

# COMPLEXITY THEORY

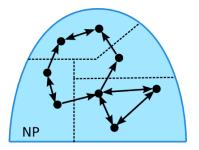
#### Lecture 7: NP Completeness

Markus Krötzsch Knowledge-Based Systems

TU Dresden, 5th Nov 2018

The Structure of NP

Idea: polynomial many-one reductions define an order on problems



# Are NP Problems Hard?

Markus Krötzsch, 5th Nov 2018

Complexity Theory

slide 3 of 26

# NP-Hardness and NP-Completeness

#### Definition 7.1:

- (1) A language **H** is NP-hard, if  $\mathbf{L} \leq_p \mathbf{H}$  for every language  $\mathbf{L} \in NP$ .
- (2) A language **C** is NP-complete, if **C** is NP-hard and  $\mathbf{C} \in NP$ .

#### NP-Completeness

- NP-complete problems are the hardest problems in NP.
- They constitute the maximal class (wrt.  $\leq_p$ ) of problems within NP.
- They are all equally difficult an efficient solution to one would solve them all.

**Theorem 7.2:** If **L** is NP-hard and  $\mathbf{L} \leq_p \mathbf{L}'$ , then  $\mathbf{L}'$  is NP-hard as well.

## **Proving NP-Completeness**

#### How to show NP-completeness

To show that  ${\bf L}$  is NP-complete, we must show that every language in NP can be reduced to  ${\bf L}$  in polynomial time.

#### Alternative approach

Given an NP-complete language  ${\bf C},$  we can show that another language  ${\bf L}$  is NP-complete just by showing that

- C ≤<sub>p</sub> L
- $L \in NP$

However: Is there any NP-complete problem at all?

Markus Krötzsch, 5th Nov 2018

Complexity Theory

# Further NP-Complete Problem?

**POLYTIME NTM** is NP-complete, but not very interesting:

- not most convenient to work with
- not of much interest outside of complexity theory

Are there more natural NP-complete problems?

Yes, thousands of them!

# The First NP-Complete Problems

Is there any NP-complete problem at all?

Of course there is: the word problem for polynomial time NTMs!

#### POLYTIME NTM

Input: A polynomial *p*, a *p*-time bounded NTM *M*, and an input word *w*.Problem: Does *M* accept *w* (in time *p*(|*w*|))?

Theorem 7.3: POLYTIME NTM is NP-complete.

Proof: See exercise.

Markus Krötzsch, 5th Nov 2018

Complexity Theory

slide 7 of 26

# The Cook-Levin Theorem

Complexity Theory

slide 6 of 26

## The Cook-Levin Theorem

| Theorem 7.4 (Cook 1970, Le            | evin 1973): Sat is NP-complete.          |                   |
|---------------------------------------|------------------------------------------|-------------------|
| Proof:                                |                                          |                   |
| (1) <b>Sat</b> ∈ NP                   |                                          |                   |
| Take satisfying assignmen<br>formula. | ts as polynomial certificates for the sa | tisfiability of a |
| (2) SAT is hard for NP                |                                          |                   |
| Proof by reduction from the           | e word problem for NTMs.                 |                   |
|                                       |                                          |                   |
|                                       |                                          |                   |
|                                       |                                          |                   |
| Markus Krötzsch, 5th Nov 2018         | Complexity Theory                        | slide 10 of 26    |

## Proving Cook-Levin: Encoding Configurations

#### Use propositional variables for describing configurations:

- $Q_q$  for each  $q \in Q$  means " $\mathcal{M}$  is in state  $q \in Q$ "
- $P_i$  for each  $0 \le i < p(n)$  means "the head is at Position *i*"
- $S_{a,i}$  for each  $a \in \Gamma$  and  $0 \le i < p(n)$  means "tape cell *i* contains Symbol *a*"

Represent configuration  $(q, p, a_0 \dots a_{p(n)})$ 

by assigning truth values to variables from the set

$$\overline{C} := \{Q_q, P_i, S_{a,i} \mid q \in Q, \quad a \in \Gamma, \quad 0 \le i < p(n)\}$$

#### using the truth assignment $\beta$ defined as

$$\beta(Q_s) := \begin{cases} 1 & s = q \\ 0 & s \neq q \end{cases} \qquad \qquad \beta(P_i) := \begin{cases} 1 & i = p \\ 0 & i \neq p \end{cases} \qquad \qquad \beta(S_{a,i}) := \begin{cases} 1 & a = a_i \\ 0 & a \neq a_i \end{cases}$$

#### Markus Krötzsch, 5th Nov 2018

Proving the Cook-Levin Theorem

#### Given:

- a polynomial *p*
- a *p*-time bounded 1-tape NTM  $\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}})$
- a word w

#### Intended reduction

Define a propositional logic formula  $\varphi_{p,\mathcal{M},w}$  such that  $\varphi_{p,\mathcal{M},w}$  is satisfiable if and only if  $\mathcal{M}$  accepts w in time p(|w|).

#### Note

On input w of length n := |w|, every computation path of  $\mathcal{M}$  is of length  $\leq p(n)$  and uses  $\leq p(n)$  tape cells.

#### Idea

#### Use logic to describe a run of $\mathcal{M}$ on input w by a formula.

Markus Krötzsch, 5th Nov 2018

Complexity Theory

slide 11 of 26

## Proving Cook-Levin: Validating Configurations

#### We define a formula $Conf(\overline{C})$ for a set of configuration variables

$$\overline{C} = \{Q_q, P_i, S_{a,i} \mid q \in Q, \quad a \in \Gamma, \quad 0 \le i < p(n)\}$$

as follows:

"the assignment is a valid configuration":

 $\bigvee_{q \in Q} (Q_q \land \bigwedge_{q' \neq q} \neg Q_{q'})$ 

 $Conf(\overline{C}) :=$ 

 $\wedge \bigvee_{p < p(n)} \left( P_p \land \bigwedge_{p' \neq p} \neg P_{p'} \right)$ 

 $\wedge \bigwedge_{0 \le i < p(n)} \bigvee_{a \in \Gamma} \left( S_{a,i} \land \bigwedge_{b \ne a \in \Gamma} \neg S_{b,i} \right)$ 

"TM in exactly one state  $q \in Q$ "

"head in exactly one position  $p \le p(n)$ "

"exactly one  $a \in \Gamma$  in each cell"

Markus Krötzsch, 5th Nov 2018

# Proving Cook-Levin: Validating Configurations

#### For an assignment $\beta$ defined on variables in $\overline{C}$ define

 $\mathsf{conf}(\overline{C},\beta) := \begin{cases} \beta(Q_q) = 1, \\ (q,p,w_0\dots w_{p(n)}) \mid & \beta(P_p) = 1, \\ & \beta(S_{w_i,i}) = 1 \text{ for all } 0 \le i < p(n) \end{cases}$ 

Note:  $\beta$  may be defined on other variables besides those in  $\overline{C}$ .

**Lemma 7.5:** If  $\beta$  satisfies  $Conf(\overline{C})$  then  $|conf(\overline{C},\beta)| = 1$ . We can therefore write  $conf(\overline{C},\beta) = (q,p,w)$  to simplify notation.

#### Observations:

- conf(C, β) is a potential configuration of M, but it may not be reachable from the start configuration of M on input w.
- Conversely, every configuration  $(q, p, w_1 \dots w_{p(n)})$  induces a satisfying assignment  $\beta$  or which conf $(\overline{C}, \beta) = (q, p, w_1 \dots w_{p(n)})$ .

```
Markus Krötzsch, 5th Nov 2018
```

Complexity Theory

# Proving Cook-Levin: Start and End

## Defined so far:

- $\operatorname{Conf}(\overline{C})$ :  $\overline{C}$  describes a potential configuration
- Next( $\overline{C}, \overline{C}'$ ): conf( $\overline{C}, \beta$ )  $\vdash_{\mathcal{M}}$  conf( $\overline{C}', \beta$ )

#### Start configuration:

For an input word  $w = w_0 \cdots w_{n-1} \in \Sigma^*$ , we define:

 $\mathsf{Start}_{\mathcal{M},w}(\overline{C}) := \mathsf{Conf}(\overline{C}) \land Q_{q_0} \land P_0 \land \bigwedge_{i=0}^{n-1} S_{w_i,i} \land \bigwedge_{i=n}^{p(n)-1} S_{\neg,i}$ 

Then an assignment  $\beta$  satisfies  $\text{Start}_{\mathcal{M},w}(\overline{C})$  if and only if  $\overline{C}$  represents the start configuration of  $\mathcal{M}$  on input w.

Accepting stop configuration:

 $\mathsf{Acc-Conf}(\overline{C}) := \mathsf{Conf}(\overline{C}) \land Q_{q_{\mathsf{accep}}}$ 

Then an assignment  $\beta$  satisfies Acc-Conf( $\overline{C}$ ) if and only if  $\overline{C}$  represents an accepting configuration of  $\mathcal{M}$ .

Markus Krötzsch, 5th Nov 2018

slide 14 of 26

Proving Cook-Levin: Transitions Between Configurations

## Consider the following formula $\mathsf{Next}(\overline{C},\overline{C}')$ defined as

 $\begin{aligned} & \mathsf{Conf}(\overline{C}) \land \mathsf{Conf}(\overline{C}') \land \mathsf{NoChange}(\overline{C}, \overline{C}') \land \mathsf{Change}(\overline{C}, \overline{C}'). \\ & \mathsf{NoChange} := \bigvee_{0 \le p < p(n)} \left( P_p \land \bigwedge_{i \ne p, a \in \Gamma} (S_{a,i} \to S'_{a,i}) \right) \\ & \mathsf{Change} := \bigvee_{0 \le p < p(n)} \left( P_p \land \bigvee_{q \in \underline{C}} (Q_q \land S_{a,p} \land \bigvee_{(q', b, D) \in \delta(q, a)} (Q'_{q'} \land S'_{b,p} \land P'_{D(p)}) \right) \end{aligned}$ 

where D(p) is the position reached by moving in direction D from p.

```
Lemma 7.6: For any assignment \beta defined on \overline{C} \cup \overline{C}':
\beta satisfies Next(\overline{C}, \overline{C}') if and only if \operatorname{conf}(\overline{C}, \beta) \vdash_{\mathcal{M}} \operatorname{conf}(\overline{C}', \beta)
```

Markus Krötzsch, 5th Nov 2018

Complexity Theory

# Proving Cook-Levin: Adding Time

Since  $\mathcal{M}$  is *p*-time bounded, each run may contain up to p(n) steps  $\rightsquigarrow$  we need one set of configuration variables for each

#### Propositional variables

 $Q_{q,t}$  for all  $q \in Q$ ,  $0 \le t \le p(n)$  means "at time t,  $\mathcal{M}$  is in state  $q \in Q$ "

 $P_{i,t}$  for all  $0 \le i, t \le p(n)$  means "at time *t*, the head is at position *i*"

 $S_{a,i,t}$  for all  $a \in \Gamma$  and  $0 \le i, t \le p(n)$  means "at time *t*, tape cell *i* contains symbol *a*"

#### Notation

 $\overline{C}_t := \{ Q_{q,t}, P_{i,t}, S_{a,i,t} \mid q \in Q, 0 \le i \le p(n), a \in \Gamma \}$ 

Markus Krötzsch, 5th Nov 2018

slide 15 of 26

## Proving Cook-Levin: The Formula

#### Given:

- a polynomial *p*
- a *p*-time bounded 1-tape NTM  $\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}})$
- a word w

We define the formula  $\varphi_{p,\mathcal{M},w}$  as follows:

$$\varphi_{p,\mathcal{M},w} := \mathsf{Start}_{\mathcal{M},w}(\overline{C}_0) \land \bigvee_{0 \le t \le p(n)} \left( \mathsf{Acc-Conf}(\overline{C}_t) \land \bigwedge_{0 \le i < t} \mathsf{Next}(\overline{C}_i, \overline{C}_{i+1}) \right)$$

"C<sub>0</sub> encodes the start configuration" and for some polynomial time *t*: " $\mathcal{M}$  accepts after *t* steps" and " $\overline{C}_0, ..., \overline{C}_t$  encode a computation path"

**Lemma 7.7:**  $\varphi_{p,\mathcal{M},w}$  is satisfiable if and only if  $\mathcal{M}$  accepts w in time p(|w|).

#### Note that an accepting or rejecting stop configuration has no successor.

| is Krötzsch, 5th Nov 201 |
|--------------------------|
|--------------------------|

Complexity Theory

slide 18 of 26

# Further NP-complete Problems

The Cook-Levin Theorem

Theorem 7.4 (Cook 1970, Levin 1973): SAT is NP-complete.

#### Proof:

#### (1) **S**AT ∈ NP

Take satisfying assignments as polynomial certificates for the satisfiability of a formula.

#### (2) SAT is hard for NP

Markus Krötzsch, 5th Nov 2018

Proof by reduction from the word problem for NTMs.

Complexity Theory

slide 19 of 26

## Towards More NP-Complete Problems

Starting with **SAT**, one can readily show more problems **P** to be NP-complete, each time performing two steps:

- (1) Show that  $\mathbf{P} \in \mathbf{NP}$
- (2) Find a known NP-complete problem  $\mathbf{P}'$  and reduce  $\mathbf{P}' \leq_p \mathbf{P}$

Thousands of problem have now been shown to be NP-complete. (See Garey and Johnson for an early survey)

#### In this course:



 $\leq_p$  Subset Sum  $\leq_p$  Knapsack

#### Markus Krötzsch, 5th Nov 2018

## NP-Completeness of CLIQUE

Theorem 7.8: CLIQUE is NP-complete.

**CLIQUE:** Given G, k, does G contain a clique of order  $\geq k$ ?

#### Proof:

#### (1) CLIQUE $\in NP$

Take the vertex set of a clique of order k as a certificate.

#### (2) CLIQUE is NP-hard

#### We show **SAT** $\leq_p$ **CLIQUE**

To every CNF-formula  $\varphi$  assign a graph  $G_{\varphi}$  and a number  $k_{\varphi}$  such that

```
\varphi satisfiable \iff G_{\varphi} contains clique of order k_{\varphi}
```

Markus Krötzsch, 5th Nov 2018

Complexity Theory

```
slide 22 of 26
```

# $\mathbf{Sat} \leq_p \mathbf{Clique}$

To every CNF-formula  $\varphi$  assign a graph  $G_{\varphi}$  and a number  $k_{\varphi}$  such that

arphi satisfiable if and only if  $G_{arphi}$  contains clique of order  $k_{arphi}$ 

#### Given $\varphi = C_1 \wedge \cdots \wedge C_k$ :

- Set  $k_{\varphi} := k$
- For each clause  $C_j$  and literal  $L \in C_j$  add a vertex  $v_{L,j}$
- Add edge {*u*<sub>L,j</sub>, *v*<sub>K,i</sub>} if *i* ≠ *j* and *L* ∧ *K* is satisfiable (that is: if *L* ≠ ¬*K* and ¬*L* ≠ *K*)

#### Correctness:

 $G_{\varphi}$  has clique of order k iff  $\varphi$  is satisfiable.

## Complexity:

The reduction is clearly computable in polynomial time.

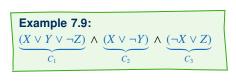
# $\mathbf{Sat} \leq_p \mathbf{Clique}$

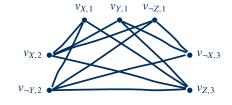
To every CNF-formula  $\varphi$  assign a graph  $G_\varphi$  and a number  $k_\varphi$  such that

 $\varphi$  satisfiable if and only if  $G_{\varphi}$  contains clique of order  $k_{\varphi}$ 

#### Given $\varphi = C_1 \wedge \cdots \wedge C_k$ :

- Set  $k_{\varphi} := k$
- For each clause  $C_j$  and literal  $L \in C_j$  add a vertex  $v_{L,j}$
- Add edge { $v_{L,j}$ ,  $v_{K,i}$ } if  $i \neq j$  and  $L \wedge K$  is satisfiable (that is: if  $L \neq \neg K$  and  $\neg L \neq K$ )





Markus Krötzsch, 5th Nov 2018

Complexity Theory

slide 23 of 26

# NP-Completeness of INDEPENDENT SET

# INDEPENDENT SETInput:An undirected graph G and a natural number kProblem:Does G contain k vertices that share no edges (in-<br/>dependent set)?

Theorem 7.10: INDEPENDENT SET is NP-complete.

#### **Proof:** Hardness by reduction CLIQUE $\leq_p$ INDEPENDENT SET:

- Given G := (V, E) construct  $\overline{G} := (V, \{\{u, v\} \mid \{u, v\} \notin E \text{ and } u \neq v\})$
- A set  $X \subseteq V$  induces a clique in *G* iff *X* induces an independent set in  $\overline{G}$ .
- Reduction: G has a clique of order k iff  $\overline{G}$  has an independent set of order k.

# Summary and Outlook

NP-complete problems are the hardest in NP

Polynomial runs of NTMs can be described in propositional logic (Cook-Levin)

CLIQUE and INDEPENDENT SET are also NP-complete

#### What's next?

- More examples of problems
- The limits of NP
- Space complexities

Markus Krötzsch, 5th Nov 2018

Complexity Theory

slide 26 of 26