
Master Thesis

Increasing the Robustness of SAT
Solving with Machine Learning

Techniques

Enrique Matos Alfonso
10. September 2014

Technische Universität Dresden
Fakultät Informatik

Institut für Künstliche Intelligenz
Professur für Wissensverarbeitung

Betreut von:

Prof.Dr. rer. nat. Steffen Hölldobler

Dipl.-Inf. Norbert Manthey



Enrique Matos Alfonso
Increasing the Robustness of SAT Solving with Machine Learning Techniques
Master Thesis, Fakultät für Informatik
Technische Universität Dresden, September 2014



Task of the Master Thesis

Surname, Name: Matos Alfonso, Enrique
Course of Studies: European Master’s Program in Computational Logic (EMCL)
Matrikelnummer: 3928013
Title: Increasing the Robustness of SAT Solving with Ma-

chine Learning Techniques
Task Description: The question whether a propositional formula in conjunctive

normal form is satisfiable (SAT) is answered with powerful
clause learning SAT solvers. However, the formulas originate
from many different applications and scientific questions, and
many different solving techniques have been proposed. Usual-
ly, the default configuration of a given SAT solver can handle
formulas that are already known to the community. However,
for novel formulas this configuration might fail.
In this thesis machine learning techniques should be applied
to improve this situation. Given a novel formula, then from
a set of preselected SAT solver configurations a configuration
should be picked that can solve the formula. For this task,
existing CNF feature extraction methods should be used as
a starting point. The extraction might be adopted to new
machine learning techniques. While the overall performance
should be improved for novel formulas, the performance on
the overall benchmark should not decrease.

Betreuer: Norbert Manthey
verantwortlicher Hochschullehrer: Prof. Dr. rer. nat. Steffen Hölldobler

Institut: Künstliche Intelligenz
Lehrstuhl: Wissensverarbeitung
Beginn am: 21.04.2014
Einzureichen am: 10.09.2014





Abstract. Algorithm portfolios have become very popular in SAT com-
petitions. The portfolio together with a good algorithm selection model
can solve more instances than the best algorithm. For the algorithm selec-
tion task normally machine learning techniques are used based on features
computed from the SAT instances. When the algorithm selection model is
tested on instances that were part of the training dataset the results are
very accurate but when novel instances are included in the testing dataset
the performance decreases.
The primary purpose of this thesis was to study the performance on

novel instances of the algorithm selection models based on machine lear-
ning techniques. A portfolio of different configurations of the Riss solver
was built. New features were proposed and ten versions of features compu-
tation were tested. Furthermore, Six versions of machine learning models
were proposed for the algorithm selection task. Four of them were based
on binary classification models that predict when the configurations are
“good” or “bad” for the given instance. The remaining two models used
the k-nearest neighbor algorithm and a selection method based on the
maximum value of a weighted contribution to predict the algorithm that
was going to be used on the instance. The models were tested on novel
instances and also on the complete benchmark.
The obtained results show that the proposed features can be computed

efficiently, having 96% of non redundant information. Only the models
that were not based on binary classification could outperform the best
configuration when tested on novel instances. It was observed that the best
prediction models performed better than the best configuration and better
than the Lingeling solver, when tested on the complete benchmark.





Contents

1 Introduction 1

2 Basics 3
2.1 CNF Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Machine Learning and Classification . . . . . . . . . . . . . . . . . . . 4

2.3.1 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.2 k-Nearest Neighbors and Instance Based Classifiers . . . . . . . 7

3 Related Work 11
3.1 SATZilla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 ArgoSmArT k-NN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Features 14
4.1 Graphs Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1.1 XOR Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Sequences Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Other Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Proposed Models 19
5.1 Binary Classification Models . . . . . . . . . . . . . . . . . . . . . . . 19

5.1.1 Random Forest Classifiers . . . . . . . . . . . . . . . . . . . . . 21
5.1.2 Instance Based Classifiers . . . . . . . . . . . . . . . . . . . . . 21

5.2 k-Nearest Neighbors Models . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Experimental Results 23
6.1 Features Relevance and Performance . . . . . . . . . . . . . . . . . . . 23
6.2 Algorithms Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3 Prediction Models Performance . . . . . . . . . . . . . . . . . . . . . . 32

6.3.1 Performance on Novel Instances . . . . . . . . . . . . . . . . . 33
6.3.2 Overall Performance . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3.3 Empirical Performance . . . . . . . . . . . . . . . . . . . . . . . 40

7 Conclusion and Future Work 42

References 45



List of Figures
1 Decision tree example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 KD-Tree example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Search Process in a kD-Tree. . . . . . . . . . . . . . . . . . . . . . . . 9
4 SATzilla features used by ArgoSmArT k-NN system. . . . . . . . . . . 12
5 Features extraction overview. . . . . . . . . . . . . . . . . . . . . . . . 14
6 Overview of the execution of the algorithm portfolio model. . . . . . . 19
7 Runtime for the different feature computation versions. . . . . . . . . 25
8 Memory usage for the different features computation versions. . . . . . 25
9 IGR for the features of the different feature computation versions. . . 28
10 Correlation matrix for all the features computed. . . . . . . . . . . . . 29
11 Cactus plot for the algorithms in the portfolio and Lingeling solver. 31
12 Correlation matrix for the runtimes of the configurations used together

with Lingeling solver. . . . . . . . . . . . . . . . . . . . . . . . . . . 32
13 Cactus plot for the best prediction model tested on novel instances. . 36
14 Improvement performance of the best prediction models. . . . . . . . . 38
15 Cactus plot for one of the best models tested on novel instances. . . . 38



List of Tables
1 Graph structures considered for features computation of a formula F

with |F | = m, and n variables. . . . . . . . . . . . . . . . . . . . . . . 15
2 Simple and time related features. . . . . . . . . . . . . . . . . . . . . . 18
3 Explored RF classifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4 Explored IBK classifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5 Explored k-NN classifiers. . . . . . . . . . . . . . . . . . . . . . . . . . 22
6 Description of the versions of features computation. . . . . . . . . . . 23
7 Instances with computed features for each version of features computa-

tion on a 100 sec timeout. . . . . . . . . . . . . . . . . . . . . . . . . . 24
8 Correlation coefficient between runtime and memory for the different

features computation versions. . . . . . . . . . . . . . . . . . . . . . . 26
9 Features with highest IGR for all features computation versions. . . . 27
10 Solved instances for 900 sec timeout in whole benchmark. . . . . . . . 30
11 Best models results based on None features computation compared

with the VBS, Lingeling solver and the best configuration in the
portfolio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

12 Best models results compared with the VBS, Lingeling solver and the
best configuration in the portfolio. . . . . . . . . . . . . . . . . . . . . 35

13 Overall performance of the best prediction models compared with the
VBS, Lingeling solver and the best configuration in the portfolio. . . 37

14 Best models results for all features computation compared with the
VBS, Lingeling solver and the best configuration in the portfolio. . . 39

15 Description of the algorithm portfolios tested. . . . . . . . . . . . . . . 40
16 Empirical performance on 2014 with 900 sec timeout. . . . . . . . . . . 41
17 Empirical performance on 2014 with 5000 sec timeout. . . . . . . . . . 41



1. Introduction

1 Introduction

The propositional satisfiability problem (SAT) is one of the most studied NP-complete
problems. It has several applications in the areas of hardware verification [KSHK07],
routing [ARMS02] and scheduling [HW10,GHM+12].

Starting in year 2002 until the present year, nine SAT competitions have being orga-
nized mainly to promote new solvers for the SAT problem and to compare them with
state-of-the-art solvers. Since the incursion of SATzilla [XHHLb07] in 2007, in the
SAT competitions the “algorithm portfolios” have become very popular in the compe-
tition [Rou12,KMS+11,XHHLb07] and also in literature [NMJ09,NMJ11,XHHLB12].
The algorithm portfolios combine different SAT algorithms in order to achieve a per-
formance as close as possible to the virtual best solver (VBS), that solves a SAT
instance as fast as the fastest of the algorithm in the portfolio. The considered algo-
rithms can represent versions of the same solver with different configuration of param-
eters [AM14a] or they can also be completely different solvers [XHHLb07,NMJ09].

Most of the existing algorithm portfolios for SAT use machine learning techniques
to select the algorithm that will take care of solving the given instance. Regres-
sion was used for SATzilla first version [XHHLb07] but nowadays classification and
instance based learning are more commonly used to select an algorithm in the portfo-
lio. Although the features proposed by SATzilla authors have been a popular choice,
nevertheless other researchers have also proposed different features [Gab,AM14a].

In the SAT competitions the instances that belong to benchmarks of previous years
can also be repeated on the current year and only about 50% percent of the total
of instances in the benchmark are truly novel instances. The performance of the
algorithm portfolios can be highly influenced by the fact that most of the instances
were already part of the training dataset and rather than predicting a configuration we
are just remembering the configuration that worked with the repeated instances. In
general, a good algorithm selector should perform well on previously seen instances
and also on novel instances i.e. selecting an algorithm that can solve the instance
within the given timeout.

This thesis explores some of the existing machine learning techniques in order to
come up with a model that performs well on both novel instances and repeated
instances. First, different versions of features computation are proposed and ana-
lyzed experimentally. Also different algorithm selection models based on machine
learning techniques are proposed and an experimental study is performed in order to
select a model that has the best empirical performance on novel instances and also
on instances that were used for the training process of the model.

The features computed provided 96% of non redundant information that can be
used to represent CNF instances. The best prediction model obtained outperforms
Lingeling solver [Bie13] and outperforms the best configuration of the Riss [Man14]
solver in the novel instances and also when the model is tested on novel instances as
well as on previously seen instances.

1



1. Introduction

In the next section the definitions and notation used in this thesis are presented.
Following in Section 3, the related work is reviewed. Section 4 presents the features
extracted from SAT instances. Section 5 introduces the proposed machine learning
models to be used for the algorithm selection using the extracted features. Later in
Section 6 the evaluation results of the proposed models are shown. This thesis is
finalized in Section 7, where the conclusions are presented as well as the future work.

2



2. Basics

2 Basics

The Boolean Satisfiability problem (SAT) is formally defined as the problem of deci-
ding whether a propositional formula F is satisfiable or not. Usually it is also impor-
tant to know the interpretation that satisfies the formula. Finding an efficient algo-
rithm to solve the SAT problem is very important, because such algorithm would
influence many other problems in the NP complete class, because they all have poly-
nomial time reductions to SAT [Kar72].

2.1 CNF Formulas

Most SAT solvers require as input a Conjunctive Normal Form (CNF) formula. A
variable vi ∈ {v1, . . . , vm} occurring in a CNF instance F is represented by a positive
natural number i ∈ {1, . . . , m}, where m is the number of variables present in the
instance. A literal is either a positive variable (v, positive polarity) or a negated
variable (−v, negative polarity). A clause will be represented as a set of literals
Ci = {l1, . . . , ln}. Sometimes, a clause will also be represented with squared brackets
(Ci = [l1, . . . , ln]). Finally, a CNF formula will be represented by a set of clauses F =
{C1, . . . , Cn} but sometimes is also written in the following way F = 〈C1, . . . , Cn〉.

We define the complement operation over literals and clauses:

l =
{
−v if l = v
v if l = −v

C = {l| l ∈ C}.

A literal that appears with the same polarity in all the clauses of the formula is called
pure. Similarly, a clause where all the literals have the same polarity is called pure.

An interpretation I is a set of non complementary literals (i.e. I ∩ I = ∅). A CNF
formula F is satisfied by the interpretation I if and only if I ∩Ci 6= ∅ for every clause
Ci ∈ F . Two CNF formulas F and F ′ are semantically equivalent F ≡ F ′ if and only
if they coincide in the set of interpretations that satisfy them i.e.

{I | I satisfies F} = {I ′ | I ′ satisfies F ′}.

Resolution is an important operation between clauses. When a clause Ci ∈ F
contains a literal l and another clause Cj ∈ F contains its complement l, one can
apply the resolution rule and add the resolvent Ci ⊗ Cj = ((Ci \ {l}) ∪ (Cj \ {l})) to
the original formula, resulting in a semantically equivalent formula:

F ≡ F ∪ {Ci ⊗ Cj}.

From an algorithmic point of view it only makes sense to apply resolution when the

3



2.2. Graphs

resolvent is not a tautology i.e. when the resolution literal l is unique for the two
clauses:

Ci ∩ Cj = {l}.

A clause Ci subsumes another clause Cj when the condition Ci ⊆ Cj is satisfied. The
subsumed clause can be removed from the original formula resulting in a semantically
equivalent formula

F ≡ F \ {Cj},

because I ∩ Ci 6= ∅ implies I ∩ Cj 6= ∅ due to the set inclusion.

2.2 Graphs

Graphs are commonly used to describe the structure of a CNF formula and the com-
plexity of the relations encoded inside [Her06]. A graph is defined as the structure
G = 〈V, E〉 representing a set of vertices V (also called nodes) and a set of edges
E ⊆ V × V . For the nodes of G one can define the out degree:

degG(x) = |{y | 〈x, y〉 ∈ E}| .

A graph is called clique when each node is connected to the other nodes in the graph.
For all nodes x in a clique degG(x) = |V | − 1.

Sometimes we need to consider weighted edges, so we assign weights to them by
defining a function:

w : E 7→ R

When we need to represent the relation between elements of different sets we then
use the notion of bipartite graph, defined as the triple G = 〈VW , VB, E〉, representing
two disjoint set of nodes VW and VB and a set of edges connecting only vertices from
different sets E ⊆ (VW × VB) ∪ (VB × VW ).

2.3 Machine Learning and Classification

In artificial intelligence, machine learning deals with the study and construction of
algorithms that can learn from data [MRT12]. Usually, the algorithms are designed
to use the learned knowledge to process better similar inputs in the future. In the
presence of large amount of data, the task of finding hidden patterns, is known as
data mining [WFH11].

Classification is a machine learning and data mining technique that is used to
predict the membership of individuals to particular classes. The individuals are rep-
resented by a vector of features and the classes are the labels assigned to individuals
defining a partition of the set of individuals.

The individuals we are interested in are the CNF formulas that will be represented
as a vector of n numeric features Rn extracted from the formulas. The classification

4



2.3. Machine Learning and Classification

models used in this thesis are built based on binary classification (only two labels)
representing when each of the algorithms in the portfolio is “good” or “bad” to be
used for solving the CNF.

In general we can represent a classifier as a function

classpred : Rn 7→ {good, bad} × [0, 1]

where classpred(x).label represents the first component {good, bad} and classpred(x).prob
the corresponding probability [0, 1].

Such a function is built during the process of training the classifier. We need a set
of individuals and the membership of them to the defined classes

class : Rn 7→ {good, bad}.

The idea of this process is to come up with a prediction classpred as accurate as
possible and also to avoid the overfitting to the training dataset. The accuracy of a
classifier classpred is measured usually as the percent of individuals classified correctly
of a given dataset T [WFH11]:

acc(classpred, T ) = |{x ∈ T | classpred(x).label = class(x)}|
|T |

Overfitting occurs when attempting to model too closely the training dataset. One
can by mistake also model the random noise within the data, resulting in a classifier
that has a reduced predictive power even when the performance on the training dataset
was very good. The overfitting can be avoided using cross-validation while performing
the training process. A popular technique to perform cross-validation is called 10-fold
cross-validation [WFH11]. The training set is randomly partitioned in 10 sets, and
each of them is treated as a test set to measure the performance of the classifier
created by training on the remaining 9 sets. Finally, the overall performance is the
average performance across the 10 test sets.

2.3.1 Random Forest

Most of the popular classification techniques are based on decision trees [WFH11]
and random forest [Bre01] has proven to be the most robust of them. The random
forest algorithm operates building a collection of randomized decision trees. The
resulting prediction of the random forest is the most frequent element (mode) of the
predictions provided by the decision trees. According to the answer of all trees one
can compute the probability of the mode by just counting the number of trees whose
output coincides with the mode and then dividing this number by the number of trees
of the forest.

Decision trees are defined as either a leaf with an output class or a splitting node

5



2.3. Machine Learning and Classification

has_scholarship

passed_all_exams

badgood

avg_grade

good bad

no
yes

no
yes

≥ 3otherwise

Figure 1: Decision tree example.

with more than one decision trees as sub-trees. The splitting node defines a partition
of the values of some attributes. Each of the sub-trees is associated to a set of the
defined partition. For a given instance we start at the root of the tree and as long as
we are in a splitting node we compute to which of the sets of the partition defined by
this node our instance belongs. Next, we move to the corresponding sub-tree. When
we reach a leaf node we consider the output class in the node as the prediction of the
tree. Sometimes leaf nodes can also contain a set of classifications, or a probability
distribution over all possible classifications [WFH11].

In Figure 1 we can see a decision tree built with features defined for master students
to decide if taking a student job is a “good” or “bad” idea. One can notice that the
split nodes (squared shapes) have sub-trees that define a partition of the domain of the
attribute in the node. If we have a student with a scholarship and his average grade is
3.5 we start on the root of the tree and move to the right sub-tree that handles students
with scholarships. Next, we move to the right sub-tree that represents students with
average grade greater than or equal to 3. We have reached a leaf, therefore we take
the output class present in the node. For this particular student it is a bad idea to
take a student job.

Given a set of instances for which the class function is defined we can compute
the information gain [WFH11] of a split node by computing the difference of entropy
of the class distribution before and after the split defined by the split node. For a
given attribute a that takes values {v1, . . . , vk} in a dataset T we can compute the
information gain in the following way:

IG(T, a) = H(T )−
k∑

i=1

|{x ∈ T |xa = vi}|
|T |

H({x ∈ T |xa = vi}),

where xa represents the value of the attribute a for the instance x of the dataset and

6



2.3. Machine Learning and Classification

H(A) is defined as the entropy of the class distribution in the set A. For the binary
classification the entropy will be:

H(A) = ln(|A|)− |{x | class(x) = good}| ln(|{x | class(x) = good}|)

−|{x | class(x) = bad}| ln(|{x | class(x) = bad}|)

To normalize the values of information gain the intrinsic value is used:

IV (T, a) = −
k∑

i=1

|{x ∈ T |xa = vi}|
|T |

log2

( |{x ∈ T |xa = vi}|
|T |

)
.

Finally, the information gain ratio is defined as

IGR(T, a) = IG(T, a)
IV (T, a) .

This magnitude can help us ranking the attributes of our domain, but in general
the information gain ratio is just a measure that helps us to define greedy strategies.
The problem of finding the optimal decision tree is known to be NP-complete [HR76].

Randomized decision trees are built by randomly selecting the attributes for the
split nodes. The information gain ratio associated to the attribute is used to define
the probability of selecting it. This process provides a more stable outcome and
less influenced by random behaviors in the training dataset. The use of the strong
law of large numbers shows that random forest always converge in such a way that
overfitting is not a problem [Bre01]. Therefore, large number of trees produce more
robust and stable results. The number of features to consider by each random tree
is recommended to be log(n) + 1, where n is the number of features in the dataset
[CWZ11].

2.3.2 k-Nearest Neighbors and Instance Based Classifiers

One of the simplest ways to learn things is to memorize them. When we memorize
a set of training instances and a new instance is given to be classified we can search
in the memorized instances the most similar instance and use the same output. This
process is known as instance-based learning but in a sense all the other classification
methods are also based on instance learning, but by memorizing the instances defines
a instance-based way to represent the knowledge rather than on the other methods
that we can use trees and rules to represent what is learned.

Mainly all the real work in instance-based learning is done when we need to classify
a new instance rather than at the training process. In general the training will consist
on preparing a data structure that allows us to search new instances. In instance-
based classification when we have a new instance to classify we compare that instance
with the existing ones using a distance metric and the closest instance is used to

7



2.3. Machine Learning and Classification

assign the class for the new instance. This process is known as the nearest neighbor
classification method. Usually more than one nearest neighbor is used and the most
frequent class between the neighbors is assigned to the new instance. This algorithm
is then called the k-nearest neighbors.

To compute the distance between two instances generally we can use the Euclidean
distance

de(x, x′) =

√√√√ n∑
i=0

(xi − x′i)2.

However it is better to normalize the attributes so that all of them have equal impor-
tance in the distance computation. Other distance measures can also be used when
evaluating how close two instances are. When the number of features used to com-
pute the distance is too high the computational cost is higher and all the points of
the space tend to be equidistant from the instance we are trying to classify. Filtering
of the features can be done by ranking them according to some univariate metric and
selecting the features that are better ranked.

The process of searching the k nearest neighbors is simple and effective but it is
usually slow. The straightforward way to find the k nearest neighbors is an algorithm
of linear time complexity with respect to the size of the training set |S|. When we
use a test set T to evaluate the algorithm the time complexity becomes proportional
to the product of the two sizes |S| · |T |.

The complexity of the algorithm for finding the k nearest neighbors can be reduced
by representing the training set with a tree. A kD-Tree is a binary tree that divides the
instances space with a hyperplane and splits again each resulting partition recursively.
The splits are made perpendicular to one of the axes. In other words, in each node
one of the attributes is making a split of the instances space by defining a hyperplane

xi = cutpoint

perpendicular to the i-th dimension of the instances space.

Each node of the tree contains an n dimensional point x, the non-leaf nodes also
specify the dimension i they are splitting. The left sub-tree only contains points x′

such that x′i ≤ xi and the right sub-tree contains points x′ such that x′i > xi.

Figure 2 shows an example of kD-Tree for a two dimensional space. Squared nodes
are inner nodes and round nodes are the leaves. Inner nodes contain besides the point
a dimension that splits the space in 2 subsets.

The search process in the kD-Tree is illustrated in Figure 3 by trying to search in
the described example the closest point to (5, 8). The tree is traveled from the root
until the corresponding leaf by moving to the sub-tree that contains the points with
the i-th dimension at the same side of the hyperplane defined by the node (dashed
lines over the dots). In the root since 8 > 4 we go to the right sub-tree. Now, since
5 < 6 we go to the left sub-tree that is a leaf.

8



2.3. Machine Learning and Classification

(7, 4)− 2

(2, 2) (6, 5)− 1

(2, 8) (7, 8)

≤
>

>≤

Figure 2: KD-Tree example.

Figure 3: Search Process in a kD-Tree.

9



2.3. Machine Learning and Classification

The resulting leaf node is the candidate for the closest neighbor but then we need
to define a circle (dashed line circumference in the figure) centered in the point we
are searching (5, 8) with circumference on current closest neighbor (radius = 3). By
backtracking on the path we visited and checking whether the hyperplane intersects
with the circle, we try to find points that are closer than the current candidate. When
we backtrack to node (6, 5)− 1 we find that the hyperplane intersects with the circle
defined by center = (5, 8) and radius = 3, then we need to visit the other sub-tree.
When we visit a node we compare with the current closest candidate and update it
in case the visited node is closer to the point we are searching. In our case (7, 8)
is closer and now we define a circle with center = (5, 8) and radius = 2 (solid
line circumference in the figure). We now backtrack to the root node and since the
hyperplane defined by it does not intersect with the circle we obtained before we do
not visit the left sub-tree and the algorithm finishes with the closest point it could
find (7, 8).

The k-nearest neighbors method can be used for classification tasks by finding the k
closest neighbors to the instance that is going to be classified and then defining a way
to compute the prediction based on the class associated to the k nearest neighbors.
This classifier is known by the name IBk [WFH11]. The most common way to compute
the prediction is to select the class with maximum weighted contribution of the k
neighbors:

classpred(X).label = c′ such that maximizes the value
∑

class(x(i))=c′

weight(x(i))

where x′, . . . , x(k) are the k nearest neighbors of X, c′ is one of classes labels and
weight : Rn 7→ R represents the weights associated to the k neighbors. One of the
ways that neighbors can be weighted is by the inverse of their distance to the instance
X:

weight(x(i)) = 1
0.001 + d(X, x(i))

.

10



3. Related Work

3 Related Work

Given a portfolio of algorithms and a SAT instance, this thesis focuses on the task of
selecting one of the algorithms to obtain the best performance for the given instance.
The performance can be considered as the time that takes the selected algorithm to
solve the SAT instance or one could also just care only whether the instance was solved
or not for a given timeout. To measure the performance of the algorithm selector, one
also needs to add up the time spent by the selector before calling the selected solver
from the portfolio of solvers.

Normally the selection task is done based on the runtimes of all the algorithms for
the instances of a benchmark. The aim is to perform better than the best available
algorithm and ideally as close as possible to the virtual best solver.

3.1 SATZilla

The first version of SATzilla solver [XHHLb07] was based on a runtime prediction
model. For a given instance SATzilla would predict the runtime that each of the
solvers in the portfolio would take to solve the instance. The fastest solver according
to the prediction was selected to solve the instance. The implemented model used
linear regression to predict the runtime based on the values of the features computed
for the given instance.

To improve the performance of the initial version, SATzilla authors proposed
another idea based on binary classification instead of regression. The authors used
binary classifiers that for a given instance predicted the best solver for each pair of
solvers in the portfolio [XHHLB12].

When asked to solve an instance SATzilla computes very cheap features and uses
them to predict if the computation of the more expensive features will be possible
within a certain timeout. In case the prediction is greater than the timeout they use
the backup solver that has the best performance on instances with large feature costs.
Otherwise, the algorithm sequentially runs presolvers trying to find fast solutions. If
no solution is found by the presolvers the features are computed (calling the backup
solver if the computation exceeds the defined timeout) and a prediction model that
guesses the best solver for each pair of solvers in the portfolio is run. The solver with
the majority of votes is selected.

The prediction model was built using a random forest of decision trees. The train-
ing process was based on a cost-sensitive technique that allows to compute the per-
formance based on a cost function applied to the instance. In their case the authors
tried to predict for a given instance which is the best solver (for each pair 〈A, B〉 of
solvers) and the cost function is the absolute value of difference of the runtimes for
the instance in both solvers |timeA(x)− timeB(x)|.

In a study carried out by SATzilla authors with the benchmarks of 2011 SAT
competition [XHHLB12], SATzilla has outperformed consistently the solvers used

11



3.2. ArgoSmArT k-NN

Size Features
1-3. Number of clauses c, Number of variables v, Ratio v/c.

Variable-Clause Graph Features

4-8. Variable nodes degree statistics: mean, variation coefficient, minimum, max-
imum and entropy.
9-13. Clause nodes degree statistics: mean, variation coefficient, minimum, max-
imum and entropy.

Balance Features

14-16. Ratio of positive and negative literals in each clause: mean, variation
coefficient and entropy.
17-21. Ratio of positive and negative occurrences each variable: mean, variation
coefficient, minimum, maximum and entropy.
22-23. Fraction of binary and ternary clauses.

Proximity to Horn Formula

24. Fraction of Horn clauses.
25-29. Number of occurrences in a Horn clause for each variable: mean, variation
coefficient, minimum, maximum and entropy.

Figure 4: SATzilla features used by ArgoSmArT k-NN system.

in the portfolio, other solvers inscribed in SAT competition and also previous version
of SATzilla. SATzilla authors have also found out that the solvers with best
contributions to SATzilla were not often competitions winners but mainly solvers
that were able to solve instances that no other solver could solve. This encourages
programmers to think about efficient solvers for specific domains rather than a general
purpose solver.

3.2 ArgoSmArT k-NN

Based in a SAT instance, ArgoSmArT k-NN system selects a solver from a portfolio
of solvers [NMJ11]. Instances are represented using a subset of the features proposed
by SATzilla authors (Figure 4).

When an input instance is given, the features are computed and according to a
distance metric the closest k instances from the training set are found. The ArgoSAT

12



3.2. ArgoSmArT k-NN

solver is run then with the solver Si that has the smallest penalty for the k instances.
In case of ties the solver that performs better in the whole training set is selected.

Distance metric: The authors used a distance that performed well in previous
experiments [NMJ09]:

d(x, y) =
∑

i

|xi − yi|
1 +√xiyi

where xi and yi are the values of feature i for instances x and y. Note that values are
not normalized for this distance metric.

Penalty: To compute the penalty over a set of instances the authors use the sum
of the PAR10 score for each of the instances. The score is computed as follows:

PAR10Si(x) =
{

timeSi(x) if timeSi(x) ≤ timeout
10 · timeout otherwise.

The ArgoSmArT k-NN system was evaluated using the benchmark and solvers
that SATzilla first version used to evaluate their system. The results showed that
ArgoSmArT k-NN performed better than the first version of SATzilla .

13



4. Features

CNF
formula F

Graphs

other
sequences

degree
sequences

weights
sequences

features sequences:
min,max,mean,stdev,. . .

other features

Figure 5: Features extraction overview.

4 Features

For the machine learning task the CNF instances are represented as a vector of features
that describe the information encoded. The features used in this thesis were proposed
in our previous work [AM14a]. Additionally, the XOR gate extraction is implemented
for this thesis.

In Figure 5 we can see an overview of the features extraction process. The key
aspects on the features computation are the graphs that are computed from the CNF
formula, the sequences of degrees and weights computed form those graphs and also
some other sequences computed directly from the formula. Additionally, there are
some features that are not computed for sequences present in the formula.

4.1 Graphs Features

The main source of the computed features are the graphs that describe relations
encoded in the CNF formula. For those graphs the features are computed based on
the sequence of weights in the edges and also on the sequence of out-degrees of the
nodes. Some of the graphs computed were used before in the features proposed by
SATzilla [NLBH+04,XHHLb07] but without considering the weights.

In Table 1 we can see the list of graphs computed in our previous work. For all
of them we considered the sequence of the degrees and for most of them we also
considered the sequences of weights as shown in the table. The Clause-Variable graph
(CV+ for positive literals, CV− for negative literals) connects (positive or negative
respectively) literals with the clauses in which they appear. In the Variables graph
two variables are connected when they appear in the same clause without considering
the polarity. The Clause graph connects clauses that share literals. The Resolution
graph connects clauses when they produce a non-tautological resolvent. The binary

14



4.1. Graphs Features

Graphs Vertices Edges Weights

CV+ (CV−) B = {1, . . . , m} 〈i, j〉 and 〈j, i〉 iff -
W = {1, . . . , n} j ∈ Ci (−j ∈ Ci)

Variables V = {1, . . . , n} 〈i, j〉 iff there is 1 ≤ k ≤ n 2−k

{i, j} ⊆ (Ck ∪ Ck)

Clauses V = {1, . . . , m} 〈i, j〉 iff
Cj ∩ Ci 6= ∅ |Cj ∩ Ci|

Resolution V = {1, . . . , m} 〈i, j〉 iff
|Ci ∩ Cj | = 1 2−(|Ci∪Cj |−2)

BIG V = {±1, . . . ,±n} 〈i, j〉 iff
{i, j} ∈ F 2−(|Ci∪Cj |−2)

AND-GATE V = {±1, . . . ,±n} for each l0 ↔ l1 ∧ . . . ∧ lk we add
all edges 〈l0, li〉. 2−k

BAND-GATE V = {±1, . . . ,±n} for each l0 → l1 ∧ . . . ∧ lk we add
all edges 〈l0, li〉. 2−k

EX1L-GATE V = {±1, . . . ,±n} for each EX1L(l1, . . . , lk) we add
for each i 6= j add edges 〈li, lj〉. -

Table 1: Graph structures considered for features computation of a formula F with
|F | = m, and n variables.

implication graph (BIG) contains the implications between literals that appear in
binary clauses in the formula. The AND-gate graph represents the relation between
literals that belong to an AND-gate (l0 ↔ l1 ∧ . . . ∧ lk) encoded in the CNF formula.
When the encoding of an AND-gate is partially present in the formula and the rest
of the clauses can be added by blocked clause addition [Kul99] a blocked AND-gate
(BAND-gate) is recognized and the BAND-gate graph contains the relations between
the literals in the recognized gate. The EX1L-gate graph contains the relation between
literals that belong to the exactly one literal gates encoded in the formula.

In the clauses variable graph, the sequence

deg±(i) = max(degCV +(i), degCV−(i))
degCV +(i) + degCV−(i)

is used for the features computation, representing the purity degree of each clause
and each variable.

15



4.1. Graphs Features

4.1.1 XOR Graph

XOR constraints are important given the fact that many SAT problems contain them
(especially cryptographic ones). Also we can find some modifications of the DPLL
techniques to deal with parity constraints (XOR) [LJN10]. The XOR constraint is a
logical expression represented in the following way:

l1 ⊕ . . .⊕ lk.

The formula states that only an odd number of the literals present in the expression
can be mapped to true by a satisfying interpretation. The XOR constraint is usually
represented as a CNF formula S with 2k−1 clauses that contain k literals. The number
of negative literals in each of the clauses in the formula S will have the same parity.

To search the XORs encoded in a CNF formula F it is very convenient to sort first
the literals of each of the clauses in F according to the modular value and also to sort
all the clauses in the formula according to their size, then according to the variables
they contain and finally according to the parity of the negative literals count. To
obtain the described order, first the literals of each clause Cj = [l1, . . . , lm] need to be
sorted according to the value |li|, then the clauses Cj can be represented by a triple

〈m, varlex(Cj), negpar(Cj)〉 ,

where varlex(Cj) = 〈|l1|, . . . , |lm|〉 , and negpar(Cj) = |{li | li < 0}| mod 2. Finally
one can sort the clauses in the CNF formula with the �n relation defined for tuples
of size n:

〈x1, . . . , xn〉 �n
〈
x′1, . . . , x′n

〉
≡ xd �(d) x′d,

where d is the first position such that xd 6= x′d and the �(d) is an ordering relation
defined for the elements in position d. In case xd is an integer �(d) will be the normal
less than < relation defined for integers. In case xd is a tuple of dimension nd, the
relation �(d) will be the relation �nd

defined for tuples of size nd.

After this process the clauses with the same size, variables and negative literals
parity will be located next to each other. The XOR formulas S encoded in F will
then be the groups of 2k−1 consecutive clauses with size k, with the same variables
and with the same parity of the number of negative literals. In case that not all the
2k−1 clauses can be found, it can be the case that some of the missing clauses can
be deduced using subsumption. The subsumption can be easily checked by searching
clauses with a subset of the k variables in the candidate XOR encoding.

The XOR graph will have as nodes the set of literals of the formula. For each XOR
l1⊕ . . .⊕ lk encoded in the formula the clique between the literals l1, . . . , lk is added to
the XOR graph with weights 2−k associated to the edges. Sequences of weights and
nodes degrees present in the XOR graph are considered for the features computation.

16



4.2. Sequences Features

4.2 Sequences Features

Other sequences used come from the iterative computation of the Recursive Heuris-
tic Weights and the Symmetry [AM14a]. The Recursive Heuristic Weights sequence
computes values associated to the literals in the formula that represent the tendency
of each literal to be present in the final model. On the other hand, the symmetry
sequence computes values associated to variables in the formula such that variables
with the same associated value belong to the same symmetry group.

For the computed sequences S = 〈x1, . . . , xn〉 we extract several parameters to be
considered:

• Theminimum(min) of the sequence, defined as the smallest value of the sequence.

• Themaximum(max) of the sequence, defined as the greatest value of the sequence.

• The mode, defined as the most frequent value of the sequence.

• The mean of the sequence, computed in the following way mean = 1
n

∑
xi.

• The standard deviation of the sequence, defined as stdev = 1
n−1

∑
(xi −mean)2.

• The values rate 1
n |{x1, . . . , xn}| to give an idea of how different are the values

present in the sequence.

• The zero count for some sequences in which the zero values can be frequent and
have a special meaning.

• The entropy of the sequence, computed as follows: entropy = ln(n)−
∑

ci ln(ci),
where ci are the counts of each different element that appears in the sequence.

• The values Q1, . . . , Qk−1 being the k-Quantiles dividing the sequence after being
ordered in k regular intervals of approximately the same number of elements.

The derivative of the sorted sequence of values derivative(S) = 〈(x′2 − x′1), . . . , (x′n −
x′n−1)〉, where sort(S) = 〈x′1, . . . , x′n〉 is also be used as another sequence for features
computation.

4.3 Other Features

Additionally we also consider the number of clauses, of unit (2 literals, 3,...8, 9 or more
literals) clauses and of horn clauses present in the formula. Also the computations
time and steps are computed for some of the features groups. In Table 2 one can see
some names and descriptions of these features.

17



4.3. Other Features

Name Description

clauses Number of clauses.
vars Number of variables.

Number of clauses of size:
clauses_size_1 1
clauses_size_2 2
clauses_size_3 3
clauses_size_4 4
clauses_size_5 5
clauses_size_6 6
clauses_size_7 7
clauses_size_8 8
clauses_size_ >= _9 9 or more.
horn_clauses Number of horn clauses in the formula.

Number of steps used to compute:
Clause_graph_steps the clause graph,
Clause-Var_steps clause-variable graph,
Var_graph_steps variable graph,
Bin_Implication_graph_steps binary implication graph,
Exactly1Lit_steps exactly one constraint graph,
Full_AND_gate_steps full AND graph,
Blocked_AND_gate_steps blocked AND graph,
XOR_gate_steps XOR graph,
Symmetry0_steps iteration 1 of symmetry recognition,
Symmetry1_steps iteration 2 of symmetry recognition,
Symmetry2_steps iteration 3 of symmetry recognition,
Symmetry_computation_steps complete symmetry recognition,
RWH-1steps iteration 1 of RWH algorithm,
RWH-2steps iteration 2 of RWH algorithm,
RWH-3steps iteration 3 of RWH algorithm,
Resolution_graph_steps and resolution graph.

Time spent to compute:
Clause-Var_and_Var_graphs_time clause-variable and variable graph together,
Resolution_and_Clause_graphs_ resolution and clause graph together,
Bin_Implication_graph_time binary implication graph,
Constraints_recognition_time native encoded constraints,
Symmetry_computation_time and symmetry features.

(not considered by classifiers)

Table 2: Simple and time related features.

18



5. Proposed Models

F
CNF formula

Features Extraction
Algorithm Selection

SAT_SOLVER(F ,Abest)

SAT_SOLVER(F ,Afback)

Figure 6: Overview of the execution of the algorithm portfolio model.

5 Proposed Models

In this thesis we explore binary classification models based on random forest classifiers
and also on k-nearest neighbors classifiers. The classification is used to decide when
an algorithm is “good” or “bad” to be used on a given instance. A model based on
the k-nearest neighbors method but not in binary classification is also proposed.

Figure 6 shows the overview of the algorithm portfolio execution process. The
process starts with the input of a CNF formula F and then the features for F are
extracted. After the feature extraction one of the available algorithms is selected using
machine learning techniques. Finally, the selected algorithm Abest tries to obtain the
solution of the problem encoded in the SAT instance F .

The process of features extraction and algorithm selection have limited time and
memory resources. Therefore, in case one of the process fails the fall-back algorithm
Afback tries to solve the instance. The best algorithm in the training set is normally
used as the fall-back algorithm.

An important detail in machine learning algorithms is the training process. For
training the models defined in this thesis a benchmark of SAT instances is needed.
For those instances in the training set the features are computed and also the time
that each algorithm of the portfolio takes to solve the instance.

5.1 Binary Classification Models

The selection of an algorithm using binary classification is performed by associating
to each algorithm present in the portfolio a binary classifier that is able to predict
when the algorithm is “good” or “bad” for a given instance.

For each algorithm Ai the criteria of classification for a certain CNF formula con-
siders the time spent by the algorithm to find the solution of the formula and defines
a binary partition of the time domain. Three different criteria that let us define the

19



5.1. Binary Classification Models

class membership are explored.

The simplest criteria is called “global” and states whether there is enough time
to solve the formula after computing the features and selecting the algorithm Ai. In
other words, if the sum of the time used for the algorithm timeAi(x), the features
computation time timef (x) and an estimate of the classification time b is less than a
certain timeout:

classAi(x) =
{

good if timeAi(x) + timef (x) + b < timeout.
bad otherwise.

The “relative” criteria is defined with respect to the fall-back algorithm Afback. It
defines when a certain algorithm is better than the Afback:

classAi(x) =


good if timeAi(x) + timef (x) + b <

min(timeout, timeAfback
(x) + timef (x) + b)

bad otherwise.

Relative criteria will only be defined for i 6= fback.

Finally, the “complement” criteria is defined with respect to a fall-back algorithm
Afback. It is very similar to the “global” criteria but an algorithm Ai with i 6= fback
cannot be “good” if the Afback is already “good”:

classAi(x) =


good if timeAi(x) + timef (x) + b < timeout

(i = fback ∨ classAfback
(x) = bad)

bad otherwise.

Using one of the defined class partitioning criteria and the information about the
runtimes for each algorithm in the portfolio present in the training dataset, the class
partitioning is done.

The features computed for each instance and the class membership computed is
used to train a binary classifier associated to each algorithm Ai. The classifier is able
to predict given the features of a newly introduced instance if the algorithm is “good”
to be used with the instance or not.

Normally classifiers also give a probability for each of the possible outcomes. The
interesting information is the probability of the outcome to be “good” because it
provides an idea of the truth degree of the fact that the configuration is good to be
used with the instance. Finally, given all the probabilities of each algorithm Ai to be
good on the instance, the highest value is selected. The algorithm associated to the
highest value is the algorithm with the highest probability to be good on the given
instance.

In this thesis random forest and k-nearest neighbors classifiers are part of the exper-
iments. Both techniques are used to build the binary classifiers to know when an

20



5.1. Binary Classification Models

Version Description

RF Number of trees: 10 · n
Number of features to consider: log(n) + 1.
Depth: unlimited.

RF1 Cost-sensitive version of RF.

Table 3: Explored RF classifiers.

Version Description

IBK Number of Neighbors: 2
Distance: Euclidean.
Weighted contribution: 1 for all instances.

IBK1 Number of Neighbors: Found using cross-validation.
Distance: Euclidean.
Weighted contribution: Inverse of the distance.

Table 4: Explored IBK classifiers.

algorithm Ai is “good” or “bad” for a given SAT instance.

5.1.1 Random Forest Classifiers

Two versions of random forest are defined for the experiments. The specific parameters
used for both versions are shown in Table 3. The first one (RF), is a random forest
with the recommended parameters in the literature [CWZ11]. The second version
(RF1) is a cost-sensitive version of the RF version. The cost-sensitive is version is
built by varying the proportion of instances in the training dataset according to their
importance. The proportion of instances can be varied in a simple way by setting
weights to the instances in the training dataset. The weights are assigned to the
instances based on how many times the instance was labeled as “good”:

weightAi(x) =


1

goodcount(x) if classAi(x) = bad

2
goodcount(x) otherwise,

where goodcount(x) = |{Ai | classAi(x) = good}|.

5.1.2 Instance Based Classifiers

For the binary classification problem the k-nearest neighbors method can be used.
The class prediction is computed by selecting the class to which the majority of the
k nearest neighbors belong to. The instance based binary classifiers (IBK) tested in

21



5.2. k-Nearest Neighbors Models

Version Description

k-NN Number of Neighbors: 200
Distance: Euclidean.
Weighted contribution: 1 for all instances.

k-NN1 Number of Neighbors: 200.
Distance: d(x, y) =

∑
i
|xi−yi|

1+√xiyi
used in related work [NMJ11].

Weighted contribution: Inverse of the distance.

Table 5: Explored k-NN classifiers.

this thesis are based on the euclidean distance. For computing the distance between
two instances only 15 features are used. The features with higher information gain
ratio are the ones considered to compute the distance. Table 4 shows the two versions
of IBK classifiers used in this thesis for the experiments and their parameters.

5.2 k-Nearest Neighbors Models

The information in the training sets used has the following structure:

Rn × {good, bad}m

where n is the number of features and m is the number of algorithms in the portfolio
and for an instance X of the training we have that classAi(X) = xn+i.

The structure above suggests that instead of building a classifier for each of the
m algorithms in the portfolio, we could use the k-nearest neighbors method to find
the closest instances x′, . . . , x(k) and then with the class information classAi (i ∈
{1, . . . , m}) of those instances compute the algorithm A∗ to be selected by doing a
modified weighted contribution:

A∗ such that maximizes the value
∑

classA∗ (x(i))=good

weight(x(i))

Table 5 shows the k-NN prediction models used in this thesis and the description of
the parameters used.

22



6. Experimental Results

Version Features Description

None 118 Clause-variable and variable graphs,
Symmetry sequence and Other features.

Xor 154 None + XOR graph.
Big 131 None + BIG.
Derivative 217 None + Derivative of the sequences in None.
Res 141 None + Resolution graph.
Rwh 154 None + RWH sequence.
Const 188 None + BIG, EX1L, AND & BAND graphs.
NoCGResXor 422 Const + RWH and the derivative of the sequences.
Clause 141 None + clause graph.
All 556 All the groups of features and the derivative of

the sequences.

Table 6: Description of the versions of features computation.

6 Experimental Results

The instances of the SAT competitions benchmarks from year 2009 until 2013 were
filtered to remove the repeated instances and to work only with the instances solved
by at least one of the algorithms in our portfolio of algorithms.

The computation of the algorithms runtimes for the instances of the benchmark was
carried out with a CPU time limit of 900 seconds and the memory limit was 7GB on
an Intel Xeon CPU ES-2670 with 2.6GHz. The computation of the different features
versions for each instance was executed with a CPU time limit of 100 seconds and the
memory limit was also 7GB on a cluster that uses AMD Opteron 6274 CPUs with 16
cores and 2MB level 2 cache that is shared by two cores. In the following subsections
the results of the experiments are presented.

6.1 Features Relevance and Performance

The features computation was run in 9 different versions with different parameters
allowing to experiment with different sets of features. Table 6 shows the description of
all the different features computation versions and the number of features computed
in each case.

Table 7 shows for each features computation version, the number of instances with
computed features for a 100 seconds timeout. The table is sorted in a decreasing
order according to the number of instances with features computed. For the top 6
versions of features computation there was no significant difference with respect to
the number of instances they were able to process. Then the Xor version was not
able to compute the features for 36 instances of the benchmark and the Res version

23



6.1. Features Relevance and Performance

Computed
Version Instances

Total 4719

None 4719
Big 4718
Derivative 4717
Rwh 4716
Const 4713
NoCGResXor 4713
Xor 4683
Res 4617
Clause 4497
All 4493

Table 7: Instances with computed features for each version of features computation
on a 100 sec timeout.

was not able to compute the features for 102 instances of the benchmark. For the
last 2 versions, the features of more than 200 instances could not be computed, that
represents approximately 4% of the total number of instances. These two last versions
include the clause graph computation while the rest of the feature computation groups
do not include it.

Figure 7 shows the runtime cactus plots for all the features computation versions
defined. As can be seen in the figure, the performance shown by the plots were very
similar for the computation versions that do not include the resolution and the clauses
graphs. For these versions the features were computed in less than 10 seconds for 4500
instances. The remaining instances showed a significant increase in the time needed
to compute their features.

The versions that compute the clause graph have the worst runtime performance
but even for them we could compute the features in less than 20 seconds for 4300
instances. For the remaining instances computation time increased significantly.

The Res runtime performance was better than the versions that compute the
clauses graph but not as good as the features versions that skip the computation
of the clauses and resolution graphs.

In Figure 8 we can see the memory usage cactus plots. The plot for all features
computation versions resembles in shape to the corresponding runtime cactus plots.
Table 8 shows the correlation coefficients between the runtime and the memory used
for each one of the features computation versions. It can be seen that indeed the
runtime and the memory used were highly correlated, having correlation coefficients
greater than or equal to 0.8 in all cases. In terms of algorithms efficiency having a
very high (close to 1) correlation coefficient between runtime and memory means that

24



6.1. Features Relevance and Performance

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

T
im

e
 (

s
e

c
)

instances

Big
Clause
Const

Derivative
NoCGResXor

None
Res
Rwh
Xor
All

Figure 7: Runtime for the different feature computation versions.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

M
e

m
o

ry
 (

M
b

)

instances

Big
Clause
Const

Derivative
NoCGResXor

None
Res
Rwh
Xor
All

Figure 8: Memory usage for the different features computation versions.

25



6.1. Features Relevance and Performance

Version Correlation

All 1.00
Big 1.00
Clause 0.94
Const 1.00
Derivative 0.80
NoCGResXor 0.96
None 0.85
Res 0.91
Rwh 0.81
Xor 0.96

Table 8: Correlation coefficient between runtime and memory for the different features
computation versions.

the relation between runtime and memory consumption is almost linear.

When the clauses and resolution graphs were not included the features could be
computed using less than 1 GB of memory for 4500 instances. For the remaining
instances the memory needed to compute their features increased rapidly.

When the clauses graph was included the memory usage performance was worse but
for 4300 instances the features could be extracted using less than 1.5 GB of memory.
The memory required to extract the features of the rest of the instances increased
significantly.

The Res memory usage (similarly as the runtime) was better than the versions
that compute the clauses graph but not as good as the features versions that skip the
computation of the clause and resolution graphs.

The information gain ratio was computed as a measure of the importance of the
features used. Figure 9 shows the plots of the IGR for each of the different versions
of features computation for the “global” class partitioning criteria. The plots are
reverse cumulative distributions that describe how many features have a IGR greater
than or equal to a certain value in the IGR axis. One can notice that the IGR for all
the versions varied in the same range [0, 0.14] and the main difference was the area
bellow the curve that they describe, which was proportional in size to the number
of features computed in each version. The plots are very different for small values
of IGR but they get closer for bigger values of IGR (greater than or equal to 0.1),
which suggest that even when more features are computed the number of high ranked
features remains the same.

Table 9 shows the two features with highest IGR for all the versions of features
computation based on the “global” class partitioning criteria.

The zero count for the degrees sequence of the variable-clause graph (variable-
clause_degree_zcount), with IGR of 0.13 for all versions of features computation

26



6.1. Features Relevance and Performance

Version Feature Name IGR

All XOR_gate_weights_derivative_entropy 0.14
XOR_gate_weights_derivative_stdev 0.13

Big variable-clause_degree_zcount 0.13
bin_implication_graph_degree_min 0.11

Clause variable-clause_degree_zcount 0.13
clauses_size_4 0.12

Const variable-clause_degree_zcount 0.13
bin_implication_graph_degree_min 0.11

Derivative variable-clause_degree_zcount 0.13
clauses_size_4 0.11

NoCGResXor variable-clause_degree_zcount 0.13
Exactly1Lit_derivative_mode 0.12

None variable-clause_degree_zcount 0.13
clauses_size_4 0.11

Res variable-clause_degree_zcount 0.12
clauses_size_4 0.11

Rwh variable-clause_degree_zcount 0.13
clauses_size_4 0.11

Xor variable-clause_degree_zcount 0.13
bin_implication_graph_degree_min 0.11

Table 9: Features with highest IGR for all features computation versions.

27



6.1. Features Relevance and Performance

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14

fe
a

tu
re

s

IGR

All
Big

Clause
Const

Derivative
NoCGResXor

None
Res
Rwh
Xor

Figure 9: IGR for the features of the different feature computation versions.

was only exceed by the entropy of the derivative of the sequence of weights in the
XOR_gate graph (XOR_gate_weights_derivative_entropy) with a IGR of 0.14. Even
if the the Xor version also computes the XOR_gate_weights_derivative_entropy,
the value of the IGR was smaller. The class distribution changed because not all
features computation versions were able to compute the features for the same set of
instances. Consequently, the IGR of some features also changed.

For the features computation, one of the aspects to pay attention to is how corre-
lated are the values of those features. If the features have highly correlated values,
the information computed is redundant and can affect the efficiency of the features
computation because more memory is used and more time is consumed on informa-
tion already present. The classification process can also be affected when the features
values are too similar because the probability of using the redundant information is
higher than using the non-redundant information when the classifier is built.

Figure 10 shows the correlation matrix for the values of all the computed features.
Black areas represent high correlation coefficients (grater than 0.7 or also lower than
-0.7) and white areas represent the correlation coefficients in the range [−0.7, 0.7] that
defines the non-redundant information present. The 96% of the correlation coefficients
fell in the range of non-redundant information.

The clauses_graph_steps and resolution_graph_steps features had the highest
correlation coefficients with respect to the total time of the features extraction with
values of 0.89 and 0.69 respectively. Hence, the time to compute the features was
strongly influenced by the steps taken to build the clauses and resolution graphs.
Although, the influence was bigger in the case of clauses_graph_steps.

Furthermore, the correlation coefficients of the features computed with respect to

28



6.2. Algorithms Contributions

 0

 100

 200

 300

 400

 500

 0  100  200  300  400  500

fe
a

tu
re

s

features

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

C
o

rr
e

la
ti
o

n

Figure 10: Correlation matrix for all the features computed.

the runtimes of the configurations was never greater than 0.25. Therefore, the run-
times of the configurations are not linearly determined by any of the computed fea-
tures.

6.2 Algorithms Contributions

The algorithms used in the portfolio determine how good will be the performance of
the selection model. In general, algorithms that solve instances that other algorithms
do not solve (unique contributions) play a very important role in the portfolio. As a
method for scoring the algorithms in a portfolio one can use a simplified version of the
purse score [VGLBB+05] where only the solution purse is considered. The solution
purse is a value (one in this thesis) assigned to each instance in the benchmark. The
solution purse of each instance is equally divided among the solvers that solve the
instance. The purse score of a solver is then sum of all the fragments of solution
purse provided by all the instances it solved. The number of solved instances and the
number of unique contributions can also be used as measures to rank the algorithms
of our portfolio.

Table 10 shows for each algorithm used in the portfolio the number of solved
instances in the benchmark, the percent it represents from the total number of
instances in the benchmark, the simple purse score and in the last column how many
unique contributions the algorithm provided. The table is sorted in a decreasing order
according to the number of solved instances. All the algorithms in the portfolio rep-
resent configurations of the parameters of the Riss solver [Man14] coming from the
SAT Competition 2013 and the Configurable SAT Solver Challenge (CSSC) 2013 and
some additional ones tuned for the 2014 SAT competition.

29



6.2. Algorithms Contributions

Solved Simple Purse Unique
Configuration Instances Percent Score Contributions

VBS 4719 100 % - -

Lingeling 4444 94.2 % - -

Riss427-NoCLE 4408 93.4% 446.5 0
Riss427 4408 93.4% 446.3 1
RissND427 4399 93.2% 442.9 0
PRB 4394 93.1% 452.7 1
NOTRUST 4374 92.7% 445.1 3
EDACC5 4393 93.1% 451.0 1
EDACC6 4394 93.1% 450.8 4
SUHLE 4383 92.9% 442.4 2
FASTRESTART 4357 92.3% 442.9 5
EDACC7 4389 93.0% 449.0 2
Riss3g 4370 92.6% 451.8 9
RERRW 4370 92.6% 447.4 3
XBVA 4361 92.4% 440.4 1
XOR 4360 92.4% 443.0 3
fourthCL 4305 91.2% 452.2 6
LABS 4200 89.0% 446.7 18
RATEBCEUNHIDE 4180 88.6% 429.1 8
RISSLGL3 3475 73.6% 357.6 7
RISSLGL4 3257 69.0% 345.6 15

Table 10: Solved instances for 900 sec timeout in whole benchmark.

30



6.2. Algorithms Contributions

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 2500  3000  3500  4000  4500

ti
m

e
 i
n

 s
e

c
o

n
d

s

instances

Riss427-NoCLE
Riss427

RissND427
PRB

NOTRUST
EDACC5
EDACC6

SUHLE
FASTRESTART

EDACC7

Riss3g
RERRW

XBVA
XOR

fourthCL
LABS

RATEBCEUNHIDE
RISSLGL3
RISSLGL4

Lingeling

Figure 11: Cactus plot for the algorithms in the portfolio and Lingeling solver.

Notice that the configurations Riss427-NoCLE and RissND427 had zero unique
contributions which means that the instances solved by them were also solved by
the rest of the configurations. Additionally, the correlation index between Riss427-
NoCLE and RissND427 was rather high (0.88) which suggest that one of them can
be removed from the portfolio without changing the number of instances solved by
the VBS. In general, one can see that the number of unique contributions for most
of the configurations was lower than 5. In the table the configurations that solved
less instances have higher number of unique contributions. Finally, the configurations
Riss427-NoCLE and Riss427 solved the same number of instances but the first had
a greater simple purse score and was selected as the fall-back configuration to try to
solve the instances when the features computation or the algorithm selection process
fail.

Figure 11 shows the cactus plots of the runtimes of the configurations used together
with the runtime of the Lingeling solver [Bie13]. On the other hand, Figure 12
shows the correlation between the solving times of the configurations for the whole
benchmark. Black color shows a strong (close to 1) correlation coefficient and the
white color shows a weak correlation between the configurations.

We can notice that the plots started to differentiate after 2500 instances. In other

31



6.3. Prediction Models Performance

Li
ng
el
in
g

R
is
s4
27
-N
oC
LER

is
s4
27

R
is
sN
D
42
7

PR
B

N
O
TR
U
STED

A
C
C
5

ED
A
C
C
6SU

H
LE

FA
ST
R
ES
TA
R
T

ED
A
C
C
7R

is
s3
g

R
ER
R
WX

B
V
A

X
O
R

fo
ur
th
C
LLA
B
S

R
A
TE
B
C
EU
N
H
ID
E

R
IS
SL
in
ge
lin
g3

R
IS
SL
in
ge
lin
g4

Li
ng
el
in
g

R
is
s4
27
-N
oC
LE

R
is
s4
27

R
is
sN
D
42
7

PR
B

N
O
TR
U
ST

ED
A
C
C
5

ED
A
C
C
6

SU
H
LE

FA
ST
R
ES
TA
R
T

ED
A
C
C
7

R
is
s3
g

R
ER
R
W

X
B
V
A

X
O
R

fo
ur
th
C
L

LA
B
S

R
A
TE
B
C
EU
N
H
ID
E

R
IS
SL
in
ge
lin
g3

R
IS
SL
in
ge
lin
g4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

C
o
rr
el
at
io
n

Figure 12: Correlation matrix for the runtimes of the configurations used together
with Lingeling solver.

words, all the configurations were able to solve 2500 instances in less than 100 sec-
onds. The performance shown in the figure was very similar for the configurations
with more than 4300 solved instances, which explains the area of strongly correlated
configurations on the correlation matrix. The Lingeling solver cactus plot showed
a better performance than the configurations used for the Riss solver. The solving
times of Lingeling solver showed no strong correlation with the solving times of
the configurations of our portfolio, because Lingeling is based on a different search
engine and uses simplification during the search process.

6.3 Prediction Models Performance

SAT solvers try to find the solution of instances with limited resources. Consequently,
not all the instances in a benchmark can be solved. When the features computation
and the algorithm selection are executed before calling the SAT solver, the overall
runtime increases. For this reason, the estimated runtime is computed and then
compared to the defined timeout in order to know if an instance can be solved by the

32



6.3. Prediction Models Performance

prediction model.

The estimated runtime of the prediction models is considered to be the sum of
the features extraction runtime, a constant (one second for this thesis) representing
the algorithm selection runtime and the runtime of the selected configuration. The
number of solved instances based on the estimated runtime is used to measure the
performance of the algorithm selection models.

6.3.1 Performance on Novel Instances

The prediction models were trained on a percent of the instances (30%, 50% and
70%) and then tested on the remaining instances. In order to have an idea of how
stable were the obtained results, the experiments were repeated three times with a
shuffled version of the instances and when the benchmark was divided in the training
and testing dataset produced three different versions of training and testing datasets.
Instances in the test dataset were not part of the training dataset. Therefore, the test
dataset is purely composed of novel instances with respect to the training dataset.

For None features computation version all the class partitioning versions and
machine learning models were tested. In Table 11 we can see the information of
the best models in the test dataset. The percent of solved instances with respect
to the number of instances solved by the virtual best solver (VBS) is shown for the
best models of each machine learning model tested. Additionally, the results of the
Lingeling solver and of the best configuration in the test dataset are shown.

For the same prediction model when the size of the training dataset increased the
percent of solved instances fluctuated with variations smaller than one percent. The
model IBK1 obtained better results than IBK in two thirds of the tested datasets.
k-NN1 outperformed k-NN model also for two thirds of the tested datasets. On the
other hand, RF prediction model always presented better results than RF1 model.
It can be seen in the Table that none of the binary classification models performed
better than the best configuration or than the Lingeling solver. Yet the results using
random forest are better than the results obtained using k nearest neighbor for binary
classification models. Only the k-NN and k-NN1 prediction models outperformed the
best configuration (bold format) in the portfolio and in more than two thirds of the
cases they also outperformed the results of the Lingeling solver (italic format).

The “relative” class partitioning criteria obtained the best results for the k-NN mo-
dels and for random forest models the best class partitioning criteria was “complement”.
For IBK and IBK1 models “complement” criteria obtained the best results for two
thirds of the tested datasets and the “global” criteria obtained the best results for
the other third of the tested datasets.

For None features computation version, k-NN1 was the best machine learning
model and RF was the best model based on binary classification. Both models were
then tested with all the features computation versions and all the class partitioning
versions.

33



6.3. Prediction Models Performance

Training Model Solved %
% Version ML Model 1 2 3

30% VBS 3304 instances

relative k-NN1 94.79 94.58 94.76
relative k-NN 94.92 94.25 94.34
complement RF1 92.22 92.19 91.89
complement RF 92.40 92.28 92.07
global IBK 92.19 92.01 91.92
complement IBK1 92.31 92.13 91.86

Lingeling 94.52 94.04 94.34

Best Configuration 93.86 93.67 93.61

50% VBS 2360 instances

relative k-NN1 94.45 94.66 94.66
relative k-NN 94.36 94.62 94.49
complement RF1 91.57 91.99 91.91
complement RF 92.08 92.16 92.16
complement IBK 91.57 92.03 91.95
complement IBK1 91.65 91.95 92.08

Lingeling 94.36 93.64 94.66

Best Configuration 93.18 93.64 94.03

70% VBS 1416 instances

relative k-NN1 94.14 95.20 94.56
relative k-NN 94.14 94.35 94.77
complement RF1 91.95 92.23 92.51
complement RF 92.58 92.80 92.73
complement IBK 92.16 91.81 92.44
global IBK1 90.47 92.30 92.58

Lingeling 94.00 94.42 94.07

Best Configuration 93.08 94.07 93.86

Table 11: Best models results based on None features computation compared with
the VBS, Lingeling solver and the best configuration in the portfolio.

34



6.3. Prediction Models Performance

Training Model Solved %
% Features Version ML Model 1 2 3

30% VBS 3304 instances

Xor relative k-NN1 95.10 94.73 94.95
None complement RF 92.40 92.28 92.07

Lingeling 94.52 94.04 94.34

Best Configuration 93.86 93.67 93.61

50% VBS 2360 instances

NoCGResXor relative k-NN1 93.60 94.83 94.92
NoCGResXor complement RF 91.82 92.25 92.33

Lingeling 94.36 93.64 94.66

Best Configuration 93.18 93.64 94.03

70% VBS 1416 instances

None relative k-NN1 94.14 95.20 94.56
Rwh complement RF 92.73 92.87 93.15

Lingeling 94.00 94.42 94.07

Best Configuration 93.08 94.07 93.86

Table 12: Best models results compared with the VBS, Lingeling solver and the best
configuration in the portfolio.

Table 12 shows the percent of solved instances of the best models compared to the
performance of the Lingeling SAT solver and to the best configuration. The percent
is based the number of solved instances of the virtual best solver (VBS).

None of the features computation versions in the best prediction models com-
putes the clauses graph or the resolution graph. The results of RF prediction model
remained worse than the results of the best configuration and Lingeling solver.

The best result obtained was with None features computation, “relative” class
partitioning criteria and with k-NN1 machine learning model, solving for one of the
testsets 95.20% of the instances solved by the VBS in the testing dataset. The rest
of the combinations of models obtained results bellow 95%.

Figure 13 shows the cactus plot of best prediction model (prediction plot) tested
on novel instances, along with the cactus plots of the Lingeling solver, the best
and worst configuration on the test set, the virtual best solver (VBS) and virtual
worst solver (VWS). The model in the figure is based on None features computation,
“relative” class partitioning, k-NN1 machine learning model and was trained on 70%
of the instances.

35



6.3. Prediction Models Performance

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  200  400  600  800  1000  1200  1400  1600

ti
m

e
 i
n
 s

e
c
o

n
d

s

solved instances

Lingeling
prediction

best (EDACC5)
worst (RISSLGL4)

VBS
VWS

Figure 13: Cactus plot for the best prediction model tested on novel instances.

One can notice in the graph that the performance of the prediction model was very
similar to the performance described by the plots of the best configuration and the
Lingeling solver.

6.3.2 Overall Performance

The overall performance of a prediction model is also important, specially when there
is a possibility that the instances for which the prediction is done are also part of the
training dataset. The proposed models were also tested in the instances of the whole
benchmark.

Table 13 shows the number of solved instances by the best prediction models on
the whole benchmark that use k-NN1 and RF. The results of the Lingeling solver,
of the best configuration and of the virtual best solver (VBS) are also shown.

One can notice that the best prediction models on the whole benchmark are the
same best prediction models on novel instances with the exception of the k-NN1 best
prediction model that uses Big features computation version instead of the Xor ver-
sion. The size of the training dataset increases resulted in an increase on the number
of solved instances by the models. The k-NN1 best prediction model trained on 30%
of the benchmark solved more instances than the RF model trained on 70%. All the
best prediction models outperformed the best configuration in the portfolio. All the

36



6.3. Prediction Models Performance

Training Model Solved
% Features Version ML Model 1 2 3

VBS 4719

30% Big relative k-NN1 4549 4539 4540
None complement RF 4434 4421 4422

50% NoCGResXor relative k-NN1 4551 4594 4598
NoCGResXor complement RF 4468 4483 4485

70% None relative k-NN1 4634 4648 4640
Rwh complement RF 4534 4531 4540

Lingeling 4444

Best Configuration 4408

Table 13: Overall performance of the best prediction models compared with the VBS,
Lingeling solver and the best configuration in the portfolio.

best prediction models that use k-NN1 together with the RF best prediction mod-
els trained on more than 30% of the instances of the benchmark outperformed the
Lingeling solver.

Figure 14 shows the improvement percent of the best prediction models. The
improvement percent (impr%) of a model is computed based on the interval defined
by the number of solved instances of the VBS and of the best configuration:

impr%(model) = solved(model)− solved(best)
solved(V BS)− solved(best) × 100 %.

The values are shown only for one of the randomized versions of training testing
datasets of the benchmark. For RF best prediction model the greatest improvement
percent obtained was 40% which is less than the worse improvement percent obtained
by k-NN1 best prediction models. In the figure when the training dataset size increases
the improvement percent of the prediction models also increases. The highest improve-
ment percent obtained was 77% for the best k-NN1 prediction model trained on 70%
of the instances of the benchmark.

Figure 15 shows the cactus plot of best model (prediction plot) in the whole bench-
mark, along with the cactus plots of the Lingeling solver, the best and worst config-
uration on the test set, the virtual best solver (VBS) and virtual worst solver (VWS).
The model in the figure is based on None features computation, “relative” class par-
titioning, k-NN1 machine learning model and was trained on 70% of the instances.

The number of solved instances by the prediction model was greater than the num-
ber of instances solved by the best configuration from 200 seconds on and grater than
the number of instances solved by Lingeling solver from 600 seconds on. One can

37



6.3. Prediction Models Performance

Figure 14: Improvement performance of the best prediction models.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 500  1000  1500  2000  2500  3000  3500  4000  4500  5000

ti
m

e
 i
n

 s
e
c
o
n

d
s

solved instances

Lingeling
prediction

best (Riss427)
worst (RISSLGL4)

VBS
VWS

Figure 15: Cactus plot for one of the best models tested on novel instances.

38



6.3. Prediction Models Performance

Training Model Solved
% Features Version ML Model 1 2 3

70% VBS 4719

All relative k-NN1 4596 4606 4603
Big relative k-NN1 4634 4647 4642
Clause relative k-NN1 4605 4612 4608
Const relative k-NN1 4637 4648 4641
Derivative relative k-NN1 4631 4646 4644
NoCGResXor relative k-NN1 4631 4610 4595
None relative k-NN1 4634 4648 4640
Res relative k-NN1 4623 4633 4624
Rwh complement k-NN1 4631 4638 4638
Xor relative k-NN1 4625 4637 4637
All complement RF 4496 4492 4495
Big complement RF 4530 4531 4533
Clause complement RF 4500 4492 4498
Const complement RF 4533 4527 4537
Derivative complement RF 4532 4528 4533
NoCGResXor complement RF 4532 4530 4537
None complement RF 4532 4530 4534
Res complement RF 4519 4519 4520
Rwh complement RF 4534 4531 4540
Xor complement RF 4523 4519 4524

Lingeling 4444

Best Configuration 4408

Table 14: Best models results for all features computation compared with the VBS,
Lingeling solver and the best configuration in the portfolio.

see that the plot of the prediction got closer to the plot of the VBS than in the case
of novel instances.

Table 14 shows the results of the best models based on k-NN1 and RF and trained in
70% for each of the features computation versions. The results of the Lingeling solver,
of the best configuration and of the virtual best solver (VBS) are also shown. One
can clearly see that all the resulting best models solved more instances than the
best configuration and than the Lingeling solver when tested in the whole bench-
mark. There were differences between the results of all different features computation,
more noticeable when the computation of the clauses graph was included (All and
Clause versions). In spite of the variations observed by changing the features com-
putation versions, all the best models that use k-NN1 outperform all the best models

39



6.3. Prediction Models Performance

Version Description

BlackBox2-k-NN1 Machine learning model: k-NN1
Features computation version: None
Training set: the complete benchmark.
Class partitioning timeout: 900 seconds.

BlackBox2-RF Machine learning model: RF
Features computation version: Rwh
Training set: the complete benchmark.
Class partitioning timeout: 900 seconds.

BlackBox1 Machine learning model: RF
Training set: a bigger benchmark that includes repeated
instances.
Class partitioning timeout: 3600 seconds.

Table 15: Description of the algorithm portfolios tested.

based on RF.

6.3.3 Empirical Performance

The empirical performance of an algorithm portfolio will be based on the number of
solved instances considering the actual execution of the model rather than considering
an estimate of the runtime. The algorithm portfolio is completely executed, including
the execution of the Riss solver using the selected configuration.

In Table 15 the implemented portfolios are described. BlackBox1 [AM14b] algo-
rithm portfolio is based on the best model obtained in [AM14a] that was trained for
participating on the 2014 SAT competition. The configurations of the Riss solver
used for BlackBox1 are different from the ones used in this thesis for BlackBox2-
k-NN1 and BlackBox2-RF.

In the competition, BlackBox1 obtained the first place in the Crafted UNSAT
track, second place in the Application SAT track and third place in the Application
SAT+UNSAT track. The official timeout of the competition is 5000 seconds. The
three algorithm portfolios were tested on the benchmark used in the 2014 SAT compe-
tition for timeouts of 900 seconds (Table 16) and 5000 seconds (Table 17). In Tables
16 and 17 the winning tracks are maked with the corresponding superindexes. The
values that are greater than the BlackBox1 results are highlighted with bold style.

Table 16 shows that the BlackBox2 algorithms portfolios solved more instances
than BlackBox1 for all the tracks of the Crafted benchmark and also for the Appli-
cation UNSAT competition track. Furthermore, the total number of instances solved
in the complete 2014 benchmark for the BlackBox2 portfolios was greater than the

40



6.3. Prediction Models Performance

BlackBox2- BlackBox2-
Competition Track k-NN1 RF BlackBox1

SAT2 68 67 76
Application UNSAT 89 90 87

SAT+UNSAT3 157 157 163

SAT 79 80 69
Crafted UNSAT1 45 47 39

SAT+UNSAT 124 127 108

Totals 281 284 271

Table 16: Empirical performance on 2014 with 900 sec timeout.

BlackBox2- BlackBox2-
Competition Track k-NN1 RF BlackBox1

SAT2 87 88 108
Application UNSAT 105 108 117

SAT+UNSAT3 192 196 225

SAT 89 90 88
Crafted UNSAT1 87 96 79

SAT+UNSAT 176 186 167

Totals 368 382 392

Table 17: Empirical performance on 2014 with 5000 sec timeout.

total for BlackBox1.

In the results shown on Table 17 for 5000 seconds timeout, the BlackBox1 port-
folio solved more instances than the BlackBox2 portfolios in all the tracks of the
Application benchmark. On the other hand, the results for BlackBox2 portfolios
were still better than BlackBox1 results for all the tracks of the benchmark of
Crafted instances. Nevertheless the greatest total of solved instances in the complete
benchmark was achieved by BlackBox1.

The results of BlackBox2-RF and BlackBox2-k-NN1 were more similar than
expected. The BlackBox2-RF portfolio solved only three more instances than
BlackBox2-k-NN1 for a 900 seconds timeout. However, for 5000 seconds timeout
the difference increased up to 14 instances supporting that the configurations selected
by BlackBox2-RF were better.

41



7. Conclusion and Future Work

7 Conclusion and Future Work

In this thesis the experiments were set out to study the performance on novel instances
of different algorithm selection models based on machine learning techniques. Instance-
specific Algorithm selection models allow the combination in a complementary way of
different SAT solving techniques. Although the performance is upper bounded by the
performance described by the virtual best solver, normally the best algorithm in the
portfolio can be outperformed. In general, the cooperation will combine the strengths
of the different algorithms allowing us a better usage of the available SAT solving
algorithms. This thesis searched for the answer to the following questions:

1. What features computation versions have better properties to represent CNF
instances for the used machine learning techniques?

2. Which machine learning prediction models provide the best performance on
novel instances?

3. Which machine learning prediction models offer the best overall performance?

In Section 6 the empirical results were presented for all the prediction models tested.

The features computed provided very useful and non redundant information to rep-
resent CNF instances for the application of machine learning techniques. Furthermore,
the computation was more efficient when the clauses and resolution graphs were not
computed and the features remained with high values of information gain ratio.

The prediction models based on k-nearest neighbors and not in binary classifiers
provided the best results for novel instances. They outperformed the best configu-
ration and the Lingeling solver. The best model solved 95.20% of the instances
solved by the VBS which was only 1.13% more instances than the best configuration.
Therefore, there is still a lot of room for improvement. Models based on the same
machine learning technique with different parameters did not differentiate too much.

The best prediction models on novel instances also resulted to be the best prediction
models when they were tested on the whole benchmark, with the exception of the
best model based on k-NN1, trained on 30% of the instances. All the best models
outperformed the best configuration and Lingeling solver on the whole benchmark.
The best improvement percent obtained for k-NN1 model was 77%, almost twice
the best improvement percent of RF model, which was only 40%. For the overall
performance, the increases in the size of the training dataset improved the performance
of the models but for the performance on novel instances it was not the case.

Still there is room for improvement in the the overall performance. Although the
parameters of the prediction models played an important role, it is more important
to focus on the structure of the prediction model and the machine learning techniques
used. The configurations used in this thesis come from the SAT Competition 2013, the
Configurable SAT Solver Challenge (CSSC) 2013 and some additional ones tuned for
the 2014 SAT competition, and were not defined specifically to work in an algorithms
portfolio cooperating between them.

42



7. Conclusion and Future Work

The empirical performance of the implemented portfolios still needs to be improved
in order to achieve a performance that is closer to the estimated one. Nevertheless,
the portfolios BlackBox2 performed better than BlackBox1 for the 2014 SAT
competition track in which it obtained the gold medal.

As future work, some interesting ideas can be considered.

First, a partition of the instances in the benchmark can be defined according to
how “easy” or “difficult” are they solved by the algorithms in the portfolio. Such
partition can be used to build different algorithm selection procedures for easy and
difficult instances.

One can also build a classifier to predict whether the instance is satisfiable or not.
Then, use that information as another feature.

Additionally, the runtime of the algorithms can participate more in the algorithm
selection procedure to try to select faster algorithms and not just any algorithm that
solves the instance before the timeout.

Moreover, we can use the proposed features and perform instance-specific algorithm
configuration (ISAC) [MS12]. ISAC can optimize the configurations of the Riss solver
according to the information provided by the features. The resulting configurations
would be better suited for using them in algorithm portfolios.

In this thesis, the best prediction model combined a very simple features computa-
tion (None version) and a selection algorithm based on k-nearest neighbor method
and the “relative” class partitioning. Moreover, no binary classifier was used in the
best model.

43



7. Conclusion and Future Work

Acknowledgments This thesis would not be possible without the help of many orga-
nizations and people. The author would like to thank the ZIH of TU Dresden for pro-
viding the computational resources to produce the experimental data for the empirical
evaluation and also the European Master’s Program in Computational Logic (EMCL)
for their support and education. Gratitude to the Erasmus Mundus Programme for
their economical help. Special thanks to Norbert Manthey for his efficient work as a
supervisor and his contagious motivation in the field. At last but not the least, thanks
to the Friends who gave emotional and scientific support and also to the Family for
believing.

44



References

References

[AM14a] Enrique Matos Alfonso and Norbert Manthey. New CNF features and
formula classification. In Daniel Le Berre, editor, POS-14, volume 27
of EPiC Series, pages 57–71. EasyChair, 2014.

[AM14b] Enrique Matos Alfonso and Norbert Manthey. Riss 4.27 blackbox. Pro-
ceedings of SAT Competition 2014, pages 68–69, 2014.

[ARMS02] Fadi A. Aloul, Arathi Ramani, Igor L. Markov, and Karem A. Sakallah.
Solving difficult SAT instances in the presence of symmetry. pages 731–
736, New York, NY, USA, 2002. ACM.

[Bie13] Armin Biere. Lingeling, Plingeling and Treengeling Entering the SAT
Competition 2013. Proceedings of SAT Competition 2013, pages 51–52,
2013.

[Bre01] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[CWZ11] Xiang Chen, Minghui Wang, and Heping Zhang. The use of classifica-
tion trees for bioinformatics. Wiley Interdisc. Rew.: Data Mining and
Knowledge Discovery, 1(1):55–63, 2011.

[Gab] Oliver Gableske. https://www.gableske.net/dimetheus. https://www.
gableske.net/dimetheus. Accessed: 2014-04-14.

[GHM+12] P. Großmann, S. Hölldobler, N. Manthey, K. Nachtigall, J. Opitz, and
P. Steinke. Solving periodic event scheduling problems with SAT. vol-
ume 7345, pages 166–175, Heidelberg, 2012. Springer.

[Her06] P. Herwig. Using graphs to get a better insight into satisfiability pro-
blems. Master’s thesis, Delft University of Technology, Department of
Electrical Engineering, Mathematics and Computer Science., 2006.

[HR76] Laurent Hyafil and Ronald L Rivest. Constructing optimal binary deci-
sion trees is NP-complete. Information Processing Letters, 5(1):15–17,
1976.

[HW10] Marijn Heule and Toby Walsh. Symmetry in solutions. In Maria Fox
and David Poole, editors, AAAI. AAAI Press, 2010.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In
Raymond E. Miller and James W. Thatcher, editors, Complexity of
Computer Computations, The IBM Research Symposia Series, pages
85–103. Plenum Press, New York, 1972.

[KMS+11] Serdar Kadioglu, Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz,
and Meinolf Sellmann. Algorithm selection and scheduling. In Jimmy
Ho-Man Lee, editor, CP, volume 6876 of Lecture Notes in Computer
Science, pages 454–469. Springer, 2011.

[KSHK07] D. Kaiss, M. Skaba, Z. Hanna, and Z. Khasidashvili. Industrial strength

45

https://www.gableske.net/dimetheus
https://www.gableske.net/dimetheus


References

SAT-based alignability algorithm for hardware equivalence verification.
pages 20–26, Washington, 2007. IEEE Computer Society.

[Kul99] O. Kullmann. On a generalization of extended resolution. Discrete
Applied Mathematics, 96–97(0):149 – 176, 1999.

[LJN10] Tero Laitinen, Tommi A. Junttila, and Ilkka Niemelä. Extending clause
learning DPLL with parity reasoning. In Helder Coelho, Rudi Studer,
and Michael Wooldridge, editors, ECAI, volume 215 of Frontiers in
Artificial Intelligence and Applications, pages 21–26. IOS Press, 2010.

[Man14] Norbert Manthey. Riss 4.27. Proceedings of SAT Competition 2014,
pages 65–67, 2014.

[MRT12] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Founda-
tions of Machine Learning. The MIT Press, 2012.

[MS12] Yuri Malitsky and Meinolf Sellmann. Instance-specific algorithm config-
uration as a method for non-model-based portfolio generation. In Nico-
las Beldiceanu, Narendra Jussien, and Eric Pinson, editors, CPAIOR,
volume 7298 of Lecture Notes in Computer Science, pages 244–259.
Springer, 2012.

[NLBH+04] Eugene Nudelman, Kevin Leyton-Brown, Holger H. Hoos, Alex Devkar,
and Yoav Shoham. Understanding random SAT: Beyond the clauses-
to-variables ratio. In Mark Wallace, editor, CP, volume 3258 of Lecture
Notes in Computer Science, pages 438–452. Springer, 2004.

[NMJ09] Mladen Nikolić, Filip Marić, and Predrag Janičić. Instance-Based Selec-
tion of Policies for SAT Solvers. pages 326–340. 2009.

[NMJ11] Mladen Nikolic, Filip Maric, and Predrag Janicic. Simple algorithm
portfolio for SAT. CoRR, abs/1107.0268, 2011.

[Rou12] Olivier Roussel. Description of ppfolio 2012. In Proc. SAT Challenge
2012; Solver and Benchmark Descriptions, page 46. Univ. of Helsinki,
2012.

[VGLBB+05] Allen Van Gelder, Daniel Le Berre, Armin Biere, Oliver Kullmann, and
Laurent Simon. Purse-based scoring for comparison of exponential-time
programs. Poster, 2005.

[WFH11] Ian H. Witten, Eibe Frank, and Mark A. Hall. Data Mining: Practical
Machine Learning Tools and Techniques. Morgan Kaufmann, Amster-
dam, 3 edition, 2011.

[XHHLb07] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-brown.
Satzilla-07: The design and analysis of an algorithm portfolio for sat.
In In Proc. of CP-07, pages 712–727, 2007.

[XHHLB12] Lin Xu, Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. Evaluat-
ing component solver contributions to portfolio-based algorithm selec-

46



References

tors. In Proceedings of the 15th International Conference on Theory and
Applications of Satisfiability Testing, SAT’12, pages 228–241, Berlin,
Heidelberg, 2012. Springer-Verlag.

47



48



Erklärung

Hiermit erkläre ich, dass ich diese Arbeit selbstständig erstellt und keine anderen als
die angegebenen Hilfsmittel benutzt habe.

Dresden, den 10. September 2014

Enrique Matos Alfonso


	Introduction
	Basics
	CNF Formulas
	Graphs
	Machine Learning and Classification
	Random Forest
	k-Nearest Neighbors and Instance Based Classifiers


	Related Work
	SATZilla
	ArgoSmArT k-NN

	Features
	Graphs Features
	XOR Graph

	Sequences Features
	Other Features

	Proposed Models
	Binary Classification Models
	Random Forest Classifiers
	Instance Based Classifiers

	k-Nearest Neighbors Models

	Experimental Results
	Features Relevance and Performance
	Algorithms Contributions
	Prediction Models Performance
	Performance on Novel Instances
	Overall Performance
	Empirical Performance


	Conclusion and Future Work
	References

