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Abstract. In this work we answer a long standing request for temporal
embeddings of deontic STIT logics by introducing the multi-agent STIT
logic TDS. The logic is based upon atemporal utilitarian STIT logic. Yet,
the logic presented here will be neutral: instead of committing ourselves
to utilitarian theories, we prove the logic TDS sound and complete with
respect to relational frames not employing any utilitarian function. We
demonstrate how these neutral frames can be transformed into utilitarian
temporal frames, while preserving validity. Last, we discuss problems
that arise from employing binary utility functions in a temporal setting.

Keywords: Deontic logic · Logics of agency · Modal logic · Multi-agent
STIT logic · Temporal logic · Utilitarianism

1 Introduction

With the increasing integration of automated machines in our everyday lives, the
development of formal decision-making tools, which take into account moral and
legal considerations, is of critical importance [2,9,10]. Unfortunately, one of the
fundamental hazards of incorporating ethics into decision-making processes, is
the apparent incomparability of quantitative and qualitative information—that
is, moral problems most often resist quantification [16].

In contrast, utility functions are useful quantitative tools for the formal anal-
ysis of decision-making. Initially formulated in [5], the influential theory of util-
itarianism has promoted utility calculation as a ground for ethical deliberation:
in short, those actions generating highest utility, are the morally right actions.
For this reason, utilitarianism has proven itself to be a fruitful approach in the
field of formal deontic reasoning and multi-agent systems (e.g. [1,12,15]).

In particular, in the field of STIT logic—agency logics developed primarily
for the formal analysis of multi-agent choice-making—the utilitarian approach
has received increased attention (e.g. [1,15]). Unfortunately, each available utility
function comes with its own (dis)advantages, giving rise to several puzzles (some
of them addressed in [12,13]). To avoid such problems, we provide an alternative
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approach: instead of settling these philosophical issues, we develop a neutral
formalism that can be appropriated to different utilitarian value assignments.

The paper’s contributions can be summed up as follows: First, we provide a
temporal deontic STIT logic called TDS (Sec. 2). With this logic, we answer a
long standing request for temporal embeddings of deontic STIT [4,12,15]. Second,
although TDS is based upon the atemporal utilitarian STIT logic from [15],
the semantics of TDS will be neutral: instead of committing to utilitarianism,
we prove soundness and completeness of TDS with respect to relational frames
not employing any utilitarian function (Sec. 3). This approach also extends the
results in [3,11,14] by showing that TDS can be characterized without using the
traditional branching-time (BT+AC) structures (cf. [4]). Third, we show how
neutral TDS frames can be transformed into utilitarian frames, while preserving
validity (Sec. 4). Last, we discuss the philosophical ramifications of employing
available utility functions in the extended, temporal setting. In particular, we
will argue that binary utility assignments can turn out to be problematic.

2 A Neutral Temporal Deontic STIT Logic

In this section, we introduce the language, semantics, and axiomatization of the
temporal deontic STIT logic TDS. In particular, we provide neutral relational
frames characterizing the logic, which omit mention of specific utility functions.
The logic will bring together atemporal deontic STIT logic, presented in [15],
and the temporal STIT logic from [14].

Definition 1 (The Language LTDS). Let Ag = {1, 2, ..., n} be a finite set
of agent labels and let V ar = {p1, p2, p3...} be a countable set of propositional
variables. The language LTDS is given by the following BNF grammar:

φ ::= p | ¬φ | φ ∧ φ | �φ | [i]φ | [Ag]φ | Gφ | Hφ | ⊗i φ

where i ∈ Ag and p ∈ V ar.

The logical connectives disjunction ∨, implication →, and bi-conditional ↔ are
defined in the usual way. Let ⊥ be defined as p∧¬p and define ⊤ to be p∨¬p. The
language consists of single agent STIT operators [i], which are choice-operators
describing that ‘agent i sees to it that’, and the grand coalition operator [Ag],
expressing ‘the grand coalition of agents sees to it that’. Furthermore, it contains
a settledness operator �, which holds true of a formula that is settled true at a
moment, and thus, holds true regardless of the choices made by any of the agents
at that moment. The operators G and H have, respectively, the usual temporal
interpretation ‘always going to be’ and ‘always has been’. Last, the operator ⊗i

expresses ‘agent i ought to see to it that’. We define �, 〈i〉, 〈Ag〉 and ⊖i as the
duals of �, [i], [Ag] and ⊗i, respectively (i.e. �φ iff ¬�¬φ, etc.). Furthermore,
let Fφ iff ¬G¬φ and Pφ iff ¬H¬φ, expressing ‘φ holds somewhere in the future’
and ‘φ holds somewhere in the past’, respectively. Finally, deliberative STIT
and deliberative ought are obtained accordingly: [i]dφ iff [i]φ∧ ♦¬φ and ⊗d

iφ iff
⊗iφ ∧ �¬φ. For a discussion of these operators we refer to [12,14].
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In line with [3,6,11,14], we provide relational frames for TDS instead of in-
troducing the traditionally employed, BT+AC frames (cf. [4]). Explanations of
the individual frame properties of Definition 2 can be found below.

Definition 2 (Relational TDS Frames and Models). A TDS-frame is de-
fined as a tuple F = (W,R�, {R[i] | i ∈ Ag},R[Ag],RG,RH, {R⊗i

| i ∈ Ag}). Let
R[α](w) := {v ∈ W |(w, v) ∈ R[α]} for [α] ∈ Boxes where Boxes := {�,G,H, [Ag]}∪
{[i] | i ∈ Ag}∪{⊗i | i ∈ Ag}. Let W be a non-empty set of worlds w, v, u... and:

◮ For all i ∈ Ag, R�,R[i],R[Ag] ⊆W×W are equivalence relations such that:

(C1) R[i] ⊆ R�.

(C2) For all u1, ..., un ∈ W , if R�uiuj for all 1 ≤ i, j ≤ n, then
⋂

i R[i](ui) 6= ∅.

(C3) For all w ∈W , R[Ag](w) ⊆
⋂

i∈Ag R[i](w).

◮ RG ⊆ W × W is a transitive and serial binary relation and RH is the
converse of RG, such that:

(T4) For all w, u, v ∈ W , if RGwu and RGwv, then RGuv, u = v, or
RGvu.

(T5) For all w, u, v ∈ W , if RHwu and RHwv, then RHuv, u = v, or
RHvu.

(T6) RG ◦ R� ⊆ R[Ag] ◦ RG (relation composition ◦ is defined as usual).

(T7) For all w, u ∈W , if u ∈ R�(w), then u 6∈ RG(w).

◮ For all i ∈ Ag, R⊗i
⊆W×W are binary relations such that:

(D8) R⊗i
⊆ R�.

(D9) For all w ∈ W there exists a v ∈ W such that R�wv and for all
u ∈W , if R[i]vu then R⊗i

wu.

(D10) For all w, v, u, z ∈ W , if R�wv,R�wu and R⊗i
uz, then R⊗i

vz.

(D11) For all w, v ∈ W , if R⊗i
wv then there exists u ∈ W s.t. R�wu,

R[i]uv, and for all z ∈W , if R[i]uz then R⊗i
wz.

A TDS-model is a tupleM = (F, V ) where F is a TDS-frame and V is a valuation
mapping propositional variables to subsets of W , that is, V : V ar → P(W ).

We label the properties of Definition 2 referring to choice (Ci), those re-
lating to temporal aspects (Ti), and those capturing deontic properties (Di).
Observe that, since R� is an equivalence relation, we obtain equivalence classes
R�(w) = {v | (w, v) ∈ R�}. Furthermore, by condition (C1) we know that R[i]

is an equivalence relation partitioning the equivalence classes of R�. We call
R�(w) a moment and for each v in a moment R�(w), we refer to R[i](v) as a
choice-cell for agent i at moment R�(w). In the following, we shall frequently
refer to moments and choices in the above sense. Condition (C2) captures the
pivotal independence of agents principle for STIT logics, ensuring that at every
moment, any combination of different agents’ choices is consistent: i.e., simulta-



4 K. van Berkel and T. Lyon

neous choices are independent (see [4, 7C.4]). (C3) ensures that all agents acting
together is a necessary condition for the grand coalition of agents acting.1

The conditions on RG and RH establish that the frames we consider are
irreflexive, temporal orderings of moments. Properties (T4) and (T5) guar-
antee that histories—i.e., maximally ordered paths of worlds passing through
moments—are linear. Condition (T6) ensures the STIT principle of no choice
between undivided histories : if two time-lines remain undivided at the next mo-
ment, no agent has a choice that realizes one time-line and excludes the other
(see [4, 7C.3]). Consequently, this principle also ensures that the ordering of mo-
ments is linearly closed with respect to the past and allows for branching with
respect to the future: in other words, TDS-frames are treelike.2 Last, (T7) en-
sures the temporal irreflexivity of moments; i.e., the future excludes the present.
For an elaborate discussion of the temporal frame conditions we refer to [14].

Last, the criteria (D8)-(D11) guarantee an essentially agentive character-
ization of the obligation operator ⊗i (cf. the impartial ‘ought to be’ operator
in [12]). Condition (D8) ensures that ideal worlds are confined to moments: i.e.,
the ideal worlds accessible at a moment neither lie in the future nor in the past.
(D9) ensures that, for each agent there is at every moment a choice available
that is an ideal choice (cf. the corresponding ‘ought implies can’ axiom A14).
Furthermore, (D10) expresses that, for each agent, if a world is ideal from the
perspective of a particular world at a moment, that world is ideal from the
perspective of any world at that moment: i.e., ideal worlds are settled upon mo-
ments. Condition (D11) captures the idea that every ideal world extends to a
complete ideal choice: i.e., no choice contains both ideal and non-ideal worlds.
Last, note that conditions (C2) and (D9) together ensure that every combina-
tion of distinct agents’ ideal choices is consistent, i.e., non-empty.

Definition 3 (Semantics for LTDS ). Let M be a TDS-model and let w ∈ W
of M . The satisfaction of a formula φ ∈ LTDS in M at w is defined accordingly:

1. M,w|= p iff w ∈ V (p)
2. M,w|= ¬φ iff M,w 6|= φ

3. M,w|=φ∧ψ iff M,w|=φ and M,w|=ψ
4. M,w|= �φ iff ∀u∈ R�(w), M,u|= φ

5. M,w|= [i]φ iff ∀u∈ R[i](w), M,u|= φ

6. M,w|= ⊗iφ iff ∀u∈ R⊗i(w),M,u|= φ

7. M,w|=[Ag]φ iff ∀u∈R[Ag](w),M, u|=φ

8. M,w|= Gφ iff ∀u∈ RG(w), M,u|= φ

9. M,w|= Hφ iff ∀u∈ RH(w), M,u|= φ

Global truth, validity, and semantic entailment are defined as usual (see [7]).

The axiomatization of TDS is a composition of [15], together with [14]. (Note
that in the language LTDS each agent label represents a distinct agent.)

1 In future work, we aim to study condition (C3) strengthened to equality, as in [14].
In such a setting, completeness is obtained by proving that each TDS-frame can be
transformed into a frame (satisfying the same formulae) with strengthened (C3);
hence, showing that the logic does not distinguish between the two frame classes.

2 The main reason why the grand coalition operator [Ag] is added to our language,
is because it will allow us to axiomatize the no choice between undivided histories

principle (see A25 of Definition 4). For a discussion of [Ag] we refer to [14].
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Definition 4 (Axiomatization of TDS). For each i ∈ Ag we have,

A0 All propositional tautologies.

A1 �(φ→ ψ) → (�φ→ �ψ),
A2 �φ→ φ

A3 �φ→ � �φ

A4 [i](φ → ψ) → ([i]φ → [i]ψ)
A5 [i]φ → φ

A6 〈i〉φ→ [i]〈i〉φ
A7 [Ag](φ→ ψ) → ([Ag]φ→ [Ag]ψ)
A8 [Ag]φ→ φ

A9 〈Ag〉φ→ [Ag]〈Ag〉φ
A10

∧

0≤i≤n �[i]φk → �
∧

0≤i≤n[i]φk

A11
∧

1≤i≤n
[i]φi → [Ag]

∧

1≤i≤n
φi

A12 ⊗i(φ→ ψ) → (⊗iφ→ ⊗iψ)
A13 �φ→ ([i]φ ∧ ⊗iφ)
A14 ⊗iφ→ �[i]φ

A15 �⊗i φ→ �⊗i φ

A16 �([i]φ → [i]ψ) → (⊗iφ→ ⊗iψ)
A17 G(φ→ ψ) → (Gφ→ Gψ)
A18 Gφ→ GGφ
A19 Gφ→ Fφ
A20 H(φ→ ψ) → (Hφ→ Hψ)
A21 φ→ GPφ
A22 φ→ HFφ
A23 FPφ→ Pφ ∨ φ ∨ Fφ
A24 PFφ→ Pφ ∨ φ ∨ Fφ
A25 F♦φ→ 〈Ag〉Fφ
R0 ⊢TDS(ψ→φ) and ⊢TDSψ implies ⊢TDS φ

R1 ⊢TDSφ implies ⊢TDS[α]φ, [α]∈{�,G,H}
R2 ⊢TDS (�¬p∧�(Gp∧Hp)) → φ implies

⊢TDS φ, given p 6∈ φ

A derivation of φ in TDS from a set Γ , written Γ ⊢TDS φ, is defined in the usual
way (See [7, Def. 4.4]). When Γ=∅, we say φ is a theorem, and write ⊢TDS φ.

The axioms, A1−A3, A4−A6 and A7−9 express the S5 behavior of �, [i]
(for each i∈Ag) and [Ag], respectively. A10 is the independence of agents axiom.
A11 captures that ‘all agents acting together implies the grand coalition of agents
acting’. A13 is a bridge axiom linking ⊗i to � and [i] to � (cf. (C1) and (D8)
of Definition 2). A14 corresponds to the ‘ought implies can’ principle (cf. (D9)
of Definition 2). A15 ensures that, when possible, obligatory choices are settled
upon moments (cf. (D10) of Definition 2). A16 can be understood as a conditional
monotonicity principle for ideal choices (cf. (D11) of Definition 2). Axioms A12
and A13, together with the necessitation rule R1, ensure that ⊗i is a normal
modal operator.

With respect to the temporal axioms, A17−A19 capture the KD4 behavior
of G, whereas, axioms A21 and A22 ensure that H is the converse of G. A23
and A24 capture connectedness of histories through moments and A25 charac-
terizes no choice between undivided histories. Last, R2 is a variation of Gabbay’s
irreflexivity rule (the proofs of Theorem 1 and 2 give an indication of the rule’s
functions).

3 Soundness and Completeness of TDS

In this section, we prove that TDS is sound and complete relative to the class of
TDS-frames. In the next section, we show how such frames are transformable into
frames employing utility assignments. This allows one to model and reason about
utilitarian scenarios in a more fine-grained manner, while obtaining completeness
of the logic without commitment to particular utility functions.

Unless stated otherwise, all proofs in this section can be found in App. A.
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Theorem 1. (soundness of TDS) ∀φ ∈ LTDS, ⊢TDS φ implies |= φ.

We prove completeness by constructing maximal consistent sets belonging to
a special class and build a canonical TDS model adopting methods from [8,14].

Definition 5. A set of formulae Γ ⊆ LTDS is a maximally consistent set (MCS)
iff (i) Γ 6⊢TDS ⊥, and (ii) for any set Γ ′ ⊆ LTDS, if Γ ⊂ Γ ′, then Γ ′ ⊢TDS ⊥.

Definition 6. (canonical model for TDS) Let [α] ∈ Boxes and let 〈α〉 be
the operator dual to [α]. We define the canonical model to be the tuple Mdt :=
(W dt,Rdt

�
, {Rdt

[i] | i ∈ Ag},Rdt
[Ag], R

dt
G
,Rdt

H
, {Rdt

⊗i
| i ∈ Ag}, V dt) such that:

– W dt := {Γ ⊂ LTDS | Γ is an MCS};
– for all Γ,∆ ∈ W dt, (Γ,∆) ∈ Rdt

[α] iff for all φ ∈ LTDS, if [α]φ ∈ Γ , then

φ ∈ ∆ (for each [α] ∈ Boxes);
– V dt is a valuation function s.t. ∀p ∈ Atom, V dt(p) := {∆ ∈W dt | p ∈ ∆}.

Definition 7. (diamond saturated set [14]) Let X be a set of MCSs and
let 〈α〉 be dual to [α] ∈ Boxes. We say that X is a diamond saturated set iff for
all Γ∈X, for each 〈α〉φ ∈ Γ there exists a ∆ ∈ X such that R[α]Γ∆ and φ∈∆.

In order to ensure that our canonical model will be irreflexive, we introduce
a mechanism that allows us to encode MCSs with information that impedes
reflexive points in the model. We call these encoded sets IRR-theories and restrict
our canonical model to consist of these sets only. Last, we use the notation M |X
to indicate a model M whose domain is restricted to the set X (see [8, Ch.6]).

Lemma 1. Let X be a diamond saturated set with Γ ∈ X, φ ∈ LTDS, and let
Mdt|X be the canonical model restricted to X. Then, Mdt|X , Γ |= φ iff φ ∈ Γ .

Proof. Proven in the usual manner by induction on φ (see [7, Lem. 4.70]).

Following [14], we let IRR-theories be those sets of TDS formulae that (i)
are maximally consistent, (ii) contain a label name(p) := �¬p ∧ �(Gp ∧ Hp),
uniquely labeling a moment and (iii) for any world that is reachable through any
‘zig-zagging’ sequence of diamond operators, that is, every zig-zagging formula
φ of the form,

〈α1〉(φ1 ∧ 〈α2〉(φ2 ∧ ... ∧ 〈αn〉φn))...)

where 〈αi〉 is dual to [αi] ∈ Boxes with 1 ≤ i ≤ n, there exists a corresponding
zig-zagging formula φ(q) (where q is a propositional variable) of the form,

〈α1〉(φ1 ∧ 〈α2〉(φ2 ∧ ... ∧ 〈αn〉(φn ∧�¬q ∧�(Gq ∧ Hq)))...)

labeling reachable worlds. Let us make the above formally precise:

Definition 8. (irr-theory) [14] Let Zig be the set of all zig-zagging formulae
in LTDS and let name(p):= �¬p∧�(Gp∧Hp) where p is a propositional variable.
A set of formulae Γ is called an IRR-theory iff the following hold:



A Neutral Temporal Deontic STIT Logic 7

– Γ is a MCS and name(p) ∈ Γ , for some propositional variable p;
– if φ ∈ Γ ∩ Zig, then φ(q) ∈ Γ , for some propositional variable q.

Henceforth, we refer to IRR as the set of all IRR-theories in LTDS.

We now present lemmata relevant to the use of IRR-theories in canonical models.

Lemma 2. Let φ ∈ LTDS be a consistent formula. Then, there exists an IRR-
theory Γ such that φ ∈ Γ .

Lemma 3. (existence lemma) Let Γ be an IRR-theory and let 〈α〉 be dual to
[α] ∈ Boxes. For each 〈α〉φ ∈ Γ there exists an IRR-theory ∆ such that R[α]Γ∆.

Subsequently, it must be shown that the canonical model restricted to the
set IRR of IRR-theories (i.e., Mdt|IRR) is in fact a TDS model (henceforth, we
use W dt and IRR interchangeably). First, we provide lemmata ensuring that the
model satisfies the desired temporal and deontic properties of Definition 2. The
first two follow from [14] and the latter four results are proven in App. A.

Lemma 4 ([14]). (property (C2)) Let Γ1, ..., Γn ∈ IRR such that Rdt
�
ΓiΓj

for all 1 ≤ i, j ≤ n. Then, there exists a ∆ ∈ IRR such that Rdt
1 Γ1∆, ...,Rdt

n Γn∆.

Lemma 5 ([14]). (property (T6)) Let Γ,Σ,Π ∈ IRR such that Rdt
G
ΓΣ and

Rdt
�
ΣΠ. Then, there exists a ∆ ∈ IRR such that Rdt

[Ag]Γ∆ and Rdt
G
∆Π.

Lemma 6. (property (D9)) Let Γ ∈ IRR. Then, there exists a ∆ ∈ IRR such
that Rdt

�
Γ∆ and for every Σ ∈ IRR, if Rdt

[i]∆Σ, then Rdt
⊗i
ΓΣ.

Lemma 7. (property (D11)) Let Γ,∆ ∈ IRR such that Rdt
⊗i
Γ∆. Then, there

exists a Σ ∈ IRR such that Rdt
�
ΓΣ, Rdt

[i]Σ∆, and for all Π ∈ IRR, if Rdt
[i]ΣΠ,

then Rdt
⊗i
ΓΠ.

Lemma 8. The canonical model Mdt|IRR belongs to the class of TDS models.

Theorem 2. (completeness) If φ ∈ LTDS is a consistent formula, then φ is
satisfiable on a TDS-model.

4 Transformations to Utilitarian Models

In this section, we investigate a truth preserving transformation from TDS mod-
els to utilitarian STIT models, embedded in a temporal language. In particular,
we are concerned with the semantic characterization of the dominant ought [12,
Ch.4]. We start with defining the semantic machinery needed to treat these
oughts. In particular, we will introduce a utility function util that maps natural
numbers (i.e. utilities) to worlds in our domain. In contrast to [12,15], we do not
restrict the assignment of utilities to complete histories where all worlds on a
maximal linear path have identical utility. The reason will be addressed at the
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end of the section, where we discuss a problem related to utility assignments
over histories, arising in temporal extensions of STIT.

The pivotal notion involved in the dominant ought is that of a state: Agent
i cannot influence the choices of all other agents and, for this reason, one can
regard the joint interaction of all agents excluding i, as a state (of nature) for i.
To be more precise, we define a state Rs

[i](v) for i at v accordingly,

Rs
[i](v) =

⋂

k∈Ag\{i}

Rk(v)

Consequently, all possible combinations of choices available to the agents Ag\{i},
are the different states available at that moment to agent i.

Subsequently, we define a preference order ≤ over choices (and subsets thereof).
Let R[i](v),R[i](z) ⊆ R�(w), then weak preference is defined accordingly,

R[i](v) ≤ R[i](z) ⇐⇒ ∀v∗ ∈ R[i](v), ∀z
∗ ∈ R[i](z), util(v

∗) ≤ util(z∗)

That is, for an agent a choice is weakly preferred over another, when all values
of the possible outcomes of the former are at least as high as those of the latter
(where util(v) is the number assigned to v, etc). Strict preference is defined as,

R[i](v) < R[i](z) ⇐⇒ R[i](v) ≤ R[i](z) ∧R[i](z) 6≤ R[i](v)

Next, a dominance order � over choices R[i](v),R[i](z)⊆R�(w) is defined as,

R[i](v) � R[i](z) ⇐⇒ ∀Rs
[i](x) ⊆ R�(w),R[i](v) ∩Rs

[i](x) ≤ R[i](z) ∩Rs
[i](x)

We say an agent’s choice weakly dominates another, if the values of the outcomes
of the former are weakly preferred to those of the latter choice, given any possible
state available to that agent. For a discussion of dominance orderings see [12,
Ch. 4]. Again, in the usual way we obtain strict dominance,

R[i](v) ≺ R[i](z) ⇐⇒ R[i](v) � R[i](z) ∧R[i](z) 6� R[i](v)

On the basis of the above, we now formally introduce temporal utilitarian
STIT frames and models, defined over relational Kripke frames.

Definition 9 (Relational TUS Frames and Models). Let R[α](w) := {v ∈
W |(w, v) ∈ Rα} for [α] ∈ {�, [Ag],G,H} ∪ {[i]|i ∈ Ag}. A relational Temporal
Utilitarian STIT frame (TUS-frame) is defined as a tuple F = (W,R�, {R[i]|i ∈
Ag},R[Ag],RG,RH, util) where W is a non-empty set of worlds w, v, u... and:

– For all i ∈ Ag, R�, R[i], R[Ag] ⊆W ×W are equivalence relations for which
conditions (C1)-(C3) of Definition 2 hold.

– RG ⊆ W ×W is a transitive and serial binary relation, whereas RH is the
converse of RG, and the conditions (T4)-(T7) of Definition 2 hold.

– util :W 7→ N is a utility function assigning each world in W to a natural.

A TUS-model is a tupleM = (F, V ) where F is a TUS-frame and V is a valuation
function assigning propositional variables to subsets ofW : i.e., V : V ar 7→ P(W ).
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Notice that the above TUS frames only differ from TDS frames through re-
placing the relations R⊗i

and corresponding conditions (D8)-(D11) (for each
i ∈ Ag) with the utility function util. We observe that the assignment of utili-
ties to worlds is agent-independent. Nevertheless, since the choices of an agent
depend on which worlds are inside the choice-cells available to the agent, the re-
sulting obligations are in fact agent-dependent. Let us define the new semantics:

Definition 10 (Semantics of TUS models). Let M be a TUS-model, w ∈W

ofM and ||φ||M = {w |M,w |= φ}. We define satisfaction of a formula φ ∈ LTDS

as follows:

– Clause (1)-(10) are the same as those from Definition 3, with the exception
of clause (7), which we replace by the following clause (7∗):

M,w |= ⊗iφ iff ∀R[i](v) ⊆ R�(w) if R[i](v) 6⊆ ||φ|| then ∃R[i](z) ⊆ R�(w) s.t.
(i) R[i](v) ≺ R[i](z), (ii) R[i](z) ⊆ ||φ|| and
(iii) ∀R[i](x) ⊆ R�(w),R[i](z) � R[i](x) implies R[i](x) ⊆ ||φ||

Clause (7∗) is interpreted accordingly: Agent i ought to see to it that φ
iff for every choice R[i](v) available to i that does not guarantee φ there (i)
exists a strictly dominating choice R[i](z) that (ii) does guarantee φ and (iii)
every weakly dominating choice R[i](x) over R[i](z) also guarantees φ. In other
words, all choices not guaranteeing φ are strictly dominated only by choices
guaranteeing φ. (We note that clause (7∗) is obtained through an adaption of
the definition provided in [12] to relational frames.) We show that the logic TDS
is also sound and complete with respect to the class of TUS-frames.

Theorem 3. (soundness) ∀φ ∈ LTDS, if ⊢TDS φ, then Cu
f |= φ.

Proof. We prove by induction on the given derivation of φ in TDS. The argu-
ment for axioms A0-A6 and A12 is the same as in Theorem 1. The validity of
the axioms A7-A11 can be easily checked by applying semantic clause (7∗) of
Definition 9.

We now prove that the class Cu
f of TUS-frames characterizes the same set of

formulae as the class Cd
f of TDS frames. We prove both directions separately:

Theorem 4. ∀φ ∈ LTDS we have Cu
f |= φ implies Cd

f |= φ.

Proof. We prove by contraposition assuming Cd
f 6|= φ. Hence, there is a TDS-

model, Md = (W ,R�, {Ri|i ∈ Ag},RH,RG,RAg, {R⊗i
|i ∈ Ag},V) such that

Md, w |= ¬φ for some w ∈ W . We use Md to construct a model M in Cu
f , such

that:
M = (W,R�, {Ri|i ∈ Ag},RG,RH,RAg, util,V)

We show that M, w′ |= ¬φ for some w′ ∈ W. To define M let W := W , R� :=
R�, Ri := Ri, RH := RH, RG := RG, RAg := RAg, V(p) := V(p) and let
util be a function assigning each w ∈ W to a natural number, satisfying the
following criteria:
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1. ∀i ∈ Ag, ∀w, v, z ∈ W , if v, z ∈ R�(w), v ∈ Rs
i (w) \ R⊗i

(w), and z ∈
Rs

i (w) ∩R⊗i
(w), then util(v) ≤ util(z);

2. ∀w, v, z ∈ W , if v ∈ R�(w)\R⊗Ag
(w) and z ∈ R⊗Ag

(w), then util(v)<util(z);
3. ∀w, u, z ∈W , if v, z ∈ Rs

i (w) ∩R⊗i
(w), then util(v) = util(z);

Let R⊗Ag
:=

⋂

i∈Ag R⊗i
, we call R[i](v) ⊆ R⊗i

(w) an optimal choice for agent i.
(It can be easily checked that the function util can be constructed.)

We state the following useful lemma (the proof of which is found in App. A).

Lemma 9. The following holds for any TDS frame:
(1) ∀v ∈ R�(w),R�(w) = R�(v); (2) ∀v ∈ Ri(w),Ri(w) = Ri(v);
(3) ∀v ∈ Rs

i (w),R
s
i (w) = Rs

i (v);(4) ∀v ∈ R�(w) we get R⊗i
(v) = R⊗i

(w);
(5) ∀R[i](z) ⊆ R�(w), either R[i](z) ⊆ R⊗i

(w) or R[i](z) ∩R⊗i
(w) = ∅.

We observe that conditions (C1)-(C3) and (T4)-(T7) will be satisfied in
M since all of the relations of Md, with the exception of R⊗i

, are identical to
those in M. Moreover, util complies with Definition 9 and so M is in fact a TUS

model. The desired claim will follow if we additionally show that ∀ψ ∈ LTDS and
∀w ∈ W :

Md, w |= ψ ⇐⇒ M, w |= ψ

We prove the claim by induction on the complexity of ψ.
Base Case. Let ψ be a propositional variable p. By the definition of V in M

it follows directly that Md, w |= p iff w ∈ V iff w ∈ V iff M, w |= p.
Inductive Step. The cases for the propositional connectives and the modalities

[α] ∈ {�,H,G, [Ag]} ∪ {[i]|i ∈ Ag} are straightforward. We consider the non-
trivial case when ψ is of the form⊗iφ. Let us first prove the left to right direction.

(=⇒) AssumeMd, w |= ⊗iφ. We show thatM, w |= ⊗iφ. By the semantics for
⊗i (Definition 9) it suffices to prove that: ∀Ri(v) ⊆ R�(w) if Ri(v) 6⊆ ||φ||M, then
∃Ri(u) ⊆ R�(w) such that the following three clauses hold: (i) Ri(v) ≺ Ri(u); (ii)
Ri(u) ⊆ ||φ||M; and (iii) ∀Ri(x) ⊆ R�(w), Ri(u) � Ri(x) implies Ri(x) ⊆ ||φ||M.

Let Ri(v) ⊆ R�(w) be arbitrary and assume that Ri(v) 6⊆ ||φ||M. We prove
that there is a Ri(u) ⊆ R�(w) for which conditions (i)-(iii) hold. First, we prove
the existence of such a Ri(u) ⊆ R�(w): By (C1) and (D9) of Definition 2, we
know,

∃u ∈ W such that Ri(u) ⊆ R�(w) and Ri(u) ⊆ R⊗i
(w). (1)

We also know by (D9) that ∀j ∈ Ag\{i}, ∃uj ∈ R�(w) such that Rj(uj) ⊆
R⊗j

(w). By (IOA) we know that
⋂

j∈Ag\{i} Rj(uj)∩Ri(u) 6= ∅, i.e., there exists a

u∗ ∈
⋂

j∈Ag\{i} Rj(uj)∩Ri(u). Consequently, we obtain the following statement,

u∗ ∈
⋂

j∈Ag\{i}

R⊗j
(w) ∩R⊗i

(w) = R⊗Ag
(w). (2)

Last, by construction of M we know Ri(u) = Ri(u). We show that (i)-(iii) hold:
(i) We show Ri(v)≺Ri(u), that is, (a) Ri(v) � Ri(u) and (b) Ri(u) 6≺ Ri(v):
(a) Recall, Ri(v)6⊆ ||φ||M, we know ∃v∗∈ Ri(v) s.t. M, v

∗ 6|= φ. By definition of
M, v∗∈ Ri(v) and by (IH) we get Md, v∗ 6|= φ. Consequently, by the assumption
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that Md, w |= ⊗iφ, and the fact that Md, v∗ 6|= φ, it follows that v∗ 6∈ R⊗i
(w).

Hence, we know that Ri(v)6⊆ R⊗i
(w), which implies R⊗i

(w) ∩ Ri(v) = ∅
by Lemma 9−(5). Therefore, by this fact along with statement (1) above, we
know that,

For all x, uH, vH ∈ W , if vH ∈ Rs
i (x) ∩ Ri(v) and u

H ∈ Rs
i (x) ∩ Ri(u), then

vH ∈ Rs
i (x)\R⊗i

(w) and uH ∈ Rs
i (x) ∩R⊗i

(w).

Let x, uH, vH ∈ Wd be arbitrary and assume that vH ∈ Rs
i (x) ∩ Ri(v) and

uH ∈ Rs
i (x)∩Ri(u). By the statement above, it follows that vH ∈ Rs

i (x)\R⊗i
(w)

and uH ∈ Rs
i (x)∩R⊗i

(w), which in conjunction with criterion 1 on the function
util implies that util(vH) ≤ util(uH). Therefore, the following holds,

For all x, uH, vH ∈ W , if vH ∈ Rs
i (x)∩Ri(v) and u

H ∈ Rs
i (x)∩Ri(u

H), then
util(vH) ≤ util(u).

It follows that ∀Rs
i (x) ⊆ R�(w), R

s
i (x)∩Ri(v) ≤ Rs

i (x)∩Ri(u). Hence, by the
definition of � and the definition of M, we obtain Ri(v) � Ri(u).

(b) We need to show Ri(u) 6� Ri(v). By definition of �, it suffices to show
that ∃x, ∃uH, ∃vH∈ W s.t. Ri(x)⊆ R�(w), u

H∈ Ri(u)∩Rs
i (x), v

H∈ Ri(v) ∩Rs
i (x)

and util(vH)<util(uH). Consider
⋂

j∈Ag\i Rj(uj)∩Ri(u) 6= ∅ from statement (2).

Let Rs
i (x) :=

⋂

j∈Ag\i Rj(uj). Clearly, R
s
i (x) ⊆ R�(w). By (IOA) we know that

Rs
i (x)∩Ri(v) 6= ∅ (where Rs

i (x) =
⋂

j∈Ag\iRj(uj)), and so, Rs
i (x)∩Ri(v) 6= ∅ by

the definition of M. Therefore, ∃vH ∈ Rs
i (x)∩Ri(v). Since u

∗ ∈
⋂

j∈Ag\i Rj(uj)∩

Ri(u) (see paragraph above statement (2)), we know that u∗ ∈
⋂

j∈Ag\i Rj(uj)∩

Ri(u), implying that u∗ ∈ Rs
i (x) ∩ Ri(u). Since also Ri(v) ∩ R⊗Ag

(w) = ∅, as
derived in part (i), we obtain vH ∈ R�(w) \R⊗Ag

(w). By criterion 2 of util, and
the facts vH ∈ R�(w) \R⊗Ag

(w) and u∗ ∈ R⊗Ag
(w), by statement (2), we have

that util(vH) < util(u∗). Therefore, Ri(u) 6� Ri(v).
(ii)By assumptionR⊗i

(w)⊆||φ||Md and statement (1) we getRi(u) ⊆ R⊗i
(w).

By IH we have ||φ||Md=||φ||M and since Ri(u)=Ri(u) we know Ri(u) ⊆ ||φ||M.
(iii) We prove the case by contraposition and show that ∀Ri(x) ⊆ R�(w),

if Ri(x) 6⊆ ||φ||, then Ri(u) 6� Ri(x). Let Ri(x) by an arbitrary choice-cell in
R�(w) and assume that Ri(x) 6⊆ ||φ||M. We aim to prove that Ri(u) 6� Ri(x).
By definition of � it suffices to show that ∃Rs

i (y) ⊆ R�(w) such that ∃uH ∈
Ri(u) ∩ Rs

i (y), ∃x
H ∈ Ri(x) ∩ Rs

i (y), and util(xH) < util(uH).
By the assumption that Ri(x) 6⊆ ||φ||M, we know ∃xH ∈ Ri(x) such that

M, xH 6|= φ. Clearly, xH ∈ Ri(x), and by (IH) we know that Md, xH 6|= φ.
Since Md, w |= ⊗iφ, we obtain (w, xH) 6∈ R⊗i

, and by Lemma 9−(5) we obtain
Ri(x) 6⊆ R⊗i

(w).
By statement (2) we had u∗ ∈ R⊗Ag

(w) and u∗ ∈ R⊗i
(w). Also, we know

u∗ ∈ Ri(u) by paragraph preceding statement (2). Since, u∗ ∈
⋂

j∈Ag\{i} Rj(uj)∩

Ri(u), we also have u∗ ∈
⋂

j∈Ag\{i} Rj(uj). Let Rs
i (u

∗) :=
⋂

j∈Ag\{i} Rj(uj).

By (IOA) we obtain Ri(x) ∩ Rs
i (u

∗) 6= ∅, implying that there exists some
xH ∈ Ri(x) ∩ Rs

i (u
∗). It follows from (D9) and the fact Ri(x) 6⊆ R⊗i

(w)
that xH 6∈ R⊗Ag

(w), which with the fact u∗ ∈ R⊗Ag
(w), implies by defini-

tion of util (criterion 2) that util(xH) < util(u∗). By the definition of M, we have
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xH ∈ Ri(x) ∩ Rs
i (u

∗), u∗ ∈ Ri(u) ∩ Rs
i (u

∗) and util(xH) < util(u∗), which implies
the desired claim.

(⇐=) We now prove the right to left direction: Assume M, w |= ⊗iφ. We
reason towards a contradiction by assuming Md, w 6|= ⊗iφ. Hence, there exists a
world v ∈ R⊗i

(w) such that Md, v 6|= φ. By (D11) we obtain R[i](v) ⊆ R⊗i
(w)

and hence R[i](v) 6⊆ ||φ||Md . By (IH) and the definition of M, we obtain Ri(v) 6⊆
||φ||M. This fact, in conjunction with the assumption M, w |= ⊗iφ, implies that
there exists some Ri(z) ⊆ R�(w) such that the following holds: (i) Ri(v) ≺ Ri(z);
(ii) Ri(z) ⊆ ||φ||M; and (iii) ∀Ri(x) ⊆ R�(w), Ri(z) � Ri(x) implies Ri(x) ⊆ ||φ||M.

By Lemma 9−(5) and the fact that Ri(z) = Ri(z), we know that either (a)
Ri(z) ⊆ R⊗i

(w) holds or (b) Ri(z) ∩R⊗i
(w) = ∅ holds.

Assume (a). We know Ri(v) ≺ Ri(z) and therefore, Ri(z) 6� Ri(v). Hence,
∃Rs

i (x) ⊆ R�(w), ∃z
∗ ∈ Ri(z) ∩ Rs

i (x), ∃v
∗ ∈ Ri(v) ∩ Rs

i (x) such that util(v∗) <
util(z∗). We also know Ri(v) ⊆ R⊗i

(w) and Ri(z) ⊆ R⊗i
(w) and thus we obtain

z∗, v∗ ∈ R⊗i
∩Rs

i (x). Consequently, by the definition of util (criterion 3), we get
util(v∗) = util(z∗). Contradiction.

Assume (b). We know Ri(v) ≺ Ri(z) and therefore, Ri(z) 6� Ri(v). Hence,
∃Rs

i (x) ⊆ R�(w), ∃z
∗ ∈ Ri(z) ∩ Rs

i (x), ∃v
∗ ∈ Ri(v) ∩ Rs

i (x) such that util(z∗) 6≤
util(v∗). Then, by definition of util (criterion 1), either (I) z∗ 6∈ Rs

i (x)\R⊗i
(w) or

(II) v∗ 6∈ Rs
i (x)∩R⊗i

(w). Suppose (I), since z∗ ∈ Rs
i (x) we infer z

∗ ∈ Rs
i (x) and

thus conclude z∗ ∈ R⊗i
(w). However, by earlier assumption Ri(z)∩R⊗i

(w) = ∅
we obtain z∗ 6∈ R⊗i

(w). Contradiction. Suppose (II), then since v∗ ∈ Rs
i (x) we

infer v∗ 6∈ R⊗i
(w). However, R[i](v) ⊆ R⊗i

(w). Contradiction.

Corollary 1. (completeness) ∀φ ∈ LTDS, if Cu
f |= φ, then ⊢TDS φ.

Proof. Follows from Theorem 4 above, together with Theorem2.

Theorem 5. ∀φ ∈ LTDS, we get Cd
f |= φ implies Cu

f |= φ.

Proof. Follows from Theorem 2 together with Theorem 3.

The Problem with Two-Valued Utility Functions. A well studied can-
didate function for assigning utilities to histories, is the two-valued approach
where the range of utilities is {0, 1} (e.g. [12,15]). As a concluding remark of the
present section, we briefly discuss the philosophical ramifications of using binary
utility functions in a temporal setting.

Observe that, at a moment where all worlds have a utility of 1 (or all 0),
every obligation becomes vacuously satisfied by definition—in such a scenario we
would have ⊗iφ iff �φ—and every choice for each agent will ensure all optimal
outcomes (see clause (7∗) of Definition 10).3 If in such a scenario, following
[12,15], utilities are assigned to complete histories and thus remain constant
through time, all obligations will also be vacuously satisfied at every future
moment from thereon (namely, as one moves into the future, the set of histories
passing through a moment can only decrease or stay the same). That at such

3 This also holds when all intersections of choices of agents contain both a 1 and a 0.
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moments all obligations are vacuously satisfied means that no obligation can
be violated. Unfortunately, this also implies that at such moments contrary-to-
duty (CTD) reasoning—i.e., reasoning about obligations that come into being
when a previous obligation has been violated—becomes impossible because CTD
obligations require the possibility to violate one’s obligations in the first place
(e.g. see [17]).

In order to reason with CTD obligations in temporal utilitarian STIT logics,
we need to ensure that obligations can be violated, that is, we must consider
deliberative obligations: ⊗d

iφ := ⊗iφ ∧ ¬�φ. This means that, for an obligation
⊗d

iφ to hold, there exists a choice that does not guarantee φ and, by definition,
the latter choice must be strictly dominated by (only) φ choices. In the binary
setting this means that for all optimal choices, there is at least one outcome with
a strictly higher utility (which must be 1). Unfortunately, this has a drawback
since at such moments at least one of the following holds: (1) Worlds in the
intersection of all agents acting in accordance with their duty all have value 1.
(2) Worlds in the intersection of all agents violating their duty all have value 0.

Relative to the aforementioned, Fig. 1 illustrates the (only) three scenarios
possible in a two-agents, two-choices setting: Sub-figure (i) implies the impossi-
bility of future CTD reasoning in all cases in which at least one agent satisfies its
obligation. Sub-figure (ii) implies that there is no future CTD possible in every
case witnessing at least one agent violating its obligation. Last, sub-figure (iii)
indicates that future CTD obligations can only occur if one of the agents satis-
fies her obligation if and only if the other violates his. (With the impossibility of
future CTD reasoning we mean that from that moment onward, all obligations
will be vacuously satisfied.) All three cases are undesirable since they do not
allow for future recuperation in those situations in which they clearly should.

The above exhibits that, although⊗i does not depend on any temporal aspect
(e.g. [15]), we can identify utility functions that are less suitable for temporal
extensions of STIT. Binary functions relative to moments only, do not cause
these problems, although they have their own issues [12]. In the case where the
function ranges over the set of reals, it is possible to assign utilities in such a way
that there is always CTD reasoning possible. In future work, we aim to specify
such utility functions, making particular use of temporal aspects of TDS-frames.

5 Conclusion and Future Work

In this paper, we extended deontic STIT logic [15] to the temporal setting,
incorporating the logic from [14]. In doing so, we answered a long standing open
question for temporal embeddings of deontic STIT (e.g. see [4,12,15]). We showed
that the resulting logic TDS is sound and complete with respect to its class of
frames. We dubbed these frames neutral since they allowed us to obtain adequacy
of the calculus, while allowing us to refrain from committing to specific utility
functions. Subsequently, we showed how these neutral frames can be transformed
into particular utilitarian models, while preserving truth. We also briefly argued
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∀1 ∀1

∀1 ∃0

R�(w)

(i).

{

i

j

{

φ φ
φ ¬φ

∃1 ∀0

∀0 ∀0

R�(w)

(ii).

{

i

j

{

φ φ
φ ¬φ

∀1 ∃1∃0

∃1∃0 ∀0

R�(w)

(iii).

{

i

j

{

φ φ
φ ¬φ

Fig. 1. The only three scenarios where ⊗iφ∧ ⊗j φ∧¬�φ holds true at R�(w) (for
Ag = {i, j} with 2 choices). Choices of i are vertically presented, those of j horizontally.
The symbol ∀nmeans every history is assigned value n, and ∃nmeans that some history
is assigned n, for n ∈ {0, 1}. Optimal choices are shaded and darker shaded when
overlapping. At all ∀k outcomes (with k ∈ {0, 1}), CTD reasoning becomes impossible.

that in a temporal setting, binary value assignments to histories can generate
undesirable behavior with respect to contrary-to-duty obligations.

For future work, we leave open the problem of whether temporal STIT (from
[14]) and its deontic extension TDS are decidable. Furthermore, we aim to inves-
tigate alternative utility assignments that explicitly exploit the temporal aspects
of TDS; e.g., it might be interesting to consider a dynamic approach taking into
account that natural agents have limited foresight relative to (future) utilities.
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A Proofs

Theorem 1 (soundness) ∀φ ∈ LTDS, ⊢TDS φ implies |= φ.

Proof. It suffices to show that all axioms are valid and all inference rules preserve
validity over the class of TDS frames. The rules R0 and R1, as well as axioms
A0−A11, and A17−A25 can be easily checked (See [14]). We show that A13−A16
are valid and that the R2 preserves validity. Let M be an arbitrary TDS-model
with w a world in M .

A13. Assume M,w |= �φ and also that R[i]wu and R⊗i
wv. By conditions

(C1) and (D8), we know that R[i] ⊆ R� and R⊗i
⊆ R�, respectively. Therefore,

it follows that R�wu and R�wv, which implies M,u |= φ and M, v |= φ by the
assumption. This implies that M,w |= [i]φ and M,w |= ⊗iφ.

A14. Assume M,w |= ⊗iφ. By condition (D9), there exists a v such that
R�wv, and for all u in the model M , if R[i]vu, then R⊗i

wu. Suppose further
that R[i]vz for an arbitrary z; from this, and the previous statement, we may
conclude that R⊗i

wz holds, which by the initial assumption implies thatM, z |=
φ. Therefore, M, v |= [i]φ, and since R�wv holds for some v, we have that
M,w |= ♦[i]φ.

A15. Assume M,w |= � ⊗i φ. Thus, there exists a u such that R�wu and
M,u |= ⊗iφ. Consider an arbitrary v and z such that R�wv and R⊗i

vz. By
condition (D10), and the fact that R�wu, R�wv, and R⊗i

vz hold, we may con-
clude that R⊗i

uz holds. Consequently, M, z |= φ holds; this fact, in conjunction
with the assumption that R�wv and R⊗i

vz hold for arbitrary v and z, implies
that M,w |= �⊗i φ.

A16. Assume M,w |= �([i]φ → [i]ψ), M,w |= ⊗iφ, and R⊗i
wu for an

arbitrary u. By condition (D11), the assumption R⊗i
wu, implies that there

exists a world v such that (i) R�wv, (ii) R[i]vu, and (iii) for all z, if R[i]vz,
then R⊗i

wz. The initial assumption, along with fact (i) that R�wv, entails that
M, v |= [i]φ → [i]ψ. Suppose that R[i]vx for an arbitrary x; from fact (iii) we
may conclude that R⊗i

wz, which with the assumption thatM,w |= ⊗iφ, implies
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that M, z |= φ. Hence, M, v |= [i]φ, implying that M, v |= [i]ψ. Last, since
we know that R[i]vu by fact (ii), we can conclude that M,u |= ψ. Therefore,
M,w |= ⊗iφ→ ⊗iψ.

Last, we show soundness of the IRR-rule from Tstit. Recall the rule:

�¬p ∧�(Gp ∧ Hp)) → φ
if p is atomic and does not occur in φ

φ

We assume that p does not occur in φ. We prove the result by contraposition and
assume that φ is invalid. Therefore, we know there exists a model M = (F, V )
s.t. F is a TDS-frame and M,w 6|= φ for some w ∈ W of M . We define another
TDS-modelM ′ = (F, V ′) over the frame F and define the valuation V ′ as follows:

V ′(q) :=

{

V (q) if q 6= p,

W \ R�(w) otherwise.

where R�(w) = {v|(w, v) ∈ R�} (i.e. the valuation V ′ of p contains all worlds
except for those sharing the same moment with w). Clearly, since φ does not
contain p and the other atomic propositions are valued in the same way in M as
in M ′ we get that M ′, w |= ¬φ. However, by the construction of V ′ and because
F is irreflexive by condition (T7), we have thatM ′, w |= �¬p∧�(Gp∧Hp)) (the
irreflexivity excludes the possibility that for some u ∈ R�(w), M

′, u |= p ∧ ¬p).
Since,M ′, w 6|= φ, by Definition 3, we have thatM ′, w 6|= (�¬p∧�(Gp∧Hp)) → φ.
Hence, we conclude that (�¬p ∧�(Gp ∧ Hp)) → φ is invalid as well.

Lemma 10. Let Γ be a MCS. Then, Γ has the following properties:

– Γ ⊢TDS φ iff φ ∈ Γ ;
– φ ∈ Γ iff ¬φ 6∈ Γ ;
– φ ∧ ψ ∈ Γ iff φ ∈ Γ and ψ ∈ Γ .

Proof. We prove each of the claims in turn:

(i) Assume that φ 6∈ Γ . Since Γ is a maximal, we know that Γ ∪{φ} is inconsis-
tent, i.e., Γ ⊢TDS φ→ ⊥. Due to the fact that Γ is consistent, we know that
Γ 6⊢TDS φ. For the opposite direction observe that if φ ∈ Γ , then trivially
Γ ⊢TDS φ.

(ii) Suppose that φ ∈ Γ . Observe that if ¬φ ∈ Γ as well, then Γ would be
inconsistent; hence, ¬φ 6∈ Γ . For the backwards direction, assume that ¬φ 6∈
Γ . If φ 6∈ Γ as well, then since Γ is a MCS, we know that both Γ∪{φ} ⊢TDS ⊥
and Γ ∪ {¬φ} ⊢TDS ⊥. However, this implies that Γ ⊢TDS φ ∧ ¬φ, thus
contradicting the consistency of Γ . This implies that φ ∈ Γ .

(iii) If φ ∧ ψ ∈ Γ , then by fact (i) φ ∈ Γ and ψ ∈ Γ since both φ and ψ are
derivable from Γ when φ∧ψ ∈ Γ . The opposite direction is proved similarly.

Lemma 11. Let 〈α〉 be dual to [α] ∈ Boxes. Then, R[α]Γ∆ iff for all φ ∈ LTDS,
if φ ∈ ∆, then 〈α〉φ ∈ Γ .
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Proof. Let 〈α〉 be dual to [α] ∈ Boxes and let Γ and ∆ be maximally consistent
IRR-theories. We prove both directions of the equivalence.

First, assume that R[α]Γ∆ holds and consider an arbitrary φ ∈ ∆. Since ∆
is a MCS, we know that ¬φ 6∈ ∆, which implies by the definition of R[α] that
[α]¬φ 6∈ Γ . Due to the fact that Γ is a MCS, this implies that¬[α]¬φ ∈ Γ , which
further implies that 〈α〉φ ∈ Γ .

For the opposite direction of the equivalence assume that for all φ ∈ LTDS, if
φ ∈ ∆, then 〈α〉φ ∈ Γ . Let ψ ∈ LTDS and assume that [α]ψ ∈ Γ . Then, since Γ is
a MCS, we know that 〈α〉¬ψ 6∈ Γ . Therefore, ¬ψ 6∈ ∆, which implies that ψ ∈ ∆

since ∆ is a MCS. Since ψ was arbitrary, we have established that R[α]Γ∆.

Lemma 2 Let φ ∈ LTDS be a consistent formula. Then, there exists an IRR-
theory Γ such that φ ∈ Γ .

Proof. Let φ ∈ LTDS be a consistent formula. We enumerate the formulae of
LTDS so that each formula in odd position is an element of Zig and make use of
this enumeration to build an increasing sequence of consistent theories Γ0, Γ1,
..., Γn, ...

We let Γ0 := {φ ∧�¬p ∧�(Gp ∧ Hp)} for some propositional variable p not
occurring in φ. We define the sequence of Γn (for n > 0) as follows: Assume
that Γn is defined and consider ψn of the enumeration. We know that either
Γn ∪ {¬ψn} is consistent or Γn ∪ {ψn} is consistent. If Γn ∪ {¬ψn} is consistent,
set Γn+1 := Γn ∪ {¬ψn}. If Γn ∪ {ψn} is consistent, then there are two cases
to consider: either (i) n is even or (ii) n is odd. If n is even, then set Γn+1 :=
Γn ∪ {ψn}. Otherwise, set Γn+1 := Γn ∪ {ψn, ψn(q)}, where q is a propositional
variable not occurring in Γn or ψ. We define our desired maximally consistent
IRR-theory as follows:

Γ :=
⋃

n∈N

Γn

To finish the proof we need to show that Γ is both a MCS and IRR-theory. We
first prove that (i) Γ is a MCS and then show that (ii) Γ is an IRR-theory.

To prove claim (i), it is useful to first prove that for all n ∈ N, each Γn

is consistent. We show this claim by induction on n. In the base case, assume
for a contradiction that Γ0 = {φ ∧ �¬p ∧ �(Gp ∧ Hp)} is inconsistent. Hence,
�¬p∧�(Gp∧Hp)∧φ ⊢TDS ⊥, which further implies that ⊢TDS �¬p∧�(Gp∧Hp) →
(φ → ⊥). We may infer from the rule R2 that ⊢TDS φ → ⊥. However, we
know that φ is consistent, meaning that 6⊢TDS φ→ ⊥. We have thus obtained a
contradiction implying then that Γ0 is in fact consistent. For the inductive step
assume that Γn is consistent. We want to show that Γn+1 is consistent. This
trivially follows by the definition of Γn+1.

To prove that Γ is a MCS, we must show that Γ is both consistent and
maximal. Assume for a contradiction that Γ is inconsistent. Then, this implies
that for some finite subset Γ ′ of Γ , Γ ′ ⊢ ⊥. However, if this is the case, then
there exists some Γn such that Γn ⊢TDS ⊥. We know that this cannot be the
case by the previous paragraph, and so, Γ must be consistent. Assume now that
there exists some Γ ′ such that Γ ⊂ Γ ′ and Γ ′ 6⊢TDS ⊥. Let ψ ∈ Γ ′ \ Γ . Since ψ
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is a formula in LTDS, we know that if was considered at some point during the
construction of the sequence Γ0, Γ1, ..., Γn, ... Since ψ 6∈ Γ this implies that there
exists some Γm such that Γm∪{ψ} is inconsistent. Therefore, Γm ⊢TDS ¬ψ, which
implies that Γ ⊢TDS ¬ψ. Due to the fact that Γ ⊂ Γ ′, it follows that Γ ′ ⊢TDS ¬ψ
and Γ ′ ⊢TDS ψ since ψ ∈ Γ ′, which is a contradiction. Therefore, Γ is a MCS.

We now prove that Γ is an IRR-theory. By construction we know that φ ∧
�¬p∧�(Gp∧Hp) ∈ Γ0 ⊂ Γ , and since Γ is a MCS, it follows that �¬p∧�(Gp∧
Hp) ∈ Γ , thus satisfying the first condition of being an IRR-theory. The second
condition of being an IRR-theory is satisfied by the fact that whenever a formula
ψ ∈ Zig is added to Γm ⊂ Γ , for m ∈ N, the formula ψ(q) is added as well with
q fresh.

Lemma 3 Let Γ be an IRR-theory and let 〈α〉 be dual to [α] ∈ Boxes. For each
〈α〉φ ∈ Γ there exists an IRR-theory ∆ such that R[α]Γ∆.

Proof. Similar to [14, Lem. 16].

Lemma 6 Let Γ be an IRR-theory in W . Then, there exists an IRR-theory
∆ ∈ W such that Rdt

�
Γ∆ and for every IRR-theory Σ ∈ W dt, if Rdt

[i]∆Σ, then

Rdt
⊗i
ΓΣ.

Proof. Let Γ be an arbitrary IRR-theory inW dt. Since Γ is an IRR-theory, there
is a propositional variable p such that name(p) ∈ Γ . Define

∆0 := {[i]φ| ⊗i φ ∈ Γ} ∪ {ψ|�ψ ∈ Γ} ∪ {name(p)}.

We will prove by contradiction that ∆0 is consistent and then extend ∆0 to
an IRR-theory.

If ∆0 is inconsistent, then

⊢TDS ([i]φi ∧ ... ∧ [i]φn ∧ ψ1 ∧ ... ∧ ψn ∧ name(p)) → ⊥

where ψ1, · · · , ψm ∈ {ψ|�ψ ∈ Γ} and [i]φ1, · · · , [i]φk ∈ {[i]φ| ⊗i φ ∈ Γ}. Let

φ̂ = φ1 ∧ ... ∧ φn and ψ̂ = ψ1 ∧ ... ∧ ψn. Since, ⊢TDS [i]φ̂ ↔ [i]φ1 ∧ ... ∧ [i]φn we
get

⊢TDS ψ̂ ∧ name(p) → ¬[i]φ̂

By necessitation for � and the � K-axiom, we get ⊢TDS �(ψ̂ ∧ name(p)) →

�¬[i]φ̂, which implies ⊢TDS �ψ̂∧�name(p) → ¬ �[i]φ̂. Clearly, because�ψ̂ ∈ Γ ,

name(p) ∈ Γ and ⊢TDS name(p) → �name(p), we have that Γ ⊢TDS ¬ �[i]φ̂.

This implies that ¬ �[i]φ̂ ∈ Γ since Γ is an IRR-theory.
Also, since ⊗iφ1, ...,⊗iφn ∈ Γ we have ⊗iφ1 ∧ ... ∧ ⊗iφn ∈ Γ since Γ is an

IRR-theory. By ⊢TDS ⊗iφ̂ ↔ ⊗iφ1 ∧ ... ∧ ⊗iφn we conclude ⊗iφ̂ ∈ Γ as well.
Since ⊗iφ̂ → �[i]φ̂ ∈ Γ because the formula is an instance of axiom A14, we

obtain by modus ponens that �[i]φ̂ ∈ Γ . Since Γ is an IRR-theory (and hence
consistent) we obtain a contradiction, which proves that ∆0 is consistent.

We now extend ∆0 to an IRR-theory ∆ by first defining an increasing se-
quence ∆0, ∆1, ..., ∆n, ... of sets of formulae. Suppose that ∆n is consistent
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and defined, and enumerate the formulae of LTDS so that each formula in odd
position is an element of Zig; we aim to define ∆n+1.

Consider the formula ψn. Either, ∆n ∪ {¬ψn} is consistent or ∆n ∪ {ψn}
is consistent. If the former holds, then set ∆n+1 := ∆n ∪ {¬ψn}. If the latter
holds, then there are two subcases to consider: either n is even, in which case,
we set ∆n+1 := ∆n ∪ {ψn}, or n is odd, in which which case, ∆n ∪ {ψn} is
consistent and ψn ∈ Zig. We show that in the latter subcase we can find a
propositional variable q such that ∆n ∪{ψn, ψn(q)} is consistent; we then define
∆n+1 := ∆n ∪ {ψn, ψn(q)}.

Observe that
⊖i (name(p) ∧

∧

χ∈∆n\∆0

χ ∧ ψn) ∈ Γ (3)

For otherwise,

⊗i((name(p) ∧
∧

χ∈∆n\∆0

χ) → ¬ψn) ∈ Γ

since Γ is an IRR-theory and has the properties specified by Lemma 10. By the
definition of ∆0 it follows that

[i]((name(p) ∧
∧

χ∈∆n\∆0

χ) → ¬ψn) ∈ ∆n

Using the fact that ⊢TDS [i]θ → θ holds for any formula θ, we infer that

∆n ⊢TDS (name(p) ∧
∧

χ∈∆n\∆0

χ) → ¬ψn

Since
∆n ⊢TDS name(p) ∧

∧

χ∈∆n\∆0

χ

we may conclude that ∆n ⊢TDS ¬ψn, which contradicts the fact that ∆n ∪ {ψn}
is consistent. Therefore, since Γ is an IRR-theory and (1) holds, we know that

⊖i (name(p) ∧
∧

χ∈∆n\∆0

χ ∧ ψn(q)) ∈ Γ (4)

Using this fact, we may prove that ∆n+1 := ∆n ∪ {ψn, ψn(q)} is consistent, for
suppose otherwise. Then, there exist ζ1, · · · , ζm ∈ {ζ|�ζ ∈ Γ} and [i]ξ1, · · · , [i]ξk ∈
{[i]ξ| ⊗i ξ ∈ Γ} such that

⊢TDS ζ1 ∧ · · · ∧ ζm → ([i]ξ1 ∧ · · · ∧ [i]ξk → ¬(name(p) ∧
∧

χ∈∆n\∆0

χ ∧ ψn(q)))

By ⊗i necessitation and the ⊗i K-axiom, we can derive

⊢TDS ⊗i(ζ1∧· · ·∧ζm) → ⊗i([i]ξ1∧· · ·∧ [i]ξk → ¬(name(p)∧
∧

χ∈∆n\∆0

χ∧ψn(q)))
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Using axiom A13 we obtain

⊢TDS �(ζ1∧· · ·∧ζm) → ⊗i([i]ξ1∧· · ·∧ [i]ξk → ¬(name(p)∧
∧

χ∈∆n\∆0

χ∧ψn(q)))

By our assumption and the fact that Γ is an IRR-theory, we know that �(ζ1 ∧
· · · ∧ ζm) ∈ Γ , implying that

⊗i([i]ξ1 ∧ · · · ∧ [i]ξk → ¬(name(p) ∧
∧

χ∈∆n\∆0

χ ∧ ψn(q))) ∈ Γ

We infer the following using modal reasoning

⊗i[i](ξ1 ∧ · · · ∧ ξk) → ⊗i¬(name(p) ∧
∧

χ∈∆n\∆0

χ ∧ ψn(q))) ∈ Γ

One can confirm that ⊢TDS ⊗iθ → ⊗i[i]θ (See [15]) holds for any formula θ, and
therefore

⊗i(ξ1 ∧ · · · ∧ ξk) → ⊗i¬(name(p) ∧
∧

χ∈∆n\∆0

χ ∧ ψn(q))) ∈ Γ

Our assumption implies that ⊗i(ξ1 ∧ · · · ∧ ξk) ∈ Γ , and so

⊗i¬(name(p) ∧
∧

χ∈∆n\∆0

χ ∧ ψn(q))) ∈ Γ

This contradicts (2) and proves that ∆n ∪ {ψnψn(q)} is consistent.
It is easy to infer that ∆ is an IRR-theory by an argument similar to Lemma

2.
Clearly, Rdt

�
Γ∆ holds by the definition of ∆. Last, let Σ be an arbitrary

IRR-theory in W dt. Assume that Rdt
[i]∆Σ holds and let ⊗iξ ∈ Γ . By definition

[i]ξ ∈ ∆, and so, ξ ∈ Σ by the definition of the relation Rdt
[i], which completes

the proof.

Lemma 7 Let Γ and ∆ be IRR-theories in W dt such that Rdt
⊗i
Γ∆. Then, there

exists an IRR-theory Σ ∈ W such that Rdt
�
ΓΣ, Rdt

[i]Σ∆, and for all Π ∈ W dt,

if Rdt
[i]ΣΠ, then Rdt

⊗i
ΓΠ.

Proof. To prove this lemma, we proceed differently compared to Lemma 6, mak-
ing explicit use of the existence lemma (Lemma 3). Let Γ and ∆ be IRR-theories
in W dt such that Rdt

⊗i
Γ∆. Then, there is a name(p) for some p such that

name(p) ∈ ∆. Since φ → 〈i〉φ ∈ ∆ for any φ ∈ LTDS we know 〈i〉name(p) ∈ ∆.
Hence, by Lemma 3 we know there exists a Σ ∈ W dt for which Rdt

[i]∆Σ. First,

we show (i) Rdt
[i]Σ∆, then we show (ii) Rdt

�
ΓΣ and last we show (iii) for any

Π ∈W dt for which Rdt
[i]ΣΠ , we have Rdt

⊗i
ΓΠ .



A Neutral Temporal Deontic STIT Logic 21

(i) Recall Rdt
[i]∆Σ, take an arbitrary [i]φ ∈ Σ, it suffices to show that φ ∈ ∆.

By Lemma 11, we know that 〈i〉[i]φ ∈ ∆. Since ⊢TDS 〈i〉[i]θ → θ for any θ ∈ LTDS

(by axiom A5, A6, and propositional reasoning) we obtain φ ∈ ∆; hence Rdt
[i]Σ∆.

(ii) Assume an arbitrary �φ ∈ Γ . We prove that φ ∈ Σ. We know ⊢TDS

�φ → ⊗iφ (axiom A13). Hence, since Γ is an IRR-theory, we obtain ⊗iφ ∈ Γ .
Furthermore, ⊢TDS ⊗iφ → ⊗i[i]φ (See [15]), and therefore, ⊗i[i]φ ∈ Γ . Since
Rdt

⊗i
Γ∆ we get [i]φ ∈ ∆ and thus, by the fact that Rdt

[i]∆Σ, we know φ ∈ Σ. We

conclude Rdt
�
ΓΣ.

(iii) Take an arbitrary Π ∈ W dt. Assume Rdt
[i]ΣΠ . and ⊗iφ ∈ Γ . Since

⊗iφ → ⊗i[i]φ ∈ Γ , ⊗i[i]φ ∈ Γ . Furthermore, since ⊢TDS ⊗i[i]θ → ⊗i[i][i]θ for
any θ ∈ LTDS (A5, A6, R1, A12), we know ⊗i[i][i]φ ∈ Γ , and thus [i][i]φ ∈ ∆.
Consequently, we get [i]φ ∈ Σ and last φ ∈ Π , giving us Rdt

⊗i
ΓΠ .

Lemma 8 The canonical model Mdt|IRR belongs to the class of TDS models.

Proof. The argument thatMdt|IRR possesses properties (C1), (C2), (C3)∗, (T4)−
(T7) is the same as in [14, Lem. 19]. Therefore, we need only confirm that the
model satisfies conditions (D8)-(D11).

The fact that Mdt|IRR satisfies conditions (D9) and (D11) follows from
Lemma 6 and 7. We additionally prove that Mdt|IRR satisfies conditions (D8)
and (D10).

(D8) Let Γ and ∆ be arbitrary IRR-theories. Assume that Rdt
⊗i
Γ∆ and

assume that φ ∈ ∆. Hence, by Lemma 11, we know that ⊖iφ ∈ Γ . Since �¬φ→
⊗i¬φ ∈ Γ , we have ⊖iφ → �φ ∈ Γ . Hence, �φ ∈ Γ , which implies that
Rdt

�
Γ∆.
(D10) Let Γ,∆,Σ,Π ∈ W dt ∩ IRR and assume that Rdt

�
Γ∆, Rdt

�
ΓΣ, and

Rdt
⊗i
ΣΠ . We will show that Rdt

⊗i
∆Π .

Let φ ∈ LTDS and assume φ ∈ Π . Then ⊖iφ ∈ Σ and, hence, �⊖i φ ∈ Γ by
Lemma 11. Since

⊢TDS ( �⊗i φ→ � ⊗i φ) → ( �⊖i φ→ �⊖i φ)

and

� ⊗i φ→ �⊗i φ ∈ Γ

we may infer that �⊖i φ → � ⊖i φ ∈ Γ . Due to the fact that � ⊖i φ ∈ Γ , we
obtain �⊖i φ ∈ Γ , and so, ⊖iφ ∈ ∆. Therefore, Rdt

⊗i
(∆,Π).

Theorem 2 If φ ∈ LTDS is a consistent formula, then φ is satisfiable on a
TDS-model.

Proof. Suppose that φ ∈ LTDS is consistent. By Lemma 2, we can extend φ to
an IRR-theory Γ such that φ ∈ Γ . By Lemma 3, we know that the set IRR is a
diamond saturated set, and so, by Lemma 1, we know that Mdt|IRR, Γ |= φ iff
φ ∈ Γ . Hence, we can conclude that Mdt|IRR, Γ |= φ. By Lemma 8 we know that
Mdt|IRR is a TDS-model; therefore, φ is satisfiable on a TDS-model.
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