
DATABASE THEORY

Lecture 18: The Chase

Markus Krötzsch

Knowledge-Based Systems

TU Dresden, 21st June 2022

More recent versions of this slide deck might be available.
For the most current version of this course, see
https://iccl.inf.tu-dresden.de/web/Database_Theory/en

https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2022)
https://iccl.inf.tu-dresden.de/web/Markus_Kr%C3%B6tzsch/en
https://iccl.inf.tu-dresden.de/web/Database_Theory/en

Review
Definition 18.7: A dependency is a formula of the form

∀~x,~y.ϕ[~x,~y]→ ∃~z.ψ[~x,~z],

where ~x,~y,~z are disjoint lists of variables, and ϕ (the body) and ψ (the head) are
conjunctions of atoms using variables ~x∪~y and ~x∪~z, respectively. We allow equal-
ity atoms s ≈ t to occur in dependencies. The variables ~x, which occur in body
and head, are known as frontier.

• Tuple-generating dependencies (tgds) are not using equality (in the head)
(Special case: inclusion dependencies)

• Equality-generating dependencies (egds) have single head atoms with the equality
predicate
(Special case: functional dependencies, esp. keys)

• Full dependencies have no ∃ (quite similar to Datalog)
Many reasoning tasks on tgds can be reduced to query answering under tgd constraints,
but this problem is undecidable in general.
Markus Krötzsch, 21st June 2022 Database Theory slide 2 of 30

The Chase

Markus Krötzsch, 21st June 2022 Database Theory slide 3 of 30

Review: Evaluating Datalog

We recall the semi-naive bottom-up evaluation of Datalog in alternative notation:

• We compute sets of facts ∆i for each step i = 0, 1, 2, . . .

• Let ∆[i,j] =
⋃j

k=i ∆k

• A substitution θ is a match of a CQ ϕ over a set of facts ∆ if ϕθ ⊆ ∆

We can describe semi-naive evaluation as follows:

function chase(Σ,I)

01 i = 0 ∆0 = I

02 repeat :
03 applyRules(Σ, ∆, i)
04 until ∆i = ∅

05 return ∆[0,i]

function applyRules(Σ, ∆, i)

01 ∆i+1 = ∅

02 foreach (ϕ→ ψ) ∈ Σ :
03 foreach match θ of ϕ over ∆[0,i] with ϕθ ∩ ∆i , ∅ :
04 ∆i+1 = (∆i+1 ∪ ψθ) \ ∆[0,i]

05 i = i + 1

Then chase(Σ,I) for a set of full tgds Σ corresponds to the least model of Datalog.
(Essentially this chase is simply an alternative version of the TP operator)

Markus Krötzsch, 21st June 2022 Database Theory slide 4 of 30

Chasing tgds
Can we perform a bottom-up computation for non-full tgds?

New feature: existential quantifiers in rule heads{ create new domain elements

Definition 18.1: Let N be a countably infinite set of (labelled) nulls, distinct from
constants and variables.

We can use (fresh) nulls to satisfy existential quantifiers during the chase:

function applyRules(Σ, ∆, i)

01 ∆i+1 = ∅

02 foreach (ϕ→ ∃~z.ψ) ∈ Σ :
03 foreach match θ of ϕ over ∆[0,i] with ϕθ ∩ ∆i , ∅ :
04 θ′ = θ ∪ {~z 7→ ~n}, where ~n ⊆ N are fresh nulls
05 ∆i+1 = (∆i+1 ∪ ψθ′) \ ∆[0,i]

06 i = i + 1

The outer loop (function chase(Σ, I)) remains as before.

Markus Krötzsch, 21st June 2022 Database Theory slide 5 of 30

Chasing tgds
Can we perform a bottom-up computation for non-full tgds?

New feature: existential quantifiers in rule heads{ create new domain elements

Definition 18.1: Let N be a countably infinite set of (labelled) nulls, distinct from
constants and variables.

We can use (fresh) nulls to satisfy existential quantifiers during the chase:

function applyRules(Σ, ∆, i)

01 ∆i+1 = ∅

02 foreach (ϕ→ ∃~z.ψ) ∈ Σ :
03 foreach match θ of ϕ over ∆[0,i] with ϕθ ∩ ∆i , ∅ :
04 θ′ = θ ∪ {~z 7→ ~n}, where ~n ⊆ N are fresh nulls
05 ∆i+1 = (∆i+1 ∪ ψθ′) \ ∆[0,i]

06 i = i + 1

The outer loop (function chase(Σ, I)) remains as before.

Markus Krötzsch, 21st June 2022 Database Theory slide 5 of 30

Chasing tgds
Can we perform a bottom-up computation for non-full tgds?

New feature: existential quantifiers in rule heads{ create new domain elements

Definition 18.1: Let N be a countably infinite set of (labelled) nulls, distinct from
constants and variables.

We can use (fresh) nulls to satisfy existential quantifiers during the chase:

function applyRules(Σ, ∆, i)

01 ∆i+1 = ∅

02 foreach (ϕ→ ∃~z.ψ) ∈ Σ :
03 foreach match θ of ϕ over ∆[0,i] with ϕθ ∩ ∆i , ∅ :
04 θ′ = θ ∪ {~z 7→ ~n}, where ~n ⊆ N are fresh nulls
05 ∆i+1 = (∆i+1 ∪ ψθ′) \ ∆[0,i]

06 i = i + 1

The outer loop (function chase(Σ, I)) remains as before.
Markus Krötzsch, 21st June 2022 Database Theory slide 5 of 30

Termination

When introducing new nulls, the chase may fail to terminate.

Example 18.2: Consider the inclusion dependencies

Connect(x, y, z)→ ∃v.Lines(z, v)

Lines(x, y)→ ∃v, w.Connect(v, w, x)

The chase over the database with a single fact Lines(85, bus) produces facts
∆1 = {Connect(n1, n2, 85)}, ∆2 = {Lines(85, n3)}, ∆3 = {Connect(n4, n5, 85)},
∆4 = {Lines(85, n6)}, . . .

Even if the chase does not terminate, we may consider the countably infinite structure
that it produces in the limit. We define:

chase(Σ,I) =
⋃
i≥0

∆i

Markus Krötzsch, 21st June 2022 Database Theory slide 6 of 30

Termination

When introducing new nulls, the chase may fail to terminate.

Example 18.2: Consider the inclusion dependencies

Connect(x, y, z)→ ∃v.Lines(z, v)

Lines(x, y)→ ∃v, w.Connect(v, w, x)

The chase over the database with a single fact Lines(85, bus) produces facts
∆1 = {Connect(n1, n2, 85)}, ∆2 = {Lines(85, n3)}, ∆3 = {Connect(n4, n5, 85)},
∆4 = {Lines(85, n6)}, . . .

Even if the chase does not terminate, we may consider the countably infinite structure
that it produces in the limit. We define:

chase(Σ,I) =
⋃
i≥0

∆i

Markus Krötzsch, 21st June 2022 Database Theory slide 6 of 30

The chase is a model

Even an infinite chase is (conceptually) useful to solve reasoning problems.

Theorem 18.3: Consider a set Σ of tgds and a database I.
Then I ⊆ chase(Σ,I) and chase(Σ,I) |= Σ.

(Alternatively, we could consider I as a set of facts and state that chase(Σ,I) |= Σ ∪ I.)

Proof: Easy (suppose for a contradiction that it is not a model; conclude that some tgd
must be violated in a specific way; observe that this tgd would be applicable in this way
and must therefore already have been applied – contradiction). �

Markus Krötzsch, 21st June 2022 Database Theory slide 7 of 30

The chase is universal

An essential property of the chase is as follows:

Theorem 18.4: Consider a set Σ of tgds and a database I. If J ⊇ I is a
(possibly infinite) interpretation with J |= Σ then there is a homomorphism
µ : chase(Σ,I)→ J .

Proof: We construct µ inductively along the computation of the chase by building a
sequence of finite homomorphisms µ0 ⊆ µ1 ⊆ µ2 ⊆ . . . such that µi : ∆[0,i] → J .

• Initially, let µ0 be the identity mapping on I
• In step i, let ϕ→ ∃~z.ψ be a rule that contributes facts ψθ′ to ∆i+1 for the match θ

(extended to add new nulls)
– Then µi(ϕθ) ⊆ J by induction hypothesis, hence there is a corresponding

substitution σ : x 7→ µi(xθ) on J with ϕσ ⊆ J
– Since J |= Σ, we find an extension σ′ of σ such that ψσ′ ⊆ J
– If zθ′ = n is a new null introduced in ∆ this step, then let µi+1(n) = σ′(z).
– Let µi+1(t) = µi(t) for all t that occurred in ∆[0,i]

It is not hard to see that µ =
⋃

i≥0 µi is the required homomorphism. �

Markus Krötzsch, 21st June 2022 Database Theory slide 8 of 30

The chase is universal

An essential property of the chase is as follows:

Theorem 18.4: Consider a set Σ of tgds and a database I. If J ⊇ I is a
(possibly infinite) interpretation with J |= Σ then there is a homomorphism
µ : chase(Σ,I)→ J .

Proof: We construct µ inductively along the computation of the chase by building a
sequence of finite homomorphisms µ0 ⊆ µ1 ⊆ µ2 ⊆ . . . such that µi : ∆[0,i] → J .

• Initially, let µ0 be the identity mapping on I
• In step i, let ϕ→ ∃~z.ψ be a rule that contributes facts ψθ′ to ∆i+1 for the match θ

(extended to add new nulls)
– Then µi(ϕθ) ⊆ J by induction hypothesis, hence there is a corresponding

substitution σ : x 7→ µi(xθ) on J with ϕσ ⊆ J
– Since J |= Σ, we find an extension σ′ of σ such that ψσ′ ⊆ J
– If zθ′ = n is a new null introduced in ∆ this step, then let µi+1(n) = σ′(z).
– Let µi+1(t) = µi(t) for all t that occurred in ∆[0,i]

It is not hard to see that µ =
⋃

i≥0 µi is the required homomorphism. �

Markus Krötzsch, 21st June 2022 Database Theory slide 8 of 30

The chase is universal

An essential property of the chase is as follows:

Theorem 18.4: Consider a set Σ of tgds and a database I. If J ⊇ I is a
(possibly infinite) interpretation with J |= Σ then there is a homomorphism
µ : chase(Σ,I)→ J .

Proof: We construct µ inductively along the computation of the chase by building a
sequence of finite homomorphisms µ0 ⊆ µ1 ⊆ µ2 ⊆ . . . such that µi : ∆[0,i] → J .

• Initially, let µ0 be the identity mapping on I

• In step i, let ϕ→ ∃~z.ψ be a rule that contributes facts ψθ′ to ∆i+1 for the match θ
(extended to add new nulls)

– Then µi(ϕθ) ⊆ J by induction hypothesis, hence there is a corresponding
substitution σ : x 7→ µi(xθ) on J with ϕσ ⊆ J

– Since J |= Σ, we find an extension σ′ of σ such that ψσ′ ⊆ J
– If zθ′ = n is a new null introduced in ∆ this step, then let µi+1(n) = σ′(z).
– Let µi+1(t) = µi(t) for all t that occurred in ∆[0,i]

It is not hard to see that µ =
⋃

i≥0 µi is the required homomorphism. �

Markus Krötzsch, 21st June 2022 Database Theory slide 8 of 30

The chase is universal

An essential property of the chase is as follows:

Theorem 18.4: Consider a set Σ of tgds and a database I. If J ⊇ I is a
(possibly infinite) interpretation with J |= Σ then there is a homomorphism
µ : chase(Σ,I)→ J .

Proof: We construct µ inductively along the computation of the chase by building a
sequence of finite homomorphisms µ0 ⊆ µ1 ⊆ µ2 ⊆ . . . such that µi : ∆[0,i] → J .

• Initially, let µ0 be the identity mapping on I
• In step i, let ϕ→ ∃~z.ψ be a rule that contributes facts ψθ′ to ∆i+1 for the match θ

(extended to add new nulls)
– Then µi(ϕθ) ⊆ J by induction hypothesis, hence there is a corresponding

substitution σ : x 7→ µi(xθ) on J with ϕσ ⊆ J
– Since J |= Σ, we find an extension σ′ of σ such that ψσ′ ⊆ J
– If zθ′ = n is a new null introduced in ∆ this step, then let µi+1(n) = σ′(z).
– Let µi+1(t) = µi(t) for all t that occurred in ∆[0,i]

It is not hard to see that µ =
⋃

i≥0 µi is the required homomorphism. �

Markus Krötzsch, 21st June 2022 Database Theory slide 8 of 30

BCQ answering with the chase

Definition 18.5: A model J of a theory T that has a homomorphism into every
other model of T is called universal.

Note (for students of universal algebra): Universal models are initial objects in the
category of models of T with homomorphisms.

Observation 18.6: All universal models of T are homomorphically equivalent.

Theorem 18.7: A BCQ q is entailed from a database I and set of tgds Σ iff q has
a match with chase(Σ,I).

Proof: The “only if” direction follows since chase(Σ,I) is a model.

The “if” direction follows since chase(Σ,I) is universal: a match is a homomorphism
from variables of q into chase(Σ,I), which can be extended by a homomorphism
µ : chase(Σ,I)→ J to any other model J of Σ ∪ I. �

Markus Krötzsch, 21st June 2022 Database Theory slide 9 of 30

BCQ answering with the chase

Definition 18.5: A model J of a theory T that has a homomorphism into every
other model of T is called universal.

Note (for students of universal algebra): Universal models are initial objects in the
category of models of T with homomorphisms.

Observation 18.6: All universal models of T are homomorphically equivalent.

Theorem 18.7: A BCQ q is entailed from a database I and set of tgds Σ iff q has
a match with chase(Σ,I).

Proof: The “only if” direction follows since chase(Σ,I) is a model.

The “if” direction follows since chase(Σ,I) is universal: a match is a homomorphism
from variables of q into chase(Σ,I), which can be extended by a homomorphism
µ : chase(Σ,I)→ J to any other model J of Σ ∪ I. �

Markus Krötzsch, 21st June 2022 Database Theory slide 9 of 30

Semi-deciding BCQ entailment

The previous result yields a semi-decision procedure even if the chase does not
terminate:

Corrolary 18.8: BCQ entailment under constraints defined by sets of tgds is
semi-decidable.

Proof: If a BCQ is entailed by chase(Σ,I), then it has a match to a finite part
∆[0,i] ⊆ chase(Σ,I) for some chase step i. A semi-decision procedure therefore can
check for such matches while computing the chase. �

By the undecidability result, this is the best we can hope for in the general case.

However, one might hope for a finite chase in practical cases.

Markus Krötzsch, 21st June 2022 Database Theory slide 10 of 30

The chase revisited

The chase we specified so far is the oblivious chase. It tends to not terminate even in
simple cases.

A better approach is the restricted chase that includes an additional check (line 4):

function applyRules(Σ, ∆, i)

01 ∆i+1 = ∅

02 foreach (ϕ→ ∃~zψ) ∈ Σ :
03 foreach match θ of ϕ over ∆[0,i] with ϕθ ∩ ∆i , ∅ :
04 if ∆[0,i] 6|= ∃~z.ψθ :
05 θ′ = θ ∪ {~z 7→ ~n}, where ~n ⊆ N are fresh nulls
06 ∆i+1 = (∆i+1 ∪ ψθ′) \ ∆[0,i]

07 i = i + 1

The restricted chase still produces a universal model (by easy adaptation of our proofs)

Markus Krötzsch, 21st June 2022 Database Theory slide 11 of 30

Example

Example 18.9: Consider the inclusion dependencies as before:

Connect(x, y, z)→ ∃v.Lines(z, v)

Lines(x, y)→ ∃v, w.Connect(v, w, x)

The restricted chase over the database with a single fact Lines(85, bus) first pro-
duces facts ∆1 = {Connect(n1, n2, 85)}. In the next iteration, however, we find that
{Lines(85, bus)} |= ∃v.Lines(85, v), and hence ∆2 = ∅ and the chase terminates.

There are still cases where even the restricted chase does not terminate.

How can we know if this is the case?

Markus Krötzsch, 21st June 2022 Database Theory slide 12 of 30

Chase Termination

Markus Krötzsch, 21st June 2022 Database Theory slide 13 of 30

Chase Termination

If the chase terminates on a set Σ of tgds, then we can use it to decide query entailment
over Σ.

• Termination may happen for some database instances but not for others

• Termination on all instances is called universal termination

We cannot expect this good property to hold in general:

Theorem 18.10: The tgd p(x, y) → ∃z.p(y, z) over the database instance with fact
p(a, b) does not have a finite universal model.

Corollary: no chase that produces universal models can terminate in this case.

Proof: Any finite structure either has (a) p-chains of bounded length, or (b) a p-cycle. In
case (a), there is a BCQ for a longer p-chain that does not match (but that is entailed); in
case (b) there is a BCQ for a cycle that does match (but that is not entailed). Hence no
finite model can be universal. �

Markus Krötzsch, 21st June 2022 Database Theory slide 14 of 30

Chase Termination

If the chase terminates on a set Σ of tgds, then we can use it to decide query entailment
over Σ.

• Termination may happen for some database instances but not for others

• Termination on all instances is called universal termination

We cannot expect this good property to hold in general:

Theorem 18.10: The tgd p(x, y) → ∃z.p(y, z) over the database instance with fact
p(a, b) does not have a finite universal model.

Corollary: no chase that produces universal models can terminate in this case.

Proof: Any finite structure either has (a) p-chains of bounded length, or (b) a p-cycle. In
case (a), there is a BCQ for a longer p-chain that does not match (but that is entailed); in
case (b) there is a BCQ for a cycle that does match (but that is not entailed). Hence no
finite model can be universal. �

Markus Krötzsch, 21st June 2022 Database Theory slide 14 of 30

Chase Termination

If the chase terminates on a set Σ of tgds, then we can use it to decide query entailment
over Σ.

• Termination may happen for some database instances but not for others

• Termination on all instances is called universal termination

We cannot expect this good property to hold in general:

Theorem 18.10: The tgd p(x, y) → ∃z.p(y, z) over the database instance with fact
p(a, b) does not have a finite universal model.

Corollary: no chase that produces universal models can terminate in this case.

Proof: Any finite structure either has (a) p-chains of bounded length, or (b) a p-cycle. In
case (a), there is a BCQ for a longer p-chain that does not match (but that is entailed); in
case (b) there is a BCQ for a cycle that does match (but that is not entailed). Hence no
finite model can be universal. �

Markus Krötzsch, 21st June 2022 Database Theory slide 14 of 30

Chase termination is difficult

Theorem 18.11: The question if the (restricted or oblivious) chase terminates on
a set of tgds Σ and database I is undecidable.

Proof: By the same proof as for the undecidability of BCQ entailment (Theorem 18.17):

• Simulate a deterministic TM in tgds

• The simulation will terminate iff the DTM halts �

Note 1: If the DTM does not halt, the universal model must contain an infinite
forward-directed chain of successor configurations. Then, as in Example 18.10, we find
that no finite model can be universal. Hence the argument extends to any chase
procedure.

Note 2: Termination is clearly semi-decidable (just run the chase).

Markus Krötzsch, 21st June 2022 Database Theory slide 15 of 30

Chase termination is difficult

Theorem 18.11: The question if the (restricted or oblivious) chase terminates on
a set of tgds Σ and database I is undecidable.

Proof: By the same proof as for the undecidability of BCQ entailment (Theorem 18.17):

• Simulate a deterministic TM in tgds

• The simulation will terminate iff the DTM halts �

Note 1: If the DTM does not halt, the universal model must contain an infinite
forward-directed chain of successor configurations. Then, as in Example 18.10, we find
that no finite model can be universal. Hence the argument extends to any chase
procedure.

Note 2: Termination is clearly semi-decidable (just run the chase).

Markus Krötzsch, 21st June 2022 Database Theory slide 15 of 30

Chase termination is difficult

Theorem 18.11: The question if the (restricted or oblivious) chase terminates on
a set of tgds Σ and database I is undecidable.

Proof: By the same proof as for the undecidability of BCQ entailment (Theorem 18.17):

• Simulate a deterministic TM in tgds

• The simulation will terminate iff the DTM halts �

Note 1: If the DTM does not halt, the universal model must contain an infinite
forward-directed chain of successor configurations. Then, as in Example 18.10, we find
that no finite model can be universal. Hence the argument extends to any chase
procedure.

Note 2: Termination is clearly semi-decidable (just run the chase).

Markus Krötzsch, 21st June 2022 Database Theory slide 15 of 30

Universal chase termination
The situation for universal termination is more complicated.

Oblivious chase termination over arbitrary database instance is equivalent to termination
over a special critical instance:

Proposition 18.12: Consider a set Σ of tgds. The oblivious chase terminates
over Σ on all instances iff it terminates over the following critical instance I?:

• ∆I? = {?},

• for every n-ary predicate symbol p in Σ, pI? = ?n.

Proof: Based on the following simple observation:

Any homomorphism µ : I → J between two database instances extends to a
homomorphism µ : chase(Σ,I)→ chase(Σ,J) such that µ−(δ) is a finite set for all δ ∈ ∆J .

This can be shown by inductive construction of this extended homomorphism along the
chase.

In particular, if chase(Σ,J) is finite, so is chase(Σ,I).

The claim follows since every instance has a (unique, obvious) homomorphism to I?. �

Markus Krötzsch, 21st June 2022 Database Theory slide 16 of 30

Universal chase termination
The situation for universal termination is more complicated.

Oblivious chase termination over arbitrary database instance is equivalent to termination
over a special critical instance:

Proposition 18.12: Consider a set Σ of tgds. The oblivious chase terminates
over Σ on all instances iff it terminates over the following critical instance I?:

• ∆I? = {?},

• for every n-ary predicate symbol p in Σ, pI? = ?n.

Proof: Based on the following simple observation:

Any homomorphism µ : I → J between two database instances extends to a
homomorphism µ : chase(Σ,I)→ chase(Σ,J) such that µ−(δ) is a finite set for all δ ∈ ∆J .

This can be shown by inductive construction of this extended homomorphism along the
chase.

In particular, if chase(Σ,J) is finite, so is chase(Σ,I).

The claim follows since every instance has a (unique, obvious) homomorphism to I?. �
Markus Krötzsch, 21st June 2022 Database Theory slide 16 of 30

Deciding universal termination?

Deciding universal oblivious chase termination could be easier than deciding chase
termination on arbitrary instances:

• The reduction from DTM halting does not work, since the encoding is not correct
on I?.

• Indeed, in common DTM encodings, I? will fail to terminate, even if a particular
input is accepted.

However, showing undecidability merely turns out to be much more work:

Theorem 18.13 (Gogacz & Marcinkowski 2014): Universal termination of the
oblivious chase is undecidable.

As before, we obtain semi-decidability (just run the chase on the critical instance)

Markus Krötzsch, 21st June 2022 Database Theory slide 17 of 30

Deciding universal termination?

Deciding universal oblivious chase termination could be easier than deciding chase
termination on arbitrary instances:

• The reduction from DTM halting does not work, since the encoding is not correct
on I?.

• Indeed, in common DTM encodings, I? will fail to terminate, even if a particular
input is accepted.

However, showing undecidability merely turns out to be much more work:

Theorem 18.13 (Gogacz & Marcinkowski 2014): Universal termination of the
oblivious chase is undecidable.

As before, we obtain semi-decidability (just run the chase on the critical instance)

Markus Krötzsch, 21st June 2022 Database Theory slide 17 of 30

Sufficient conditions for termination

Undecidability of termination:
There is no algorithm that recognises exactly the cases where a chase terminates.

Can we still find algorithms that recognises many of the “relevant” cases?

{ Acyclicity conditions

Observation 18.14: If a set of tgds is non-recursive (in the sense that the
predicate-dependency graph has no cycles), then the chase universally termi-
nates.

One also speaks of acyclic tgds in this case.

Markus Krötzsch, 21st June 2022 Database Theory slide 18 of 30

Sufficient conditions for termination

Undecidability of termination:
There is no algorithm that recognises exactly the cases where a chase terminates.

Can we still find algorithms that recognises many of the “relevant” cases?
{ Acyclicity conditions

Observation 18.14: If a set of tgds is non-recursive (in the sense that the
predicate-dependency graph has no cycles), then the chase universally termi-
nates.

One also speaks of acyclic tgds in this case.

Markus Krötzsch, 21st June 2022 Database Theory slide 18 of 30

Sufficient conditions for termination

Undecidability of termination:
There is no algorithm that recognises exactly the cases where a chase terminates.

Can we still find algorithms that recognises many of the “relevant” cases?
{ Acyclicity conditions

Observation 18.14: If a set of tgds is non-recursive (in the sense that the
predicate-dependency graph has no cycles), then the chase universally termi-
nates.

One also speaks of acyclic tgds in this case.

Markus Krötzsch, 21st June 2022 Database Theory slide 18 of 30

Weak acyclicity

Acyclicity is very restrictive. A more liberal condition is based on tracing dependencies
between predicate positions:

Definition 18.15: A predicate position is a pair 〈p, i〉 where p is a predicate sym-
bol and i ∈ {1, . . . , arity(p)}. Given an atom p(t1, . . . , tn), the term at position 〈p, i〉
is ti. The dependency graph of a tgd set Σ has the set of all positions in predi-
cates of Σ as its nodes.

For every rule ρ, and every variable x at position 〈p, i〉 in the head of ρ, the graph
contains the following edges:

• If x is universally quantified and occurs at position 〈q, j〉 in the body of ρ, then
there is an edge 〈q, j〉 → 〈p, i〉.

• If x is existentially quantified and another variable y occurs at position 〈q, j〉 in
the body of ρ, then there is a special edge 〈q, j〉 ⇒ 〈p, i〉.

Σ is weakly acyclic if its dependency graph does not contain a cycle that involves
a special edge.

Markus Krötzsch, 21st June 2022 Database Theory slide 19 of 30

Weak acyclicity (2)

Example 18.16: The following tgd set is weakly acyclic yet recursive:

q(x)→ ∃v.p(x, v)

p(x, y)→ q(x)

Weak acyclicity is easy to check:

Theorem 18.17: Whether Σ is weakly acyclic is NL-complete.

Proof: The problem can be solved in NL using a variation of the usual NL reachability
algorithm. It is NL-hard by an easy reduction from directed graph reachability. �

Markus Krötzsch, 21st June 2022 Database Theory slide 20 of 30

Weak acyclicity (2)

Example 18.16: The following tgd set is weakly acyclic yet recursive:

q(x)→ ∃v.p(x, v)

p(x, y)→ q(x)

Weak acyclicity is easy to check:

Theorem 18.17: Whether Σ is weakly acyclic is NL-complete.

Proof: The problem can be solved in NL using a variation of the usual NL reachability
algorithm. It is NL-hard by an easy reduction from directed graph reachability. �

Markus Krötzsch, 21st June 2022 Database Theory slide 20 of 30

Chase termination under weak acyclicity

Theorem 18.18: If Σ is weakly acyclic then the oblivious (and the restricted)
chase universally terminates over Σ.

To show this, we make a small change of perspective:

Definition 18.19: The naive skolemisation of a tgd ∀~x,~y.ϕ[~x,~y] → ∃~z.ψ[~x,~z] is
obtained by replacing each existential variable z ∈ ~z with a function term fz(~x,~y),
where fz is a fresh skolem function symbol of arity |~x| + |~y|.

The chase can be performed using the naive skolemisation of all tgds, and using
function terms instead of labelled nulls. The result is isomorphic to the oblivious chase.

Proof (of Thm. 18.18): If the oblivious chase is infinite, then so is the naive skolem
chase. Then the naive skolem chase uses infinitely many functional terms.

Hence there is a term of the form fz(t1, . . . , t`) where fz occurs nested within one of the
terms ti. It is easy to show that the sequence of rule applications that leads to such a
term induces a cycle in the dependency graph through a special edge. �

Markus Krötzsch, 21st June 2022 Database Theory slide 21 of 30

Chase termination under weak acyclicity

Theorem 18.18: If Σ is weakly acyclic then the oblivious (and the restricted)
chase universally terminates over Σ.

To show this, we make a small change of perspective:

Definition 18.19: The naive skolemisation of a tgd ∀~x,~y.ϕ[~x,~y] → ∃~z.ψ[~x,~z] is
obtained by replacing each existential variable z ∈ ~z with a function term fz(~x,~y),
where fz is a fresh skolem function symbol of arity |~x| + |~y|.

The chase can be performed using the naive skolemisation of all tgds, and using
function terms instead of labelled nulls. The result is isomorphic to the oblivious chase.

Proof (of Thm. 18.18): If the oblivious chase is infinite, then so is the naive skolem
chase. Then the naive skolem chase uses infinitely many functional terms.

Hence there is a term of the form fz(t1, . . . , t`) where fz occurs nested within one of the
terms ti. It is easy to show that the sequence of rule applications that leads to such a
term induces a cycle in the dependency graph through a special edge. �

Markus Krötzsch, 21st June 2022 Database Theory slide 21 of 30

Chase termination under weak acyclicity

Theorem 18.18: If Σ is weakly acyclic then the oblivious (and the restricted)
chase universally terminates over Σ.

To show this, we make a small change of perspective:

Definition 18.19: The naive skolemisation of a tgd ∀~x,~y.ϕ[~x,~y] → ∃~z.ψ[~x,~z] is
obtained by replacing each existential variable z ∈ ~z with a function term fz(~x,~y),
where fz is a fresh skolem function symbol of arity |~x| + |~y|.

The chase can be performed using the naive skolemisation of all tgds, and using
function terms instead of labelled nulls. The result is isomorphic to the oblivious chase.

Proof (of Thm. 18.18): If the oblivious chase is infinite, then so is the naive skolem
chase. Then the naive skolem chase uses infinitely many functional terms.

Hence there is a term of the form fz(t1, . . . , t`) where fz occurs nested within one of the
terms ti. It is easy to show that the sequence of rule applications that leads to such a
term induces a cycle in the dependency graph through a special edge. �

Markus Krötzsch, 21st June 2022 Database Theory slide 21 of 30

Side remark: The Skolem chase
Using a less naive skolemisation improves the chase:
• For skolemisation, replace existential variables z by functional terms fz(~x) that

depend only on frontier variables ~x
• Use the resulting skolem terms during the oblivious chase instead of named nulls
{ skolem chase

• Weak acyclicity can be adapted to the skolem chase: in case 2, do not create
special edges from positions of non-frontier variables

Example 18.20: Consider the tgd p(x, y) → ∃z.p(x, z). It is weakly acyclic with the
modified definition, but not with our initial one. Over a fact p(a, b), the oblivious
chase would not terminate, but produce facts p(a, b), p(a, n1), p(a, n2), . . .

In contrast, the skolem chase is based on the (non-naive) skolemisation p(x, y) →
p(x, f (x)), and therefore produces only the facts p(a, b) and p(a, f (a)).

In general, the skolem chase terminates in more cases than the oblivious chase, and the
restricted chase terminates in more cases than the skolem chase. All chases produce
universal models.
Markus Krötzsch, 21st June 2022 Database Theory slide 22 of 30

Reasoning in weakly acyclic tgds
The chase can be used for reasoning as it will terminate.

However, this may still take a while:

Theorem 18.21 (Calí, Gottlob, Pieris 2010): The chase on a set Σ of weakly
acyclic tgds may be of double exponential size in the size Σ. Deciding BCQ entail-
ment over weakly acyclic tgds is 2ExpTime-complete for combined complexity and
P-complete for data complexity.

Proof (sketch): Termination within doubly-exponential time (polynomial time for data
complexity) can be obtained from the proof of termination (estimate maximal number of function terms

without repeated symbols; estimate maximal number of unique facts that can be derived; conclude upper bound).

2ExpTime-hardness can be shown by simulating a doubly exponentially time bounded
deterministic TM using weakly acyclic tgds. The key is to define a chain of doubly
exponential length that can then be used for modelling time and space in a standard TM
simulation (as seen in this course).

P-hardness follows from the P-hardness of full tgds (Datalog). �

Markus Krötzsch, 21st June 2022 Database Theory slide 23 of 30

Reasoning in weakly acyclic tgds
The chase can be used for reasoning as it will terminate.

However, this may still take a while:

Theorem 18.21 (Calí, Gottlob, Pieris 2010): The chase on a set Σ of weakly
acyclic tgds may be of double exponential size in the size Σ. Deciding BCQ entail-
ment over weakly acyclic tgds is 2ExpTime-complete for combined complexity and
P-complete for data complexity.

Proof (sketch): Termination within doubly-exponential time (polynomial time for data
complexity) can be obtained from the proof of termination (estimate maximal number of function terms

without repeated symbols; estimate maximal number of unique facts that can be derived; conclude upper bound).

2ExpTime-hardness can be shown by simulating a doubly exponentially time bounded
deterministic TM using weakly acyclic tgds. The key is to define a chain of doubly
exponential length that can then be used for modelling time and space in a standard TM
simulation (as seen in this course).

P-hardness follows from the P-hardness of full tgds (Datalog). �
Markus Krötzsch, 21st June 2022 Database Theory slide 23 of 30

Building long chains with weakly acyclic tgds

Key idea [Calí, Gottlob, Pieris 2010]: For k ≥ 0, we construct a tape of length 22k
using

a tgd set of size proportional to k. An initial chain of two elements is defined by the facts:

r0(c0), r0(c1), succ0(c0, c1), min0(c0), max0(c1).

The following rules are organised in layers i ∈ {0, . . . , k − 1}, where each layer combines
already constructed elements to construct larger chains:

ri(x) ∧ ri(y)→ ∃z.si(x, y, z)

si(x, y, z)→ ri+1(z)

si(x, y, z) ∧ si(x, y′, z′) ∧ succi(y, y′)→ succi+1(z, z′)

si(x, y, z) ∧ si(x′, y′, z′) ∧maxi(y) ∧mini(y′) ∧ succi(x, x′)→ succi+1(z, z′)

mini(x) ∧ si(x, x, y)→ mini+1(y)

maxi(x) ∧ si(x, x, y)→ maxi+1(y)

Markus Krötzsch, 21st June 2022 Database Theory slide 24 of 30

Beyond weak acyclicity
Weak acyclicity is not perfect . . .

Example 18.22: The following tgd is not weakly acyclic:

q(x) ∧ p(x)→ ∃v.r(x, v) ∧ q(v)

Nevertheless, the oblivious chase terminates universally.

Intuitively, the example terminates since the new null for v does not jointly occur in 〈p, 1〉
and 〈q, 1〉.

Many generalisations of weak acyclicity were proposed:

• joint acyclicity (directly addressing the above)
• super-weak acyclicity
• acyclic graph of rule dependencies
• model-summarising and model-faithful acyclicity
• (and many less general conditions in specific areas)

Markus Krötzsch, 21st June 2022 Database Theory slide 25 of 30

Beyond weak acyclicity
Weak acyclicity is not perfect . . .

Example 18.22: The following tgd is not weakly acyclic:

q(x) ∧ p(x)→ ∃v.r(x, v) ∧ q(v)

Nevertheless, the oblivious chase terminates universally.

Intuitively, the example terminates since the new null for v does not jointly occur in 〈p, 1〉
and 〈q, 1〉.

Many generalisations of weak acyclicity were proposed:

• joint acyclicity (directly addressing the above)
• super-weak acyclicity
• acyclic graph of rule dependencies
• model-summarising and model-faithful acyclicity
• (and many less general conditions in specific areas)

Markus Krötzsch, 21st June 2022 Database Theory slide 25 of 30

Other acyclicities

Advanced acyclicity conditions are hard to check:

• P-complete: joint acyclicity and super-weak acyclicity

• NP-complete: acyclic graph of rule dependencies

• ExpTime-complete: model-summarising

• 2ExpTime-complete: model-faithful acyclicity

and they capture more and more tgd sets.

Nevertheless, all of these increasingly general notions lead to classes of tgds with the
same expressivity (lossless transformation to weakly acyclic tgds possible)

Complexity of reasoning is also the same in all cases (2ExpTime combined and P data).

Markus Krötzsch, 21st June 2022 Database Theory slide 26 of 30

Restricted Chase Termination

Markus Krötzsch, 21st June 2022 Database Theory slide 27 of 30

Restricted chase termination
Many results also apply to the restricted chase:
• Termination on a specific instance is undecidable (same reduction)
• Query answering under common acyclicty conditions is 2ExpTime-complete (same

reduction)

However, there is a new complication:

Example 18.23: Consider an instance I with fact p(a, b) and the following tgds:

p(x, y)→ p(y, x) p(x, y)→ ∃v.p(y, v)

Applying the first tgd to I, we obtain the set {p(a, b), p(b, a)}, which is a universal
model. The restricted chase terminates.

However, if we apply the second tgd before the first, we can generate facts
p(a, b), p(b, n1), p(b, a), p(n1.n2), p(n1, b), p(n2, n3), . . .
The restricted chase does not terminate.

Observation: restricted chase termination depends on the order of rule applications

Markus Krötzsch, 21st June 2022 Database Theory slide 28 of 30

Restricted chase termination
Many results also apply to the restricted chase:
• Termination on a specific instance is undecidable (same reduction)
• Query answering under common acyclicty conditions is 2ExpTime-complete (same

reduction)

However, there is a new complication:

Example 18.23: Consider an instance I with fact p(a, b) and the following tgds:

p(x, y)→ p(y, x) p(x, y)→ ∃v.p(y, v)

Applying the first tgd to I, we obtain the set {p(a, b), p(b, a)}, which is a universal
model. The restricted chase terminates.

However, if we apply the second tgd before the first, we can generate facts
p(a, b), p(b, n1), p(b, a), p(n1.n2), p(n1, b), p(n2, n3), . . .
The restricted chase does not terminate.

Observation: restricted chase termination depends on the order of rule applications
Markus Krötzsch, 21st June 2022 Database Theory slide 28 of 30

Universal restricted chase termination
The critical instance is not useful for universal termination of the restricted chase:

Observation 18.24: The restricted chase always terminates over the critical in-
stance, for any set of tgds.

Universal restricted chase termination is still undecidable [Gogacz & Marcinkowski
2014]. Few bespoke termination conditions exist [Carral, Dragoste, Krötzsch; IJCAI’17].

Interestingly, there is still a big difference in expressivity between the terminating
oblivious/skolem chase and the terminating restricted chase:

Theorem 18.25: A tgd set Σ and BCQ q express an (abstract) Boolean query Q.

• If the skolem chase universally terminates over Σ, then Q is in P [Marnette,
PODS’09], closed under homomorphisms, and can be expressed in Datalog
[Zhang, Zhang, You; AAAI’15]. The same holds for the oblivious chase.

• Every decidable Q that is closed under homomorphisms is expressed by a
set of tgds Σ and a BCQ q such that the restricted chase universally
terminates over Σ [Borgaux, Carral, Krötzsch, Rudolph, Thomazo; KR’21].

Markus Krötzsch, 21st June 2022 Database Theory slide 29 of 30

Universal restricted chase termination
The critical instance is not useful for universal termination of the restricted chase:

Observation 18.24: The restricted chase always terminates over the critical in-
stance, for any set of tgds.

Universal restricted chase termination is still undecidable [Gogacz & Marcinkowski
2014]. Few bespoke termination conditions exist [Carral, Dragoste, Krötzsch; IJCAI’17].

Interestingly, there is still a big difference in expressivity between the terminating
oblivious/skolem chase and the terminating restricted chase:

Theorem 18.25: A tgd set Σ and BCQ q express an (abstract) Boolean query Q.

• If the skolem chase universally terminates over Σ, then Q is in P [Marnette,
PODS’09], closed under homomorphisms, and can be expressed in Datalog
[Zhang, Zhang, You; AAAI’15]. The same holds for the oblivious chase.

• Every decidable Q that is closed under homomorphisms is expressed by a
set of tgds Σ and a BCQ q such that the restricted chase universally
terminates over Σ [Borgaux, Carral, Krötzsch, Rudolph, Thomazo; KR’21].

Markus Krötzsch, 21st June 2022 Database Theory slide 29 of 30

Universal restricted chase termination
The critical instance is not useful for universal termination of the restricted chase:

Observation 18.24: The restricted chase always terminates over the critical in-
stance, for any set of tgds.

Universal restricted chase termination is still undecidable [Gogacz & Marcinkowski
2014]. Few bespoke termination conditions exist [Carral, Dragoste, Krötzsch; IJCAI’17].

Interestingly, there is still a big difference in expressivity between the terminating
oblivious/skolem chase and the terminating restricted chase:

Theorem 18.25: A tgd set Σ and BCQ q express an (abstract) Boolean query Q.

• If the skolem chase universally terminates over Σ, then Q is in P [Marnette,
PODS’09], closed under homomorphisms, and can be expressed in Datalog
[Zhang, Zhang, You; AAAI’15]. The same holds for the oblivious chase.

• Every decidable Q that is closed under homomorphisms is expressed by a
set of tgds Σ and a BCQ q such that the restricted chase universally
terminates over Σ [Borgaux, Carral, Krötzsch, Rudolph, Thomazo; KR’21].

Markus Krötzsch, 21st June 2022 Database Theory slide 29 of 30

Summary and Outlook

The chase is an important approach for reasoning over dependencies

The oblivious chase introduces more redundant nulls than the restricted chase

Chase termination allows us to decide BCQ answering

Several sufficient acyclicity conditions can be used for showing chase termination

The terminating restricted chase can express any decidable, homomorphism-closed
computation on a databases

Next topics:

• More languages of tgds with decidable entailment problems

• Outlook

Markus Krötzsch, 21st June 2022 Database Theory slide 30 of 30

