Complexity Theory

Circuit Complexity

Daniel Borchmann, Markus Krötzsch

Computational Logic

2016-01-13

(c)(1)

Complexity Theory Computing with Circuits

Motivation

Some questions:

- What can complexity theory tell us about parallel computation?
- Are there any meaningful complexity classes below LogSpace? Do they contain relevant problems?
- Even if it is hard to find a universal algorithm for solving all instances of a problem, couldn't it still be that there is a simple algorithm for every fixed problem size?
\leadsto circuit complexity provides some answers
Intuition: use circuits with logical gates to model computation

Computing with Circuits

©(○ 2015 Daniel Borchmann, Markus Krötzsch Complexity Theory Computing with Circuits
 Boolean Circuits

Definition 17.1
A Boolean circuit is a finite, directed, acyclic graph where

- each node that has no predecessor is an input node
- each node that is not an input node is one of the following types of logical gate:
- AND with two input wires
- OR with two input wires
- NOT with one input wire
- one or more nodes are designated output nodes

The outputs of a Boolean circuit are computed in the obvious way from the inputs.
\leadsto circuits with k inputs and ℓ outputs represent functions $\{0,1\}^{k} \rightarrow\{0,1\}^{\ell}$
We often consider circuits with only one output.

Example 1

XOR function:

©(®) 2015 Daniel Borchmann, Markus Krötzsch	Complexity Theory	2016-01-13
Circuit Complexity	Computing with Circuits	

Alternative Ways of Viewing Circuits (1)

Propositional formulae

- propositional formulae are special circuits: each non-input node has only one outgoing wire
- each variable corresponds to one input node
- each logical operator corresponds to a gate
- each sub-formula corresponds to a wire

Example 2

Parity function with four inputs:
(true for odd number of 1 s)

Alternative Ways of Viewing Circuits (2)

Straight-line programs

- are programs without loops and branching (if, goto, for, while, etc.)
- that only have Boolean variables
- and where each line can only be an assignment with a single Boolean operator
$\leadsto n$-line programs correspond to n-gate circuits

$01 z_{1}:=\neg x_{1}$
$02 z_{2}:=\neg x_{2}$
$03 z_{3}:=z_{1} \wedge x_{2}$
$04 z_{4}:=z_{2} \wedge x_{1}$

Example: Generalised AND

The function that tests if all inputs are 1 can be encoded by combining binary AND gates:

- works similarly for OR gates
- number of gates:
$n-1$
- we can use n-way AND and OR (keeping the real size in mind)

Circuit Complexity

To measure difficulty of problems solved by circuits, we can count the number of gates needed:

Definition 17.4

The size of a circuit is its number of gates.
Let $f: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a function. A circuit family C is f-size bounded if each of its circuits C_{n} is of size at most $f(n)$.
$\operatorname{Size}(f(n))$ is the class of all languages that can be decided by an $O(f(n))$-size bounded circuit family.

Example 17.5

Our circuits for generalised AND show that $\left\{1^{n} \mid n \geq 1\right\} \in \operatorname{SizE}(n)$.

Solving Problems with Circuits

Circuits are not universal: fixed number of inputs!
How can they solve arbitrary problems?

Definition 17.2

A circuit family is an infinite list $C=C_{1}, C_{2}, C_{3}, \ldots$ where each C_{i} is a
Boolean circuit with i inputs and one output.
We say that C decides a language $\mathcal{L}(\operatorname{over}\{0,1\})$ if

$$
w \in \mathcal{L} \quad \text { if and only if } \quad C_{n}(w)=1 \text { for } n=|w| .
$$

Example 17.3
The circuits we gave for generalised AND are a circuit family that decides the language $\left\{1^{n} \mid n \geq 1\right\}$.

Many simple operations can be performed by circuits of polynomial size:

- Boolean functions such as parity (=sum modulo 2), sum modulo n, or majority
- Airhtmetic operations such as addition, subtraction, multiplication, division (taking two fixed-arity binary numbers as inputs)
- Many matrix operations

See exercsie for some more examples

Polynomial Circuits

A natural class of problems to consider are those that have polynomial circuit families:

Definition 17.6
$P_{\text {/poly }}=\bigcup_{d \geq 1} \operatorname{Size}\left(n^{d}\right)$.
Note: A language is in $\mathrm{P}_{\text {/poly }}$ if it is solved by some polynomial-sized circuit family. There may not be a way to compute (or even finitely represent) this family.

How does $\mathrm{P}_{/ \text {poly }}$ relate to other classes?

Quadratic Circuits for Deterministic Time

Theorem 17.7
For $f(n) \geq n$, we have $\operatorname{DTimE}(f) \subseteq \operatorname{SizE}\left(f^{2}\right)$.
Proof sketch (see also Sipser, Theorem 9.30).

- We can represent the DTime computation as in the proof of Theorem 15.5: as a list of configurations encoded as words

$$
* \sigma_{1} \cdots \sigma_{i-1}\left\langle q, \sigma_{i}\right\rangle \sigma_{i+1} \cdots \sigma_{m} *
$$

of symbols from the set $\Omega=\{*\} \cup \Gamma \cup(Q \times \Gamma)$. \rightarrow tableau with $O\left(f^{2}\right)$ cells.

- We can describe each cell with a list of bits (wires in a circuit).
- We can compute one configuration from its predecessor by $O(f)$ circuits (idea: compute the value of each cell from its three upper neighbours as in Theorem 15.5)
- Acceptance can be checked by assuming that the TM returns to a unique configuration position/state when accepting

From $\operatorname{DTime}(f) \subseteq \operatorname{Size}\left(f^{2}\right)$ we get:
Corollary 17.8
$\mathrm{P} \subseteq \mathrm{P}_{\text {pooly }}$.
This sugggests another way of approaching the P vs. NP question:
If any language in NP is not in $\mathrm{P}_{/ \text {poly }}$, then $\mathrm{P} \neq \mathrm{NP}$.
(but nobody has found any such language yet)

Circuit-Sat

Input: A Boolean Circuit C with one output.
Problem: Is there any input for which C returns 1?

Theorem 17.9

Circuit-Sat is NP-complete.

Proof.
Inclusion in NP is easy (just guess the input).
For NP-hardness, we use that NP problems are those with a P-verifier:

- The DTM simulation of Theorem 17.7 can be used to implement a verifier (input: ($w \# c$) in binary)
- We can hard-wire the w-inputs to use a fixed word instead (remaining inputs: c)
- The circuit is satisfiable iff there is a certificate for which the verifier accepts w
\square

©(®)2015 Daniel Borchmann, Markus Krötzsch		Complexity Theory	2016-01-13	\#17
	Circuit Complexity	olynomial Circuits		

Is $\mathrm{P}=\mathrm{P}_{\text {/poly }}$?
We showed $\mathrm{P} \subseteq \mathrm{P}_{\text {/poly }}$. Does the converse also hold?
No!
Theorem 17.11
$\mathrm{P}_{\text {/poly }}$ contains undecidable problems.
Proof.
We define the unary Halting problem as the (undecidable) language:

> UHALT: $:=\left\{1^{n} \mid\right.$ the binary encoding of n encodes a pair $\langle\mathcal{M}, w\rangle$ where \mathcal{M} is a TM that halts on word $w\}$

For a number $1^{n} \in \mathrm{UHALt}$, let C_{n} be the circuit that computes a generalised AND of all inputs. For all other numbers, let C_{n} be a circuit that always returns 0 . The circuit family $C_{1}, C_{2}, C_{3}, \ldots$ accepts UHALT.

A New Proof for Cook-Levin

Theorem 17.10
3Sat is NP-complete.
Proof.
Membership in NP is again easy (as before).
For NP-hardness, we express the circuit that was used to implement the verifier in Theorem 17.9 as propositional logic formula in 3-CNF:

- Create a propositional variable X for every wire in the circuit
- Add clauses to relate input wires to output wires, e.g., for AND gate with inputs X_{1} and X_{2} and output X_{3}, we encode $\left(X_{1} \wedge X_{2}\right) \leftrightarrow X_{3}$ as:

$$
\left(\neg X_{1} \vee \neg X_{2} \vee X_{3}\right) \wedge\left(X_{1} \vee \neg X_{3}\right) \wedge\left(X_{2} \vee \neg X_{3}\right)
$$

- Fixed number of clauses per gate $=$ linear size increase
- Add a clause (X) for the output wire X.

```
@(@)2015 Daniel Borchmann, Markus Krötzsch
Complexity Theory
(1) 2015 Daniel Borchmann, Markus Krötzsch Polynomial Circuits
```

2016-01-13 \#18

Uniform Circuit Families

$\mathrm{P}_{\text {/poly }}$ too powerful, since we do not require the circuits to be computable. We can add this:

Definition 17.12

A circuit family $C_{1}, C_{2}, C_{3}, \ldots$ is log-space-uniform if there is a log-space computable function that maps words 1^{n} to (an encoding of) C_{n}.
(We could also define similar notions of uniformity for other complexity classes.)
Theorem 17.13
The class of all languages that are accepted by a log-space-uniform circuit family of polynomial size is exactly P .

Proof sketch.
A detailed analysis shows that out that our earlier reduction of P DTMs to circuits is log-space-uniform. Conversely, a polynomial-time procedure can be obtained by first computing a suitable circuit (in log-space) and then evaluating it (in polynomial time).

Turing Machines That Take Advice

One can also describe $\mathrm{P}_{\text {/poly }}$ using TMs that take "advice":
Definition 17.14
Consider a function a : $\mathbb{N} \rightarrow \mathbb{N}$. A language \mathcal{L} is accepted by a Turing Machine \mathcal{M} with a bits of advice if there is a sequence of advice strings $\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots$ of length $\left|\alpha_{i}\right|=a(i)$ and \mathcal{M} accepts inputs of the form ($\left.w \# a_{|w|}\right)$ if ad only if $w \in \mathcal{L}$.
$\mathrm{P}_{\text {/poly }}$ is equivalent to the class of problems that can be solved by a PTime TM that takes a polynomial amount of "advice".
(This is where the notation $\mathrm{P}_{\text {/poly }}$ comes from.)

$\mathrm{P}_{\text {/poly }}$ and NP

We showed $\mathrm{P} \subseteq \mathrm{P}_{/ \text {poly }}$. Does $\mathrm{NP} \subseteq \mathrm{P}_{/ \text {poly }}$ also hold?
Nobody knows
Theorem 17.15 (Karp-Lipton Theorem)
If $\mathrm{NP} \subseteq \mathrm{P}_{\text {/poly }}$ then $\mathrm{PH}=\Sigma_{2}^{p}$.
Proof sketch (see Arora/Barak Theorem 6.19).

- if $\mathrm{NP} \subseteq \mathrm{P}_{\text {/poly }}$ then there is a polysize circuit family solving Sat
- Using this, one can argue that there is also a polysize circuit family that computes the lexicographically first" satisfying assignment (k output bits for k variables)
- A $\Pi_{2}-$ QBF formula $\forall \mathbf{X} . \exists \mathbf{Y} . \varphi$ is true if, for all values of $\mathbf{X}, \varphi[\mathbf{X}]$ is satisfiable.
- In \sum_{2}^{P}, we can: (1) guess the polysize circuit for SAT, (2) check for all values of \mathbf{X} if its output is really a satisfying assignment (to verify the guess)
- This solves Π_{2}^{P}-hard problems in Σ_{2}^{P}
- But then the Polynomial Hierarchy collapses at Σ_{2}^{P}, as claimed.

©(®)2015 Daniel Borchmann, Markus Krötzsch		Complexity Theory	2016-01-13	\#21	©(®) 2015 Daniel Borchmann, Markus Krötzsch		Complexity Theory	2016-01-13	\#22
	Circuit Complexity	Polynomial Circuits			Circuit Complexity		Polynomial Circuits		

How Big a Circuit Could We Need?

We should not be surprised that $\mathrm{P}_{/ \text {poly }}$ is so powerful:
exponential circuit families are already enough to accept any language Exercise: show that every Boolean function over n variables can be expressed by a circuit of size $\leq n 2^{n}$.

It turns out that these exponential circuits are really needed:
Theorem 17.18 (Shannon 1949 (!))
For every n, there is a function $\{0,1\}^{n} \rightarrow\{0,1\}$ that cannot be computed by any circuit of size $2^{n} /(10 n)$.
In fact, one can even show: almost every Boolean function requires circuits of size $>2^{n} /(10 n)$ - and is therefore not in $\mathrm{P}_{\text {/poly }}$

Is any of these functions in NP? Or at least in Exp? Or at least in NExp? Nobody knows

