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Goals, Prerequisites, and Reading List

(Non-)Prerequisites
• First-order logic (syntax and semantics).

• Complexity theory (complexity classes, reductions. . . ).

Reading list
• Uwe Schöning: Logic for Computer Scientists; Birkhäuser.

• Michael Sipser: Introduction to the Theory of
Computation, International Edition; Cengage Learning.
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Structure of the Seminar and Evaluation

Lectures
• April 2, 2019: Introductory lecture 1

• April 9, 2019 (i.e., today): Introductory lecture 2

• Afterwards: Office hours in APB 3035 and presentations

Evaluation
• Paper summary: self-selected research paper;a 10 pages

• Presentation: 20 minutes + discussion
aSee the “Literature” tab at: https:

//iccl.inf.tu-dresden.de/web/Seminar_Existential_Rules_(SS2019).
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Motivation: Accessing Big Data

“Data is stored in various heterogeneous formats over many
differently structured databases. As a result, the gathering of only
relevant data spread over disparate sources becomes a very time
consuming task.” – Jim Crompton, W3C Workshop on Semantic
Web in Oil & Gas Industry, 2008

More info at: http://www.expertsystem.com/
semantic-web-in-oil-gas-industry/
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Motivation: Accessing Big Data

Experts in geology and geophysics develop stratigraphic models of
unexplored areas on the basis of data acquired from previous
operations at nearby geographical locations.

Facts:
• 1000 TB of relational data

• Using diverse schemata

• Spread over 2000 tables, over multiple individual data bases
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A Possible Solution

• Achieve transparency in accessing data using logic – e.g.,
existential rules!

• Manage data by exploiting Knowledge Representation
techniques.

• Provide a conceptual, high level representation of the domain
of interest of terms of an ontology (i.e., a logical theory).
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A Simple Example

Example 1.1:

HasSon(x, y) ∧ HasSister(y, z)→ HasDaughter(x, z) (1)

HasFather(x, y)→ HasSon(y, x) (2)

Person(x)→ ∃y.HasFather(x, y) (3)

Person(anakin) (4)

HasFather(luke, anakin) (5)

HasSister(luke, leia) (6)

Is leia the daughter of anakin?
I.e., does HasDaughter(anakin, leia) follow from (7-12)?
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Syntax: Signature and Atoms

• A signature is a tuple 〈P, V, C, N〉 with P a set of predicates,
V a set of variables, C a set of constants, and N a set of
nulls.

• Every predicate P ∈ P is associated to some arity ar(P) ≥ 1.

• T = V ∪ C ∪ N is the set of terms.

• An atom is a formula of the form P(~t) with P ∈ P, ar(P) = |~t|,
and t ∈ T for all t ∈~t.

Example 1.2: Entities and atoms.

Person(x)→ ∃y.HasFather(x, y)

HasSister(luke, leia)
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Syntax: Existential Rules

Definition 1.3: An (existential) rule is a formula of the form

∀~x,~z.
(
β[~x,~z]→ ∃~y.η[~x,~y])

with β and η conjunctions of null-free atoms and ~x, ~y, and ~z
mutually disjoint sequences of variables. A fact is a rule with
an empty body that contains no occurrences of variables.

Formulas (7-12) from slide 9 are existential rules.
Formulas (10-12) are also facts.
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Semantics

Definition 1.4: A homomorphism is a partial function over
the set of terms with h(c) = c for all c ∈ C.

Let φ be a formula, h a homomorphism, and ~x a sequence of
variables. Then,

• h(φ) is the formula that results from replacing every term t in
the domain of h by h(t), and

• h~x ⊆ h is the restriction of h over ~x ∪ C.

David Carral, April 16, 2019 Existential Rules Seminar slide 13 of 24



Semantics

Definition 1.4: A homomorphism is a partial function over
the set of terms with h(c) = c for all c ∈ C.

Let φ be a formula, h a homomorphism, and ~x a sequence of
variables. Then,

• h(φ) is the formula that results from replacing every term t in
the domain of h by h(t), and

• h~x ⊆ h is the restriction of h over ~x ∪ C.

David Carral, April 16, 2019 Existential Rules Seminar slide 13 of 24



Semantics

Definition 1.5: A pair 〈ρ, h〉 with ρ = β[~x,~z] → ∃~y.η[~x,~y] a rule
and h a homomorphism is applicable to a set of facts F if

1 h(β) ⊆ F, and
2 for all h′ ⊇ h~x, h′(η) * F.

Alternatively, we say that 〈ρ, h〉 is not satisfied by F.
If 〈ρ, h〉 is applicable to F, then we define ρh(F) = F ∪ h′(η) with
h′ ⊇ h a homomorphism mapping every y ∈ ~y to a fresh null.

Often, we refer to ρh(F) as the application of 〈ρ, h〉 to F.
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Semantics

Definition 1.6: An interpretation I is a set of facts. I sat-
isfies a rule ρ = β → ∃~y.η if 〈ρ, h〉 is satisfied by I for every
homomorphism h. I is a model of a rule set R if it satisfies
every rule ρ ∈ R.

We write I |= ρ to indicate that I satisfies ρ. Analogously, we write
I |= R to indicate that I is a model of R.

Definition 1.7: An interpretation I entails a query q = ∃~y.β,
written I |= q, if h(β) ⊆ I for some homomorphism h. A rule
set R entails q, written R |= q, if M |= q for all M |= R.
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Solving CQE: The two dimensions of infinity.

To determine if a query q is entailed by a rule set R, we have to
check thatM |= q for every modelM of R. Alas, this is not easy!

1 R may accept an infinite number of models.
2 Each one models may be of infinite size.

To address (1), we introduce the notion of universal models which
can be used to solve conjunctive query entailment independently.
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Solving CQE with Universal Models

Definition 1.8: An interpretation U is a universal model of a
rule set R if

1 U is a model of R, and
2 for all M |= R, h(U) ⊆ M for some homomorphism h.

Proposition 1.9: If U |= q with U a universal model of a rule
set R and q a query, then R |= q.

Proof:
1 LetM |= R. Then, there is some h with h(U) ⊆ M.
2 There is some h′ with h′(β) ⊆ U and β the body of q.
3 By (1) and (2): h ◦ h′(β) ⊆ M. Hence,M |= q.
4 By (1) and (3): R |= q.
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Solving CQE with Universal Models

Definition 1.10: An interpretation U is a universal model of
a rule set R if

1 U is a model of R, and
2 for all M |= R, h(U) ⊆ M for some homomorphism h.

Theorem 1.11: Consider a rule set R, a query q, and a uni-
versal model U for R. Then, R |= q if and only if U |= q.

Proof:
=⇒ Trivial, sinceU is a model of R.
⇐= By Proposition 9.
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The Chase Algorithm

Definition 1.12: A chase sequence of a rule set R is a (pos-
sibly infinite) sequence of sets of facts F0, F1, . . . such that

1 F0 is the empty set,
2 for all i ≥ 1, Fi = Fi−1 ∪ ρh(Fi−1) for some ρ ∈ R and

homomorphism h, and
3 if, for some i ≥ 1, a pair 〈ρ, h〉 with ρ ∈ R is applicable to

Fi; then there is some j ≥ i such that 〈ρ, h〉 is not
applicable to Fj (fairness).

A chase for R is some (possibly infinite) set that results from
the union of all sets of facts in some chase sequence.

Given a rule set R, let C(R) be some arbitrarily chosen chase of R.
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The Chase: A Simple Example

Example 1.13:

HasSon(x, y) ∧ HasSister(y, z)→ HasDaughter(x, z) (7)

HasFather(x, y)→ HasSon(y, x) (8)

Person(x)→ ∃y.HasFather(x, y) (9)

Person(anakin) (10)

HasFather(luke, anakin) (11)

HasSister(luke, leia) (12)

David Carral, April 16, 2019 Existential Rules Seminar slide 20 of 24



Solving CQE with the Chase

Lemma 1.14: For a rule set R, we have that C(R) |= R.

Proof: Proof by contradiction:
1 Let us assume that C(R) 6|= R.
2 By (1): There is a chase sequence F0, F1, . . . with
C(R) =

⋃
i≥0 Fi.

3 By (1): There is some pair 〈ρ, h〉 with ρ ∈ R applicable to C (R).
4 By (2) and (3): For all i ≥ 0, 〈ρ, h〉 is applicable to Fi.
5 By (2) and (4): The sequence F0, F1, . . . does not satisfy the

fairness requirement introduced in Definition 12.
6 By (5): Assumption (1) results in a contradiction.
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5 By (2) and (4): The sequence F0, F1, . . . does not satisfy the

fairness requirement introduced in Definition 12.
6 By (5): Assumption (1) results in a contradiction.
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Solving CQE with the Chase

Theorem 1.15: A rule set R entails a query q iff C(R) |= q.

Proof: The theorem follows from Theorem 11 and the fact that C
(R) is a universal model of R (proven below).

1 By Lemma 14, C(R) |= R.
2 LetM be some model of R.
3 There is some chase sequence F0, F1, . . . with C(R) =

⋃
i≥1 Fi.

4 In the following slide, we show that there is a sequence of
homomorphisms h0, h1, . . . such that hi(Fi) ⊆ M and hi+1 ⊇ hi

for all i ≥ 0.
5 Let h =

⋃
hi for all i ≥ 0. Then, h(C(R)) ⊆ M by (4).

6 By (1), (2) and (5): C(R) is a universal model.
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Solving CQE with the Chase

Theorem 1.16: A rule set R entails a query q iff C(R) |= q.

Proof: We show via induction that, for every i ≥ 0, there is a
homomorphism hi with hi(Fi) ⊆ M and hi ⊇ hi+1.

1 Base case: h0 = ∅.
2 Induction step: Let i ≥ 1

1 Let 〈ρ, h′〉 be some pair with ρ = β[~x,~z]→ ∃~y.η[~x,~y] ∈ R
and Fi = ρh′ (Fi−1) ∪ Fi−1. Note that, h′(β) ⊆ Fi−1.

2 By (1) and IH: hi−1(h′(β)) ⊆ M.
3 By (2) andM |= R: h′′(η) ⊆ Fi−1 for some h′′ ⊇ hi−1 ◦ h′

~x.
4 hi ⊇ hi−1 is the smallest function mapping h′(y) to h′′(y)

for all y ∈ ~y.
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Brief recap

• Syntax and semantics

• Universal models

• The chase algorithm

What’s next?

• Select your own papers!
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