Foundations of Logic Programming Tutorial 5 (on December 20th)

Lukas Schweizer

WS 2019/20

Exercise 5.1:

Consider the following program \mathcal{P} :

$$p(X,X,c)$$
.
 $p(f(X),Y,f(Z)) :- p(X,Y,Z)$.

- a) Indicate the Herbrand universe HU_F and the Herbrand base $HB_{\Pi,F}$ determined by \mathcal{P} .
- b) Give the least Herbrand model \mathcal{I}_1 of \mathcal{P} .
- c) Give a Herbrand model \mathcal{I}_2 of \mathcal{P} , different from \mathcal{I}_1 .
- d) Give a classical model model \mathcal{I}_3 of \mathcal{P} , different from \mathcal{I}_1 and \mathcal{I}_2 .

Exercise 5.2:

Take the following program P:

$$\begin{split} \mathbf{p} &\leftarrow . \\ \mathbf{p} &\leftarrow \mathbf{p}. \\ \mathbf{q} &\leftarrow \mathbf{r}. \\ \mathbf{q} &\leftarrow \neg \mathbf{r}, \ \mathbf{p}. \\ \mathbf{r} &\leftarrow \neg \mathbf{p}. \\ \mathbf{t} &\leftarrow \mathbf{q}. \\ \mathbf{t} &\leftarrow \mathbf{r}, \neg \mathbf{q}. \end{split}$$

- a) Construct the dependency graph D_P of P.
- b) Is P stratified and/or hierarchical?
- c) Give a stratification of P.
- d) Use the stratification to show how to compute the standard model M_P of P.

Exercise 5.3

Consider the following program:

p(a).	(1)
p(b).	(2)
r(b).	(3)
p(c).	(4)
p(d).	(5)
r(d).	(6)
$\texttt{naf(X)} \leftarrow \texttt{X,!,fail}.$	(7)
naf(X).	(8)
$q(X) \leftarrow p(X)$, $naf(r(X))$.	(9)

- a) Provide the full Prolog tree for the query $\mbox{\it ?-}~ q(X)\,.$
- b) Indicate explicitly if branches are eliminated from the tree.
- c) Give the output in the order of the computation.