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Abstract

Computing least common subsumers (lcs) and most
specific concepts (msc) are inference tasks that can
support the bottom-up construction of knowledge
bases in description logics. In description logics
with existential restrictions, the most specific con-
cept need not exist if one restricts the attention to
concept descriptions or acyclic TBoxes. In this pa-
per, we extend the notions lcs and msc to cyclic
TBoxes. For the description logic

���
(which al-

lows for conjunctions, existential restrictions, and
the top-concept), we show that the lcs and msc al-
ways exist and can be computed in polynomial time
if we interpret cyclic definitions with greatest fix-
point semantics.

1 Introduction
Computing the most specific concept of an individual and
the least common subsumer of concepts can be used in the
bottom-up construction of description logic (DL) knowledge
bases. Instead of defining the relevant concepts of an ap-
plication domain from scratch, this methodology allows the
user to give typical examples of individuals belonging to the
concept to be defined. These individuals are then general-
ized to a concept by first computing the most specific concept
of each individual (i.e., the least concept description in the
available description language that has this individual as an
instance), and then computing the least common subsumer of
these concepts (i.e., the least concept description in the avail-
able description language that subsumes all these concepts).
The knowledge engineer can then use the computed concept
as a starting point for the concept definition.

The least common subsumer (lcs) in DLs with existential
restrictions was investigated in [Baader et al., 1999]. In par-
ticular, it was shown there that the lcs in the small DL

���
(which allows for conjunctions, existential restrictions, and
the top-concept) always exists, and that the binary lcs can be
computed in polynomial time. Unfortunately, the most spe-
cific concept (msc) of a given ABox individual need not exist
in languages allowing for existential restrictions or number
restrictions. As a possible solution to this problem, Küsters
�
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and Molitor [2001] show how the most specific concept can
be approximated in

���
and some of its extensions. Here, we

follow an alternative approach: we extend the language by
cyclic terminologies with greatest fixpoint (gfp) semantics,
and show that the msc always exists in this setting. Of course,
then one must also be able to compute the lcs w.r.t. cyclic ter-
minologies with gfp-semantics. For the DL � ��� (which al-
lows for conjunctions, value restrictions, and number restric-
tions) it was shown in [Baader and Küsters, 1998] that the
most specific concept always exists if one adds cyclic con-
cept definitions with gfp-semantics. One reason for Küsters
and Molitor to choose an approximation approach rather than
an exact characterization of the most specific concept using
cyclic definitions was that the impact of cyclic definitions in
description logics with existential restrictions was largely un-
explored.

The paper [Baader, 2003a] is a first step toward overcom-
ing this deficit. It considers cyclic terminologies in

���
w.r.t.

the three types of semantics (greatest fixpoint, least fixpoint,
and descriptive semantics) introduced by Nebel [1991], and
shows that the subsumption problem can be decided in poly-
nomial time in all three cases. This is in stark contrast to the
case of DLs with value restrictions. Even for the small DL� �
	

(which allows conjunctions and value restrictions only),
adding cyclic terminologies increases the complexity of the
subsumption problem from polynomial (for concept descrip-
tions) to PSPACE. The main tool in the investigation of cyclic
definitions in

���
is a characterization of subsumption through

the existence of so-called simulation relations on the graph
associated with an

���
-terminology, which can be computed

in polynomial time [Henzinger et al., 1995].
This characterization of subsumption can be used to char-

acterize the lcs w.r.t. gfp-semantics via the product of this
graph with itself (Section 4). This shows that, w.r.t. gfp se-
mantics, the lcs always exists, and that the binary lcs can be
computed in polynomial time. (The � -ary lcs may grow ex-
ponentially even in

���
without cyclic terminologies [Baader

et al., 1999].)
The characterization of subsumption w.r.t. gfp-semantics

can be extended to the instance problem in
���

. This allows
us to show that the msc in

���
with cyclic terminologies inter-

preted with gfp semantics always exists, and can be computed
in polynomial time (Section 5).

In the next section, we introduce
���

with cyclic terminolo-
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Name Syntax Semantics

concept name � ���������
role name � �	�
�����
�
���
top-concept � ���
conjunction 
���� 
 ��� � �
exist. restriction ����� 
 �	���������! "�$#%�'&)(
� ��* �+(,
 �.-
concept definition �0/1� � �+2 � �
individual name a 3 � (�� �
concept assertion �� "3!& 34��(,�5�
role assertion �6 "37#98:&  "3 � #;8 � &<(
� �

Table 1: Syntax and semantics of
� �

.

gies as well as the lcs and the msc. Then we recall the impor-
tant definitions and results from [Baader, 2003a]. Section 4
formulates and proves the new results for the lcs, and Sec-
tion 5 does the same for the msc.

2 Cyclic terminologies, least common
subsumers, and most specific concepts

Concept descriptions are inductively defined with the help
of a set of constructors, starting with a set =�> of concept
names and a set =
? of role names. The constructors deter-
mine the expressive power of the DL. In this paper, we restrict
the attention to the DL

���
, whose concept descriptions are

formed using the constructors top-concept ( @ ), conjunction
( ACBED ), and existential restriction ( F7G4H A ). The semantics of���

-concept descriptions is defined in terms of an interpreta-
tion IKJMLONQP<R�S PUT . The domain N+P of I is a non-empty set
of individuals and the interpretation function S P maps each
concept name VXWY= > to a subset V P of N P and each role
GZW[= ? to a binary relation G�P on NQP . The extension of
S P to arbitrary concept descriptions is inductively defined, as
shown in the third column of Table 1.

A terminology (or TBox for short) is a finite set of con-
cept definitions of the form V]\^D , where V is a concept
name and D a concept description. In addition, we require
that TBoxes do not contain multiple definitions, i.e., there
cannot be two distinct concept descriptions D`_ and D
a such
that both Vb\[D _ and V[\[D a belongs to the TBox. Con-
cept names occurring on the left-hand side of a definition are
called defined concepts. All other concept names occurring
in the TBox are called primitive concepts. Note that we al-
low for cyclic dependencies between the defined concepts,
i.e., the definition of V may refer (directly or indirectly) to
V itself. An interpretation I is a model of the TBox c iff
it satisfies all its concept definitions, i.e., V P JdD P for all
definitions VK\eD in c .

An ABox is a finite set of assertions of the form V�Lgf.T and
G7LgfhRji�T , where V is a concept name, G is a role name, and
fhRji are individual names from a set =,k . Interpretations of
ABoxes must additionally map each individual name fEWl=�k
to an element f P of N P . An interpretation I is a model of the
ABox � iff it satisfies all its assertions, i.e., f P W�V P for all
concept assertions V�Lgf.T in � and LOf P Rji P T�WYG P for all role
assertions G7LgfhRminT in � . The interpretation I is a model of the
ABox � together with the TBox c iff it is a model of both c
and � .

The semantics of (possibly cyclic)
���

-TBoxes we have de-
fined above is called descriptive semantic by Nebel [1991].
For some applications, it is more appropriate to interpret
cyclic concept definitions with the help of a fixpoint seman-
tics.

Example 1 To illustrate this, let us recall an example from
[Baader, 2003a]: oqpsr't'uv\xwyr!t'u�B`F.unt6z6u4H{o|psr!t6u�H

Here the intended interpretations are graphs where we have
nodes (elements of the concept wyr!t6u ) and edges (represented
by the role unt6z6u ), and we want to define the concept o|psr!t6u
of all nodes lying on an infinite (possibly cyclic) path of the
graph. In order to capture this intuition, the above definition
must be interpreted with greatest fixpoint semantics.

Before we can define greatest fixpoint semantics (gfp-
semantics), we must introduce some notation. Let c be an���

-TBox containing the roles = r }�~|� , the primitive concepts
= p �j�q� , and the defined concepts = d �;� Jd��V _ R�HnHnH�R�V��'� . A
primitive interpretations � for c is given by a domain N�� ,
an interpretation of the roles GYW�= r }�~|� by binary relations
G�� on N
� , and an interpretation of the primitive concepts� W�= p �j�q� by subsets

� � of N
� . Obviously, a primitive
interpretation differs from an interpretation in that it does not
interpret the defined concepts in = d �;� . We say that the in-
terpretation I is based on the primitive interpretation � iff
it has the same domain as � and coincides with � on = r }�~|�
and = p �j�q� . For a fixed primitive interpretation � , the inter-
pretations I based on it are uniquely determined by the tuple
LgV P _ RnH�HnH�R�V P � T of the interpretations of the defined concepts in
= d �;� . We define

I ���:LO�`T���J��jIe�:I is an interpretation based on ���6H
Interpretations based on � can be compared by the following
ordering, which realizes a pairwise inclusion test between the
respective interpretations of the defined concepts: if Iy_4R�IUa�W
I ���jL��`T , then

I)_�� � IUa iff V P6��]� V P4�� for all �mRn�������C ¡H
It is easy to see that � � induces a complete lattice on I ���:L��`T ,
i.e., every subset of I ���:LO�`T has a least upper bound (lub) and
a greatest lower bound (glb). Using Tarski’s fixpoint theorem
[Tarski, 1955] for complete lattices, it is not hard to show
[Nebel, 1991] that, for a given primitive interpretation � ,
there always is a greatest (w.r.t. � � ) model of c based on � .
We call this models the greatest fixpoint model (gfp-model)
of c . Greatest fixpoint semantics considers only gfp-models
as admissible models.

Definition 2 Let c be an
� �

-TBox and � an
���

-ABox, let
VQRj¢ be defined concepts occurring in c , and f an individual
name occurring in � . Then,
£ V is subsumed by ¢ w.r.t. gfp-semantics ( Vx¤ g �n¥s¦ § ¢ )

iff V P � ¢ P holds for all gfp-models I of c .
£ f is an instance of V w.r.t. gfp-semantics ( �¨�J�© �n¥s¦ §
V�Lgf.T ) iff f P W1V P holds for all models I of � that are
gfp-models of c .

On the level of concept descriptions, the least common sub-
sumer of two concept descriptions A�RjD is the least concept
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description � that subsumes both A and D . An extensions
of this definition to the level of (possibly cyclic) TBoxes is
not completely trivial. In fact, assume that V _ R�V a are con-
cepts defined in the TBox c . It should be obvious that taking
as the lcs of V�_4R�V�a the least defined concept ¢ in c such
that V�_�¤ g �n¥�¦ § ¢ and V�a ¤ g �n¥s¦ § ¢ is too weak since the
lcs would then strongly depend on what other defined con-
cepts are already present in c . However, a second approach
(which might look like the obvious generalization of the def-
inition of the lcs in the case of concept descriptions) is also
not quite satisfactory. We could say that the lcs of V _ R�V a is
the least concept description A (possibly using defined con-
cepts of c ) such that V�_
¤ g �n¥s¦ § A and V�aE¤ g �	¥s¦ § A . The
problem is that this definition does not allow us to use the
expressive power of cyclic definitions (with gfp-semantics)
when constructing the lcs. For example, consider the TBox
c consisting of the following concept definitions:����� u6o|psr!t6u \ ����� u B wyr!t'u�B`F.unt6z6u4H ����� u6o|psr!t6u6R� unthoqp�r!t'u \ � unt B wyr!t6u�BlF7u�t�z'u4H � u�t$oqp�r!t'u4H
The intended interpretation is similar to the one in Example 1,
with the only difference that now nodes may have colors,
and we are interested in blue (red) nodes lying on an infi-
nite path consisting of blue (red) nodes. Intuitively, the lcs
of
����� u6o|psr!t6u and

� u�t$oqp�r!t'u describes nodes lying on an in-
finite path (without any restriction on their color), i.e., the
concept oqp�r!t'u from Example 1 should be a definition of this
lcs. However, this cannot be expressed by a simple concept
description. It requires a new cyclic definition.

Consequently, to obtain the lcs we must allow the origi-
nal TBox to be extended by new definitions. We say that
the TBox c a is a conservative extension of the TBox c _ iff
c _ � c a and c _ and c a have the same primitive concepts and
roles. Thus, c.a may contain new definitions VK\ D , but then
D does not introduce new primitive concepts and roles (i.e.,
all of them already occur in c _ ), and V is a new concept name
(i.e., V does not occur in c _ ). The name “conservative exten-
sion” is justified by the fact that the new definitions in c a do
not influence the subsumption relationships between defined
concepts in c _ (see [Baader, 2002] for a proof).

Lemma 3 Let c _�R�c7a be
���

-TBoxes such that c.a is a conser-
vative extension of c$_ , and let V+R�¢ be defined concepts in ch_
(and thus also in c a ). Then V�¤ g �n¥�¦ § � ¢ iff V�¤ g �n¥�¦ § � ¢ .

Definition 4 Let c$_ be an
���

-TBox containing the defined
concepts VQRj¢ , and let c.a be a conservative extension of ch_
containing the new defined concept � . Then � in c a is a least
common subsumer of V+R�¢ in c _ w.r.t. gfp-semantics (gfp-lcs)
iff the following two conditions are satisfied:

1. V�¤ g �n¥s¦ § � � and ¢[¤ g �n¥4¦ § � � .

2. If c�� is a conservative extension of c.a and 	 a defined
concept in c
� such that V ¤ g �n¥4¦ §�� 	 and ¢ ¤ g �n¥s¦ §
� 	 ,
then � ¤ g �	¥s¦ § � 	 .

In the case of concept descriptions, the lcs is unique up
to equivalence, i.e., if ��_ and �va are both least common
subsumers of the descriptions A�R�D , then � _ \�� a (i.e.,
� _ ¤�� a and � a ¤�� _ ). In the presence of (possibly cyclic)
TBoxes, this uniqueness property also holds (though its for-
mulation is more complicated).

Proposition 5 Let c _ be an
���

-TBox containing the defined
concepts VQR�¢ . Assume that c.a and c��a are conservative ex-
tensions of c _ such that
£ the defined concept � in c.a is a gfp-lcs of V+R�¢ in c _ ;
£ the defined concept ��� in c��a is a gfp-lcs of V+R�¢ in c _ ;
£ the sets of newly defined concepts in respectively c$a and
c��a are disjoint.

For c
��� J c7a�� c��a , we have ��\�© �n¥�¦ §
� ��� (i.e., � ¤ g �n¥s¦ §�� ���
and ���)¤ g �n¥s¦ §�� � ).

The notion “most specific concept” can be extended in a
similar way from concept descriptions to concepts defined in
a TBox.

Definition 6 Let c _ be an
���

-TBox and � an
���

-ABox con-
taining the individual name f , and let c a be a conservative ex-
tension of c _ containing the defined concept � . Then � in c a
is a most specific concept of f in � and c _ w.r.t. gfp-semantics
(gfp-msc) iff the following two conditions are satisfied:

1. �b�J © �	¥s¦ § � ��Lgf.T .
2. If c � is a conservative extension of c a and 	 a de-

fined concept in c
� such that � � J�© �n¥s¦ §
� 	,LOf7T , then
� ¤ g �n¥�¦ §
� 	 .

Uniqueness up to equivalence of the most specific concept
can be formulated and shown like uniqueness of the least
common subsumer.

3 Characterizing subsumption
In this section, we recall the characterizations of subsump-
tion w.r.t. gfp-semantics developed in [Baader, 2003a]. To
this purpose, we must represent TBoxes and primitive inter-
pretations by description graphs, and introduce the notion of
a simulation on description graphs.

Before we can translate
���

-TBoxes into description
graphs, we must normalize the TBoxes. In the following, let
c be an

���
-TBox, = d �;� the defined concepts of c , = p �j�q�

the primitive concepts of c , and = r }�~|� the roles of c .
We say that the

���
-TBox c is normalized iff VK\ DMW c

implies that D is of the form
� _5B HnH�H�B � � B`F7Gs_�H ¢�_ B HnHnHsB`F7G��sH ¢���R

for ��R������ , � _�RnH�HnH	R � � W1= p ��� � , Gs_�RnH�HnH	R�G��+W1= r }�~|� , and
¢�_sRnH�HnH�R�¢��vWl= d ��� . If �XJ��vJ � , then DbJK@ .

As shown in [Baader, 2003a], one can (without loss of gen-
erality) restrict the attention to normalized TBox. In the fol-
lowing, we thus assume that all TBoxes are normalized. Nor-
malized

���
-TBoxes can be viewed as graphs whose nodes

are the defined concepts, which are labeled by sets of prim-
itive concepts, and whose edges are given by the existential
restrictions. For the rest of this section, we fix a normalized���

-TBox c with primitive concepts = p ��� � , defined concepts
= d �;� , and roles = r }�~q� .
Definition 7 An

���
-description graph is a graph ! J

L#"�R$��R$% T where
£ " is a set of nodes;
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£ � � "��0= r }�~|� � " is a set of edges labeled by role
names;

£ %�� "���� � p �	��
 is a function that labels nodes with sets
of primitive concepts.

The normalized TBox c can be translated into the follow-
ing

���
-description graph ! § J Lg= d �;� R � § R$% § T :

£ the nodes of ! § are the defined concepts of c ;
£ if V is a defined concept and

VK\ � _ B HnH�H�B � � BlF!G _ H ¢ _ B HnH�H�BlF!G � H ¢ �
its definition in c , then

– % § LOV�T5J�� � _sRnH�HnH�R � � � , and
– V is the source of the edges
LOVQR�Gs_�R�¢�_nTmR�HnH�HnR�LOVQR�G��sR�¢��:T�W � § .

Any primitive interpretation � J LON,��RnS �vT can be
translated into the following

���
-description graph ! � J

LON
��R � � R % � T :£ the nodes of ! � are the elements of N � ;
£ � � ��J��!L
�<R�G4R�� T �7L��)R��.T W`G���� ;
£ % � L
�¡T�J�� � W = p ��� � ��� W � � � for all � W N
� .

Conversely, every
���

-description graph can be viewed as
representing either an

���
-TBox or a primitive interpretation.

Simulations are binary relations between nodes of two
���

-
description graphs that respect labels and edges in the sense
defined below.

Definition 8 Let ! � J L " � R$� � R % � T ( �`J �6R�� ) be two
� �

-
description graphs. The binary relation � � " _ � " a is a
simulation from ! _ to ! a iff

(S1) L
� _ R�� a T W�� implies % _ L�� _ T � % a L
� a T ; and

(S2) if L
�6_�R���asT�W�� and L��6_sR�G4R�� �_ T W � _ , then there exists a
node � �a W�" a such that L�� �_ R�� �a T�W�� and L�� a R�G4R�� �a T�W
� a .

We write �Q� ! _ � � ! a to express that � is a simulation from
!U_ to !$a .

It is easy to see that the set of all simulations from ! _ to ! a
is closed under arbitrary unions. Consequently, there always
exists a greatest simulation from !)_ to !$a . If !U_4R !$a are finite,
then this greatest simulation can be computed in polynomial
time [Henzinger et al., 1995]. As an easy consequence of this
fact, the following proposition is proved in [Baader, 2003a].

Proposition 9 Let !U_�R !ha be two finite
� �

-description
graphs, �'_ a node of !�_ and ��a a node of !ha . Then we
can decide in polynomial time whether there is a simulation
�Q� !U_ � � !ha such that L��6_�R���a4T�W�� .

Subsumption w.r.t. gfp-semantics corresponds to the exis-
tence of a simulation relation such that the subsumee simu-
lates the subsumer:

Theorem 10 Let c be an
���

-TBox and V+R�¢ defined con-
cepts in c . Then the following are equivalent:

1. V�¤ g �n¥s¦ § ¢ .

2. There is a simulation ����! §
� �
! § such that LO¢�R�V�T+W

� .

The theorem together with Proposition 9 shows that sub-
sumption w.r.t. gfp-semantics in

���
is tractable. The proof

of the theorem given in [Baader, 2003a] depends on a charac-
terization of when an individual of a gfp-model belongs to a
defined concept in this model.

Proposition 11 Let � be a primitive interpretation and I the
gfp-model of c based on � . Then the following are equiva-
lent for any V�W�= d �;� and � W N
� :

1. � W�V P .

2. There is a simulation ����! §
� �
! � such that LOVQR��¡T W�� .

This proposition is also important in the proof of correct-
ness of our characterization of the instance problem (Theo-
rem 17).

4 Computing the lcs
We will show how the characterization of subsumption w.r.t.
gfp-semantics given in Theorem 10 can be used to charac-
terize the gfp-lcs (see [Baader, 2002] for more details and
proofs). Let c _ be an

���
-TBox, let ! § � J[Lg= d �;� R$� § � R$% § � T

be the corresponding description graph, and let VQRj¢ be de-
fined concepts in c _ (i.e., elements of = d �;� ). In principle,
the lcs of VQRj¢ in c$_ is defined in a TBox whose description
graph is the product of ! § � with itself.

Definition 12 Let ! _ J L#" _ R � _ R % _ T and ! a J L#" a R � a R % a T
be two description graphs. Their product is the description
graph !U_�� !$aQ� JxL#"�R$�,R % T where
£ " ��J "¡_�� " a ;
£ � ��J �!L�L�� _ R�� a TmR�G4R�L�� �_ R�� �a T�T^�eL
� _ R�G4R�� �_ TMW � _��
L���a�R�G4R�� �a T W �va�� ;£ % L
� _ R�� a T���J % _ L�� _ T! % a L
� a T .

The description graph ! § � � ! § � yields a TBox c such
that ! § J ! § � � ! § � . Now, c.a
� Jxc _ � c is a conservative
extension of c _ . In fact, ! § � � ! § � is based on the same
primitive concepts and roles as ! § � , and the set of defined
concepts in c is = d �;� �l= d ��� , which is disjoint from = d �;� .

Lemma 13 LgV+R�¢
T in c.a is the gfp-lcs of V and ¢ in c$_ .
Computing the (binary) product of two

���
-description

graphs can obviously be done in polynomial time, and thus
the gfp-lcs can be computed in polynomial time.

Theorem 14 Let c$_ be an
���

-TBox, and let VQRj¢ be defined
concepts in c _ . Then the gfp-lcs of V+R�¢ in c$_ always exists,
and it can be computed in polynomial time.

5 Instance and most specific concepts
One motivation for considering cyclic terminologies in

���
is

the fact that the most specific concept of an ABox individ-
ual need not exist in

���
(without cyclic terminologies). An

example is the simple cyclic ABox � ��J ��G7L�isRjinTm� , where
i has no most specific concept, i.e., there is no least

���
-

concept description D such that i is an instance of D w.r.t.
� [Küsters and Molitor, 2001]. However, if one allows for
cyclic TBoxes with gfp-semantics, then the defined concept
¢ with ¢ \KF!G4H ¢ is such a most specific concept.
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5.1 The instance problem w.r.t. gfp-semantics
Let c be a normalized

���
-TBox and � an

���
-ABox. In

the following, we assume that c is fixed and that all instance
problems for � are considered w.r.t. this TBox.

In this setting, � can be translated into an
���

-description
graph !�� by viewing � as a graph and extending it appropri-
ately by the graph ! § associated with c . The idea is then that
the characterization of the instance problem should be simi-
lar to the statement of Proposition 11: the individual f is an
instance of V in � iff there is a simulation ��� ! §

� �
! � such

that LgV+R�f.T W�� .
Before giving an exact definition of !�� , we consider an ex-

ample that demonstrates that a too simple-minded realization
of this idea does not work. Let

� ��J ��V+LOf.TmR � LOf.Tj� and

c ��J ��V \ZF7G4H V+R ¢ \ � BlF!G4H ¢,�'H
The ABox � itself can be viewed as an

���
-description graph

consisting of a single node f with label � � � . Since VK\ZF!G4H V
is in c and V�Lgf.T is in � , we extend this graph by an G -loop
from f to f . Figure 1 shows the graph ! obtained this way as
well as the

���
-description graph ! § corresponding to c .

Obviously, there is a simulation ��� ! §
� �
! such that

Lg¢ER�f.T`W � . However, it is easy to see that f is not an in-
stance of ¢ . The reason for this problem is that node labels
and edges in ! § state facts that must hold for all individu-
als that are instances of the defined concept labeling a given
node whereas assertions of the ABox make statements about
properties of particular named individuals. The construction
of ! in the above example mixes these different things, and
thus leads to unfounded conclusions.

In order to separate edges and labels coming from ABox
assertions from the ones coming from TBox definitions, we
do not “identify” the node f with the node V if V�Lgf.T belongs
to � (as done in the construction of ! above). Instead, we do
a “one-step expansion” of the definition of V . The right-most
graph in Figure 1 shows the graph !�� obtained this way in
our example. Obviously, there is no simulation �Q� ! §

� �
! �

such that LO¢�R�f.T W�� .
Below, we give a formal definition of the

���
-description

graph ! � associated with the ABox � and the TBox c in the
general case.

Definition 15 Let c be an
���

-TBox, � an
���

-ABox, and
! § J L#"�R$��R$% T be the

���
-description graph associated with

c . The
� �

-description graph ! � J L#" � R � � R$% � T associ-
ated with � and c is defined as follows:
£ The nodes of ! � are the individual names occurring in
� together with the defined concepts of c , i.e.,
"��e��J "�� ��f`�4f is an individual name in �
�'H

£ The edges of !�� are the edges of ! , the role assertions
of � , and additional edges linking the ABox individuals
with defined concepts:

� � ��J ��� �'LOfhR�G4Rji�T �sG7LgfhRjinT W �
� �
�!LgfhR�G4Rj¢�T �4V�Lgf.T W � and LOVQR�G4Rj¢�T W �
�'H

£ if �YW " � is a defined concept, then it inherits its label
from ! § , i.e., % � L���T���J %�L���T if � W " . Otherwise,

� W " � � " is an ABox individual, and then its label is
derived from the concept assertions for � in � :

%�� L���T�� J�� � � � L���T�W �
� � 	
���
���� � % LgV�T:H
Here

�
denotes primitive and V denotes defined con-

cepts.
Before we can characterize the instance problem via the

existence of certain simulation relations from ! § to ! � , we
must characterize under what conditions a gfp-model of c
is a model of � . In the following we assume that primitive
interpretations � also interpret ABox individuals. We say
that the simulation �Q� !�� � �

! � respects ABox individuals
iff � �M��LgfhR��¡T W ���CJ ��f7� � for all individual names f
occurring in � .
Proposition 16 Let � be a primitive interpretation and I the
gfp-model of c based on � . Then the following are equiva-
lent:

1. I is a model of � .

2. There is a simulation ���
! � � �
! � that respects ABox

individuals.
The following characterization of the instance problem is

an easy consequence of this proposition and Proposition 11.
Theorem 17 Let c be an

� �
-TBox, � an

���
-ABox, V a

defined concept in c and ‘ f ’ an individual name occurring
in � . Then the following are equivalent:

1. �b�J © �	¥s¦ § V�Lgf.T .
2. There is a simulation ����! §

� �
!�� such that LOVQR�f.T�W�� .

The theorem together with Proposition 9 shows that the
instance problem w.r.t. gfp-semantics in

���
is tractable.

Corollary 18 The instance problem w.r.t. gfp-semantics in���
can be decided in polynomial time.

5.2 Computing the gfp-msc
Let c _ be an

� �
-TBox and � an

���
-ABox containing the

individual name f . Let !�� J L#"���R ���vR %�� T be the
� �

-
description graph corresponding to � and c _ , as introduced
in Definition 15. In order to obtain the gfp-msc of f , we view
! � as the

���
-description graph of an

� �
-TBox c a , i.e., let c.a

be the TBox such that !���J ! § � . By the definition of !�� , the
defined concepts of c.a are the defined concepts of ch_ together
with the individual names occurring in � . It is easy to show
that c7a is a conservative extension of ch_ . To avoid confusion
we will denote the defined concept in c a corresponding to the
individual name i in � by A�� .

Using the results of the previous subsection, we can show
[Baader, 2002] that A�� is the gfp-msc of f .
Lemma 19 The defined concept A � in c7a is the gfp-msc of
‘ f ’ in � and c$_ .

Given c$_ and � , the graph ! � can obviously be computed
in polynomial time, and thus the gfp-msc can be computed in
polynomial time.
Theorem 20 Let c$_ be an

���
-TBox and � an

���
-ABox con-

taining the individual name ‘ f ’. Then the gfp-msc of ‘ f ’ in c _
and � always exists, and it can be computed in polynomial
time.
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Figure 1: The
���

-description graphs ! , ! § , and ! � of our example.

6 Conclusion
In [Baader, 2003a] we have shown that subsumption in

���
re-

mains polynomial if one allows for cyclic terminologies with
greatest fixpoint (gfp) semantics. In Section 5.1 of this pa-
per we have complemented this result by showing that the
instance problem in

���
with cyclic terminologies interpreted

with gfp-semantics is also polynomial. Thus, all the standard
inferences in

� �
remain polynomial if one allows for cyclic

terminologies with gfp-semantics. Our main motivation for
considering cyclic terminologies with gfp-semantics in

���
was that the most specific concept of an ABox-individual then
always exists. In fact, we have shown in this paper that both
the least common subsumer (lcs) and the most specific con-
cept (msc) can be computed in polynomial time in

���
with

cyclic terminologies interpreted with gfp-semantics. Thus,
also two of the most important non-standard inferences in
DLs [Küsters, 2001] remain polynomial in this context.

It should be noted that there are indeed applications where
the expressive power of the small DL

� �
appears to be suf-

ficient. In fact, SNOMED, the Systematized Nomenclature
of Medicine [Cote et al., 1993] uses

� �
[Spackman, 2000;

2001].
Subsumption [Baader, 2003a] and the instance problem

[Baader, 2003b] are also polynomial w.r.t. descriptive se-
mantics. For the lcs, descriptive semantics is not that well-
behaved: in [Baader, 2003] we have shown that w.r.t. de-
scriptive semantics the lcs need not exist in

���
with cyclic

terminologies. In addition, we could only give a sufficient
condition for the existence of the lcs. If this condition ap-
plies, then the lcs can be computed in polynomial time. In
[Baader, 2003b] similar results are shown for the msc w.r.t.
descriptive semantics.

One problem left for future research is the question of how
to obtain a decidable characterization of the cases in which
the lcs (msc) exists w.r.t. descriptive semantics, and to deter-
mine whether in these cases it can always be computed in
polynomial time.
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