by a path with an even number of a labels?"
8. "Which pairs of nodes are connected by a path with the same number of a and b labels?"
9. "Is there a pair of nodes that is connected by two distinct paths?"

Solution.

7.

$$
\begin{array}{rlrl}
\operatorname{Reachable}(x, y) & \leftarrow \mathrm{e}(x, y, b) & \operatorname{Reachable}(x, z) \leftarrow \mathrm{e}(x, y, a), \mathrm{e}(y, z, a) \\
\operatorname{Reachable}(x, z) & \leftarrow \mathrm{e}(x, y, a), \operatorname{Reachable}(y, w), \mathrm{e}(w, z, a) & \operatorname{Reachable}(x, z) \leftarrow \operatorname{Reachable}(x, y), \operatorname{Reachable}(y, z) \\
\operatorname{Ans}(x, y) & \leftarrow \operatorname{Reachable}(x, y) & &
\end{array}
$$

Exercise 3

Exercise. Consider databases that encode a labelled, directed graph by means of a ternary EDB predicate e ("edge"). The first two parameters are the source and target nodes of the edge, while the third parameter is its label. For example, the edge $m \xrightarrow{a} n$ would be represented by the fact e(m, n, a). Moreover, assume that only constants a and b are used as labels. Can you express the following queries using Datalog?

1. "Which nodes in the graph are reachable from the node n ?"
2. "Are all nodes of the graph reachable from the node n ?"
3. "Does the graph have a directed cycle?"
4. "Does the graph have a path that is labelled by a palindrome?"
(a palindrome is a word that reads the same forwards and backwards)
5. "Is the connected component that contains the node $n 2$-colourable?"
6. "Is the graph 2-colourable?"
7. "Which pairs of nodes are connected by a path with an even number of a labels?"
8. "Which pairs of nodes are connected by a path with the same number of a and b labels?"
9. "Is there a pair of nodes that is connected by two distinct paths?"

Solution.

8.

$$
\begin{array}{lrl}
\text { Reachable }(x, z) & \leftarrow \mathrm{e}(x, y, a), \mathrm{e}(y, z, b) & \operatorname{Reachable}(x, z) \leftarrow \mathrm{e}(x, y, b), \mathrm{e}(y, z, a) \\
\text { Reachable }(x, z) \leftarrow \operatorname{Reachable}(x, y), \operatorname{Reachable}(y, z) & \operatorname{Ans}(x, y) \leftarrow \operatorname{Reachable}(x, y)
\end{array}
$$

Exercise 3

Exercise. Consider databases that encode a labelled, directed graph by means of a ternary EDB predicate e ("edge"). The first two parameters are the source and target nodes of the edge, while the third parameter is its label. For example, the edge $m \xrightarrow{a} n$ would be represented by the fact e(m, n, a). Moreover, assume that only constants a and b are used as labels. Can you express the following queries using Datalog?

1. "Which nodes in the graph are reachable from the node n ?"
2. "Are all nodes of the graph reachable from the node n ?"
3. "Does the graph have a directed cycle?"
4. "Does the graph have a path that is labelled by a palindrome?"
(a palindrome is a word that reads the same forwards and backwards)
5. "Is the connected component that contains the node $n 2$-colourable?"
6. "Is the graph 2-colourable?"
7. "Which pairs of nodes are connected by a path with an even number of a labels?"
8. "Which pairs of nodes are connected by a path with the same number of a and b labels?"
9. "Is there a pair of nodes that is connected by two distinct paths?"

Solution.

9. Not expressible, since Datalog is homomorphism-closed; consider $I=\{\mathrm{e}(n, 1, a), \mathrm{e}(1, m, a), \mathrm{e}(n, 2, a), \mathrm{e}(2, m, a)\}$ and $J=\{\mathrm{e}(n, 1, a), \mathrm{e}(1, m, a)\}$ and the homomorphism $\varphi: I \rightarrow J=\{2 \mapsto 1\}$.

Exercise 4

Exercise. Consider a UCQ of the following form

$$
\left(r_{11}(x) \wedge r_{12}(x)\right) \vee \ldots \vee\left(r_{\ell 1}(x) \wedge r_{\ell 2}(x)\right)
$$

Find a Datalog query that expresses this UCQ. How many rules and how many additional IDB predicates does your solution use (depending on ℓ)?

Exercise 4

Exercise. Consider a UCQ of the following form

$$
\left(r_{11}(x) \wedge r_{12}(x)\right) \vee \ldots \vee\left(r_{\ell 1}(x) \wedge r_{\ell 2}(x)\right)
$$

Find a Datalog query that expresses this UCQ. How many rules and how many additional IDB predicates does your solution use (depending on ℓ)?

Solution.

Exercise 4

Exercise. Consider a UCQ of the following form

$$
\left(r_{11}(x) \wedge r_{12}(x)\right) \vee \ldots \vee\left(r_{\ell 1}(x) \wedge r_{\ell 2}(x)\right)
$$

Find a Datalog query that expresses this UCQ. How many rules and how many additional IDB predicates does your solution use (depending on ℓ)?

Solution.

$$
\begin{aligned}
& \operatorname{Ans}(x) \leftarrow \mathrm{r}_{11}(x), \mathrm{r}_{12}(x) \\
& \operatorname{Ans}(x) \leftarrow r_{21}(x), r_{22}(x) \\
& \operatorname{Ans}(x) \leftarrow \mathrm{r}_{\ell 1}(x), \mathrm{r}_{\ell 2}(x)
\end{aligned}
$$

Exercise 4

Exercise. Consider a UCQ of the following form

$$
\left(r_{11}(x) \wedge r_{12}(x)\right) \vee \ldots \vee\left(r_{\ell 1}(x) \wedge r_{\ell 2}(x)\right)
$$

Find a Datalog query that expresses this UCQ. How many rules and how many additional IDB predicates does your solution use (depending on ℓ)?

Solution.

$$
\begin{aligned}
& \operatorname{Ans}(x) \leftarrow r_{11}(x), r_{12}(x) \\
& \operatorname{Ans}(x) \leftarrow r_{21}(x), r_{22}(x)
\end{aligned}
$$

$$
\operatorname{Ans}(x) \leftarrow r_{\ell 1}(x), r_{\ell 2}(x)
$$

This solution uses ℓ rules and one additional IDB predicate.

Exercise 5

Exercise. Consider a Datalog query of the following form:

$$
\begin{array}{lll}
\mathrm{A}_{1}(x) \leftarrow \mathrm{r}_{11}(x) & \ldots & \mathrm{A}_{\ell}(x) \leftarrow \mathrm{r}_{\ell 1}(x) \\
\mathrm{A}_{1}(x) \leftarrow \mathrm{r}_{12}(x) & \ldots & \mathrm{A}_{\ell}(x) \leftarrow \mathrm{r}_{\ell 2}(x)
\end{array}
$$

$$
\operatorname{Ans}(x) \leftarrow \mathrm{A}_{1}(x), \ldots, \mathrm{A}_{\ell}(x)
$$

Find a UCQ that expresses this Datalog query. How many CQs does your solution contain (depending on ℓ)?

Exercise 5

Exercise. Consider a Datalog query of the following form:

$$
\begin{array}{lll}
\mathrm{A}_{1}(x) \leftarrow \mathrm{r}_{11}(x) & \ldots & \mathrm{A}_{\ell}(x) \leftarrow \mathrm{r}_{\ell 1}(x) \\
\mathrm{A}_{1}(x) \leftarrow \mathrm{r}_{12}(x) & \ldots & \mathrm{A}_{\ell}(x) \leftarrow \mathrm{r}_{\ell 2}(x)
\end{array}
$$

$$
\operatorname{Ans}(x) \leftarrow \mathrm{A}_{1}(x), \ldots, \mathrm{A}_{\ell}(x)
$$

Find a UCQ that expresses this Datalog query. How many CQs does your solution contain (depending on ℓ)? Solution.

Exercise 5

Exercise. Consider a Datalog query of the following form:

$$
\begin{array}{lll}
\mathrm{A}_{1}(x) \leftarrow \mathrm{r}_{11}(x) & \ldots & \mathrm{A}_{\ell}(x) \leftarrow \mathrm{r}_{\ell 1}(x) \\
\mathrm{A}_{1}(x) \leftarrow \mathrm{r}_{12}(x) & \ldots & \mathrm{A}_{\ell}(x) \leftarrow \mathrm{r}_{\ell 2}(x)
\end{array}
$$

$$
\operatorname{Ans}(x) \leftarrow \mathrm{A}_{1}(x), \ldots, \mathrm{A}_{\ell}(x)
$$

Find a UCQ that expresses this Datalog query. How many CQs does your solution contain (depending on ℓ)? Solution.

$$
\begin{aligned}
\varphi_{11 \cdots 1}(x) & =r_{11}(x) \wedge r_{21}(x) \wedge \cdots \wedge r_{t 1}(x) \\
\varphi_{21 \cdots 1}(x) & =r_{12}(x) \wedge r_{21}(x) \wedge \cdots \wedge r_{t 1}(x) \\
\varphi_{12 \cdots 1}(x) & =r_{11}(x) \wedge r_{22}(x) \wedge \cdots \wedge r_{t 1}(x) \\
\varphi_{22 \cdots 1}(x) & =r_{12}(x) \wedge r_{22}(x) \wedge \cdots \wedge r_{t 1}(x) \\
\vdots & \vdots
\end{aligned} \quad \vdots \quad \vdots \quad \begin{aligned}
& \vdots \\
\varphi_{22 \cdots 2}(x) & =r_{12}(x) \wedge r_{22}(x) \wedge \cdots \wedge r_{t 2}(x) \\
\varphi & =V_{i \in\{11 \cdots 1,21 \cdots 1, \ldots, 22 \cdots 2\}} \varphi_{i}
\end{aligned}
$$

Exercise 5

Exercise. Consider a Datalog query of the following form:

$$
\begin{array}{lll}
\mathrm{A}_{1}(x) \leftarrow \mathrm{r}_{11}(x) & \ldots & \mathrm{A}_{\ell}(x) \leftarrow \mathrm{r}_{\ell 1}(x) \\
\mathrm{A}_{1}(x) \leftarrow \mathrm{r}_{12}(x) & \ldots & \mathrm{A}_{\ell}(x) \leftarrow \mathrm{r}_{\ell 2}(x)
\end{array}
$$

$$
\operatorname{Ans}(x) \leftarrow \mathrm{A}_{1}(x), \ldots, \mathrm{A}_{\ell}(x)
$$

Find a UCQ that expresses this Datalog query. How many CQs does your solution contain (depending on ℓ)? Solution.

$$
\begin{aligned}
\varphi_{11 \cdots 1}(x) & =r_{11}(x) \wedge r_{21}(x) \wedge \cdots \wedge r_{t 1}(x) \\
\varphi_{21 \cdots 1}(x) & =r_{12}(x) \wedge r_{21}(x) \wedge \cdots \wedge r_{\ell 1}(x) \\
\varphi_{12 \cdots 1}(x) & =r_{11}(x) \wedge r_{22}(x) \wedge \cdots \wedge r_{\ell 1}(x) \\
\varphi_{22 \cdots 1}(x) & =r_{12}(x) \wedge r_{22}(x) \wedge \cdots \wedge r_{t 1}(x) \\
\vdots & \vdots
\end{aligned} \quad \vdots \quad \begin{aligned}
& \vdots \\
\varphi_{22 \cdots 2}(x) & =r_{12}(x) \wedge r_{22}(x) \wedge \cdots \wedge r_{t 2}(x) \\
\varphi & =V_{i \in\{11 \cdots 1,21 \cdots 1, \ldots, 22 \cdots 2\}} \varphi_{i}
\end{aligned}
$$

This solution uses 2^{ℓ} CQs.

Exercise 6

Exercise. Show that T_{P}^{∞} is the least fixed point of the T_{P} operator.

1. Show that it is a fixed point, i.e., that $T_{P}\left(T_{P}^{\infty}\right)=T_{P}^{\infty}$.
2. Show that every fixed point of T_{P} must contain every fact in T_{P}^{∞}.

Exercise 6

Exercise. Show that T_{P}^{∞} is the least fixed point of the T_{P} operator.

1. Show that it is a fixed point, i.e., that $T_{P}\left(T_{P}^{\infty}\right)=T_{P}^{\infty}$.
2. Show that every fixed point of T_{P} must contain every fact in T_{P}^{∞}. Solution.

Exercise 6

Exercise. Show that T_{P}^{∞} is the least fixed point of the T_{P} operator.

1. Show that it is a fixed point, i.e., that $T_{P}\left(T_{P}^{\infty}\right)=T_{P}^{\infty}$.
2. Show that every fixed point of T_{P} must contain every fact in T_{P}^{∞}.

Solution.

1. We first show that T_{P} is extensive, i.e., that $I \subseteq T_{P}(I)$ for any set of ground facts I : Clearly $\varnothing \subseteq T_{P}(\varnothing)$.

Exercise 6

Exercise. Show that T_{P}^{∞} is the least fixed point of the T_{P} operator.

1. Show that it is a fixed point, i.e., that $T_{P}\left(T_{P}^{\infty}\right)=T_{P}^{\infty}$.
2. Show that every fixed point of T_{P} must contain every fact in T_{P}^{∞}.

Solution.

1. We first show that T_{P} is extensive, i.e., that $I \subseteq T_{P}(I)$ for any set of ground facts I : Clearly $\varnothing \subseteq T_{P}(\varnothing)$.

- Assume that $I \subseteq T_{P}(I)$ for some set of ground facts I, and consider a ground fact $H \in T_{P}(I)$. Then there is some ground rule $H \leftarrow B_{1}, \ldots, B_{n} \in \operatorname{ground}(P)$ with $B_{1}, \ldots, B_{n} \in I$. Since $I \subseteq T_{P}(I)$, we have $B_{1}, \ldots, B_{n} \in T_{P}(I)$, and hence $H \in T_{P}\left(T_{P}(I)\right)$.

Exercise 6

Exercise. Show that T_{P}^{∞} is the least fixed point of the T_{P} operator.

1. Show that it is a fixed point, i.e., that $T_{P}\left(T_{P}^{\infty}\right)=T_{P}^{\infty}$.
2. Show that every fixed point of T_{P} must contain every fact in T_{P}^{∞}.

Solution.

1. We first show that T_{P} is extensive, i.e., that $I \subseteq T_{P}(I)$ for any set of ground facts I : Clearly $\varnothing \subseteq T_{P}(\varnothing)$.

- Assume that $I \subseteq T_{P}(I)$ for some set of ground facts I, and consider a ground fact $H \in T_{P}(I)$. Then there is some ground rule $H \leftarrow B_{1}, \ldots, B_{n} \in \operatorname{ground}(P)$ with $B_{1}, \ldots, B_{n} \in I$. Since $I \subseteq T_{P}(I)$, we have $B_{1}, \ldots, B_{n} \in T_{P}(I)$, and hence $H \in T_{P}\left(T_{P}(I)\right)$.
- Thus, we have $T_{P}^{i-1} \subseteq T_{P}^{i}$, and, in particular, $T_{P}\left(T_{P}^{\infty}\right) \supseteq T_{P}^{\infty}$.

Exercise 6

Exercise. Show that T_{P}^{∞} is the least fixed point of the T_{P} operator.

1. Show that it is a fixed point, i.e., that $T_{P}\left(T_{P}^{\infty}\right)=T_{P}^{\infty}$.
2. Show that every fixed point of T_{P} must contain every fact in T_{P}^{∞}.

Solution.

1. We first show that T_{P} is extensive, i.e., that $I \subseteq T_{P}(I)$ for any set of ground facts I : Clearly $\varnothing \subseteq T_{P}(\varnothing)$.

- Assume that $I \subseteq T_{P}(I)$ for some set of ground facts I, and consider a ground fact $H \in T_{P}(I)$. Then there is some ground rule $H \leftarrow B_{1}, \ldots, B_{n} \in \operatorname{ground}(P)$ with $B_{1}, \ldots, B_{n} \in I$. Since $I \subseteq T_{P}(I)$, we have $B_{1}, \ldots, B_{n} \in T_{P}(I)$, and hence $H \in T_{P}\left(T_{P}(I)\right)$.
- Thus, we have $T_{P}^{i-1} \subseteq T_{P}^{i}$, and, in particular, $T_{P}\left(T_{P}^{\infty}\right) \supseteq T_{P}^{\infty}$.
- Assume that we have some ground fact $H \in T_{P}\left(T_{P}^{\infty}\right)$, but $H \notin T_{P}^{\infty}$.

Exercise 6

Exercise. Show that T_{P}^{∞} is the least fixed point of the T_{P} operator.

1. Show that it is a fixed point, i.e., that $T_{P}\left(T_{P}^{\infty}\right)=T_{P}^{\infty}$.
2. Show that every fixed point of T_{P} must contain every fact in T_{P}^{∞}.

Solution.

1. We first show that T_{P} is extensive, i.e., that $I \subseteq T_{P}(I)$ for any set of ground facts I : Clearly $\varnothing \subseteq T_{P}(\varnothing)$.

- Assume that $I \subseteq T_{P}(I)$ for some set of ground facts I, and consider a ground fact $H \in T_{P}(I)$. Then there is some ground rule $H \leftarrow B_{1}, \ldots, B_{n} \in \operatorname{ground}(P)$ with $B_{1}, \ldots, B_{n} \in I$. Since $I \subseteq T_{P}(I)$, we have $B_{1}, \ldots, B_{n} \in T_{P}(I)$, and hence $H \in T_{P}\left(T_{P}(I)\right)$.
- Thus, we have $T_{P}^{i-1} \subseteq T_{P}^{i}$, and, in particular, $T_{P}\left(T_{P}^{\infty}\right) \supseteq T_{P}^{\infty}$.
- Assume that we have some ground fact $H \in T_{P}\left(T_{P}^{\infty}\right)$, but $H \notin T_{P}^{\infty}$.
- Then there is a ground rule $H \leftarrow B_{1}, \ldots, B_{n} \in \operatorname{ground}(P)$ with $B_{1}, \ldots, B_{n} \in T_{P}^{\infty}$.

Exercise 6

Exercise. Show that T_{P}^{∞} is the least fixed point of the T_{P} operator.

1. Show that it is a fixed point, i.e., that $T_{P}\left(T_{P}^{\infty}\right)=T_{P}^{\infty}$.
2. Show that every fixed point of T_{P} must contain every fact in T_{P}^{∞}.

Solution.

1. We first show that T_{P} is extensive, i.e., that $I \subseteq T_{P}(I)$ for any set of ground facts I : Clearly $\varnothing \subseteq T_{P}(\varnothing)$.

- Assume that $I \subseteq T_{P}(I)$ for some set of ground facts I, and consider a ground fact $H \in T_{P}(I)$. Then there is some ground rule $H \leftarrow B_{1}, \ldots, B_{n} \in \operatorname{ground}(P)$ with $B_{1}, \ldots, B_{n} \in I$. Since $I \subseteq T_{P}(I)$, we have $B_{1}, \ldots, B_{n} \in T_{P}(I)$, and hence $H \in T_{P}\left(T_{P}(I)\right)$.
- Thus, we have $T_{P}^{i-1} \subseteq T_{P}^{i}$, and, in particular, $T_{P}\left(T_{P}^{\infty}\right) \supseteq T_{P}^{\infty}$.
- Assume that we have some ground fact $H \in T_{P}\left(T_{P}^{\infty}\right)$, but $H \notin T_{P}^{\infty}$.
- Then there is a ground rule $H \leftarrow B_{1}, \ldots, B_{n} \in \operatorname{ground}(P)$ with $B_{1}, \ldots, B_{n} \in T_{P}^{\infty}$.
- Since $T_{P}^{\infty}=\bigcup_{i \geq 0} T_{P}^{i}$, there are i_{1}, \ldots, i_{n} with $B_{i j} \in T_{P}^{i_{j}}$, and thus $B_{1}, \ldots, B_{n} \in T_{P}^{k}$ with $k=\max \left\{i_{1}, \ldots, i_{n}\right\}$.

Exercise 6

Exercise. Show that T_{P}^{∞} is the least fixed point of the T_{P} operator.

1. Show that it is a fixed point, i.e., that $T_{P}\left(T_{P}^{\infty}\right)=T_{P}^{\infty}$.
2. Show that every fixed point of T_{P} must contain every fact in T_{P}^{∞}.

Solution.

1. We first show that T_{P} is extensive, i.e., that $I \subseteq T_{P}(I)$ for any set of ground facts I : Clearly $\varnothing \subseteq T_{P}(\varnothing)$.

- Assume that $I \subseteq T_{P}(I)$ for some set of ground facts I, and consider a ground fact $H \in T_{P}(I)$. Then there is some ground rule $H \leftarrow B_{1}, \ldots, B_{n} \in \operatorname{ground}(P)$ with $B_{1}, \ldots, B_{n} \in I$. Since $I \subseteq T_{P}(I)$, we have $B_{1}, \ldots, B_{n} \in T_{P}(I)$, and hence $H \in T_{P}\left(T_{P}(I)\right)$.
- Thus, we have $T_{P}^{i-1} \subseteq T_{P}^{i}$, and, in particular, $T_{P}\left(T_{P}^{\infty}\right) \supseteq T_{P}^{\infty}$.
- Assume that we have some ground fact $H \in T_{P}\left(T_{P}^{\infty}\right)$, but $H \notin T_{P}^{\infty}$.
- Then there is a ground rule $H \leftarrow B_{1}, \ldots, B_{n} \in \operatorname{ground}(P)$ with $B_{1}, \ldots, B_{n} \in T_{P}^{\infty}$.
- Since $T_{P}^{\infty}=\bigcup_{i \geq 0} T_{P}^{i}$, there are i_{1}, \ldots, i_{n} with $B_{i j} \in T_{P}^{i_{j}}$, and thus $B_{1}, \ldots, B_{n} \in T_{P}^{k}$ with $k=\max \left\{i_{1}, \ldots, i_{n}\right\}$.
- But then $H \in T_{P}\left(T_{P}^{k}\right)=T_{P}^{k+1} \subseteq T_{P}^{\infty}$, which contradicts $H \notin T_{P}^{\infty}$.

Exercise 6

Exercise. Show that T_{P}^{∞} is the least fixed point of the T_{P} operator.

1. Show that it is a fixed point, i.e., that $T_{P}\left(T_{P}^{\infty}\right)=T_{P}^{\infty}$.
2. Show that every fixed point of T_{P} must contain every fact in T_{P}^{∞}.

Solution.

1. We first show that T_{P} is extensive, i.e., that $I \subseteq T_{P}(I)$ for any set of ground facts I : Clearly $\varnothing \subseteq T_{P}(\varnothing)$.

- Assume that $I \subseteq T_{P}(I)$ for some set of ground facts I, and consider a ground fact $H \in T_{P}(I)$. Then there is some ground rule $H \leftarrow B_{1}, \ldots, B_{n} \in \operatorname{ground}(P)$ with $B_{1}, \ldots, B_{n} \in I$. Since $I \subseteq T_{P}(I)$, we have $B_{1}, \ldots, B_{n} \in T_{P}(I)$, and hence $H \in T_{P}\left(T_{P}(I)\right)$.
- Thus, we have $T_{P}^{i-1} \subseteq T_{P}^{i}$, and, in particular, $T_{P}\left(T_{P}^{\infty}\right) \supseteq T_{P}^{\infty}$.
- Assume that we have some ground fact $H \in T_{P}\left(T_{P}^{\infty}\right)$, but $H \notin T_{P}^{\infty}$.
- Then there is a ground rule $H \leftarrow B_{1}, \ldots, B_{n} \in \operatorname{ground}(P)$ with $B_{1}, \ldots, B_{n} \in T_{P}^{\infty}$.
- Since $T_{P}^{\infty}=\bigcup_{i \geq 0} T_{P}^{i}$, there are i_{1}, \ldots, i_{n} with $B_{i j} \in T_{P}^{i_{j}}$, and thus $B_{1}, \ldots, B_{n} \in T_{P}^{k}$ with $k=\max \left\{i_{1}, \ldots, i_{n}\right\}$.
- But then $H \in T_{P}\left(T_{P}^{k}\right)=T_{P}^{k+1} \subseteq T_{P}^{\infty}$, which contradicts $H \notin T_{P}^{\infty}$.

2. First, note that T_{P} is clearly monotone, i.e., that for sets $I \subseteq J$ of ground facts, we have $T_{P}(I) \subseteq T_{P}(J)$.

Exercise 6

Exercise. Show that T_{P}^{∞} is the least fixed point of the T_{P} operator.

1. Show that it is a fixed point, i.e., that $T_{P}\left(T_{P}^{\infty}\right)=T_{P}^{\infty}$.
2. Show that every fixed point of T_{P} must contain every fact in T_{P}^{∞}.

Solution.

1. We first show that T_{P} is extensive, i.e., that $I \subseteq T_{P}(I)$ for any set of ground facts I : Clearly $\varnothing \subseteq T_{P}(\varnothing)$.

- Assume that $I \subseteq T_{P}(I)$ for some set of ground facts I, and consider a ground fact $H \in T_{P}(I)$. Then there is some ground rule $H \leftarrow B_{1}, \ldots, B_{n} \in \operatorname{ground}(P)$ with $B_{1}, \ldots, B_{n} \in I$. Since $I \subseteq T_{P}(I)$, we have $B_{1}, \ldots, B_{n} \in T_{P}(I)$, and hence $H \in T_{P}\left(T_{P}(I)\right)$.
- Thus, we have $T_{P}^{i-1} \subseteq T_{P}^{i}$, and, in particular, $T_{P}\left(T_{P}^{\infty}\right) \supseteq T_{P}^{\infty}$.
- Assume that we have some ground fact $H \in T_{P}\left(T_{P}^{\infty}\right)$, but $H \notin T_{P}^{\infty}$.
- Then there is a ground rule $H \leftarrow B_{1}, \ldots, B_{n} \in \operatorname{ground}(P)$ with $B_{1}, \ldots, B_{n} \in T_{P}^{\infty}$.
- Since $T_{P}^{\infty}=\bigcup_{i \geq 0} T_{P}^{i}$, there are i_{1}, \ldots, i_{n} with $B_{i j} \in T_{P}^{i_{j}}$, and thus $B_{1}, \ldots, B_{n} \in T_{P}^{k}$ with $k=\max \left\{i_{1}, \ldots, i_{n}\right\}$.
- But then $H \in T_{P}\left(T_{P}^{k}\right)=T_{P}^{k+1} \subseteq T_{P}^{\infty}$, which contradicts $H \notin T_{P}^{\infty}$.

2. First, note that T_{P} is clearly monotone, i.e., that for sets $I \subseteq J$ of ground facts, we have $T_{P}(I) \subseteq T_{P}(J)$.

- Consider some fixed point F of T_{P}. We show $T_{P}^{i} \subseteq F$ for all $i \geq 0$.

Exercise 6

Exercise. Show that T_{P}^{∞} is the least fixed point of the T_{P} operator.

1. Show that it is a fixed point, i.e., that $T_{P}\left(T_{P}^{\infty}\right)=T_{P}^{\infty}$.
2. Show that every fixed point of T_{P} must contain every fact in T_{P}^{∞}.

Solution.

1. We first show that T_{P} is extensive, i.e., that $I \subseteq T_{P}(I)$ for any set of ground facts I : Clearly $\varnothing \subseteq T_{P}(\varnothing)$.

- Assume that $I \subseteq T_{P}(I)$ for some set of ground facts I, and consider a ground fact $H \in T_{P}(I)$. Then there is some ground rule $H \leftarrow B_{1}, \ldots, B_{n} \in \operatorname{ground}(P)$ with $B_{1}, \ldots, B_{n} \in I$. Since $I \subseteq T_{P}(I)$, we have $B_{1}, \ldots, B_{n} \in T_{P}(I)$, and hence $H \in T_{P}\left(T_{P}(I)\right)$.
- Thus, we have $T_{P}^{i-1} \subseteq T_{P}^{i}$, and, in particular, $T_{P}\left(T_{P}^{\infty}\right) \supseteq T_{P}^{\infty}$.
- Assume that we have some ground fact $H \in T_{P}\left(T_{P}^{\infty}\right)$, but $H \notin T_{P}^{\infty}$.
- Then there is a ground rule $H \leftarrow B_{1}, \ldots, B_{n} \in \operatorname{ground}(P)$ with $B_{1}, \ldots, B_{n} \in T_{P}^{\infty}$.
- Since $T_{P}^{\infty}=\bigcup_{i \geq 0} T_{P}^{i}$, there are i_{1}, \ldots, i_{n} with $B_{i j} \in T_{P}^{i_{j}}$, and thus $B_{1}, \ldots, B_{n} \in T_{P}^{k}$ with $k=\max \left\{i_{1}, \ldots, i_{n}\right\}$.
- But then $H \in T_{P}\left(T_{P}^{k}\right)=T_{P}^{k+1} \subseteq T_{P}^{\infty}$, which contradicts $H \notin T_{P}^{\infty}$.

2. First, note that T_{P} is clearly monotone, i.e., that for sets $I \subseteq J$ of ground facts, we have $T_{P}(I) \subseteq T_{P}(J)$.

- Consider some fixed point F of T_{P}. We show $T_{P}^{i} \subseteq F$ for all $i \geq 0$.
- Clearly, $T_{P}^{0}=\varnothing \subseteq F$.

Exercise 6

Exercise. Show that T_{P}^{∞} is the least fixed point of the T_{P} operator.

1. Show that it is a fixed point, i.e., that $T_{P}\left(T_{P}^{\infty}\right)=T_{P}^{\infty}$.
2. Show that every fixed point of T_{P} must contain every fact in T_{P}^{∞}.

Solution.

1. We first show that T_{P} is extensive, i.e., that $I \subseteq T_{P}(I)$ for any set of ground facts I : Clearly $\varnothing \subseteq T_{P}(\varnothing)$.

- Assume that $I \subseteq T_{P}(I)$ for some set of ground facts I, and consider a ground fact $H \in T_{P}(I)$. Then there is some ground rule $H \leftarrow B_{1}, \ldots, B_{n} \in \operatorname{ground}(P)$ with $B_{1}, \ldots, B_{n} \in I$. Since $I \subseteq T_{P}(I)$, we have $B_{1}, \ldots, B_{n} \in T_{P}(I)$, and hence $H \in T_{P}\left(T_{P}(I)\right)$.
- Thus, we have $T_{P}^{i-1} \subseteq T_{P}^{i}$, and, in particular, $T_{P}\left(T_{P}^{\infty}\right) \supseteq T_{P}^{\infty}$.
- Assume that we have some ground fact $H \in T_{P}\left(T_{P}^{\infty}\right)$, but $H \notin T_{P}^{\infty}$.
- Then there is a ground rule $H \leftarrow B_{1}, \ldots, B_{n} \in \operatorname{ground}(P)$ with $B_{1}, \ldots, B_{n} \in T_{P}^{\infty}$.
- Since $T_{P}^{\infty}=\bigcup_{i \geq 0} T_{P}^{i}$, there are i_{1}, \ldots, i_{n} with $B_{i j} \in T_{P}^{i_{j}}$, and thus $B_{1}, \ldots, B_{n} \in T_{P}^{k}$ with $k=\max \left\{i_{1}, \ldots, i_{n}\right\}$.
- But then $H \in T_{P}\left(T_{P}^{k}\right)=T_{P}^{k+1} \subseteq T_{P}^{\infty}$, which contradicts $H \notin T_{P}^{\infty}$.

2. First, note that T_{P} is clearly monotone, i.e., that for sets $I \subseteq J$ of ground facts, we have $T_{P}(I) \subseteq T_{P}(J)$.

- Consider some fixed point F of T_{P}. We show $T_{P}^{i} \subseteq F$ for all $i \geq 0$.
- Clearly, $T_{P}^{0}=\varnothing \subseteq F$.
- Assume that $T_{P}^{i} \subseteq F$ for some $i \geq 0$. Then $T_{P}^{i+1}=T_{P}\left(T_{P}^{i}\right) \subseteq T_{P}(F)=F$, by monotonicity and since F is a fixed point.

Exercise 6

Exercise. Show that T_{P}^{∞} is the least fixed point of the T_{P} operator.

1. Show that it is a fixed point, i.e., that $T_{P}\left(T_{P}^{\infty}\right)=T_{P}^{\infty}$.
2. Show that every fixed point of T_{P} must contain every fact in T_{P}^{∞}.

Solution.

1. We first show that T_{P} is extensive, i.e., that $I \subseteq T_{P}(I)$ for any set of ground facts I : Clearly $\varnothing \subseteq T_{P}(\varnothing)$.

- Assume that $I \subseteq T_{P}(I)$ for some set of ground facts I, and consider a ground fact $H \in T_{P}(I)$. Then there is some ground rule $H \leftarrow B_{1}, \ldots, B_{n} \in \operatorname{ground}(P)$ with $B_{1}, \ldots, B_{n} \in I$. Since $I \subseteq T_{P}(I)$, we have $B_{1}, \ldots, B_{n} \in T_{P}(I)$, and hence $H \in T_{P}\left(T_{P}(I)\right)$.
- Thus, we have $T_{P}^{i-1} \subseteq T_{P}^{i}$, and, in particular, $T_{P}\left(T_{P}^{\infty}\right) \supseteq T_{P}^{\infty}$.
- Assume that we have some ground fact $H \in T_{P}\left(T_{P}^{\infty}\right)$, but $H \notin T_{P}^{\infty}$.
- Then there is a ground rule $H \leftarrow B_{1}, \ldots, B_{n} \in \operatorname{ground}(P)$ with $B_{1}, \ldots, B_{n} \in T_{P}^{\infty}$.
- Since $T_{P}^{\infty}=\bigcup_{i \geq 0} T_{P}^{i}$, there are i_{1}, \ldots, i_{n} with $B_{i j} \in T_{P}^{i_{j}}$, and thus $B_{1}, \ldots, B_{n} \in T_{P}^{k}$ with $k=\max \left\{i_{1}, \ldots, i_{n}\right\}$.
- But then $H \in T_{P}\left(T_{P}^{k}\right)=T_{P}^{k+1} \subseteq T_{P}^{\infty}$, which contradicts $H \notin T_{P}^{\infty}$.

2. First, note that T_{P} is clearly monotone, i.e., that for sets $I \subseteq J$ of ground facts, we have $T_{P}(I) \subseteq T_{P}(J)$.

- Consider some fixed point F of T_{P}. We show $T_{P}^{i} \subseteq F$ for all $i \geq 0$.
- Clearly, $T_{P}^{0}=\varnothing \subseteq F$.
- Assume that $T_{P}^{i} \subseteq F$ for some $i \geq 0$. Then $T_{P}^{i+1}=T_{P}\left(T_{P}^{i}\right) \subseteq T_{P}(F)=F$, by monotonicity and since F is a fixed point.
- But then $T_{P}^{i} \subseteq F$ for all $i \geq 0$, and hence also $T_{P}^{\infty}=\bigcup_{i \geq 0} T_{P}^{i} \subseteq F$.

