

EXISTENTIAL RULES SEMINAR

Lecture 1: Syntax and Semantics

David Carral, Markus Krötzsch Knowledge-Based Systems

TU Dresden, April 16, 2019

Course Tutors

David Carral

Markus Krötzsch

Existential Rules Seminar

Acknowledgements

Content

Michaël Thomazo and Andreas Pieris Student Session at ESSLLI More info at http://esslli-stus-2015.phil.hhu.de/

Beamer Style

Markus Krötzsch

Tips on How to Run a Seminar Lukas Schweizer

Organisation

Lectures Tuesdays, DS 5 (14:50–16:20), APB E005

Web Page
https://iccl.inf.tu-dresden.de/web/Seminar_
Existential_Rules_(SS2019)

Lecture Notes All slides will be available online.

Goals, Prerequisites, and Reading List

(Non-)Prerequisites

- First-order logic (syntax and semantics).
- Complexity theory (complexity classes, reductions...).

Goals, Prerequisites, and Reading List

(Non-)Prerequisites

- First-order logic (syntax and semantics).
- Complexity theory (complexity classes, reductions...).

Reading list

- Uwe Schöning: Logic for Computer Scientists; Birkhäuser.
- Michael Sipser: Introduction to the Theory of Computation, International Edition; Cengage Learning.

Structure of the Seminar and Evaluation

Lectures

- April 2, 2019: Introductory lecture 1
- April 9, 2019 (i.e., today): Introductory lecture 2
- Afterwards: Office hours in APB 3035 and presentations

Structure of the Seminar and Evaluation

Lectures

- April 2, 2019: Introductory lecture 1
- April 9, 2019 (i.e., today): Introductory lecture 2
- Afterwards: Office hours in APB 3035 and presentations

Evaluation

- Paper summary: self-selected research paper;^a 10 pages
- Presentation: 20 minutes + discussion

^aSee the "Literature" tab at: https:

//iccl.inf.tu-dresden.de/web/Seminar_Existential_Rules_(SS2019).

Motivation: Accessing Big Data

"Data is stored in various **heterogeneous** formats over many differently structured databases. As a result, the gathering of only relevant data spread over **disparate sources** becomes a very **time consuming task**." – Jim Crompton, W3C Workshop on Semantic Web in Oil & Gas Industry, 2008

More info at: http://www.expertsystem.com/ semantic-web-in-oil-gas-industry/

Motivation: Accessing Big Data

Experts in geology and geophysics develop stratigraphic models of unexplored areas on the basis of data acquired from previous operations at nearby geographical locations.

Facts:

- 1000 TB of relational data
- Using diverse schemata
- Spread over 2000 tables, over multiple individual data bases

A Possible Solution

- Achieve transparency in accessing data using logic e.g., existential rules!
- Manage data by exploiting Knowledge Representation techniques.
- Provide a conceptual, high level representation of the domain of interest of terms of an **ontology** (i.e., a logical theory).

A Simple Example

A Simple Example

Is *leia* the daughter of *anakin*? I.e., does *HasDaughter(anakin, leia)* follow from (7-12)?

Syntax: Signature and Atoms

- A signature is a tuple (P, V, C, N) with P a set of predicates, V a set of variables, C a set of constants, and N a set of nulls.
- Every predicate $P \in P$ is associated to some arity $ar(P) \ge 1$.
- $T = V \cup C \cup N$ is the set of **terms**.
- An **atom** is a formula of the form $P(\vec{t})$ with $P \in P$, $ar(P) = |\vec{t}|$, and $t \in T$ for all $t \in \vec{t}$.

Syntax: Signature and Atoms

- A signature is a tuple (P, V, C, N) with P a set of predicates, V a set of variables, C a set of constants, and N a set of nulls.
- Every predicate $P \in P$ is associated to some arity $ar(P) \ge 1$.
- $T = V \cup C \cup N$ is the set of **terms**.
- An **atom** is a formula of the form $P(\vec{t})$ with $P \in P$, $ar(P) = |\vec{t}|$, and $t \in T$ for all $t \in \vec{t}$.

Example 1.2: Entities and atoms.

 $Person(x) \rightarrow \exists y.HasFather(x, y)$

HasSister(*luke*, *leia*)

Syntax: Existential Rules

Definition 1.3: An (existential) rule is a formula of the form

 $\forall \vec{x}, \vec{z}. (\beta[\vec{x}, \vec{z}] \rightarrow \exists \vec{y}. \eta[\vec{x}, \vec{y}])$

with β and η conjunctions of null-free atoms and \vec{x} , \vec{y} , and \vec{z} mutually disjoint sequences of variables. A **fact** is a rule with an empty body that contains no occurrences of variables.

Syntax: Existential Rules

Definition 1.3: An (existential) rule is a formula of the form

 $\forall \vec{x}, \vec{z}. (\beta[\vec{x}, \vec{z}] \rightarrow \exists \vec{y}. \eta[\vec{x}, \vec{y}])$

with β and η conjunctions of null-free atoms and \vec{x} , \vec{y} , and \vec{z} mutually disjoint sequences of variables. A **fact** is a rule with an empty body that contains no occurrences of variables.

Formulas (7-12) from slide 9 are existential rules. Formulas (10-12) are also facts.

Definition 1.4: A **homomorphism** is a partial function over the set of terms with h(c) = c for all $c \in C$.

Definition 1.4: A **homomorphism** is a partial function over the set of terms with h(c) = c for all $c \in C$.

Let ϕ be a formula, h a homomorphism, and \vec{x} a sequence of variables. Then,

- *h*(φ) is the formula that results from replacing every term *t* in the domain of *h* by *h*(*t*), and
- $h_{\vec{x}} \subseteq h$ is the restriction of h over $\vec{x} \cup C$.

Definition 1.5: A pair $\langle \rho, h \rangle$ with $\rho = \beta[\vec{x}, \vec{z}] \rightarrow \exists \vec{y}.\eta[\vec{x}, \vec{y}]$ a rule and *h* a homomorphism is **applicable** to a set of facts F if **1** $h(\beta) \subseteq F$, and **2** for all $h' \supseteq h_{\vec{x}}$, $h'(\eta) \notin F$. Alternatively, we say that $\langle \rho, h \rangle$ is **not satisfied** by F. If $\langle \rho, h \rangle$ is applicable to F, then we define $\rho_h(F) = F \cup h'(\eta)$ with $h' \supseteq h$ a homomorphism mapping every $y \in \vec{y}$ to a fresh null.

Definition 1.5: A pair $\langle \rho, h \rangle$ with $\rho = \beta[\vec{x}, \vec{z}] \rightarrow \exists \vec{y}.\eta[\vec{x}, \vec{y}]$ a rule and *h* a homomorphism is **applicable** to a set of facts F if **1** $h(\beta) \subseteq F$, and **2** for all $h' \supseteq h_{\vec{x}}$, $h'(\eta) \notin F$. Alternatively, we say that $\langle \rho, h \rangle$ is **not satisfied** by F. If $\langle \rho, h \rangle$ is applicable to F, then we define $\rho_h(F) = F \cup h'(\eta)$ with $h' \supseteq h$ a homomorphism mapping every $y \in \vec{y}$ to a fresh null.

Often, we refer to $\rho_h(F)$ as the **application** of $\langle \rho, h \rangle$ to F.

Definition 1.6: An interpretation I is a set of facts. I satisfies a rule $\rho = \beta \rightarrow \exists \vec{y}.\eta$ if $\langle \rho, h \rangle$ is satisfied by I for every homomorphism h. I is a **model** of a rule set R if it satisfies every rule $\rho \in R$.

We write $I \models \rho$ to indicate that I satisfies ρ . Analogously, we write $I \models R$ to indicate that I is a model of R.

Definition 1.6: An interpretation I is a set of facts. I satisfies a rule $\rho = \beta \rightarrow \exists \vec{y}.\eta$ if $\langle \rho, h \rangle$ is satisfied by I for every homomorphism h. I is a **model** of a rule set R if it satisfies every rule $\rho \in R$.

We write $I \models \rho$ to indicate that I satisfies ρ . Analogously, we write $I \models R$ to indicate that I is a model of R.

Definition 1.7: An interpretation I **entails** a query $q = \exists \vec{y}.\beta$, written $I \models q$, if $h(\beta) \subseteq I$ for some homomorphism h. A rule set R **entails** q, written $R \models q$, if $\mathcal{M} \models q$ for all $\mathcal{M} \models R$.

To determine if a query q is entailed by a rule set R, we have to check that $\mathcal{M} \models q$ for every model \mathcal{M} of R. Alas, this is not easy!

To determine if a query q is entailed by a rule set R, we have to check that $\mathcal{M} \models q$ for every model \mathcal{M} of R. Alas, this is not easy!

R may accept an infinite number of models.

To determine if a query q is entailed by a rule set R, we have to check that $\mathcal{M} \models q$ for every model \mathcal{M} of R. Alas, this is not easy!

- R may accept an infinite number of models.
- 2 Each one models may be of infinite size.

To determine if a query q is entailed by a rule set R, we have to check that $\mathcal{M} \models q$ for every model \mathcal{M} of R. Alas, this is not easy!

- R may accept an infinite number of models.
- 2 Each one models may be of infinite size.

To address (1), we introduce the notion of **universal models** which can be used to solve conjunctive query entailment independently.

2 for all $\mathcal{M} \models \mathsf{R}$, $h(\mathcal{U}) \subseteq \mathcal{M}$ for some homomorphism *h*.

② for all $\mathcal{M} \models \mathsf{R}$, $h(\mathcal{U}) \subseteq \mathcal{M}$ for some homomorphism *h*.

Proposition 1.9: If $\mathcal{U} \models q$ with \mathcal{U} a universal model of a rule set R and q a query, then $R \models q$.

② for all $\mathcal{M} \models \mathsf{R}$, $h(\mathcal{U}) \subseteq \mathcal{M}$ for some homomorphism *h*.

Proposition 1.9: If $\mathcal{U} \models q$ with \mathcal{U} a universal model of a rule set R and q a query, then $R \models q$.

Proof:

• Let $\mathcal{M} \models \mathsf{R}$. Then, there is some *h* with $h(\mathcal{U}) \subseteq \mathcal{M}$.

② for all $\mathcal{M} \models \mathsf{R}$, $h(\mathcal{U}) \subseteq \mathcal{M}$ for some homomorphism h.

Proposition 1.9: If $\mathcal{U} \models q$ with \mathcal{U} a universal model of a rule set R and q a query, then $R \models q$.

- Let $\mathcal{M} \models \mathsf{R}$. Then, there is some *h* with $h(\mathcal{U}) \subseteq \mathcal{M}$.
- 2 There is some h' with $h'(\beta) \subseteq \mathcal{U}$ and β the body of q.

② for all $\mathcal{M} \models \mathsf{R}$, $h(\mathcal{U}) \subseteq \mathcal{M}$ for some homomorphism *h*.

Proposition 1.9: If $\mathcal{U} \models q$ with \mathcal{U} a universal model of a rule set R and q a query, then $R \models q$.

- Let $\mathcal{M} \models \mathsf{R}$. Then, there is some *h* with $h(\mathcal{U}) \subseteq \mathcal{M}$.
- 2 There is some h' with $h'(\beta) \subseteq \mathcal{U}$ and β the body of q.
- **3** By (1) and (2): $h \circ h'(\beta) \subseteq \mathcal{M}$. Hence, $\mathcal{M} \models q$.

Definition 1.8: An interpretation $\boldsymbol{\mathcal{U}}$ is a **universal model** of a rule set R if

- $\textcircled{1} \mathcal{U} \text{ is a model of R, and}$
- **2** for all $\mathcal{M} \models \mathsf{R}$, $h(\mathcal{U}) \subseteq \mathcal{M}$ for some homomorphism *h*.

Proposition 1.9: If $\mathcal{U} \models q$ with \mathcal{U} a universal model of a rule set R and q a query, then $R \models q$.

- Let $\mathcal{M} \models \mathsf{R}$. Then, there is some *h* with $h(\mathcal{U}) \subseteq \mathcal{M}$.
- 2 There is some h' with $h'(\beta) \subseteq \mathcal{U}$ and β the body of q.
- **3** By (1) and (2): $h \circ h'(\beta) \subseteq \mathcal{M}$. Hence, $\mathcal{M} \models q$.
- By (1) and (3): $R \models q$.

Definition 1.10: An interpretation $\boldsymbol{\mathcal{U}}$ is a **universal model** of a rule set R if

- $\textcircled{1} \mathcal{U} \text{ is a model of R, and}$
- ② for all $\mathcal{M} \models \mathsf{R}$, $h(\mathcal{U}) \subseteq \mathcal{M}$ for some homomorphism *h*.

Theorem 1.11: Consider a rule set R, a query q, and a universal model \mathcal{U} for R. Then, $R \models q$ if and only if $\mathcal{U} \models q$.

- **1** \mathcal{U} is a model of R, and
- ② for all $\mathcal{M} \models \mathsf{R}$, $h(\mathcal{U}) \subseteq \mathcal{M}$ for some homomorphism *h*.

Theorem 1.11: Consider a rule set R, a query q, and a universal model \mathcal{U} for R. Then, $R \models q$ if and only if $\mathcal{U} \models q$.

Proof:

 \implies Trivial, since \mathcal{U} is a model of R.

- 1 \mathcal{U} is a model of R, and
- ② for all $\mathcal{M} \models \mathsf{R}$, $h(\mathcal{U}) \subseteq \mathcal{M}$ for some homomorphism *h*.

Theorem 1.11: Consider a rule set R, a query q, and a universal model \mathcal{U} for R. Then, $R \models q$ if and only if $\mathcal{U} \models q$.

- \implies Trivial, since \mathcal{U} is a model of R.
- \leftarrow By Proposition 9.

The Chase Algorithm

The Chase Algorithm

Given a rule set R, let C(R) be some arbitrarily chosen chase of R.

The Chase: A Simple Example

Lemma 1.14: For a rule set R, we have that $C(R) \models R$.

Lemma 1.14: For a rule set R, we have that $C(R) \models R$.

- Let us assume that $C(R) \not\models R$.
- 2 By (1): There is a chase sequence F^0, F^1, \ldots with $C(R) = \bigcup_{i \ge 0} F^i$.

Lemma 1.14: For a rule set R, we have that $C(R) \models R$.

- Let us assume that $C(R) \not\models R$.
- **2** By (1): There is a chase sequence F^0, F^1, \ldots with $C(\mathbf{R}) = \bigcup_{i \ge 0} F^i$.
- **3** By (1): There is some pair $\langle \rho, h \rangle$ with $\rho \in \mathbb{R}$ applicable to *C* (R).

Lemma 1.14: For a rule set R, we have that $C(R) \models R$.

- Let us assume that $C(R) \not\models R$.
- **2** By (1): There is a chase sequence F^0, F^1, \ldots with $C(\mathbf{R}) = \bigcup_{i \ge 0} F^i$.
- **3** By (1): There is some pair $\langle \rho, h \rangle$ with $\rho \in \mathbb{R}$ applicable to *C* (R).
- **4** By (2) and (3): For all $i \ge 0$, $\langle \rho, h \rangle$ is applicable to F^i .

Lemma 1.14: For a rule set R, we have that $C(R) \models R$.

- Let us assume that $C(R) \not\models R$.
- **2** By (1): There is a chase sequence F^0, F^1, \ldots with $C(R) = \bigcup_{i \ge 0} F^i$.
- **3** By (1): There is some pair $\langle \rho, h \rangle$ with $\rho \in \mathbb{R}$ applicable to *C* (R).
- **(4)** By (2) and (3): For all $i \ge 0$, $\langle \rho, h \rangle$ is applicable to F^i .
- By (2) and (4): The sequence F⁰, F¹,... does not satisfy the fairness requirement introduced in Definition 12.

Lemma 1.14: For a rule set R, we have that $C(R) \models R$.

- Let us assume that $C(R) \not\models R$.
- **2** By (1): There is a chase sequence F^0, F^1, \ldots with $C(R) = \bigcup_{i \ge 0} F^i$.
- **3** By (1): There is some pair $\langle \rho, h \rangle$ with $\rho \in \mathbb{R}$ applicable to *C* (R).
- **(4)** By (2) and (3): For all $i \ge 0$, $\langle \rho, h \rangle$ is applicable to F^i .
- By (2) and (4): The sequence F⁰, F¹,... does not satisfy the fairness requirement introduced in Definition 12.
- By (5): Assumption (1) results in a contradiction.

Theorem 1.15: A rule set R entails a query q iff $C(R) \models q$.

Proof: The theorem follows from Theorem 11 and the fact that C (R) is a universal model of R (proven below).

Theorem 1.15: A rule set R entails a query q iff $C(R) \models q$.

Proof: The theorem follows from Theorem 11 and the fact that C (R) is a universal model of R (proven below).

1 By Lemma 14, $C(R) \models R$.

Theorem 1.15: A rule set R entails a query q iff $C(R) \models q$.

Proof: The theorem follows from Theorem 11 and the fact that C (R) is a universal model of R (proven below).

1 By Lemma 14, $C(R) \models R$.

2 Let \mathcal{M} be some model of R.

Theorem 1.15: A rule set R entails a query q iff $C(R) \models q$.

Proof: The theorem follows from Theorem 11 and the fact that C (R) is a universal model of R (proven below).

- **1** By Lemma 14, $C(R) \models R$.
- 2 Let \mathcal{M} be some model of R.

③ There is some chase sequence F^0, F^1, \ldots with $C(R) = \bigcup_{i \ge 1} F^i$.

Theorem 1.15: A rule set R entails a query q iff $C(R) \models q$.

Proof: The theorem follows from Theorem 11 and the fact that C (R) is a universal model of R (proven below).

- **1** By Lemma 14, $C(R) \models R$.
- 2 Let \mathcal{M} be some model of R.
- **③** There is some chase sequence F^0, F^1, \ldots with $C(R) = \bigcup_{i \ge 1} F^i$.
- In the following slide, we show that there is a sequence of homomorphisms h₀, h₁,... such that h_i(Fⁱ) ⊆ M and h_{i+1} ⊇ h_i for all i ≥ 0.

Theorem 1.15: A rule set R entails a query q iff $C(R) \models q$.

Proof: The theorem follows from Theorem 11 and the fact that C (R) is a universal model of R (proven below).

- **1** By Lemma 14, $C(R) \models R$.
- 2 Let \mathcal{M} be some model of R.

③ There is some chase sequence F^0, F^1, \ldots with $C(R) = \bigcup_{i \ge 1} F^i$.

- In the following slide, we show that there is a sequence of homomorphisms h₀, h₁,... such that h_i(Fⁱ) ⊆ M and h_{i+1} ⊇ h_i for all i ≥ 0.
- Let $h = \bigcup h_i$ for all $i \ge 0$. Then, $h(\mathcal{C}(\mathsf{R})) \subseteq \mathcal{M}$ by (4).

Theorem 1.15: A rule set R entails a query q iff $C(R) \models q$.

Proof: The theorem follows from Theorem 11 and the fact that C (R) is a universal model of R (proven below).

- **1** By Lemma 14, $C(R) \models R$.
- 2 Let \mathcal{M} be some model of R.

③ There is some chase sequence F^0, F^1, \ldots with $C(R) = \bigcup_{i \ge 1} F^i$.

- In the following slide, we show that there is a sequence of homomorphisms h₀, h₁,... such that h_i(Fⁱ) ⊆ M and h_{i+1} ⊇ h_i for all i ≥ 0.
- Let $h = \bigcup h_i$ for all $i \ge 0$. Then, $h(\mathcal{C}(\mathsf{R})) \subseteq \mathcal{M}$ by (4).
- **6** By (1), (2) and (5): *C*(R) is a universal model.

Theorem 1.16: A rule set R entails a query q iff $C(R) \models q$.

Proof: We show via induction that, for every $i \ge 0$, there is a homomorphism h_i with $h_i(\mathsf{F}_i) \subseteq \mathcal{M}$ and $h_i \supseteq h_{i+1}$.

Theorem 1.16: A rule set R entails a query q iff $C(R) \models q$.

Proof: We show via induction that, for every $i \ge 0$, there is a homomorphism h_i with $h_i(\mathsf{F}_i) \subseteq \mathcal{M}$ and $h_i \supseteq h_{i+1}$.

1 Base case: $h_0 = \emptyset$.

Theorem 1.16: A rule set R entails a query q iff $C(R) \models q$.

Proof: We show via induction that, for every $i \ge 0$, there is a homomorphism h_i with $h_i(\mathsf{F}_i) \subseteq \mathcal{M}$ and $h_i \supseteq h_{i+1}$.

- **1** Base case: $h_0 = \emptyset$.
- 2 Induction step: Let $i \ge 1$
 - Let $\langle \rho, h' \rangle$ be some pair with $\rho = \beta[\vec{x}, \vec{z}] \rightarrow \exists \vec{y}.\eta[\vec{x}, \vec{y}] \in \mathbb{R}$ and $\mathbb{F}^i = \rho_{h'}(\mathbb{F}^{i-1}) \cup \mathbb{F}^{i-1}$. Note that, $h'(\beta) \subseteq \mathbb{F}^{i-1}$.
 - **2** By (1) and IH: $h_{i-1}(h'(\beta)) \subseteq \mathcal{M}$.
 - **3** By (2) and $\mathcal{M} \models \mathsf{R}$: $h''(\eta) \subseteq \mathsf{F}^{i-1}$ for some $h'' \supseteq h_{i-1} \circ h'_{i}$.
 - *h_i* ⊇ *h_{i-1}* is the smallest function mapping *h'*(*y*) to *h''*(*y*) for all *y* ∈ *y*.

Brief recap

- Syntax and semantics
- Universal models
- The chase algorithm

What's next?

Select your own papers!