## Foundations of Knowledge Representation

Lecture 4: Description Logics - Syntax and Semantics I
Hannes Straß
based on slides of
Bernardo Cuenca Grau,
lan Horrocks, and
Przemysław Wałȩga


ORESDEN
concept
Extaliciz out
wissentrall

## Motivation



## Motivation

Many KR applications do not require full power of FOL
What can we leave out?
■ Key reasoning problems should become decidable

- Sufficient expressive power to model application domain

Description Logics are a family of FOL fragments that meet these requirements for many applications:
■ Underlying formalisms of modern ontology languages
■ Widely-used in bio-medical information systems

- Core component of the Semantic Web


## Motivation

Recall our arthritis example:

- A juvenile disease affects only children or teenagers
- Children and teenagers are not adults
- A person is either a child, a teenager, or an adult.

■ Juvenile arthritis is a kind of arthritis and a juvenile disease
■ Every kind of arthritis damages some joint

The important types of objects given by unary FOL predicates: juvenile disease, child, teenager, adult, ...
The types of relationships given by n-ary FOL predicates: affects, damages (binary predicate), ...

## Motivation

The vocabulary of a Description Logic is composed of
■ Unary FOL predicates
Arthritis, Child, ...
■ Binary FOL predicates
Affects, Damages, ...
■ FOL constants JohnSmith, MaryJones, JRA, ...

We are already restricting the expressive power of FOL
■ No function symbols
■ No predicates of arity greater than 2

## Motivation

Now, let's take a closer look at the FOL formulas for our example:

$$
\begin{array}{r}
\forall x .(\operatorname{JuvDis}(x) \rightarrow \forall y .(\operatorname{Affects}(x, y) \rightarrow \operatorname{Child}(y) \vee \operatorname{Teen}(y))) \\
\forall x .(\operatorname{Child}(x) \vee \operatorname{Teen}(x) \rightarrow \neg \operatorname{Adult}(x)) \\
\forall x .(\operatorname{Person}(x) \rightarrow \operatorname{Child}(x) \vee \operatorname{Teen}(x) \vee \operatorname{Adult}(x)) \\
\forall x .(\operatorname{JuvArthritis}(x) \rightarrow \operatorname{Arthritis}(x) \wedge \operatorname{JuvDis}(x)) \\
\forall x .(\operatorname{Arthritis}(x) \rightarrow \exists y .(\operatorname{Damages}(x, y) \wedge \operatorname{Joint}(y))
\end{array}
$$

We can find several regularities in these formulas:

- There is an outermost universal quantifier on a single variable $x$
- They can be split into two parts by the implication symbol

Each part is a formula with one free variable
■ Atomic formulas involving a binary predicate occur only quantified in a syntactically restricted way.

## Complexity



## Motivation

Consider as an example one of our formulas:

$$
\forall x .(\operatorname{Child}(x) \vee \operatorname{Teen}(x) \rightarrow \neg \operatorname{Adult}(x))
$$

Let's look at all its sub-formulas at each side of the implication

$$
\begin{gathered}
\text { Child }(x) \\
\text { Teen }(x)
\end{gathered}
$$

Child $(x) \vee \operatorname{Teen}(x) \quad$ Set of all objects that are children or teenagers

Adult( $x$ )
$\neg$ Adult $(x) \quad$ Set of all objects that are not adults

Important observations concerning formulas with one free variable:
■ Some are atomic (e.g., Child(x))
do not contain other formulas as subformulas
■ Others are complex (e.g., Child $(x) \vee \operatorname{Teen}(x)$ )

## Basic Definitions

Idea: Define operators for constructing complex formulas with one free variable out of simple building blocks

Atomic Concept: Represents an atomic formula with one free variable

$$
\text { Child } \rightsquigarrow \text { Child }(x)
$$

Complex concepts (part 1):
■ Concept Union (ப): applies to two concepts

$$
\text { Child } \sqcup \text { Teen } \rightsquigarrow C h i l d(x) \vee \operatorname{Teen}(x)
$$

■ Concept Intersection ( $\square$ ): applies to two concepts

$$
\text { Arthritis } \sqcap \text { JuvDis } \rightsquigarrow \operatorname{Arthritis}(x) \wedge \operatorname{JuvDis}(x)
$$

- Concept Negation ( $\neg$ ): applies to one concept

$$
\neg \text { Adult } \rightsquigarrow \quad \neg \text { Adult }(x)
$$

## Motivation

Consider examples with binary predicates:

$$
\begin{array}{r}
\forall x .(\operatorname{Arthritis}(x) \rightarrow \exists y .(\operatorname{Damages}(x, y) \wedge \operatorname{Joint}(y)) \\
\forall x .(\operatorname{JuvDis}(x) \rightarrow \forall y .(\operatorname{Affects}(x, y) \rightarrow \operatorname{Child}(y) \vee \operatorname{Teen}(y)))
\end{array}
$$

- We have a concept and a binary predicate (called a role) mentioning the concept's free variable

■ The role and the concept are connected via conjunction (existential quantification) or implication (universal quantification)

■ Nested sub-concepts use a fresh (existentially/universally quantified) variable, and are connected to surrounding concept by exactly one role atom (often called a guard)

## Basic Definitions

Atomic Role: Represents an atom with two free variables

$$
\text { Affects } \rightsquigarrow \operatorname{Affects}(x, y)
$$

Complex concepts (part 2): apply to an atomic role and a concept

- Existential Restriction:

$$
\exists \text { Damages.Joint } \rightsquigarrow \exists y .(\operatorname{Damages}(x, y) \wedge \operatorname{Joint}(y))
$$

■ Universal Restriction:
$\forall$ Affects. $($ Child $\sqcup$ Teen $) \rightsquigarrow \quad \forall y .(\operatorname{Affects}(x, y) \rightarrow \operatorname{Child}(y) \vee \operatorname{Teen}(y))$

## $\mathcal{A L C}$ Concepts

$\mathcal{A L C}$ is the basic description logic
$\mathcal{A L C}$ concepts inductively defined from atomic concepts and roles:
■ Every atomic concept is a concept

- T and $\perp$ are concepts
- If $C$ is a concept, then $\neg C$ is a concept
- If $C$ and $D$ are concepts, then so are $C \sqcap D$ and $C \sqcup D$

■ If $C$ a concept and $R$ a role, $\forall R . C$ and $\exists R . C$ are concepts.
Concepts describe sets of objects with certain common features:

Woman $\sqcap \exists$ hasChild.( $\exists$ hasChild.Person) Disease $\sqcap \forall$ Affects.Child
Person $\sqcap \neg \exists$ owns.DetHouse
Man $\sqcap \exists h a s C h i l d . T ~ \sqcap \forall h a s C h i l d . M a n ~$

Women with a grandchild
Diseases affecting only children
People not owning a detached house
Fathers having only sons

Very useful idea for Knowledge Representation !!

## General Concept Inclusion Axioms

Recall our example formulas:

$$
\begin{array}{r}
\forall x .(\operatorname{JuvDis}(x) \rightarrow \forall y .(\operatorname{Affects}(x, y) \rightarrow \text { Child }(y) \vee \operatorname{Teen}(y))) \\
\forall x .(\operatorname{Child}(x) \vee \operatorname{Teen}(x) \rightarrow \neg \operatorname{Adult}(x)) \\
\forall x .(\operatorname{Person}(x) \rightarrow \operatorname{Child}(x) \vee \operatorname{Teen}(x) \vee \operatorname{Adult}(x)) \\
\forall x .(\operatorname{JuvArthritis}(x) \rightarrow \operatorname{Arthritis}(x) \wedge \operatorname{JuvDis}(x)) \\
\forall x .(\operatorname{Arthritis}(x) \rightarrow \exists y .(\operatorname{Damages}(x, y) \wedge \operatorname{Joint}(y))
\end{array}
$$

They are of the following form, with $\alpha_{C}(x)$ and $\alpha_{D}(x)$ corresponding to $\mathcal{A L C}$ concepts C and D

$$
\forall x .\left(\alpha_{C}(x) \rightarrow \alpha_{D}(x)\right)
$$

Such sentences are $\mathcal{A L C}$ General Concept Inclusion Axioms (GCIs)

$$
C \sqsubseteq D
$$

Where $C$ and $D$ are $\mathcal{A L C}$-concepts

## General Concept Inclusion Axioms

$$
\begin{aligned}
\forall x .(\operatorname{JuvDis}(x) \rightarrow \forall y .(\operatorname{Affects}(x, y) \rightarrow & \\
\quad \text { Child }(y) \vee \operatorname{Teen}(y))) & \rightsquigarrow \\
\forall x .(\operatorname{Child}(x) \vee \operatorname{Teen}(x) \rightarrow \neg \operatorname{Adult}(x)) & \rightsquigarrow \\
\forall x .(\text { Person }(x) \rightarrow \operatorname{Child}(x) \vee & \\
\vee \text { Teen }(x) \vee \operatorname{Adult}(x)) & \rightsquigarrow \\
\forall x .(\operatorname{JuvArth}(x) \rightarrow \operatorname{Arth}(x) \wedge \operatorname{JuvDis}(x)) & \rightsquigarrow \\
\forall x .(\operatorname{Arth}(x) \rightarrow \exists y .(\operatorname{Damages}(x, y) \wedge & \\
\wedge \operatorname{Joint}(y)) & \rightsquigarrow
\end{aligned}
$$

Note that we often use $C \equiv D$ as an abbreviation for a symmetrical pair of GCls $C \sqsubseteq D$ and $D \sqsubseteq C$, e.g.:
> $\left.\begin{array}{l}\text { Arth } \sqcap \text { JuvDis } \sqsubseteq \text { JuvArth } \\ \text { JuvArth } \sqsubseteq \text { Arth } \sqcap \text { JuvDis }\end{array}\right\} \rightsquigarrow$ JuvArth $\equiv$ Arth $\sqcap$ JuvDis

## General Concept Inclusion Axioms

```
    \(\forall x .(J u v D i s(x) \rightarrow \forall y .(\operatorname{Affects}(x, y) \rightarrow\)
    Child \((y) \vee\) Teen \((y))) \rightsquigarrow\) JuvDis \(\sqsubseteq \forall\) Affects. (Child \(\sqcup\) Teen)
    \(\forall x\). \((\) Child \((x) \vee \operatorname{Teen}(x) \rightarrow \neg \operatorname{Adult}(x)) \rightsquigarrow\)
        \(\forall x .(\) Person \((x) \rightarrow\) Child \((x) \vee\)
            \(\vee \operatorname{Teen}(x) \vee \operatorname{Adult}(x)) \rightsquigarrow\)
\(\forall x .(\operatorname{JuvArth}(x) \rightarrow \operatorname{Arth}(x) \wedge \operatorname{JuvDis}(x)) \rightsquigarrow\)
    \(\forall x .(\operatorname{Arth}(x) \rightarrow \exists y .(\operatorname{Damages}(x, y) \wedge\)
        \(\wedge \operatorname{Joint}(y)) \rightsquigarrow\)
```

Note that we often use $C \equiv D$ as an abbreviation for a symmetrical pair of GCls $C \sqsubseteq D$ and $D \sqsubseteq C$, e.g.:
> $\left.\begin{array}{l}\text { Arth } \sqcap \text { JuvDis } \sqsubseteq \text { JuvArth } \\ \text { JuvArth } \sqsubseteq \text { Arth } \sqcap \text { JuvDis }\end{array}\right\} \rightsquigarrow$ JuvArth $\equiv$ Arth $\sqcap$ JuvDis

## General Concept Inclusion Axioms

```
    \(\forall x .(J u v D i s(x) \rightarrow \forall y .(\operatorname{Affects}(x, y) \rightarrow\)
    Child \((y) \vee\) Teen \((y))) \rightsquigarrow\) JuvDis \(\sqsubseteq \forall\) Affects. \((\) Child \(\sqcup\) Teen)
    \(\forall x .(\) Child \((x) \vee\) Teen \((x) \rightarrow \neg\) Adult \((x)) \quad \rightsquigarrow \quad\) Child \(\sqcup\) Teen \(\sqsubseteq \neg\) Adult
        \(\forall x .(\operatorname{Person}(x) \rightarrow\) Child \((x) \vee\)
            \(\vee \operatorname{Teen}(x) \vee \operatorname{Adult}(x)) \rightsquigarrow\)
\(\forall x .(\operatorname{JuvArth}(x) \rightarrow \operatorname{Arth}(x) \wedge \operatorname{JuvDis}(x)) \rightsquigarrow\)
    \(\forall x .(\operatorname{Arth}(x) \rightarrow \exists y .(\operatorname{Damages}(x, y) \wedge\)
        \(\wedge\) Joint \((y)) \rightsquigarrow\)
```

Note that we often use $C \equiv D$ as an abbreviation for a symmetrical pair of GCls $C \sqsubseteq D$ and $D \sqsubseteq C$, e.g.:
> $\left.\begin{array}{l}\text { Arth } \sqcap \text { JuvDis } \sqsubseteq \text { JuvArth } \\ \text { JuvArth } \sqsubseteq \text { Arth } \sqcap \text { JuvDis }\end{array}\right\} \rightsquigarrow$ JuvArth $\equiv$ Arth $\sqcap$ JuvDis

## General Concept Inclusion Axioms

```
    \(\forall x .(J u v D i s(x) \rightarrow \forall y .(\operatorname{Affects}(x, y) \rightarrow\)
    Child \((y) \vee\) Teen \((y))) \rightsquigarrow\) JuvDis \(\sqsubseteq \forall\) Affects. (Child \(\sqcup\) Teen)
    \(\forall x .(\) Child \((x) \vee\) Teen \((x) \rightarrow \neg\) Adult \((x)) \quad \rightsquigarrow \quad\) Child \(\sqcup\) Teen \(\sqsubseteq \neg\) Adult
        \(\forall x .(\) Person \((x) \rightarrow\) Child \((x) \vee\)
            \(\vee\) Teen \((x) \vee\) Adult \((x)) \rightsquigarrow\) Person \(\sqsubseteq\) Child \(\sqcup\) Teen \(\sqcup\) Adult
\(\forall x .(\operatorname{JuvArth}(x) \rightarrow \operatorname{Arth}(x) \wedge \operatorname{JuvDis}(x)) \rightsquigarrow\)
    \(\forall x .(\operatorname{Arth}(x) \rightarrow \exists y .(\operatorname{Damages}(x, y) \wedge\)
        \(\wedge\) Joint \((y)) \rightsquigarrow\)
```

Note that we often use $C \equiv D$ as an abbreviation for a symmetrical pair of GCls $C \sqsubseteq D$ and $D \sqsubseteq C$, e.g.:
> $\left.\begin{array}{l}\text { Arth } \sqcap \text { JuvDis } \sqsubseteq \text { JuvArth } \\ \text { JuvArth } \sqsubseteq \text { Arth } \sqcap \text { JuvDis }\end{array}\right\} \rightsquigarrow$ JuvArth $\equiv$ Arth $\sqcap$ JuvDis

## General Concept Inclusion Axioms

```
    \(\forall x .(J u v D i s(x) \rightarrow \forall y .(\operatorname{Affects}(x, y) \rightarrow\)
    Child \((y) \vee\) Teen \((y))) \rightsquigarrow\) JuvDis \(\sqsubseteq \forall\) Affects. (Child \(\sqcup\) Teen)
    \(\forall x .(\) Child \((x) \vee\) Teen \((x) \rightarrow \neg\) Adult \((x)) \quad \rightsquigarrow \quad\) Child \(\sqcup\) Teen \(\sqsubseteq \neg\) Adult
        \(\forall x .(\) Person \((x) \rightarrow\) Child \((x) \vee\)
            \(\vee\) Teen \((x) \vee\) Adult \((x)) \rightsquigarrow\) Person \(\sqsubseteq\) Child \(\sqcup\) Teen \(\sqcup\) Adult
\(\forall x .(J u v \operatorname{Arth}(x) \rightarrow \operatorname{Arth}(x) \wedge \operatorname{JuvDis}(x)) \rightsquigarrow\) JuvArth \(\sqsubseteq\) Arth \(\sqcap J u v D i s\)
    \(\forall x .(\operatorname{Arth}(x) \rightarrow \exists y .(\operatorname{Damages}(x, y) \wedge\)
        \(\wedge \operatorname{Joint}(y)) \rightsquigarrow\)
```

Note that we often use $C \equiv D$ as an abbreviation for a symmetrical pair of GCls $C \sqsubseteq D$ and $D \sqsubseteq C$, e.g.:
> $\left.\begin{array}{l}\text { Arth } \sqcap \text { JuvDis } \sqsubseteq \text { JuvArth } \\ \text { JuvArth } \sqsubseteq \text { Arth } \sqcap \text { JuvDis }\end{array}\right\} \rightsquigarrow$ JuvArth $\equiv$ Arth $\sqcap$ JuvDis

## General Concept Inclusion Axioms

$$
\begin{array}{rlrl}
\forall x .(J u v D i s ~ \\
(x) \rightarrow \forall y .(A f f e c t s(x, y) \rightarrow & & \\
\text { Child }(y) \vee \text { Teen }(y))) & \rightsquigarrow & \text { JuvDis } \sqsubseteq \forall \text { Affects. (Child } \sqcup \text { Teen) } \\
\forall x .(\text { Child }(x) \vee \text { Teen }(x) \rightarrow \neg \text { Adult }(x)) & \rightsquigarrow & \text { Child } \sqcup \text { Teen } \sqsubseteq \neg \text { Adult } \\
\forall x .(\text { Person }(x) \rightarrow \text { Child }(x) \vee & & \\
\vee \text { Teen }(x) \vee \text { Adult }(x)) & \rightsquigarrow & \text { Person } \sqsubseteq \text { Child } \sqcup \text { Teen } \sqcup \text { Adult } \\
\forall x .(\operatorname{JuvArth~}(x) \rightarrow \text { Arth }(x) \wedge \operatorname{JuvDis~}(x)) & \rightsquigarrow & \text { JuvArth } \sqsubseteq \text { Arth } \sqcap \text { JuvDis } \\
\forall x .(\operatorname{Arth~}(x) \rightarrow \exists y .(\text { Damages }(x, y) \wedge & & \\
\wedge \operatorname{Joint~}(y)) & \rightsquigarrow & \text { Arth } \sqsubseteq \exists \text { Damages.Joint }
\end{array}
$$

Note that we often use $C \equiv D$ as an abbreviation for a symmetrical pair of GCls $C \sqsubseteq D$ and $D \sqsubseteq C$, e.g.:
> $\left.\begin{array}{l}\text { Arth } \sqcap \text { JuvDis } \sqsubseteq \text { JuvArth } \\ \text { JuvArth } \sqsubseteq \text { Arth } \sqcap \text { JuvDis }\end{array}\right\} \rightsquigarrow$ JuvArth $\equiv$ Arth $\sqcap$ JuvDis

## Terminological Statements

GCls allow us to represent a surprising variety of terminological statements

- Sub-type statements

$$
\forall x .(\operatorname{JuvArth}(x) \rightarrow \operatorname{Arth}(x)) \quad \rightsquigarrow \quad \text { JuvArth } \sqsubseteq \operatorname{Arth}
$$

- Full definitions:

$$
\forall x .(\operatorname{Juv} \operatorname{Arth}(x) \leftrightarrow \operatorname{Arth}(x) \wedge \operatorname{JuvDis}(x)) \quad \rightsquigarrow \quad \text { JuvArth } \equiv \operatorname{Arth} \sqcap \text { JuvDis }
$$

- Disjointness statements:

$$
\forall x .(\text { Child }(x) \rightarrow \neg \text { Adult }(x)) \quad \rightsquigarrow \quad \text { Child } \sqsubseteq \neg \text { Adult }
$$

- Covering statements:

$$
\forall x .(\text { Person }(x) \rightarrow \text { Adult }(x) \vee \text { Child }(x)) \quad \rightsquigarrow \text { Person } \sqsubseteq \text { Adult } \sqcup \text { Child }
$$

- Type (domain and range) restrictions:

$$
\begin{aligned}
\forall x .(\forall y .(\operatorname{Affects}(x, y) \rightarrow \operatorname{Arth}(x) \wedge \text { Person }(y)))) & \exists \text { Affects. } \top \sqsubseteq \text { Arth } \\
& \top \sqsubseteq \forall \text { Affects.Person }
\end{aligned}
$$

## Concept Inclusion Axioms \& Definitions

Why call $C \sqsubseteq D$ a concept inclusion axiom?

- Intuitively, every object belonging to $C$ should belong also to $D$
- States that $C$ is more specific than $D$

Why call it a general concept inclusion axiom?

- It may be interesting to consider restricted forms of inclusion

■ E.g., axioms where l.h.s. is atomic are sometimes called definitions

- A concept definition specifies necessary and sufficient conditions for instances, e.g.:

$$
\text { JuvArth } \equiv \text { Arth } \sqcap \text { JuvDis }
$$

- A primitive concept definition specifies only necessary conditions for instances, e.g.:

$$
\text { Arth } \sqsubseteq \exists D a m a g e s . J o i n t ~
$$

## Data Assertions

In description logics, we can also represent data:
Child(JohnSmith) John Smith is a child JuvenileArthritis(JRA) JRA is a juvenile arthritis Affects(JRA, MaryJones) Mary Jones is affected by JRA

Usually data assertions correspond to FOL ground atoms.
Often written like this:

> JohnSmith : Child (JRA, MaryJones) : Affects

In $\mathcal{A L C}$, we have two types of data assertions, for $\mathrm{a}, \mathrm{b}$ individuals:

$$
\begin{aligned}
C(a) & \rightsquigarrow C \text { is an } \mathcal{A L C} \text { concept } \\
R(a, b) & \rightsquigarrow R \text { is an atomic role }
\end{aligned}
$$

Examples of acceptable data assertions in $\mathcal{A L C}$ :
$\exists$ hasChild.Teacher(John) $\rightsquigarrow \exists y$.(hasChild(John, y) ^Teacher(y))
HistorySt $\sqcup$ ClassicsSt(John) $\rightsquigarrow$ HistorySt(John) $\vee$ ClassicsSt(John)

## DL Knowledge Base: TBox + ABox

An $\mathcal{A L C}$ knowledge base $\mathcal{K}=(\mathcal{T}, \mathcal{A})$ is composed of:
■ A TBox $\mathcal{T}$ (Terminological Component)
Finite set of GCls
■ An ABox $\mathcal{A}$ (Assertional Component):
Finite set of assertions

TBox:

JuvArthritis $\sqsubseteq$ Arthritis $\sqcap$ JuvDisease
Arthritis $\sqcap$ JuvDisease $\sqsubseteq$ JuvArthritis
Arthritis $\sqsubseteq \exists$ Damages.Joint
JuvDisease $\sqsubseteq \forall$ Affects. (Child $\sqcup$ Teen)
Child $\sqcup$ Teen $\sqsubseteq \neg$ Adult

ABox:

Child(JohnSmith)
JuvArthritis(JRA)
Affects(JRA, MaryJones)
Child $\sqcup$ Teen(MaryJones)

## Semantics via FOL Translation

## $\mathcal{A L C}$ semantics can be defined via translation into FOL:

■ Concepts translated as formulas with one free variable

$$
\begin{aligned}
\pi_{x}(A) & =A(x) & \pi_{y}(A) & =A(y) \\
\pi_{x}(\neg C) & =\neg \pi_{x}(C) & \pi_{y}(\neg C) & =\neg \pi_{y}(C) \\
\pi_{x}(C \sqcap D) & =\pi_{x}(C) \wedge \pi_{x}(D) & \pi_{y}(C \sqcap D) & =\pi_{y}(C) \wedge \pi_{y}(D) \\
\pi_{x}(C \sqcup D) & =\pi_{x}(C) \vee \pi_{x}(D) & \pi_{y}(C \sqcup D) & =\pi_{y}(C) \vee \pi_{y}(D) \\
\pi_{x}(\exists R \cdot C) & =\exists y \cdot\left(R(x, y) \wedge \pi_{y}(C)\right) & \pi_{y}(\exists R . C) & =\exists x .\left(R(y, x) \wedge \pi_{x}(C)\right) \\
\pi_{x}(\forall R . C) & =\forall y \cdot\left(R(x, y) \rightarrow \pi_{y}(C)\right) & \pi_{y}(\forall R . C) & =\forall x .\left(R(y, x) \rightarrow \pi_{x}(C)\right)
\end{aligned}
$$

■ GCls and assertions translated as sentences

$$
\begin{aligned}
\pi(C \sqsubseteq D) & =\forall x \cdot\left(\pi_{x}(C) \rightarrow \pi_{x}(D)\right) \\
\pi(R(a, b)) & =R(a, b) \\
\pi(C(a)) & =\pi_{x / a}(C)
\end{aligned}
$$

- TBoxes, ABoxes and KBs are translated in the obvious way.


## Semantics via FOL Translation

Note redundancy in concept-forming operators:

$$
\begin{array}{rll}
\perp & \rightsquigarrow & \neg \top \\
C \sqcup D & \rightsquigarrow & \neg(\neg C \sqcap \neg D) \\
\forall R . C & \rightsquigarrow & \neg(\exists R . \neg C)
\end{array}
$$

These equivalences can be proved using FOL semantics:

$$
\begin{aligned}
\pi_{x}(\neg \exists R \cdot \neg C) & =\neg \exists y \cdot\left(R(x, y) \wedge \neg \pi_{y}(C)\right) \\
& \equiv \forall y \cdot\left(\neg\left(R(x, y) \wedge \neg \pi_{y}(C)\right)\right) \\
& \equiv \forall y \cdot\left(\neg R(x, y) \vee \pi_{y}(C)\right) \\
& \equiv \forall y \cdot\left(R(x, y) \rightarrow \pi_{y}(C)\right) \\
& =\pi_{x}(\forall R \cdot C)
\end{aligned}
$$

We can define syntax of $\mathcal{A L C}$ using only conjunction and negation operators and the existential role operator.

## Direct (Model-Theoretic) Semantics

Direct semantics: An alternative (and convenient) way of specifying semantics

DL interpretation $\mathcal{I}=\left\langle\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}}\right\rangle$ is a FOL interpretation over the DL vocabulary:
$\square$ Each individual a interpreted as an object $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$.
■ Each atomic concept $A$ interpreted as a set $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$.
■ Each atomic role $R$ interpreted as a binary relation $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$.
The mapping $\cdot{ }^{\mathcal{I}}$ is extended to $T, \perp$ and compound concepts as follows:


## Direct (Model-Theoretic) Semantics

Consider the interpretation $\mathcal{I}=\left\langle\Delta^{\mathcal{I}}, \mathcal{I}^{\mathcal{I}}\right\rangle$

$$
\begin{aligned}
\Delta^{\mathcal{I}} & =\{u, v, w\} \\
\text { JuvDis }^{\mathcal{I}} & =\{u\} \\
\text { Child }^{\mathcal{I}} & =\{w\} \\
\text { Teen }^{\mathcal{I}} & =\emptyset \\
\text { Affects }^{\mathcal{I}} & =\{\langle u, w\rangle\}
\end{aligned}
$$

We can then interpret any concept as a subset of $\Delta^{\mathcal{I}}$ :

$$
\begin{aligned}
(\text { JuvDis } \sqcap \text { Child })^{\mathcal{I}} & = \\
(\text { Child } \sqcup \text { Teen })^{\mathcal{I}} & = \\
(\exists \text { Affects. }(\text { Child } \sqcup \text { Teen }))^{\mathcal{I}} & = \\
(\neg \text { Child })^{\mathcal{I}} & = \\
(\forall \text { Affects. Teen })^{\mathcal{I}} & =
\end{aligned}
$$

## Direct (Model-Theoretic) Semantics

Consider the interpretation $\mathcal{I}=\left\langle\Delta^{\mathcal{I}}, \mathcal{I}^{\mathcal{I}}\right\rangle$

$$
\begin{aligned}
& \Delta^{\mathcal{I}}=\{u, v, w\} \\
& \text { JuvDis } \\
& \text { Child }^{\mathcal{I}}=\{u\} \\
& \text { Teen }^{\mathcal{I}}=\emptyset \\
& \text { Affects }^{\mathcal{I}}=\{\langle u, w\rangle\}
\end{aligned}
$$

We can then interpret any concept as a subset of $\Delta^{\mathcal{I}}$ :

$$
\begin{aligned}
\left(\text { JuvDis } \sqcap \text { Child }^{\mathcal{I}}\right. & =\emptyset \\
(\text { Child } \sqcup \text { Teen })^{\mathcal{I}} & = \\
(\exists \text { Affects. }(\text { Child } \sqcup \text { Teen }))^{\mathcal{I}} & = \\
\left(\neg \text { Child }^{\mathcal{I}}\right. & = \\
(\forall \text { Affects. Teen })^{\mathcal{I}} & =
\end{aligned}
$$

## Direct (Model-Theoretic) Semantics

Consider the interpretation $\mathcal{I}=\left\langle\Delta^{\mathcal{I}}, \mathcal{I}^{\mathcal{I}}\right\rangle$

$$
\begin{aligned}
\Delta^{\mathcal{I}} & =\{u, v, w\} \\
\text { JuvDis }^{\mathcal{I}} & =\{u\} \\
\text { Child }^{\mathcal{I}} & =\{w\} \\
\text { Teen }^{\mathcal{I}} & =\emptyset \\
\text { Affects }^{\mathcal{I}} & =\{\langle u, w\rangle\}
\end{aligned}
$$

We can then interpret any concept as a subset of $\Delta^{\mathcal{I}}$ :

$$
\begin{aligned}
\left(\text { JuvDis } \sqcap \text { Child }^{\mathcal{I}}\right. & =\emptyset \\
(\text { Child } \sqcup \text { Teen })^{\mathcal{I}} & =\{w\} \\
(\exists \text { Affects. }(\text { Child } \sqcup \text { Teen }))^{\mathcal{I}} & = \\
(\neg \text { Child })^{\mathcal{I}} & = \\
(\forall \text { Affects. Teen })^{\mathcal{I}} & =
\end{aligned}
$$

## Direct (Model-Theoretic) Semantics

Consider the interpretation $\mathcal{I}=\left\langle\Delta^{\mathcal{I}}, \mathcal{I}^{\mathcal{I}}\right\rangle$

$$
\begin{aligned}
\Delta^{\mathcal{I}} & =\{u, v, w\} \\
\text { JuvDis }^{\mathcal{I}} & =\{u\} \\
\text { Child }^{\mathcal{I}} & =\{w\} \\
\text { Teen }^{\mathcal{I}} & =\emptyset \\
\text { Affects }^{\mathcal{I}} & =\{\langle u, w\rangle\}
\end{aligned}
$$

We can then interpret any concept as a subset of $\Delta^{\mathcal{I}}$ :

$$
\begin{aligned}
\left(\text { JuvDis } \sqcap \text { Child }^{\mathcal{I}}\right. & =\emptyset \\
(\text { Child } \sqcup \text { Teen })^{\mathcal{I}} & =\{w\} \\
(\exists \text { Affects. }(\text { Child } \sqcup \text { Teen }))^{\mathcal{I}} & =\{u\} \\
\left(\neg \text { Child }^{\mathcal{I}}\right. & = \\
(\forall \text { Affects. Teen })^{\mathcal{I}} & =
\end{aligned}
$$

## Direct (Model-Theoretic) Semantics

Consider the interpretation $\mathcal{I}=\left\langle\Delta^{\mathcal{I}}, \mathcal{I}^{\mathcal{I}}\right\rangle$

$$
\begin{aligned}
& \Delta^{\mathcal{I}}=\{u, v, w\} \\
& \text { JuvDis } \\
& \text { Child }^{\mathcal{I}}=\{u\} \\
& \text { Teen }^{\mathcal{I}}=\emptyset \\
& \text { Affects }^{\mathcal{I}}=\{\langle u, w\rangle\}
\end{aligned}
$$

We can then interpret any concept as a subset of $\Delta^{\mathcal{I}}$ :

$$
\begin{aligned}
(\text { JuvDis } \sqcap \text { Child })^{\mathcal{I}} & =\emptyset \\
(\text { Child } \sqcup \text { Teen })^{\mathcal{I}} & =\{w\} \\
(\exists \text { Affects. }(\text { Child } \sqcup \text { Teen }))^{\mathcal{I}} & =\{u\} \\
(\neg \text { Child })^{\mathcal{I}} & =\{u, v\} \\
(\forall \text { Affects. Teen })^{\mathcal{I}} & =
\end{aligned}
$$

## Direct (Model-Theoretic) Semantics

Consider the interpretation $\mathcal{I}=\left\langle\Delta^{\mathcal{I}}, \mathcal{I}^{\mathcal{I}}\right\rangle$

$$
\begin{aligned}
\Delta^{\mathcal{I}} & =\{u, v, w\} \\
\text { JuvDis }^{\mathcal{I}} & =\{u\} \\
\text { Child }^{\mathcal{I}} & =\{w\} \\
\text { Teen }^{\mathcal{I}} & =\emptyset \\
\text { Affects }^{\mathcal{I}} & =\{\langle u, w\rangle\}
\end{aligned}
$$

We can then interpret any concept as a subset of $\Delta^{\mathcal{I}}$ :

$$
\begin{aligned}
\left(\text { JuvDis } \sqcap \text { Child }^{\mathcal{I}}\right. & =\emptyset \\
(\text { Child } \sqcup \text { Teen })^{\mathcal{I}} & =\{w\} \\
(\exists \text { Affects. }(\text { Child } \sqcup \text { Teen }))^{\mathcal{I}} & =\{u\} \\
(\neg \text { Child })^{\mathcal{I}} & =\{u, v\} \\
(\forall \text { Affects. Teen })^{\mathcal{I}} & =\{v, w\}
\end{aligned}
$$

## Direct (Model-Theoretic) Semantics

We can now determine whether $\mathcal{I}$ is a model of ...
■ A General Concept Inclusion Axiom $C \sqsubseteq D$ :

$$
\mathcal{I} \models(C \sqsubseteq D) \quad \text { iff } \quad C^{\mathcal{I}} \subseteq D^{\mathcal{I}}
$$

- An assertion $C(a)$ :

$$
\mathcal{I} \models C(a) \quad \text { iff } \quad a^{\mathcal{I}} \in C^{\mathcal{I}}
$$

- An assertion $R(a, b)$ :

$$
\mathcal{I} \models R(a, b) \quad \text { iff } \quad\left\langle a^{\mathcal{I}}, b^{\mathcal{I}}\right\rangle \in R^{\mathcal{I}}
$$

- A TBox $\mathcal{T}$, ABox $\mathcal{A}$, and knowledge base:

$$
\begin{array}{lll}
\mathcal{I} \models \mathcal{T} & \text { iff } & \mathcal{I} \models \alpha \text { for each } \alpha \in \mathcal{T} \\
\mathcal{I} \models \mathcal{A} & \text { iff } & \mathcal{I} \models \alpha \text { for each } \alpha \in \mathcal{A} \\
\mathcal{I} \models \mathcal{K} & \text { iff } & \mathcal{I} \models \mathcal{T} \text { and } \mathcal{I} \models \mathcal{A}
\end{array}
$$

## Direct (Model-Theoretic) Semantics

Consider our previous example interpretation:

$$
\begin{array}{lcc}
\Delta^{\mathcal{I}}=\{u, v, w\} & \text { Affects }^{\mathcal{I}}=\{\langle u, w\rangle\} & \\
\text { JuvDis }^{\mathcal{I}}=\{u\} & \text { Child }^{\mathcal{I}}=\{w\} & \text { Teen }^{\mathcal{I}}=\emptyset
\end{array}
$$

$\mathcal{I}$ is a model of the following axioms:

$$
\begin{aligned}
\text { JuvDis } & \exists \text { Affects. Child } \\
\text { Child } \sqsubseteq \neg \text { Teen } & \rightsquigarrow \\
\text { JuvDis } \sqsubseteq \forall \text { Affects.Child } & \rightsquigarrow
\end{aligned}
$$

However $\mathcal{I}$ is not a model of the following axioms:

$$
\begin{aligned}
\text { JuvDis } \sqsubseteq \exists \text { Affects. (Child } \sqcap \text { Teen) } & \rightsquigarrow \\
\neg \text { Teen } \sqsubseteq \text { Child } & \rightsquigarrow \\
\exists \text { Affects. } \top \sqsubseteq \text { Teen } & \rightsquigarrow
\end{aligned}
$$

## Direct (Model-Theoretic) Semantics

Consider our previous example interpretation:

$$
\begin{array}{lcc}
\Delta^{\mathcal{I}}=\{u, v, w\} & \text { Affects }^{\mathcal{I}}=\{\langle u, w\rangle\} & \\
\text { JuvDis }^{\mathcal{I}}=\{u\} & \text { Child }^{\mathcal{I}}=\{w\} & \text { Teen }^{\mathcal{I}}=\emptyset
\end{array}
$$

$\mathcal{I}$ is a model of the following axioms:

$$
\begin{aligned}
\text { JuvDis } & \exists \text { Affects.Child } \\
\text { Child } \sqsubseteq \neg \text { Teen } & \rightsquigarrow \\
\text { JuvDis } \sqsubseteq \forall \text { Affects.Child } & \rightsquigarrow
\end{aligned}
$$

However $\mathcal{I}$ is not a model of the following axioms:

$$
\begin{aligned}
\text { JuvDis } & \exists \text { Affects. }(\text { Child } \sqcap \text { Teen }) \\
\neg \text { Teen } \sqsubseteq \text { Child } & \rightsquigarrow \\
\exists \text { Affects. } \top \sqsubseteq \text { Teen } & \rightsquigarrow
\end{aligned}
$$

## Direct (Model-Theoretic) Semantics

Consider our previous example interpretation:

$$
\begin{array}{lcc}
\Delta^{\mathcal{I}}=\{u, v, w\} & \text { Affects }^{\mathcal{I}}=\{\langle u, w\rangle\} & \\
\text { JuvDis }^{\mathcal{I}}=\{u\} & \text { Child }^{\mathcal{I}}=\{w\} & \text { Teen }^{\mathcal{I}}=\emptyset
\end{array}
$$

$\mathcal{I}$ is a model of the following axioms:

$$
\begin{array}{rll}
\text { JuvDis } \sqsubseteq \exists \text { Affects. Child } & \rightsquigarrow & \{u\} \subseteq\{u\} \\
\text { Child } \sqsubseteq \neg \text { Teen } & \rightsquigarrow & \{w\} \subseteq\{u, v, w\} \\
\text { JuvDis } \sqsubseteq \forall \text { Affects.Child } & \rightsquigarrow &
\end{array}
$$

However $\mathcal{I}$ is not a model of the following axioms:

$$
\begin{aligned}
\text { JuvDis } \sqsubseteq \exists \text { Affects. (Child } \sqcap \text { Teen) } & \rightsquigarrow \\
\neg \text { Teen } \sqsubseteq \text { Child } & \rightsquigarrow \\
\exists \text { Affects. } \top \sqsubseteq \text { Teen } & \rightsquigarrow
\end{aligned}
$$

## Direct (Model-Theoretic) Semantics

Consider our previous example interpretation:

$$
\begin{array}{ccc}
\Delta^{\mathcal{I}}=\{u, v, w\} & \text { Affects }^{\mathcal{I}}=\{\langle u, w\rangle\} & \\
\text { JuvDis }^{\mathcal{I}}=\{u\} & \text { Child }^{\mathcal{I}}=\{w\} & \text { Teen }^{\mathcal{I}}=\emptyset
\end{array}
$$

$\mathcal{I}$ is a model of the following axioms:

$$
\begin{array}{rll}
\text { JuvDis } \sqsubseteq \exists \text { Affects. Child } & \rightsquigarrow & \{u\} \subseteq\{u\} \\
\text { Child } \sqsubseteq \neg \text { Teen } & \rightsquigarrow & \{w\} \subseteq\{u, v, w\} \\
\text { JuvDis } \sqsubseteq \forall \text { Affects.Child } & \rightsquigarrow & \{u\} \subseteq\{u, v, w\}
\end{array}
$$

However $\mathcal{I}$ is not a model of the following axioms:

$$
\begin{aligned}
\text { JuvDis } \sqsubseteq \exists \text { Affects. (Child } \sqcap \text { Teen) } & \rightsquigarrow \\
\neg \text { Teen } \sqsubseteq \text { Child } & \rightsquigarrow \\
\exists \text { Affects. } \top \sqsubseteq \text { Teen } & \rightsquigarrow
\end{aligned}
$$

## Direct (Model-Theoretic) Semantics

Consider our previous example interpretation:

$$
\begin{array}{ccc}
\Delta^{\mathcal{I}}=\{u, v, w\} & \text { Affects }^{\mathcal{I}}=\{\langle u, w\rangle\} & \\
\text { JuvDis }^{\mathcal{I}}=\{u\} & \text { Child }^{\mathcal{I}}=\{w\} & \text { Teen }^{\mathcal{I}}=\emptyset
\end{array}
$$

$\mathcal{I}$ is a model of the following axioms:

$$
\begin{array}{rll}
\text { JuvDis } \sqsubseteq \exists \text { Affects. Child } & \rightsquigarrow & \{u\} \subseteq\{u\} \\
\text { Child } \sqsubseteq \neg \text { Teen } & \rightsquigarrow & \{w\} \subseteq\{u, v, w\} \\
\text { JuvDis } \sqsubseteq \forall \text { Affects.Child } & \rightsquigarrow & \{u\} \subseteq\{u, v, w\}
\end{array}
$$

However $\mathcal{I}$ is not a model of the following axioms:

$$
\begin{aligned}
\text { JuvDis } \sqsubseteq \exists \text { Affects. }(\text { Child } \sqcap \text { Teen }) & \rightsquigarrow\{u\} \nsubseteq \emptyset \\
\neg \text { Teen } \sqsubseteq \text { Child } & \rightsquigarrow \\
\exists \text { Affects. } \top \sqsubseteq \text { Teen } & \rightsquigarrow
\end{aligned}
$$

## Direct (Model-Theoretic) Semantics

Consider our previous example interpretation:

$$
\begin{array}{lcl}
\Delta^{\mathcal{I}}=\{u, v, w\} & \text { Affects }^{\mathcal{I}}=\{\langle u, w\rangle\} & \\
\text { JuvDis }^{\mathcal{I}}=\{u\} & \text { Child }^{\mathcal{I}}=\{w\} & \text { Teen }^{\mathcal{I}}=\emptyset
\end{array}
$$

$\mathcal{I}$ is a model of the following axioms:

$$
\begin{array}{rll}
\text { JuvDis } \sqsubseteq \exists \text { Affects. Child } & \rightsquigarrow & \{u\} \subseteq\{u\} \\
\text { Child } \sqsubseteq \neg \text { Teen } & \rightsquigarrow & \{w\} \subseteq\{u, v, w\} \\
\text { JuvDis } \sqsubseteq \forall \text { Affects.Child } & \rightsquigarrow & \{u\} \subseteq\{u, v, w\}
\end{array}
$$

However $\mathcal{I}$ is not a model of the following axioms:

$$
\begin{aligned}
\text { JuvDis } \sqsubseteq \exists \text { Affects. (Child } \sqcap \text { Teen) } & \rightsquigarrow \\
\neg \text { Teen } \sqsubseteq \text { Child } & \rightsquigarrow u\} \nsubseteq \emptyset \\
\exists \text { Affects. } T \sqsubseteq \text { Teen } & \rightsquigarrow
\end{aligned}
$$

## Direct (Model-Theoretic) Semantics

Consider our previous example interpretation:

$$
\begin{array}{lcl}
\Delta^{\mathcal{I}}=\{u, v, w\} & \text { Affects }^{\mathcal{I}}=\{\langle u, w\rangle\} & \\
\text { JuvDis }^{\mathcal{I}}=\{u\} & \text { Child }^{\mathcal{I}}=\{w\} & \text { Teen }^{\mathcal{I}}=\emptyset
\end{array}
$$

$\mathcal{I}$ is a model of the following axioms:

$$
\begin{array}{rll}
\text { JuvDis } \sqsubseteq \exists \text { Affects. Child } & \rightsquigarrow & \{u\} \subseteq\{u\} \\
\text { Child } \sqsubseteq \neg \text { Teen } & \rightsquigarrow & \{w\} \subseteq\{u, v, w\} \\
\text { JuvDis } \sqsubseteq \forall \text { Affects.Child } & \rightsquigarrow & \{u\} \subseteq\{u, v, w\}
\end{array}
$$

However $\mathcal{I}$ is not a model of the following axioms:

$$
\begin{array}{rll}
\text { JuvDis } \sqsubseteq \exists \text { Affects. }(\text { Child } \sqcap \text { Teen) } & \rightsquigarrow & \{u\} \nsubseteq \emptyset \\
\neg \text { Teen } \sqsubseteq \text { Child } & \rightsquigarrow & \{u, v, w\} \nsubseteq\{w\} \\
\exists \text { Affects. } \top \sqsubseteq \text { Teen } & \rightsquigarrow & \{u\} \nsubseteq \emptyset
\end{array}
$$

