Efficient Inferencing for OWL EL

Markus Kroétzsch

Institute AIFB, Karlsruhe Institute of Technology, DE
mak@aifb.uni-karlsruhe.de

Abstract. We develop inferencing methods fSROEL(M, x) — a DL that sub-
sumes the main features of the W3C recommendation OWL EL d-pagsent

a framework for studying materialisation calculi based atatbg. The latter is
used to investigate the resource requirements for infexgnend we can show
that certainrSROEL(, x) feature combinations must lead to increased space up-
per bounds in any materialisation calculus, suggestingeffiaient implementa-
tions are easier to obtain for suitably chosen fragmenSRIDE L(M, X).

1 Introduction

The recent OWL 2 W3C recommendation includes the lightweigiiology language
OWL EL [9] which is semantically based on an extension of&d&™* description logic
(DL). Itis widely assumed that inferencing in OWL EL is pdasiin polynomial time,
but it is not obvious how to extend existing reasoning proces for& L+ accordingly
[2]. In this paper, we set out to close this gap by developintabié inferencing cal-
culi for the DL SROEL(N, x) which can be considered as an extension of the tractable
DL &L with local reflexivity Self), conjunctions of roles, and concept products. The
latter two features generalise role disjointness, thearsal (top) role, and admissible
range restrictions as introduced in OWL EL. Concrete dos&itatatypes) hardly in-
teract with the additional features8ROE L(N, x) and are not considered in this paper,
though the according mechanisms usejrcpuld be lifted toSROEL(M, X).

Our second main contribution is to assess éfficiencyof the proposed calculi.
Inferencing for&L-type DLs often suggests a materialisation-based (or cpeEsee-
driven) implementation, where all deductions are compsit@dltaneously in a bottom-
up fashion. The number of inferable facts is an importantsaeaof dficiency in this
case, and we present a formalisation of materialisatiocutigb relate it to the space
complexity of datalog reasoning. Since upper space bowrdiatalog are exponential
in thearity of inferred predicates, our goal is to find materialisatialcali where these
arities are low. We are able to show that there are limits thaptimisation: some
inferencing tasks intrinsically require predicates oft@garities than others.

We present four inferencing calculi: a materialisatiorcadls for instance checking
in SROEL(M, x) in Section3, and three calculi for classification $ROE.L(M, x) and
two of its fragments in SectioA. Thereafter, in Sectiob, we show that the arity of
inferred predicates is minimal for each of the presentedutiaMe provide extended
sketches for some of the more interesting proofs to the ettan space permits. De-
tailed proofs for all results are found in the accompanyéuhical report].

Table 1. Syntax and semantics FROEL(, x) axioms

Axiom Syntax Semantics for an interpretatidh= (47, -7)
concept assertion C(a) a’ eC’
role assertion R(a, b) @,y e R
concept inclusion (GCI)|C = D cfcp!
role inclusion RCT R cT?
generalised role inclusigRo SE T |{((x.2) | (x.y) € R',(y,2) € S for somey} c T/
role conjunction S1MS;CT|S NSy cT!
concept product CxDCT |CfxDfcT’
RECxD |Tf cCfxD’

C.DeC,RS;,TeNg,abeN,

2 Preliminaries

This section summarises the basic notions from DL and datdlat are used in this
paper. Readers who are not familiar with these topics mayditended introductory
definitions in B]. The main DL studied herein ISROEL(N, x) which subsumes all
semantic features of OWL EL that are not related to datatypescrete domains).
SROEL(N, x) is based on three disjoint finite sets ioflividual namesN;, concept
nameN¢, androle namesNg. The selC of SROEL(M, X) concept expressioriben is
givenasC := T | L | Nc | CrC | ANR.C | ANR.Self | {N;}. The set ofSROEL(, X)
axiomsis defined as in Tablé. One may distinguish axioms @Box(assertional ax-
ioms), TBox(terminological axioms: GCIs), ariRBox(axioms related to roles).

Knowledge bases are sets of axioms that satisfy some aualifiwoperties. Con-
sider a set KB ofSROEL(, x) axioms. We inductively define the set wén-simple
roles of KB to contain all rolesT for which there is an axioRo S C T € KB, or an
axiomR C T such thaR is non-simple. A role that is not non-simple is callsithple
Moreover, given a role nante, we defineran(R) to denote the set of concept expres-
sionsD € C for which KB contains axiomRC S;,...,Sn.1 C Sy, andS,, = C x D for
someSy, ..., S, € Ng andn > 0. The set KB is @ROE.L(M, xX) knowledge basi the
following restrictions are satisfied:

— all rolesS occurring in expressions$S.Self € KB are simple,

— all rolesS3, S, occurring in axiomss; M S, T T € KB are simple,

— for every axiomRo ST T € KB we haveran(T) C ran(S), and

— for every axiomS; M S, C T € KB we haveran(T) C ran(S;) U ran(Sy).

Note that we do notimpose the structural restrictions of Riggularity here$] which
also apply to OWL DL (and hence to OWL EL) ontologies, sincesthare not needed
for efficient reasoning IBROEL(M, X).

The semantics o08ROEL(MN, x) is specified by defining DL interpretatiods =
(4”7, 1y as usual. Here, we merely recall the semantics of axioms liteTa see p]
for a complete definition aBROEL(M, x) semantics and entailment. Note that concept
products on the left-hand side allow us to define the univéga) roleU with an axiom
T X T C U. Since we can also define the empty (bottom) mdleisingdN.T C L,
conjunctions of (simple) roles are a generalisation ofailidépess of (simple) roles:

the axiomR ™ S C N declaresS andR to be disjoint. In the absence of other role
conjunctions, our requirements on concept producROE L(N, x) knowledge bases
agree with the known admissibility requirements for rarggnictions inS.L™* [3].

Our formalisation of inferencing calculi is based on thed®rrule languagdata-
log [1]. A signatureof datalog is a tupléC, P), whereC is a finite set otonstantsand
P is a finite set opredicatesand each predicae € P has a fixed arityr(p) > 0. We
assumée to be a disjoint unio?; U P, of IDB predicates?; andEDB predicate®e. A
countably infinite set ofariablesis denoted by/. Elements ofZ UV are callederms

A datalog atomover a signaturéC, P) is an expressiop(ty, ..., t,) wherep € P
with ar(p) = n,andtj e CuV fori = 1,...,n. An IDB (EDB) atom is one that uses an
IDB (EDB) predicate. Adatalog ruleis a formula of the fornB; A... A B — H where
B; andH are datalog atoms, ardlis an IDB atom. The premise of a rule is also called
its body, and the conclusion is called it®ad A datalog program Hs a set of datalog
rules. Afactis a ground, i.e. variable-free, rule with an empty body.

A ground substitutiorr for a signaturgC, P) is a functiono : V — C. Substi-
tutions are extended to datalog atoms by settiQp(ty, . . ., tn)) = p(o(ty),...,o(tn)),
ando(p(ty, . ..,tn)) is called aground instancef p(ty,. .., t,) in this case.

A proof treefor a datalog prograrR is a structuréN, E, 1) whereN is a finite set
of nodesE € N x N is a set of edges of a directed tree, ang a labelling function
that assigns a ground datalog atom to each node, where theiftg holds: for each
noden € N, thereisaruldB; A... A B - H € P and a ground substitutiam such
thatA(n) = o(H) and the set of child noddm | (n,m) € E} is of the form{my, ..., m}
whered(my) = o(B;) foreachi = 1,...,1.

A ground atomH is aconsequencef a datalog prograr® if there is a proof tree
for P that hasH as the labeli(r) of its root noder.

Definition 1. Given a datalog signaturéC, Py, arenamingp is a functionp : C — C.
To extengb to ground datalog atoms we s&p(t, . . ., tn)) = plo(ts),. .., o(t)).

3 Instance Checking forSROEL(N, x)

We now introduce a calculus for solving the inference tasistance checking — de-
ciding if C(a) is entailed for anyC € N¢, a € N, — for SROEL(, x). In Section5 we
show its optimality in the sense that no other materialisatialculus can be better in
terms of certain characteristics. To prepare this studyalufudi, it makes sense to seek
a uniform presentation for deduction calculi that have hgeposed fo&L-type DLs,
e.g., in R,4]. This motivates our use of datalog in this section.

Intuitively speaking, a materialisation calculus is a systof deduction rules for
deriving logical consequences which — as opposed to a coeipferencing algorithm
— does not specify a control flow or processing strategy fafuating these rules. De-
duction rules can be denoted in many forms, e.g. using texttreen descriptions?],

1 This terminology originates from the field of deductive detses where one distinguishes
extensionabndintensional data base

C(a) — {subClass(a, C)} R(a, b) — {subEx(a, R, b, b)} a€ N, — {nom(a)}
TLCCw {top(C)} ALC 1 - {bot(A)} A€ Nc - {cls(A)}
{a} C C > {subClass(a, C)} AL {c} — {subClass(A,c)} Re Ngr — {rol(R)}

AC C {subClass(A C)} AnBCCw

{

{

{

{ subConj(A, B,C)}

JdRSelf C C — {subSelf(R,C)} AL JRSelf —

{

{

{

{

supSelf(A R)}

supEx(A, R, B, aux*="RB)}
subRChain(R, S, T)}
subProd(A, B, R)}

dRAL C - {subEx(R A,C)} ACJdRB~
RC T+ {subRole(R T)} RoSETwH

RC Cx D {supProd(R,C,D)} AxXBLCLR~

RMOSC T {subRConj(R S, T)}

A B,C,DeNc, RS TeNg,abceN,

——

Fig. 1. Input translatiorPi,st

in tabular form P], or as sequent calculus style derivation ruldls Premises and con-
clusions of rules often consist of logical formulae, but nadgo contain auxiliary ex-
pressions that are relevant to the calcflusdeduction rule can then be viewed as a
schema for deriving new expressions from a finite set of gasgressions. In particu-
lar, the applicability of rules is normally noffacted by uniform renamings of signature
symbols in premise and conclusion.

Deduction rules in this sense can be denoted as datalogwhk® concrete logi-
cal sentences are represented as ground facts that ustusigsymbols in term posi-
tions. For example, we can repres&t B assubclassO£(A, B), and introduce a rule
subclassOf(X,y) A subclassO0£(y, Z) — subclass0£(X, 2). This unifies the presenta-
tion of diverse calculi, and allows us to exploit technigfresn deductive databases. For
connecting datalog to DL, we require an input translatiamfindividual DL axioms
to (sets of) datalog EDB facts. This translations is alsongeffifor signature symbols,
since symbols must generally be “loaded” into datalog tolide & derive conclusions
about them, regardless of whether the symbols occurredint exioms or not. A for-
malisation of these ideas is given later in Definitn

Calculiin the above sense generally suggest materiaisdtased (or consequence-
driven) reasoning: after translating a knowledge base talaafacts, all consequences
of these facts under the deduction rules can be computed att@n-up fashion, and
all supported entailments can then be checked withoutduriicursive computation.
This contrasts with other reasoning principles such asableaux method where just a
single entailment is checked in one run of the algorithm.

Itis not hard to formulate the deduction algorithms preséifiorE.L-type logics in

[2] and [4] using datalog rules. The calculus we present here, howeveerived from

a datalog reduction introduced ig][for a rule language based é.**. This approach
can be modified to cove$ROEL(N, x) and to use a fixed set of datalog rules to yield
a materialisation calculus in our sense. For simplicitg, fibllowing calculus only con-
sidersSROE L(M, x) axioms of the basic forms in Fig. SROE.L(M, x) axioms can be
translated to such normalised axioms in linear time so thangilments of the input
knowledge base are preservéd [

2 For instance, the calculus i@][uses auxiliary statements~>g B for A, B € Nc.

() nom(x) — inst(X, x)

2) nom(X) A triple(x,V, X) — self(x,V)

3) top(2) A inst(X,Z) — inst(Xx,2)

4) bot(2) A inst(u,2) A inst(x,Z) A cls(y) — inst(x,y)

(5) subClass(Y, 2) A inst(X,y) — inst(X, 2)

(6) subConj(yi, Y2, 2) A inst(X,y1) A inst(X,Y2) — inst(X, 2)

@) SubEx(V, Y, 2) A triple(X,V, X') A inst(X,y) — inst(X,2)

(8) SubEx(V, Y, 2) A self(x,V) A inst(X,y) — inst(X,2)

9) supEx(Y,V,z X') A inst(X,y) — triple(x,V, X)
(10) supEx(y,V,z X') A inst(X,y) — inst(X, 2)

(12) subSelf(v,2) A self(x V) — inst(x, 2)

(12) supSelf(y,V) A inst(X,y) — self(x,V)

(13) subRole(v,W) A triple(x,V,X) — triple(x,w, X)
(14) subRole(V,W) A self(x, V) — self(x, w)

(15) subRChain(u,v,w) A triple(x, u,x') A triple(X,Vv, x”) — triple(x,w, X”)
(16) subRChain(u,Vv,w) A self(x U) A triple(X,Vv,X) — triple(x,w, X))
(17) subRChain(u,v,w) A triple(x, u, X') A self(X,Vv) — triple(x,w, X)
(18) subRChain(u,v,w) A self(x, u) A self(x,v) — triple(x, w,X)
(19) subRConj(vy, Vo, W) A triple(X, vy, X') A triple(X, Vo, X') — triple(x,w, X)
(20) subRConj(vi, Vo, W) A self(X, ;) A self(X, V) — self(X,w)

(21) subProd(yi, Y2, W) A inst(X,y1) A inst(X,Yy,) — triple(X, w, X)
(22) subProd(yi, Y2, W) A inst(X,y1) A inst(X,yz) — self(x, w)

(23) supProd(V, z;,2) A triple(X,V, X') — inst(X, z)

(24) supProd(Vv, z1, 2) A self(x, V) — inst(X, z)

(25) supProd(Vv, 21, %) A triple(X, Vv, X') — inst(X, 2)
(26) supProd(Vv, z;, %) A self(X, V) — inst(X, z)

27) inst(X,y) A nom(y) A inst(x, z) — inst(y, 2

(28) inst(X,y) A nom(y) A inst(y, 2) — inst(X,2)

(29) inst(X y) A nom(y) A triple(z u,X) — triple(z u,y)

Fig. 2. Deduction rule®ins;

Theorem 1. Consider the materialisation calculus.k with input translation s as in
Fig. 1, and derivation rules Rs; as in Fig.2. For a knowledge bas€B such that jsi(a@)
is defined for allv € KB, set RKB) := Pinst U U gekg linst(@) U Usen,uncung linst(S)-

Forall C € N¢, and ae Ny, KB entails (a) if and only if RKB) entailsinst(a, C),
whenever KB) is defined. Thus i provides a materialisation calculus for instance
checking forSROE L(, x) knowledge bases within which all axioms are normalised.

The IDB predicatesnst, triple, andself in Pjs correspond to ABox axioms
for atomic concepts, roles, and concepRSelf, respectively. Rulel) serves as an
initialisation rule that accounts for the firshst facts to be derived. Rule2) speci-
fies the (only) case where reflexiveiple facts lead toself facts. The rules3) to
(26) capture expected derivations for each of the axiom typesasded by the EDB
predicates. Ruled) checks for global inconsistencies, and would typically lo® ma-
terialised in implementations since itfect can directly be taken into account during
entailment checking. Rule9)and (L0) make use of auxiliary constarasixX*=IR 8 for
handling existentials. Roughly speaking, each such cohetpresents the class of all

role successors generated by the axiom from which it origs)@ee] for details. The
remaining rulesZ7) to (29) encode equality reasoning that is relevant in the presence
of nominals where statemenitast(a, b) with a,b € N, encode equality oh andb.

Axiom normalisation and the computation kfs; can be accomplished in linear
time, and the time for reasoning in datalog is polynomialtwthe size of the collec-
tion of ground facts. Together with the known P-hardnes§_6f* [2], we obtain the
following result, of which no formal proof seems to have bpablished so far:

Corollary 1. Instance checking iSROEL(, x) and in OWL EL without datatype
properties isP complete w.r.t. the size of the knowledge base.

This result can be extended to OWL EL with datatype propedieng the lines
of datatype reasoning iB.L** [2], but this is not implied by the above theorem. The
proof of Theorenl is found in [6]. Completeness is obtained by transforming models of
datalog programs to corresponding models of DL knowledge$gart of which is to
show that equality reasoning reallyfBoes to establish a congruence between elements
of the domain. Soundness is shown by interpreting the mgaofiatalog atoms in
terms of DL, and showing inductively that each rule appl@apreserves soundness
of this interpretation. This is most interesting for rulég)(and @5) where the result
hinges upon the restrictions on role conjunction and cormeglucts iNSROE.L(1, X).

4 Classification of SROE L(MN, x) Knowledge Bases

The materialisation calculuKj.s; of Theorem1 solves the instance checking prob-
lem for SROEL(, x). A calculus for checking satisfiability is easily derivadce a
SROE L(N, x) knowledge base is inconsistent if and onl¥jf infers a factinst(x, 2)
wherebot(2) holds. In this section, we ask how to obtain calculid¢tassification- the
computation of all subsumptions of atomic classes impligd knowledge base.

Class subsumption, too, can be reduced to instance rdtrieveéheckA C B, one
introduces a new individualand adds an assertiéyfc); then the subsumption holds if
the modified knowledge base entdic). This reduction requires the knowledge base
to be modified, leading to new entailments, possibly evendbaj inconsistency. Thus
Kinst cannot directly be used for classification, since it is nasfble to introduce test
individualsc for all (atomic) classes at load time so as to materialissudisumptions
in parallel. Rather, one would have to use a separate rigffor each subclasa to
compute all entailments of the forAC B.

This approach allows us to derive a sound and complete ralgation calculus for
materialisation iNSROEL(M, x) by “internalising” the runs oKi,s: by extending alll
IDB predicates with an additional parameter to encode tsteatgssumption under which
this fact can be inferred. Our assumptions have the fafa), but the name of is not
essential. So we re-use the datalog constaas the test instance of cla8ssuch that
the additional parameter of IDB atoms can simply be a concapteA. The proof of
the following theorem is immediate from this discussion.

Theorem 2. Consider the materialisation calculussKwith input translation {. de-
fined like |nst in Fig. 1 and datalog program R containing the following rules:

— for each rule re Py (Fig. 2), a rule r obtained from r by adding a new body
atomcl1s(q), and replacing each IDB atomnst(X,Y) (triple(X,y, 2), sel£(X,Y))
by an atominst_sc(x,y, Q) (triple_sc(x Y, zQ), self_sc(xY,Q)), where qis a
variable not occurringinr,

— the additional rulec1s(q) — inst_sc(q, g, q).

For a knowledge baskB such that {(«) is defined for alkr € KB, set RKB) := PscU
Uageks Isd(@) U Usen,uncung Isd(S)- Then for all AB € N, KB entails AC B if and only
if P(KB) entails inst_sc(A, B, A), whenever FKB) is defined. Thus ¥ provides a
materialisation calculus for subsumption checking&ROE L(, x) knowledge bases
within which all axioms are normalised.

It must be noted thei{s. is not very dficient since deductions that are globally true
are inferred under each local assumptipndependently. This means that the number
of globally derived facts can multiply by the number of classnes in the signature,
e.g. by more than 300,000 for the popular SNOMED CT ontol@yy: formalisation
of materialisation calculi provides a direct measure of thtrease: the maximal arity
of IDB predicates irKs. is four while it had been three ij,s;, leading to potentially
higher space requirements for materialised derivationpldmentations may of course
achieve lower space bounds by using suitable optimisatiggtsstandard implemen-
tation techniques for datalog, such as semi-naive maiatain, are sensitive to the
number of parameters in IDB predicates. In developing thahldse-driven reasoner
Orel [7], we also experienced majountime penalties associated with higher arities
due to the larger numbers of inferences that must be comrsldieleach derivation step.

The arity of IDB predicates thus is an important measure lier dficiency of a
materialisation calculus, and we will denote this paramasethearity of a calculus
and speak of binayternaryn-ary materialisation calculi. The search for mofgaent
materialisation calculi can now be formalised as the tadinding a ternary or binary
calculus that is sound and complete 8ROE.L(M, x) classification. Unfortunately, as
shown in Sectiorb, such a calculus cannot exist. To illustrate that this isaimtious,
we now present a classification calculus of lower arity fatagment ofSROE L(1, x).

We now develop a ternary materialisation calculus that stpprole chains but
no T, 1, nominal classes, and concept products on the left-hamdadidxioms. The
input translation can remain as in Figbut without the cases that involve the excluded
features. The EDB predicatesp, bot, andsubProd are no longer used.

A set of rules is developed by restricting the ruleskgf of Theorem2. We use
the numbers as in Fi@ for referring to the rules obtained frols. Rules B), (4),
(22), and @2) are no longer needed due to the restriction of EDB predicatéthout
nominal classes, we find that all derivatiohsst_sc(X,y, () are such thay is a DL
class name, oris a DL individual name and = y. This is not hard to verify inductively
by considering each rule, and the symbols used in relevaBt fatts. This shows that
rules @7), (28), and @9) are obsolete as well. As shown i@][the essential feature of
the remaining rule set is that the additional parametbat has been introduced g,
above is no longer required for obtaining a sound and compieterialisation calculus.

Theorem 3. Consider the materialisation calculussdt with Iscc defined like ihst in
Fig. 1 but undefined for all axioms that use nominal classgsl., or concept products
on the left-hand side, and the program.gconsisting of the rule€l), (2), (5)—20), and
(23)—(26) of Fig. 2 together with a new rule1s(z) — inst(z 2).

For a knowledge baskB such that {.{«) is defined for alle € KB, set RKB) :=
PsccU Uaeks Tsed@) U Usen,uncung IsedS)- Then for all AB € N, KB entails AC B if
and only if RKB) entailsinst(A, B), whenever fKB) is defined. Thus . provides a
materialisation calculus for subsumption checking&ROE L(1, x) knowledge bases
that contain onlyr (for concepts and roles}, Self, o, and concept products on the
right-hand side.

In terms of OWL 2, the DL of the previous theorem covers all OBILontologies
without datatype properties and the constreets: Thing, owl : topObjectProperty,
owl:Nothing, owl:bottomObjectProperty, objectHasValue andobjectOneOf.

It is not hard to further simplifyKsc for the case that no role chains occur in the
knowledge base, leading to a binary classification caldoelusormalisedSROE L(1, X)
knowledge bases that contain omlyfor concepts and roles}, Self, and concept prod-
ucts on the right-hand side. For reasons of space, the nalbals been removed from
the final version of this paper; it can still be found 8).[A similar approach was used
to optimise a classification calculus 6 H presented in4].

5 Minimal Arities of Materialisation Calculi

The previously discussed materialisation calculi 8ROE.L(M, x) featured diferent
arities: while some reasoning tasks could be solved by piaad ternary calculi, our
classification calculus foSROEL(M, x) is 4-ary. We have argued above that lower
arities are important forf&cient processing, so it is desirable to develop materialisa
tion calculi of minimal arity. In this section, we establikwer bounds on the arity of
materialisation calculi for various reasoning problemisisTrequires a concrete under-
standing of what a materialisation calculus is. Generdalighe properties of the calculi
discussed above, we obtain the following formalisatiorhéf hotion.

Definition 2. A materialisation calculuK is a tuple K= (I, P,O) where | and O are
partial functions, and P is a set of datalog rules, such that

1. given an axiom or signature symhmglI(«) is either undefined or a set of datalog
facts over EDB predicates,

. given an axiona, O(«) is either undefined or a datalog fact over an IDB predicate,

. the set of EDB and IDB predicates used by I, P, and O is fixediaite,

. P contains no constant symbols,

. all constant symbols used ifal) or O(a) for some axiom (or signature symbol)
a are either signature symbols that appear in (or are equalitpdr constants of
the form aug with i > 0, where all constant names guare mutually distinct and
unequal to any DL signature symbol,

6. | and O do not depend on concrete signature symbols, t.e. fenamingpo of sig-

nature symbols that maps individg@nceptole names to individugdonceptole

names, we find(b(e)) = p(1(2)) and Qp(a)) = p(O(a)) if p(aux’) = aux}®.

abhwnN

We extend | to knowledge badeB by setting (KB) = Jgekg |(8) if 1(B) is defined
for all 8 € KB and undefined otherwise. We extend | to sets of sighaturecdyr8bby
setting (S) := Usesi(s) defined! ()- K induces arentailment relationx between knowl-
edge basekB and axiomsr over a signaturéN,;, Nc, Nr), defined by settingB rx «
whenever (KB) and Q@) are defined and(KB) U I(N; U Nc UNR) U P E O(a).

We say that K isound (completelf KB +x a implies (is implied byKB E « for
all knowledge baselB and axiomsy for which I(KB) and Q) are defined.

Note that this definition explicitly allows the datalog tedormationl to introduce
arbitrarily many auxiliary constantsux’. This can be utilised, e.qg., to perform a nor-
malisation that introduces auxiliary concept names asqddtte input translation, or
to introduce new constants for handling existentials akératbove calculi. Yet, the in-
put translation is limited in its expressivity, since it @gjls only on individual axioms
and signature symbols. In particular, this precludes cemghtalog translations as in
[10,11]. Note that we do not make any assumptions on the computabilcomplexity
of I andO, but both functions are typically very simple.

Now our general proof strategy is as follows. For a contitéatic we suppose that
there is a materialisation calculus of lower arity that ssla given reasoning problem.
We then consider a particular instance of that problem,glwe a knowledge base
KB from which a relevant consequeneemust follow. Since the calculus is assumed
to be complete, we obtain an according datalog derivatidh aicorresponding proof
tree. This proof tree is then modified by renaming constéedsling to a variant of the
proof tree that is still valid for the given materialisatioalculus, but that is based on
different (renamed) assumptions. The modified assumptionsspannd to a modified
knowledge base KBand by our construction we find that the materialisatiocualk
still computes the entailment efon the input KB. We then show that is not entailed
by KB’, so that the calculus is proven to be unsound. Sincei&Based on the modified
proof tree, some graph theoretic arguments are requirestablesh this last step.

A central notion of this proof strategy is the following mbidation of proof trees.

Definition 3. Consider a materialisation calculus K (I, P, O) and a knowledge base
KB such that (KB) is defined, and a proof tree ¥ (N, E, 1) for I(KB) U I(N; UN¢c U
Ngr) U P. We say that a DL signature symhobccursin a ground atom F if F contains
o as a constant, or if F contains some auxiliary constant’asuch tha- occurs ina.
Theinterfaceof a node re N is the set of signature symbols that occun(n).

The (labels of) T can béiversifiedby the following recursive construction:

— replace all signature symbols s that do not occur in the iistes of the root node
by a fresh symbol’ ghat has not yet been used in T or in this construction,
— recursively diversify the subtrees below each of the dichitl nodes of the root.

We tacitly assume that the datalog signature contains gliied new constant names.
Note that the renaming mayfact auxiliary constants by renaming symbols in the ax-
ioms that are part of their name. The diversification is thhtained by replacing some
signature symbols with fresh symbols. This replacementroglye uniform throughout
the tree, and we usé 0 denote the symbol by which s is replaced in node n.

nl inst (4,C)

2: subCl (B‘C) 3\ t (4.8")
n2: subClass / n3: ins
n4: subEx (R®C™B") n5: trlple (A,R™ qux "S*#C") n6: inst (quxERC;Cm)
) n8: inst (4,4)) nl0: inst (4,4)
n7: supEx (4,R™ C™ aux=*"c") | n9: supEx (4,R™ C™aux'=*"c")
nll: cls (4) nl2: cls (4)

Fig. 3. Diversification of aKs.. proof for{AC dRC,AJRCC B,BC C}F ACC

Intuitively speaking, the above renaming removes any eeafsconstant names
throughout the proof tree that is not strictly necessarafiplying the rules oP. What
s “strictly necessary” is captured by titerfaceof each node: constants that are not
in the interface of a rule application can be renamed unifpimall descendants of the
current node withoutféecting the correctness of the proof tree. This createsttlirec
connects the arity of a calculus to the amount of renaminmduiversification.

Figure3 shows an example diversification based on the cald€usof Theorens,
where we use the notation from Definiti@rfor denoting renamed symbols. Note how
C is renamed t&€" in some but not in all labels. Also note that no further rervayai
occur below the nodes5 andn6 since all relevant symbols occur in their interface
due to the auxiliary constant. As expected, the diversifiods again a proof tree for a
knowledge base that contains suitably renamed axioms:

Definition 4. Consider a materialisation calculus K, knowledge b&% and proof
tree T as in Definitior8. LetA” denote a diversified labelling for T.

Let me N be a leaf node with(m) € I(«) for somea € KB. By Definition2, one
can rename symbols im to obtain an axionw’ such that’(m) € I(a’). Concretely,
o’ is obtained fromx be replacing all symbols s in the interface of m % and by
replacing all other symbols t by some fresh symbabt used anywhere yet. We select
one such axioray, for each such node m.

Thediversification KB of KB is the knowledge bad€B’ := {a;, | n € N,n alea.
The tree structure of T can be used to repres€Bt as a set of nested sef$, for
n € N, recursively defined by settidg, := {a}, | (n,M) € E,maleaf U {l'm | {n,m) €
E, m not a leaf. We say that an axiom or setli®lowa setl, if it is either an element
of Iy, orif itis (recursively) below some element/of

For Fig.3, the diversified knowledge base{is = IR™.C™,IR™.C" C B™, B C
C} and we havd'y; = {B™ C C, {IR™.C™ C B™, {A C IR™.C"}}}. Since the underly-
ing calculus is correct, the conclusion still follows frohetdiversified knowledge base,
and the diversified proof tree is still correct. Below we useusification to construct
proof trees with invalid conclusions for calculi with infigient arities.

To this end, note that if is the maximal number of premises in ruleskof then
each sef, has at most elements (axiomay, for leaf children, sets™y, for non-leaf
children). Moreover, iff', € I'y, then the DL signature symbols that occur in axioms
below I', either belong to the interface of or occur only in axioms of KBthat are
below I'h. The interface includes all DL symbols that occur in the qudlDB atom
that is derived at a certain node of the proof tree, so the tigexdliary constants can

Fig. 4. Dependency graph for the proof of Theordm

require the inclusion oéll symbols of a given input axiom into the interface. Yet, the
arity clearly limits the number of axioms for which this mag the case: for a calculus
of arity a, the interface of any node can comprise no more than the $2it sfymbols
that occur ina axioms of the input knowledge base.

These observations can also be interpreted graphicallydbas thedependency
graphof KB’ — the graph that has the signature symbols irf K8its nodes, and, for
each axiom of KB with exactlyn signature symbols, an-ary hyperedge connecting
thesen symbols. The sets of axioni§, can be viewed as subgraphs of a dependency
graph, where the interface of the nodelescribes the nodes that this subgraph is al-
lowed to share with the remaining graph. These insightsvalle to provide a proof
sketch for our first minimality result; seé][for details on each step of the argument.

Theorem 4. Let £ be a DL with GCls, existential quantification, and role chai&v-
ery materialisation calculus that is sound and completedassification or instance
retrieval in £ has arity three or more.

Proof. To obtain the result for classification, suppose that theeebinary materialisa-
tion calculusK = (I, P, O) for classification in£. Let KB contain the following axioms:

Di E3Si.Di;1, SiocRiER, Dx1CE3dRG1.B, JR..BC B,

foralli € {0,...,k}, wherek > 2(1 + 1) for | the maximal number of body atoms in rules
of P. Then KB entaildDg C B. Thus there is a proof trée for derivingO(D, C B) for
the program (KB) U I(N; UN¢c UNR) U P. LetT’ = (N, E, 2’) be the diversified proof
tree obtained fronT by using renamed symbo$§ as in Definition3, and let KB be
the according diversified knowledge base. One can now agristrmodell” of KB in
such away thaf = Do C B can hold only if KB contains axioms of the form:

doC s0.01,...,dk C S.0iy1, SooriCro,...,So0fk1Crk, dees °B, drg.BC B,

wheredy = Do, di = D for someo € N, s = SP for someo € N, andr; = R’ for some
0 € N. We claim that this is impossible. For a contradiction, saggpKB contains a
set of axioms KB of this form. The axioms of KB are distributed over set&¢)on as
in Definition 4. SinceT’ has an out-degree of at mdgas specified above), our choice
of k implies thatT’ contains a node € N such thatl', has three axioms of the form
di C ds.di,1 below it, and such that three other axioms of this form arebeddw it.
The axioms below’, induce a subgraph of the dependency graph of I&€B shown
in Fig. 4. As discussed above, this subgraph may share at most twa motthethe rest
of the graph sinc& has arity two. Now it is not hard to argue that such a subgraph

cannot exist. Hencg, cannot exist, and KB cannot be contained in KBSo 7 does
not satisfyDy C B, and thus the latter is not a consequence of K& T’ is a proof
tree forl(KB") U I(N; U Nc U Nr) U P, K derivesDy C B. SoK cannot be sound,
contradicting our assumption of its existence.

The result for instance retrieval is obtained by extendiiBywith an axiomDy(a),
and using an analogous argument to show{a} is not entailed by any diversification
of this knowledge base on a materialisation calculus of &rit O

Analogous proofs can be given to obtain results for DLs theltide nominals:

Theorem 5. Let £ be a DL with GCls, existential quantification, and nominalsdes.
Every materialisation calculus that is sound and completecfassification in£ has
arity three or more.

Theorem 6. Let £ be a DL with GCls, existential quantification, role chainsdanomi-
nal classes. Every materialisation calculus that is sound eomplete for classification
in £ has arity four or more.

These results do not extend to instance retrieval, so insesgassification is harder
to implement diciently. Indeed, Theorerhshows that a ternary instance retrieval cal-
culus exists for a DL that includes existentials, nominaig] role chains. For DLs as
in Theorem5, we have not presented calculi of optimal arity. A ternaringoy) cal-
culus for classification (instance retrieval) in this caaa be obtained by eliminating
thetriple_sc (triple) predicate fromKgc (Kins) @s done for the binary calculb&,.
presented inff]. Theorem6 may be surprising, given that the calculus propose@jin [
for EL£ would be ternary in our notation. The explanation is thas gigorithm is
incomplete for classification; the proof of Theordhtan be used to find a suitable
counter exampleq].

6 Summary and Conclusions

The focus of this work has been the study of inferencing deflou SROEL(M, x) and
its fragments, and especially this paper is — to the best okoowledge — the first to
present a sound and complete polynomial time calculus fer@éncing in a DL that is
so closely related to the OWL EL ontology language. For itigasing properties of
such calculi, we presented a simple framework for exprgssiaterialisation calculi
in terms of datalog. This revealed the arity of IDB predisa&s an interesting mea-
sure for the worst-case space requirements of materialisbised algorithms. While
SROEL(N, x) fragments without role chains and nominals admit clasgific calculi
based on binary IDB predicates, the inclusion of eitheruieaincreases the required
arity by one. Having both featureSROE L(1, x) thus does not admit any sound and
complete classification calculus of arity below four.

We are thus able to fierentiate variouSROEL(N, x) fragments and inferencing
tasks based on a measure that relates tofttegemcy of actual implementations. Indeed,
our findings agree with practical experiences that esggaiaminals and role chains
are harder to implemenfiiciently than basi& £ featuress Computational complexity

3 Based on the author’s experience implementing Ofglgnd personal communication with
developers of DB4] and CEL http://lat.inf.tu-dresden.de/systems/cel/).

http://lat.inf.tu-dresden.de/systems/cel/

has not been able to provide an explanation for such disooégs since all reasoning
problems we consider are P-complete. In addition, our salsly shows that various
other features are not harder to implement than some of tts Ibasic ones, thus pro-
viding guidance for deciding which features to implementoouse in an application.
Although there are standard implementation strategiesldtalog reasoning, our
study is independent of actual algorithms. A promising 1s#ap thus is to develop con-
trol strategies for implementing our calculi in a “pay-asdygo” algorithm that min-
imises the potential negative impact of the occurrence dbiefeatures. Moreover,
we conjecture that our results about datalog arity can lbdustrengthened to obtain
more direct statements about space complexity of almogtamnpmonotone calculi.

Acknowledgementd he author thanks Yevgeny Kazakov for his valuable input, an
the anonymous reviewers for helpful comments. This work stggported by DFG in
projectExpresSTand by EPSRC in proje€@onDOR(EP/G02085X1).

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databa. Addison Wesley (1994)

2. Baader, F.,, Brandt, S., Lutz, C.: Pushing &thé envelope. In: Kaelbling, L., Shotti, A.
(eds.) Proc. 19th Int. Joint Conf. on Atrtificial Intelligen@JCAI'05). pp. 364—369. Profes-
sional Book Center (2005)

3. Baader, F., Brandt, S., Lutz, C.: Pushing &€ envelope further. In: Clark, K.G., Patel-
Schneider, P.F. (eds.) Proc. OWLED 2008 DC Workshop on OW{dpeEences and Direc-
tions. CEUR Workshop Proceedings, vol. 496. CEUR-WS.o0982

4. Delaitre, V., Kazakov, Y.: ClassifyinggLH ontologies in SQL databases. In: Patel-
Schneider, P.F., Hoekstra, R. (eds.) Proc. OWLED 2009 Wakon OWL: Experiences
and Directions. CEUR Workshop Proceedings, vol. 529. CBMR-org (2009)

5. Horrocks, I., Kutz, O., Sattler, U.: The even more irrésise SROZQ. In: Doherty, P., My-
lopoulos, J., Welty, C.A. (eds.) Proc. 10th Int. Conf. omeiples of Knowledge Represen-
tation and Reasoning (KR'06). pp. 57-67. AAAI Press (2006)

6. Krotzsch, M.: Hicient inferencing for the description logic underlying OVEL. Tech.
Rep. 3005, Institute AIFB, Karlsruhe Institute of Techrpto(2010), available online at
http://www.aifb.kit.edu/web/Techreport3005

7. Krbtzsch, M., Mehdi, A., Rudolph, S.: Orel: Databaserein reasoning for OWL 2 profiles.
In: Haarslev, V., Toman, D., Weddell, G. (eds.) Proc. 23rd \Workshop on Description
Logics (DL'10) (2010)

8. Krotzsch, M., Rudolph, S., Hitzler, P.: ELP: Tractabléesusfor OWL 2. In: Sheth et al1p],
pp. 649-664

9. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, Butz, C. (eds.): OWL 2
Web Ontology Language: Profiles. W3C Recommendation (282ct2009), available at
http://www.w3.0org/TR/owl2-profiles/

10. Motik, B., Sattler, U.: A comparison of reasoning tecfuds for querying large description
logic ABoxes. In: Hermann, M., Voronkov, A. (eds.) Proc. H3nt. Conf. on Logic for
Programming, Artificial Intelligence, and Reasoning (LPBR. LNCS, vol. 4246, pp. 227—
241. Springer (2006)

11. Rudolph, S., Krétzsch, M., Hitzler, P.: Descriptionitogeasoning with decision diagrams:
Compiling SHIQ to disjunctive datalog. In: Sheth et alZ], pp. 435-450

12. Sheth, A., Staab, S., Dean, M., Paolucci, M., MaynardEin, T., Thirunarayan, K. (eds.):
Proc. 7th Int. Semantic Web Conf. (ISWC’08), LNCS, vol. 53%8ringer (2008)

http://www.aifb.kit.edu/web/Techreport3005
http://www.w3.org/TR/owl2-profiles/

	Efficient Inferencing for OWL EL
	1 Introduction
	2 Preliminaries
	3 Instance Checking for SROEL(n,x)
	4 Classification of SROEL(n,x) Knowledge Bases
	5 Minimal Arities of Materialisation Calculi
	6 Summary and Conclusions

