
DATABASE THEORY

Lecture 12: Introduction to Datalog

Sebastian Rudolph

Computational Logic Group

Slides based on Material of Markus Krötzsch and David Carral

TU Dresden, 7th June 2021

https://iccl.inf.tu-dresden.de/web/Database_Theory_(SS2019)
https://iccl.inf.tu-dresden.de/web/Sebastian_Rudolph

Introduction to Datalog

Sebastian Rudolph, 7th June 2021 Database Theory slide 2 of 33

Introduction to Datalog
Datalog introduces recursion into database queries

• Use deterministic rules to derive new information from given facts

• Inspired by logic programming (Prolog)

• However, no function symbols and no negation

• Studied in AI (knowledge representation) and in databases (query language)

Example 12.1: Transitive closure C of a binary relation r

C(x, y)← r(x, y)

C(x, z)← C(x, y) ∧ r(y, z)

Intuition:

• some facts of the form r(x, y) are given as input, and the rules derive new
conclusions C(x, y)

• variables range over all possible values (implicit universal quantifier)

Sebastian Rudolph, 7th June 2021 Database Theory slide 3 of 33

Syntax of Datalog

Recall: A term is a constant or a variable. An atom is a formula of the form R(t1, . . . , tn)
with R a predicate symbol (or relation) of arity n, and t1, . . . , tn terms.

Definition 12.2: A Datalog rule is an expression of the form:

H ← B1 ∧ . . . ∧ Bm

where H and B1, . . . , Bm are atoms. H is called the head or conclusion; B1 ∧ . . . ∧

Bm is called the body or premise. A rule with empty body (m = 0) is called a fact.
A ground rule is one without variables (i.e., all terms are constants).

A set of Datalog rules is a Datalog program.

Sebastian Rudolph, 7th June 2021 Database Theory slide 4 of 33

Datalog: Example

father(alice, bob)

mother(alice, carla)

mother(evan, carla)

father(carla, david)

Parent(x, y)← father(x, y)

Parent(x, y)← mother(x, y)

Ancestor(x, y)← Parent(x, y)

Ancestor(x, z)← Parent(x, y) ∧ Ancestor(y, z)

SameGeneration(x, x)

SameGeneration(x, y)← Parent(x, v) ∧ Parent(y, w) ∧ SameGeneration(v, w)

Sebastian Rudolph, 7th June 2021 Database Theory slide 5 of 33

Datalog Semantics by Deduction

What does a Datalog program express?
Usually we are interested in entailed ground atoms

What can be entailed? Informally:

• Restrict to set of constants that occur in program (finite)
{ universeU

• Variables can represent arbitrary constants from this set
{ ground substitutions map variables to constants

• A rule can be applied if its body is satisfied for some ground substitution

Example 12.3: The rule Parent(x, y) ← mother(x, y) can be applied to
mother(alice, carla) under substitution {x 7→ alice, y 7→ carla}.

• If a rule is applicable under some ground substitution, then the according instance
of the rule head is entailed.

Sebastian Rudolph, 7th June 2021 Database Theory slide 6 of 33

Datalog Semantics by Deduction (2)

An inductive definition of what can be derived:

Definition 12.4: Consider a Datalog program P. The set of ground atoms that
can be derived from P is the smallest set of atoms A for which there is a rule
H ← B1 ∧ . . . ∧ Bn and a ground substitution θ such that

• A = Hθ, and

• for each i ∈ {1, . . . , n}, Biθ can be derived from P.

Notes:

• n = 0 for ground facts, so they can always be derived (induction base)

• if variables in the head do not occur in the body, they can be any constant from the
universe

Sebastian Rudolph, 7th June 2021 Database Theory slide 7 of 33

Datalog Deductions as Proof Trees

We can think of deductions as tree structures:

Ancestor(alice, david)

Parent(alice, carla) Ancestor(carla, david)

Parent(carla, david)

father(carla, david)

mother(alice, carla)

(8)
{x 7→ alice, y 7→ carla, z 7→ david}

(6)
{x 7→ alice, y 7→ carla}

(7)
{x 7→ carla, y 7→ david}

(5)
{x 7→ carla, y 7→ david}

(2)

(4)

(1) father(alice, bob)

(2) mother(alice, carla)

(3) mother(evan, carla)

(4) father(carla, david)

(5) Parent(x, y)← father(x, y)

(6) Parent(x, y)← mother(x, y)

(7) Ancestor(x, y)← Parent(x, y)

(8) Ancestor(x, z)← Parent(x, y) ∧ Ancestor(y, z)

Sebastian Rudolph, 7th June 2021 Database Theory slide 8 of 33

Datalog Semantics by Least Fixed Point

Instead of using substitutions, we can also ground programs:

Definition 12.5: The grounding ground(P) of a Datalog program P is the set of all
ground rules that can be obtained from rules in P by uniformly replacing variables
with constants from the universe.

Derivations are described by the immediate consequence operator TP that maps sets of
ground facts I to sets of ground facts TP(I):
• TP(I) = {H | H ← B1 ∧ . . . ∧ Bn ∈ ground(P) and B1, . . . , Bn ∈ I}

• Least fixed point of TP: smallest set L such that TP(L) = L

• Bottom-up computation: T0
P = ∅ and T i+1

P = TP(T i
P)

• The least fixed point of TP is T∞P =
⋃

i≥0 T i
P (exercise)

Observation: Ground atom A is derived from P if and only if A ∈ T∞P

Sebastian Rudolph, 7th June 2021 Database Theory slide 9 of 33

Datalog Semantics by Least Model

We can also read Datalog rules as universally quantified implications

Example 12.6: The rule

Ancestor(x, z)← Parent(x, y) ∧ Ancestor(y, z)

corresponds to the implication

∀x, y, z.Parent(x, y) ∧ Ancestor(y, z)→ Ancestor(x, z).

A set of FO implications may have many models
{ consider least model over the domain defined by the universe

Theorem 12.7: A fact is entailed by the least model of a Datalog program if and
only if it can be derived from the Datalog program.

Sebastian Rudolph, 7th June 2021 Database Theory slide 10 of 33

Datalog Semantics: Overview

There are three equivalent ways of defining Datalog semantics:

• Proof-theoretic: What can be proven deductively?

• Operational: What can be computed bottom up?

• Model-theoretic: What is true in the least model?

In each case, we restrict to the universe of given constants.
{ similar to active domain semantics in databases

Sebastian Rudolph, 7th June 2021 Database Theory slide 11 of 33

Datalog as a Query Language

How can we use Datalog to query databases?
{ View database as set of ground facts
{ Specify which predicate yields the query result

Definition 12.8: A Datalog query is a pair 〈R, P〉, where P is a Datalog program
and R is the answer predicate.
The result of the query is the set of R-facts entailed by P.

Datalog queries distinguish “given” relations from “derived” ones:

• predicates that occur in a head of P are
intensional database (IDB) predicates

• predicates that only occur in bodies are
extensional database (EDB) predicates

Requirement: database relations used as EDB predicates only

Sebastian Rudolph, 7th June 2021 Database Theory slide 12 of 33

Datalog as a Generalisation of CQs

A conjunctive query ∃y1, . . . , ym.A1 ∧ . . . ∧ A` with answer variables x1, . . . , xn can be
expressed as a Datalog query 〈Ans, P〉 where P has the single rule:

Ans(x1, . . . , xn)← A1 ∧ . . . ∧ A`

Unions of CQs can also be expressed (how?)

Intuition: Datalog generalises UCQs by adding recursion.

Sebastian Rudolph, 7th June 2021 Database Theory slide 13 of 33

Datalog and UCQs

We can make the relationship of Datalog and UCQs more precise:

Definition 12.9: For a Datalog program P:

• An IDB predicate R depends on an IDB predicate S if P contains a rule with
R in the head and S in the body.

• P is non-recursive if there is no cyclic dependency.

Theorem 12.10: UCQs have the same expressivity as non-recursive Datalog.

That is: a query mapping can be expressed by some UCQ if and only if it can be
expressed by a non-recursive Datalog program.

However, Datalog can be exponentially more succinct (shorter), as illustrated in an
exercise.

Sebastian Rudolph, 7th June 2021 Database Theory slide 14 of 33

Proof
Theorem 12.10: UCQs have the same expressivity as non-recursive Datalog.

Proof: “Non-recursive Datalog can express UCQs”: Just discussed.

“UCQs can express non-recursive Datalog”: Obtained by resolution:
• Given rules ρ1 : R(s1, . . . , sn)← C1 ∧ . . . ∧ C` and
ρ2 : H ← B1 ∧ . . . ∧ R(t1, . . . , tn) ∧ . . . ∧ Bm

(w.l.o.g. having no variables in common with ρ1)
• such that R(t1, . . . , tn) and R(s1, . . . , sn) unify with most general unifier σ,
• the resolvent of ρ1 and ρ2 with respect to σ is

Hσ← B1σ ∧ . . . ∧ C1σ ∧ . . . ∧ C`σ ∧ . . . ∧ Bmσ.

Unfolding of R means to simultaneously resolve all occurrences of R in bodies of any
rule, in all possible ways. After adding all these resolvents, we can delete all rules that
contain R in body or head (assuming that R is not the answer predicate).

Now given a non-recursive Datalog program, unfold each non-answer predicate (in any
order). { program with only the answer predicate in heads (requires non-recursiveness).
This is easy to express as UCQ (using equality to handle constants in heads). �
Sebastian Rudolph, 7th June 2021 Database Theory slide 15 of 33

Datalog and Domain Independence

Domain independence was considered useful for FO queries
{ results should not change if domain changes

Several solutions:

• Active domain semantics: restrict to elements mentioned in database or query

• Domain-independent queries: restrict to query where domain does not matter

• Safe-range queries: decidable special case of domain independence

Our definition of Datalog uses the active domain (=Herbrand universe) to ensure domain
independence

Sebastian Rudolph, 7th June 2021 Database Theory slide 16 of 33

Safe Datalog Queries

Similar to safe-range FO queries, there are also simple syntactic conditions that ensure
domain independence for Datalog:

Definition 12.11: A Datalog rule is safe if all variables in its head also occur in its
body. A Datalog program/query is safe if all of its rules are.

Simple observations:

• safe Datalog queries are domain independent

• every Datalog query can be expressed as a safe Datalog query . . .

• . . . and un-safe queries are not much more succinct either (exercise)

Some texts require Datalog queries to be safe in general
but in most contexts there is no real need for this

Sebastian Rudolph, 7th June 2021 Database Theory slide 17 of 33

Complexity

Sebastian Rudolph, 7th June 2021 Database Theory slide 18 of 33

Complexity of Datalog

How hard is answering Datalog queries?

Recall:

• Combined complexity: based on query and database

• Data complexity: based on database; query fixed

• Query complexity: based on query; database fixed

Plan:

• First show upper bounds (outline efficient algorithm)

• Then establish matching lower bounds (reduce hard problems)

Sebastian Rudolph, 7th June 2021 Database Theory slide 19 of 33

A Simpler Problem: Ground Progams

Let’s start with Datalog without variables
{ sets of ground rules a.k.a. propositional Horn logic program

Naive computation of T∞P :

How long does this take?

• At most |P| facts can be derived

• Algorithm terminates with i ≤ |P| + 1

• In each iteration, we check each
rule once (linear), and compare its
body to T i

P (quadratic)

{ polynomial runtime

01 T0
P := ∅

02 i := 0

03 repeat :

04 T i+1
P := ∅

05 for H ← B1 ∧ . . . ∧ B` ∈ P :

06 if {B1, . . . , B`} ⊆ T i
P :

07 T i+1
P := T i+1

P ∪ {H}

08 i := i + 1

09 until T i−1
P = T i

P

10 return T i
P

Sebastian Rudolph, 7th June 2021 Database Theory slide 20 of 33

Complexity of Propositional Horn Logic

Much better algorithms exist:

Theorem 12.12 (Dowling & Gallier, 1984): For a propositional Horn logic pro-
gram P, the set T∞P can be computed in linear time.

Nevertheless, the problem is not trivial:

Theorem 12.13: For a propositional Horn logic program P and a proposition (or
ground atom) A, deciding if A ∈ T∞P is a P-complete problem.

Remark:
all P problems can be reduced to propositional Horn logic entailment
yet not all problems in P (or even in NL) can be solved in linear time!

Sebastian Rudolph, 7th June 2021 Database Theory slide 21 of 33

Datalog Complexity: Upper Bounds

A straightforward approach:

(1) Compute the grounding ground(P) of P w.r.t. the database I

(2) Compute T∞ground(P)

Complexity estimation:

• The number of constants N for grounding is linear in P and I

• A rule with m distinct variables has Nm ground instances
• Step (1) creates at most |P| · NM ground rules, where M is the maximal number of

variables in any rule in P
– ground(P) is polynomial in the size of I
– ground(P) is exponential in P

• Step (2) can be executed in linear time in the size of ground(P)

Summing up: the algorithm runs in P data complexity and in ExpTime query and
combined complexity

Sebastian Rudolph, 7th June 2021 Database Theory slide 22 of 33

Datalog Complexity

These upper bounds are tight:

Theorem 12.14: Datalog query answering is:

• ExpTime-complete for combined complexity

• ExpTime-complete for query complexity

• P-complete for data complexity

It remains to show the lower bounds.

Sebastian Rudolph, 7th June 2021 Database Theory slide 23 of 33

P-Hardness of Data Complexity

We need to reduce a P-hard problem to Datalog query answering
{ propositional Horn logic programming

We restrict to a simple form of propositional Horn logic:

• facts have the usual form H ←

• all other rules have the form H ← B1 ∧ B2

Deciding fact entailment is still P-hard (exercise)

We can store such programs in a database:

• For each fact H ←, the database has a tuple Fact(H)
• For each rule H ← B1 ∧ B2,

the database has a tuple Rule(H, B1, B2)

Sebastian Rudolph, 7th June 2021 Database Theory slide 24 of 33

P-Hardness of Data Complexity (2)

The following Datalog program acts as an interpreter for propositional Horn logic
programs:

True(x)← Fact(x)

True(x)← Rule(x, y, z) ∧ True(y) ∧ True(z)

Easy observations:

• True(A) is derived if and only if A is a consequence of the original propositional
program

• The encoding of propositional programs as databases can be computed in
logarithmic space

• The Datalog program is the same for all propositional programs

{ Datalog query answering is P-hard for data complexity

Sebastian Rudolph, 7th June 2021 Database Theory slide 25 of 33

ExpTime-Hardness of Query Complexity

A direct proof:
Encode the computation of a deterministic Turing machine for up to exponentially many
steps

Recall that ExpTime =
⋃

k≥1 Time(2nk
)

• in our case, n = N is the number of database constants

• k is some constant

{ we need to simulate up to 2Nk
steps (and tape cells)

Main ingredients of the encoding:

• stateq(X): the TM is in state q after X steps

• head(X, Y): the TM head is at tape position Y after X steps

• symbolσ(X, Y): the tape cell at position Y holds symbol σ after X steps

{ How to encode 2Nk
time points X and tape positions Y?

Sebastian Rudolph, 7th June 2021 Database Theory slide 26 of 33

Preparing for a Long Computation

We need to encode 2Nk
time points and tape positions

{ use binary numbers with Nk digits

So X and Y in atoms like head(X, Y) are really lists of variables X = x1, . . . , xNk and
Y = y1, . . . , yNk , and the arity of head is 2 · Nk.

TODO: define predicates that capture the order of Nk-digit binary numbers

For each number i ∈ {1, . . . , Nk}, we use predicates:

• succi(X, Y): X + 1 = Y, where X and Y are i-digit numbers

• firsti(X): X is the i-digit encoding of 0
• lasti(X): X is the i-digit encoding of 2i − 1

Finally, we can define the actual order for i = Nk

• ≤i (X, Y): X ≤ Y, where X and Y are i-digit numbers

Sebastian Rudolph, 7th June 2021 Database Theory slide 27 of 33

Defining a Long Chain

We can define succi(X, Y), firsti(X), and lasti(X) as follows:

succ1(0, 1) first1(0) last1(1)

succi+1(0, X, 0, Y)← succi(X, Y)

succi+1(1, X, 1, Y)← succi(X, Y)

succi+1(0, X, 1, Y)← lasti(X) ∧ firsti(Y)



for X = x1, . . . , xi

and Y = y1, . . . , yi

lists of i variablesfirsti+1(0, X)← firsti(X)

lasti+1(1, X)← lasti(X)

Now for M = Nk , we define ≤M(X, Y) as the reflexive, transitive closure of succM(X, Y):

≤M(X, X)←

≤M(X, Z)← ≤M(X, Y) ∧ succM(Y, Z)

Sebastian Rudolph, 7th June 2021 Database Theory slide 28 of 33

Initialising the Computation

We can now encode the initial configuration of the Turing Machine for an input word
σ1 · · ·σn ∈ (Σ \ {�})∗.

We write Bi for the binary encoding of a number i with M = Nk digits.

stateq0 (B0) where q0 is the TM’s initial state

head(B0, B0)

symbolσi
(B0, Bi) for all i ∈ {1, . . . , n}

symbol�(B0, Y)← ≤M(Bn+1, Y) where Y = y1, . . . , yM

Sebastian Rudolph, 7th June 2021 Database Theory slide 29 of 33

TM Transition and Acceptance Rules
For each transition 〈q,σ, q′,σ′, d〉 ∈ ∆, we add rules:

symbolσ′ (X
′, Y)← succM(X, X′) ∧ head(X, Y) ∧ symbolσ(X, Y) ∧ stateq(X)

stateq′ (X′)← succM(X, X′) ∧ head(X, Y) ∧ symbolσ(X, Y) ∧ stateq(X)

Similar rules are used for inferring the new head position (depending on d)

Further rules ensure the preservation of unaltered tape cells:

symbolσ(X′, Y)← succM(X, X′) ∧ symbolσ(X, Y) ∧

head(X, Z) ∧ succM(Z, Z′) ∧ ≤M(Z′, Y)

symbolσ(X′, Y)← succM(X, X′) ∧ symbolσ(X, Y) ∧

head(X, Z) ∧ succM(Z′, Z) ∧ ≤M(Y, Z′)

The TM accepts if it ever reaches the accepting state qacc:

accept()← stateqacc (X)

Sebastian Rudolph, 7th June 2021 Database Theory slide 30 of 33

Hardness Results

Lemma 12.15: A deterministic TM accepts an input in Time(2nk
) if and only if the

Datalog program defined above entails the fact accept().

We obtain ExpTime-hardness of Datalog query answering:

• The decision problem of any language in ExpTime can be solved by a deterministic
TM in Time(2nk

) for some constant k

• In particular, there are ExpTime-hard languages L with suitable deterministic TM
M and constant k

• For any input word w, we can reduce acceptance of w byM in Time(2nk
) to

entailment of accept() by a Datalog program P(w,M, k)
• P(w,M, k) is polynomial in k and the size ofM and w

(in fact, it can be constructed in logarithmic space)

Sebastian Rudolph, 7th June 2021 Database Theory slide 31 of 33

ExpTime-Hardness: Notes

Some further remarks on our construction:

• The constructed program does not use EDB predicates
{ database can be empty

• Therefore, hardness extends to query complexity

• Using a fixed (very small) database, we could have avoided the use of constants

• We used IDB predicates of unbounded arity
{ they are essential for the claimed hardness

Sebastian Rudolph, 7th June 2021 Database Theory slide 32 of 33

Summary and Outlook

Datalog can overcome some of the limitations of first-order queries

Non-recursive Datalog can express UCQs

Datalog is more complex than FO query answering:

• ExpTime-complete for query and combined complexity

• P-complete for data complexity

Open questions:

• Expressivity of Datalog

• Query containment for Datalog

• Implementation techniques for Datalog

Sebastian Rudolph, 7th June 2021 Database Theory slide 33 of 33

