Exercise Sheet 12: Dependencies Maximilian Marx, David Carral Database Theory, 2020-07-15, Summer Term 2020 **Exercise 12.1.** Let \mathcal{L} be a fragment of first-order logic for which finite model entailment and arbitrary model entailment coincide, i.e., for every \mathcal{L} -theory \mathcal{T} and every \mathcal{L} -formula φ , we find that φ is true in all models of \mathcal{T} if and only if φ is true in all finite models of \mathcal{T} . - (a) Give an example for a proper fragment of first-order logic with this property. - (b) Give an example for a proper fragment of first-order logic without this property. - (c) Show that entailment is decidable in any fragment with this property. **Exercise 12.2.** Consider the following set of tgds Σ : $$A(x) \to \exists y. R(x, y) \land B(y)$$ $$B(x) \to \exists y. S(x, y) \land A(y)$$ $$R(x, y) \to S(y, x)$$ $$S(x, y) \to R(y, x)$$ Does the oblivious chase universally terminate for Σ ? What about the restricted chase? **Exercise 12.3.** Is the following set of tgds Σ weakly acyclic? $$B(x) \to \exists y. S(x, y) \land A(x)$$ $$A(x) \land C(x) \to \exists y. R(x, y) \land B(y)$$ Does the skolem chase universally terminate for Σ ? **Exercise 12.4.** Termination of the oblivious (resp. restricted) chase over a set of tgds Σ implies the existence of a finite universal model for Σ . Is the converse true? That is, does the existence of a finite universal model for Σ imply termination of the oblivious (resp. restricted) chase? **Exercise 12.5.** Consider a set of tgds Σ that does not contain any constants. A term is *cyclic* if it is of the form $f(t_1, \ldots, t_n)$ and, for some $i \in \{1, \ldots, n\}$, the function symbol f syntactically occurs in t_i . Then Σ is *model-faithful acyclic* (MFA) iff no cyclic term occurs in the skolem chase of $\Sigma \cup \mathcal{I}_{\star}$, where \mathcal{I}_{\star} is the critical instance. Show the following claims: - 1. Checking MFA membership is decidable. - 2. Is the set of tgds from Exercise 12.3 MFA? - 3. If a set of tgds Σ without constants is MFA, then the skolem chose universally terminates for Σ .