Circuit Complexity Circuit Complexity Computing with Circuits

Complexity Theory

Circuit Complexity

Daniel Borchmann, Markus Krötzsch

Computational Logic

2016-01-13

@**(1)**

Computing with Circuits

© © 2015 Daniel Borchmann, Markus Krötzsch

Complexity Theory

2016-01-13 #1

© © 0 2015 Daniel Borchmann, Markus Krötzsch

Circuit Complexity

Complexity Theory

2016-01-13 #1

Complexity Theory

2016-01-13 #1

Complexity Theory

Complexity Theory

2016-01-13 #1

Motivation

Some questions:

- What can complexity theory tell us about parallel computation?
- ▶ Are there any meaningful complexity classes below LogSpace? Do they contain relevant problems?
- Even if it is hard to find a universal algorithm for solving all instances of a problem, couldn't it still be that there is a simple algorithm for every fixed problem size?

Intuition: use circuits with logical gates to model computation

Boolean Circuits

Definition 17.1

A Boolean circuit is a finite, directed, acyclic graph where

- each node that has no predecessor is an input node
- each node that is not an input node is one of the following types of logical gate:
 - AND with two input wires
 - ► OR with two input wires
 - NOT with one input wire
- one or more nodes are designated output nodes

The outputs of a Boolean circuit are computed in the obvious way from the inputs.

 \sim circuits with k inputs and ℓ outputs represent functions $\{0,1\}^k \to \{0,1\}^\ell$

We often consider circuits with only one output.

Circuit Complexity Computing with Circuits Circuit Complexity

Example 1

XOR function:

⊚ 10 2015 Daniel Borchmann, Markus Krötzsch

Complexity Theory Computing with Circuits 2016-01-13

⊚ 10 2015 Daniel Borchmann, Markus Krötzsch

Example 2

Complexity Theory Circuit Complexity Computing with Circuits

Computing with Circuits

2016-01-13

Alternative Ways of Viewing Circuits (1)

Propositional formulae

propositional formulae are special circuits: each non-input node has only one outgoing wire

Circuit Complexity

- each variable corresponds to one input node
- each logical operator corresponds to a gate
- each sub-formula corresponds to a wire

Alternative Ways of Viewing Circuits (2)

Straight-line programs

- are programs without loops and branching (if, goto, for, while, etc.)
- that only have Boolean variables
- ▶ and where each line can only be an assignment with a single Boolean operator
- \rightarrow *n*-line programs correspond to *n*-gate circuits

$$01 \ z_1 := \neg x_1$$

$$02 \ Z_2 := \neg X_2$$

$$03 \ z_3 := z_1 \wedge x_2$$

$$04 \ z_4 := z_2 \wedge x_1$$

$$05$$
 return $z_3 \lor z_4$

Example: Generalised AND

The function that tests if all inputs are 1 can be encoded by combining binary AND gates:

- works similarly for OR gates
- number of gates: n-1
- we can use n-way AND and OR (keeping the real size in mind)

Solving Problems with Circuits

Circuits are not universal: fixed number of inputs! How can they solve arbitrary problems?

Definition 17.2

A circuit family is an infinite list $C = C_1, C_2, C_3, \dots$ where each C_i is a Boolean circuit with *i* inputs and one output.

We say that C decides a language \mathcal{L} (over $\{0, 1\}$) if

$$w \in \mathcal{L}$$
 if and only if $C_n(w) = 1$ for $n = |w|$.

Example 17.3

The circuits we gave for generalised AND are a circuit family that decides the language $\{1^n \mid n \geq 1\}$.

⊚ 100 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 ⊚ 10 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory 2016-01-13 Circuit Complexity Computing with Circuits Circuit Complexity Computing with Circuits

Circuit Complexity

To measure difficulty of problems solved by circuits, we can count the number of gates needed:

Definition 17.4

The size of a circuit is its number of gates.

Let $f: \mathbb{N} \to \mathbb{R}^+$ be a function. A circuit family C is f-size bounded if each of its circuits C_n is of size at most f(n).

Size(f(n)) is the class of all languages that can be decided by an O(f(n))-size bounded circuit family.

Example 17.5

Our circuits for generalised AND show that $\{1^n \mid n \ge 1\} \in \text{Size}(n)$.

Examples

Many simple operations can be performed by circuits of polynomial size:

- ▶ Boolean functions such as parity (=sum modulo 2), sum modulo *n*, or majority
- Airhtmetic operations such as addition, subtraction, multiplication, division (taking two fixed-arity binary numbers as inputs)
- Many matrix operations

See exercsie for some more examples

Circuit Complexity Polynomial Circuits Circuit Complexity Polynomial Circuits

Polynomial Circuits

A natural class of problems to consider are those that have polynomial circuit families:

Definition 17.6

$$P_{\text{poly}} = \bigcup_{d>1} \text{Size}(n^d).$$

Note: A language is in P_{poly} if it is solved by some polynomial-sized circuit family. There may not be a way to compute (or even finitely represent) this family.

How does P_{poly} relate to other classes?

⊕ ⊕ ⊙ 2015 Daniel Borchmann, Markus Krötzsch

Complexity Theory

2016-01-13

⊚ 10 2015 Daniel Borchmann, Markus Krötzsch

Complexity Theory

2016-01-13

Circuit Complexity

Polynomial Circuits

Circuit Complexity

Polynomial Circuits

Quadratic Circuits for Deterministic Time

Theorem 17.7

For $f(n) \ge n$, we have $DTIME(f) \subseteq SIZE(f^2)$.

Proof sketch (see also Sipser, Theorem 9.30).

▶ We can represent the DTIME computation as in the proof of Theorem 15.5: as a list of configurations encoded as words

Polynomial Circuits

$$* \sigma_1 \cdots \sigma_{i-1} \langle q, \sigma_i \rangle \sigma_{i+1} \cdots \sigma_m *$$

of symbols from the set $\Omega = \{*\} \cup \Gamma \cup (Q \times \Gamma)$. \rightarrow tableau with $O(f^2)$ cells.

- We can describe each cell with a list of bits (wires in a circuit).
- \blacktriangleright We can compute one configuration from its predecessor by O(f) circuits (idea: compute the value of each cell from its three upper neighbours as in Theorem 15.5)
- Acceptance can be checked by assuming that the TM returns to a unique configuration position/state when accepting

From Polynomial Time to Polynomial Size

From $DTime(f) \subseteq Size(f^2)$ we get:

Corollary 17.8

 $P \subseteq P_{poly}$.

This sugggests another way of approaching the P vs. NP question:

If any language in NP is not in P_{poly} , then $P \neq NP$.

(but nobody has found any such language yet)

Circuit Complexity Polynomial Circuits Circuit Complexity Polynomial Circuits

CIRCUIT-SAT

Input: A Boolean Circuit *C* with one output.

Problem: Is there any input for which *C* returns 1?

Theorem 17.9

CIRCUIT-SAT is NP-complete.

Proof.

Inclusion in NP is easy (just guess the input).

For NP-hardness, we use that NP problems are those with a P-verifier:

- ► The DTM simulation of Theorem 17.7 can be used to implement a verifier (input: (w#c) in binary)
- ▶ We can hard-wire the w-inputs to use a fixed word instead (remaining inputs: c)
- ▶ The circuit is satisfiable iff there is a certificate for which the verifier accepts w

A New Proof for Cook-Levin

Theorem 17.10

3Sat is NP -complete.

Proof.

Membership in NP is again easy (as before).

For NP-hardness, we express the circuit that was used to implement the verifier in Theorem 17.9 as propositional logic formula in 3-CNF:

- Create a propositional variable X for every wire in the circuit
- Add clauses to relate input wires to output wires, e.g., for AND gate with inputs X_1 and X_2 and output X_3 , we encode $(X_1 \land X_2) \leftrightarrow X_3$ as:

$$(\neg X_1 \lor \neg X_2 \lor X_3) \land (X_1 \lor \neg X_3) \land (X_2 \lor \neg X_3)$$

- ► Fixed number of clauses per gate = linear size increase
- ▶ Add a clause (X) for the output wire X.

© © 2015 Daniel Borchmann, Markus Krötzsch

Circuit Complexity

Polynomial Circuits

Complexity Theory

2016-01-13 #17

© © 2015 Daniel Borchmann, Markus Krötzsch

Circuit Complexity

Polynomial Circuits

Circuit Complexity

Polynomial Circuits

Circuit Complexity

Polynomial Circuits

Is $P = P_{\text{poly}}$?

We showed $P \subseteq P_{poly}$. Does the converse also hold?

No!

Theorem 17.11

P_{/poly} contains undecidable problems.

Proof.

We define the unary Halting problem as the (undecidable) language:

UHalt := $\{1^n \mid \text{the binary encoding of } n \text{ encodes a pair } \langle \mathcal{M}, w \rangle$ where \mathcal{M} is a TM that halts on word $w\}$

For a number $1^n \in UHALT$, let C_n be the circuit that computes a generalised AND of all inputs. For all other numbers, let C_n be a circuit that always returns 0. The circuit family C_1, C_2, C_3, \ldots accepts UHALT.

Uniform Circuit Families

 P_{poly} too powerful, since we do not require the circuits to be computable. We can add this:

Definition 17.12

A circuit family C_1, C_2, C_3, \ldots is log-space-uniform if there is a log-space computable function that maps words 1^n to (an encoding of) C_n . (We could also define similar notions of uniformity for other complexity classes.)

Theorem 17.13

The class of all languages that are accepted by a log-space-uniform circuit family of polynomial size is exactly P.

Proof sketch.

A detailed analysis shows that out that our earlier reduction of P DTMs to circuits is log-space-uniform. Conversely, a polynomial-time procedure can be obtained by first computing a suitable circuit (in log-space) and then evaluating it (in polynomial time).

Circuit Complexity Polynomial Circuits Circuit Complexity Polynomial Circuits

Turing Machines That Take Advice

One can also describe P_{poly} using TMs that take "advice":

Definition 17.14

Consider a function $a: \mathbb{N} \to \mathbb{N}$. A language \mathcal{L} is accepted by a Turing Machine \mathcal{M} with a bits of advice if there is a sequence of advice strings $\alpha_0, \alpha_1, \alpha_2, \ldots$ of length $|\alpha_i| = a(i)$ and \mathcal{M} accepts inputs of the form $(w\#a_{|w|})$ if ad only if $w \in \mathcal{L}$.

 P_{poly} is equivalent to the class of problems that can be solved by a PTIME TM that takes a polynomial amount of "advice".

(This is where the notation P_{poly} comes from.)

P_{poly} and NP

We showed $P\subseteq P_{/poly}.$ Does $NP\subseteq P_{/poly}$ also hold? Nobody knows

Theorem 17.15 (Karp-Lipton Theorem)

If $NP \subseteq P_{poly}$ then $PH = \Sigma_2^p$.

Proof sketch (see Arora/Barak Theorem 6.19).

- if $NP \subseteq P_{poly}$ then there is a polysize circuit family solving Sat
- ▶ Using this, one can argue that there is also a polysize circuit family that computes the lexicographically first" satisfying assignment (*k* output bits for *k* variables)
- ▶ A Π_2 -QBF formula $\forall \mathbf{X}.\exists \mathbf{Y}.\varphi$ is true if, for all values of \mathbf{X} , $\varphi[\mathbf{X}]$ is satisfiable.
- ▶ In Σ_2^P , we can: (1) guess the polysize circuit for SAT, (2) check for all values of **X** if its output is really a satisfying assignment (to verify the guess)
- ▶ This solves Π_2^P -hard problems in Σ_2^P
- ▶ But then the Polynomial Hierarchy collapses at Σ_2^P , as claimed.

⊚⊕⊚ 2015 Daniel Borchmann, Markus Krötzsch Circuit Complexity

Complexity Theory
Polynomial Circuits

2016-01-13

Complexity Theory
Polynomial Circuits

2016-01-13

1-13 #22

 P_{poly} and ExpTime

We showed $P \subseteq P_{/poly}$. Does $ExpTime \subseteq P_{/poly}$ also hold? Nobody knows

Theorem 17.16 (Meyer's Theorem)

If ExpTime $\subseteq P_{poly}$ then $ExpTime = PH = \Sigma_2^p$.

See [Arora/Barak, Theorem 6.20] for a proof sketch.

Corollary 17.17

If ExpTime $\subseteq P_{poly}$ then $P \neq NP$.

Proof.

If $\operatorname{ExpTime} \subseteq \operatorname{P}_{/poly}$ then $\operatorname{ExpTime} = \Sigma_2^{\rho}$ (Meyer's Theorem). By the Time Hierarchy Theorem, $\operatorname{P} \neq \operatorname{ExpTime}$, so $\operatorname{P} \neq \Sigma_2^{\rho}$. So the Polynomial Hierarchy doesn't collapse completely, and $\operatorname{P} \neq \operatorname{NP}$. \square

How Big a Circuit Could We Need?

We should not be surprised that P_{poly} is so powerful: exponential circuit families are already enough to accept any language Exercise: show that every Boolean function over n variables can be expressed by a circuit of size $\leq n2^n$.

It turns out that these exponential circuits are really needed:

Theorem 17.18 (Shannon 1949 (!))

For every n, there is a function $\{0,1\}^n \to \{0,1\}$ that cannot be computed by any circuit of size $2^n/(10n)$.

In fact, one can even show: almost every Boolean function requires circuits of size $> 2^n/(10n)$ – and is therefore not in $P_{/poly}$

Is any of these functions in NP? Or at least in Exp? Or at least in NExp? Nobody knows