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The Structure of NP

Idea: polynomial many-one reductions define an order on problems
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Are NP Problems Hard?
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NP-Hardness and NP-Completeness

Definition 7.1:
(1) Alanguage H is NP-hard, if L <, H for every language L € NP.
(2) A language C is NP-complete, if C is NP-hard and C € NP.

NP-Completeness
® NP-complete problems are the hardest problems in NP.
® They constitute the maximal class (wrt. <,) of problems within NP.
® They are all equally difficult — an efficient solution to one would solve them all.

TTheorem 7.2: If Lis NP-hard and L <, L', then L’ is NP-hard as well. \
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Proving NP-Completeness

How to show NP-completeness

To show that L is NP-complete, we must show that every language in NP can be
reduced to L in polynomial time.

Alternative approach

Given an NP-complete language C, we can show that another language L is
NP-complete just by showing that

°eCs,L
° LeNP

However: Is there any NP-complete problem at all?
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Further NP-Complete Problem?

Powytive NTM is NP-complete, but not very interesting:
® not most convenient to work with
® not of much interest outside of complexity theory
Are there more natural NP-complete problems?

Yes, thousands of them!
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The First NP-Complete Problems

Is there any NP-complete problem at all?

Of course there is: the word problem for polynomial time NTMs!

Powytime NTM

Input: A polynomial p, a p-time bounded NTM M, and
an input word w.

Problem: Does M accept w (in time p(lw|))?

Fheorem 7.3: Powmme NTM is NP-complete.

Proof: See exercise.
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The Cook-Levin Theorem
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The Cook-Levin Theorem

ﬁeorem 7.4 (Cook 1970, Levin 1973): Sar is NP-complete. \

Proof:
(1) Sare NP

Take satisfying assignments as polynomial certificates for the satisfiability of a
formula.

(2) Saris hard for NP

Proof by reduction from the word problem for NTMs.
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Proving Cook-Levin: Encoding Configurations

Use propositional variables for describing configurations:
0, foreach g € O means “Mis in state g € Q"
P; foreach 0 <i < p(n) means “the head is at Position i”

Sa,; foreacha eT"and 0 <i < p(n) means “tape cell i contains Symbol a”

Represent configuration (g, p, ao . . . ap))
by assigning truth values to variables from the set

C:={Qy Pi, Suilq€Q, acl, 0<i<pn)
using the truth assignment g defined as

1 a=a;

0 a#aq

I s=gq
0

<

1
BP) = {

Sa,i) =
0 B(Sa,) {

BQy) = {
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Proving the Cook-Levin Theorem

Given:
® apolynomial p
® ap-time bounded 1-tape NTM M = (Q,%,T",6, qo, Gaccept)

* awordw

Intended reduction
Define a propositional logic formula ¢, A1, such that
©p, M, is satisfiable if and only if M accepts w in time p(jwl).

Note
On input w of length n := |w|, every computation path of M is of length < p(n) and uses
< p(n) tape cells.

Idea
Use logic to describe a run of M on input w by a formula.
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Proving Cook-Levin: Validating Configurations

We define a formula Conf(C) for a set of configuration variables
C=10y, Pi,SailqeQ, a€l, 0<i<pn)

as follows:
Conf(C) := “the assignment is a valid configuration”:
\/(Qq A /\ —|qu) “TM in exactly one state ¢ € 0”
q€Q q'#q

A \/ (P A /\ ~Py) “head in exactly one position p < p(n)”

p<p(n) P #p

A A Van A\ 5.)

0<i<p(n) ael b#aell

“exactly one a € I in each cell”
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Proving Cook-Levin: Validating Configurations

For an assignment 3 defined on variables in C define

BQy) =1,
conf(C, ) := {(q,p, Wo ... wpw) | B(P,) = 1,
B(S,,.1) = 1forall0 <i < p(n)
Note: 8 may be defined on other variables besides those in C.

Lemma 7.5: If B satisfies Conf(E) then |conf(aﬁ)| =1,
We can therefore write conf(C, ) = (¢, p, w) to simplify notation.

Observations:

e conf(C,p) is a potential configuration of M, but it may not be reachable from the
start configuration of M on input w.

® Conversely, every configuration (g, p, wi ... w,) induces a satisfying assignment
or which conf(C, ) = (q,p, Wi ... Wpm))-
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Proving Cook-Levin: Start and End

Defined so far:
¢ Conf(C): C describes a potential configuration
e Next(C,C'): conf(C,B) +pm conf(C , B)

Start configuration:
For an input word w = wy - - - w,,_; € £*, we define:

Starty,,(C) := Conf(C) A Qyy APy A ALy St A NS

iyl
i

Then an assignment 3 satisfies StartMyw(E) if and only if C represents the start
configuration of M on input w.

Accepting stop configuration:
Acc-Conf(C) := Conf(C) A Qyyeeun

Then an assignment 3 satisfies Acc-Conf(C) if and only if C represents an accepting

configuration of M.
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Proving Cook-Levin: Transitions Between Configurations

Consider the following formula Next(C, C') defined as

Conf(C) A Conf(C') A NoChange(C, C') A Change(C, C).

NoChange := \/ (Pp/\ /\ (Sa,i—>5;,i))

0<p<p(n) i#p,acl’
Change:= \/ (P,A\/(QgASipr  \/ (@) AS,, APY,)
0<p<p(n) 40 (¢q',b,D)ed(q,a)

ael’

where D(p) is the position reached by moving in direction D from p.

Lemma 7.6: For any assignment /3 defined on C U C :

B satisfies Next(C,C') if and only if ~conf(C,8) F 4 conf(C , 8)
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Proving Cook-Levin: Adding Time

Since M is p-time bounded, each run may contain up to p(n) steps
~» we need one set of configuration variables for each
Propositional variables
Oy, forallg e 0,0 <t < p(n) means “at time ¢, M is in state g € Q"
P;; forall 0 <i,r < p(n) means “at time ¢, the head is at position i”
Saiy forallael"and 0 <i,7 < p(n) means “at time ¢, tape cell i contains symbol a”

Notation
C/ = {Qq,lv Pi,lv Sll.i,l I q € Q70 < i Sp(n)a ae r}
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Proving Cook-Levin: The Formula The Cook-Levin Theorem

Given:
* @polynomial p Th Cook 1970, L 973): S NP I
. eorem 7.4 (Cook 1970, Levin 1973): Sar is NP-complete. \
¢ ap-time bounded 1-tape NTM M = (Q, X, T, 6, 9o, Gaccept) T ( ) P
® g wordw Proof:
We define the formula ¢, A, as follows: (1) Sare NP
_ _ o Take satisfying assignments as polynomial certificates for the satisfiability of a
@p. M = Startp,w(Co) A \/ |Ace-Conf(C) A [\ Next(C,«,c,«H)] formula.
0<t<p(n) O<i<t

(2) Saris hard for NP
“Cy encodes the start configuration” and for some polynomial time t:

— ) Proof by reduction from the word problem for NTMs.
“M accepts after ¢ steps” and “Cy, ..., C; encode a computation path”

O
Femma 7.7: ¢, pm, is satisfiable if and only if M accepts w in time p(jw|). \
Note that an accepting or rejecting stop configuration has no successor.
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Towards More NP-Complete Problems

Starting with Sar, one can readily show more problems P to be NP-complete, each time
performing two steps:

(1) Show that P € NP
(2) Find a known NP-complete problem P” and reduce P’ <, P

Further N P-Complete Problems Thousands of problem have now been shown to be NP-complete.

(See Garey and Johnson for an early survey)

In this course:
<, Cuque <, INDEPENDENT SET
Sar <, 3-Sar <, Dir. HamiLToNiAN PatH

<, SueseT Sum <, KnaPsack
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NP-Completeness of Crique

Fheorem 7.8: Cuaue is NP-complete.

Cuiaue: Given G, k, does G contain a clique of order > k?

Proof:
(1) Cuaue € NP
Take the vertex set of a clique of order k as a certificate.

(2) Cuaue is NP-hard

We show Sar <, CLique

To every CNF-formula ¢ assign a graph G, and a number k, such that

¢ satisfiable <= G, contains clique of order &,
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Sar <, CLique

To every CNF-formula ¢ assign a graph G, and a number &, such that
¢ satisfiable if and only if G, contains clique of order k,

Given o =Cy A -+ A Cy:
® Setk,:=k
¢ For each clause C; and literal L € C; add a vertex v ;
* Add edge {uz, vk} if i # jand L A K is satisfiable
(thatis: if L # =K and =L # K)

Correctness:
G, has clique of order « iff ¢ is satisfiable.

Complexity:
The reduction is clearly computable in polynomial time.

Markus Krétzsch, 5th Nov 2018 Complexity Theory

slide 22 of 26

slide 24 of 26

Sar <, CLique

To every CNF-formula ¢ assign a graph G, and a number k,, such that
¢ satisfiable if and only if G, contains clique of order k,

Givenp =Cy A -+ A Cy:
® Setk, =k
® For each clause C; and literal L € C; add a vertex v, ;
® Addedge {v., vk} ifi # jand L A K is satisfiable (that is: if L # =K and —L # K)

Vx,1 Yy V-z1
Example 7.9:
XVYV-Z)AXVaY)A(=XV2Z) ’ ’
N —— NEE— NS —— X,2 ® V-X73
Cy C C3
Vay,2 e V73
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NP-Completeness of INDEPENDENT SET

INDEPENDENT SET
Input:  An undirected graph G and a natural number k

Problem: Does G contain k vertices that share no edges (in-
dependent set)?

Fheorem 7.10: Inoepenpent Set is NP-complete. \

Proof: Hardness by reduction Cuique <, INDEPENDENT SET:
® Given G := (V, E) construct G := (V, {{u, v} | {u, v} ¢ E and u # v})
e Aset X C Vinduces a clique in G iff X induces an independent set in G.
* Reduction: G has a clique of order % iff G has an independent set of order k.
]
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Summary and Outlook

NP-complete problems are the hardest in NP
Polynomial runs of NTMs can be described in propositional logic (Cook-Levin)

Cuiaue and InpepenpenT SeT are also NP-complete

What’s next?
® More examples of problems
® The limits of NP
® Space complexities
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