
Foundations of Knowledge Representation

Lecture 4: Description Logics – Syntax and Semantics I

Hannes Straß

based on slides of
Bernardo Cuenca Grau,
Ian Horrocks, and
Przemysław Wałȩga



Motivation

Undecidable

Non-Elementary decidable

. . .

ExpTime

PSpace

NP

P

FOL sat

. . .

. . .

Datalog sat

. . .

PL sat

Horn PL sat

TU Dresden Description Logics 2/24



Motivation
Many KR applications do not require full power of FOL

What can we leave out?
Key reasoning problems should become decidable
Sufficient expressive power to model application domain

Description Logics are a family of FOL fragments that meet
these requirements for many applications:

Underlying formalisms of modern ontology languages
Widely-used in bio-medical information systems
Core component of the Semantic Web

TU Dresden Description Logics 3/24



Motivation
Recall our arthritis example:

A juvenile disease affects only children or teenagers
Children and teenagers are not adults
A person is either a child, a teenager, or an adult.
Juvenile arthritis is a kind of arthritis and a juvenile disease
Every kind of arthritis damages some joint

The important types of objects given by unary FOL predicates:
juvenile disease, child, teenager, adult, . . .

The types of relationships given by n-ary FOL predicates:
affects, damages (binary predicate), . . .

TU Dresden Description Logics 4/24



Motivation
The vocabulary of a Description Logic is composed of

Unary FOL predicates
Arthritis, Child, . . .

Binary FOL predicates
Affects, Damages, . . .

FOL constants
JohnSmith, MaryJones, JRA, . . .

We are already restricting the expressive power of FOL
No function symbols
No predicates of arity greater than 2

TU Dresden Description Logics 5/24



Motivation
Now, let’s take a closer look at the FOL formulas for our example:

∀x .(JuvDis(x)→ ∀y .(Affects(x , y)→ Child(y) ∨ Teen(y)))

∀x .(Child(x) ∨ Teen(x)→ ¬Adult(x))

∀x .(Person(x)→ Child(x) ∨ Teen(x) ∨ Adult(x))

∀x .(JuvArthritis(x)→ Arthritis(x) ∧ JuvDis(x))

∀x .(Arthritis(x)→ ∃y .(Damages(x , y) ∧ Joint(y))

We can find several regularities in these formulas:

There is an outermost universal quantifier on a single variable x

They can be split into two parts by the implication symbol

Each part is a formula with one free variable

Atomic formulas involving a binary predicate occur only quantified
in a syntactically restricted way.

TU Dresden Description Logics 6/24



Complexity

Undecidable

Non-Elementary decidable

. . .

NExpTime

ExpTime

PSpace

NP

P

FOL-3 sat

. . .

. . .

FOL-2 sat

Datalog sat

. . .

PL sat

Horn PL sat

TU Dresden Description Logics 7/24



Motivation
Consider as an example one of our formulas:

∀x .(Child(x) ∨ Teen(x)→ ¬Adult(x))

Let’s look at all its sub-formulas at each side of the implication

Child(x) Set of all children
Teen(x) Set of all teenagers

Child(x) ∨ Teen(x) Set of all objects that are children or teenagers
Adult(x) Set of all adults
¬Adult(x) Set of all objects that are not adults

Important observations concerning formulas with one free variable:

Some are atomic (e.g., Child(x))

do not contain other formulas as subformulas

Others are complex (e.g., Child(x) ∨ Teen(x))

TU Dresden Description Logics 8/24



Basic Definitions
Idea: Define operators for constructing complex formulas with one free
variable out of simple building blocks

Atomic Concept: Represents an atomic formula with one free variable

Child  Child(x)

Complex concepts (part 1):

Concept Union (t): applies to two concepts

Child t Teen  Child(x) ∨ Teen(x)

Concept Intersection (u): applies to two concepts

Arthritis u JuvDis  Arthritis(x) ∧ JuvDis(x)

Concept Negation (¬): applies to one concept

¬Adult  ¬Adult(x)

TU Dresden Description Logics 9/24



Motivation
Consider examples with binary predicates:

∀x .(Arthritis(x)→ ∃y .(Damages(x , y) ∧ Joint(y))

∀x .(JuvDis(x)→ ∀y .(Affects(x , y)→ Child(y) ∨ Teen(y)))

We have a concept and a binary predicate (called a role)
mentioning the concept’s free variable

The role and the concept are connected via conjunction
(existential quantification) or implication (universal quantification)

Nested sub-concepts use a fresh (existentially/universally
quantified) variable, and are connected to surrounding concept by
exactly one role atom (often called a guard)

TU Dresden Description Logics 10/24



Basic Definitions
Atomic Role: Represents an atom with two free variables

Affects  Affects(x , y)

Complex concepts (part 2): apply to an atomic role and a concept

Existential Restriction:

∃Damages.Joint  ∃y .(Damages(x , y) ∧ Joint(y))

Universal Restriction:

∀Affects.(Child t Teen)  ∀y .(Affects(x , y)→ Child(y) ∨ Teen(y))

TU Dresden Description Logics 11/24



ALC Concepts

ALC is the basic description logic
ALC concepts inductively defined from atomic concepts and roles:

Every atomic concept is a concept

> and ⊥ are concepts

If C is a concept, then ¬C is a concept

If C and D are concepts, then so are C u D and C t D

If C a concept and R a role, ∀R.C and ∃R.C are concepts.

Concepts describe sets of objects with certain common features:

Woman u ∃hasChild .(∃hasChild .Person) Women with a grandchild

Disease u ∀Affects.Child Diseases affecting only children

Person u ¬∃owns.DetHouse People not owning a detached house

Man u ∃hasChild .> u ∀hasChild .Man Fathers having only sons

Very useful idea for Knowledge Representation !!

TU Dresden Description Logics 12/24



General Concept Inclusion Axioms

Recall our example formulas:

∀x .(JuvDis(x)→ ∀y .(Affects(x , y)→ Child(y) ∨ Teen(y)))

∀x .(Child(x) ∨ Teen(x)→ ¬Adult(x))

∀x .(Person(x)→ Child(x) ∨ Teen(x) ∨ Adult(x))

∀x .(JuvArthritis(x)→ Arthritis(x) ∧ JuvDis(x))

∀x .(Arthritis(x)→ ∃y .(Damages(x , y) ∧ Joint(y))

They are of the following form, with αC(x) and αD(x) corresponding to
ALC concepts C and D

∀x .(αC(x)→ αD(x))

Such sentences are ALC General Concept Inclusion Axioms (GCIs)

C v D

Where C and D are ALC-concepts
TU Dresden Description Logics 13/24



General Concept Inclusion Axioms

∀x .(JuvDis(x)→ ∀y .(Affects(x , y)→
Child(y) ∨ Teen(y)))  

JuvDis v ∀Affects.(Child t Teen)

∀x .(Child(x) ∨ Teen(x)→ ¬Adult(x))  

Child t Teen v ¬Adult

∀x .(Person(x)→ Child(x)∨
∨Teen(x) ∨ Adult(x))  

Person v Child t Teen t Adult

∀x .(JuvArth(x)→ Arth(x) ∧ JuvDis(x))  

JuvArth v Arth u JuvDis

∀x .(Arth(x)→ ∃y .(Damages(x , y)∧
∧Joint(y))  

Arth v ∃Damages.Joint

Note that we often use C ≡ D as an abbreviation for a symmetrical pair of
GCIs C v D and D v C, e.g.:

Arth u JuvDis v JuvArth
JuvArth v Arth u JuvDis

}
 JuvArth ≡ Arth u JuvDis

TU Dresden Description Logics 14/24



General Concept Inclusion Axioms

∀x .(JuvDis(x)→ ∀y .(Affects(x , y)→
Child(y) ∨ Teen(y)))  JuvDis v ∀Affects.(Child t Teen)

∀x .(Child(x) ∨ Teen(x)→ ¬Adult(x))  

Child t Teen v ¬Adult

∀x .(Person(x)→ Child(x)∨
∨Teen(x) ∨ Adult(x))  

Person v Child t Teen t Adult

∀x .(JuvArth(x)→ Arth(x) ∧ JuvDis(x))  

JuvArth v Arth u JuvDis

∀x .(Arth(x)→ ∃y .(Damages(x , y)∧
∧Joint(y))  

Arth v ∃Damages.Joint

Note that we often use C ≡ D as an abbreviation for a symmetrical pair of
GCIs C v D and D v C, e.g.:

Arth u JuvDis v JuvArth
JuvArth v Arth u JuvDis

}
 JuvArth ≡ Arth u JuvDis

TU Dresden Description Logics 14/24



General Concept Inclusion Axioms

∀x .(JuvDis(x)→ ∀y .(Affects(x , y)→
Child(y) ∨ Teen(y)))  JuvDis v ∀Affects.(Child t Teen)

∀x .(Child(x) ∨ Teen(x)→ ¬Adult(x))  Child t Teen v ¬Adult

∀x .(Person(x)→ Child(x)∨
∨Teen(x) ∨ Adult(x))  

Person v Child t Teen t Adult

∀x .(JuvArth(x)→ Arth(x) ∧ JuvDis(x))  

JuvArth v Arth u JuvDis

∀x .(Arth(x)→ ∃y .(Damages(x , y)∧
∧Joint(y))  

Arth v ∃Damages.Joint

Note that we often use C ≡ D as an abbreviation for a symmetrical pair of
GCIs C v D and D v C, e.g.:

Arth u JuvDis v JuvArth
JuvArth v Arth u JuvDis

}
 JuvArth ≡ Arth u JuvDis

TU Dresden Description Logics 14/24



General Concept Inclusion Axioms

∀x .(JuvDis(x)→ ∀y .(Affects(x , y)→
Child(y) ∨ Teen(y)))  JuvDis v ∀Affects.(Child t Teen)

∀x .(Child(x) ∨ Teen(x)→ ¬Adult(x))  Child t Teen v ¬Adult

∀x .(Person(x)→ Child(x)∨
∨Teen(x) ∨ Adult(x))  Person v Child t Teen t Adult

∀x .(JuvArth(x)→ Arth(x) ∧ JuvDis(x))  

JuvArth v Arth u JuvDis

∀x .(Arth(x)→ ∃y .(Damages(x , y)∧
∧Joint(y))  

Arth v ∃Damages.Joint

Note that we often use C ≡ D as an abbreviation for a symmetrical pair of
GCIs C v D and D v C, e.g.:

Arth u JuvDis v JuvArth
JuvArth v Arth u JuvDis

}
 JuvArth ≡ Arth u JuvDis

TU Dresden Description Logics 14/24



General Concept Inclusion Axioms

∀x .(JuvDis(x)→ ∀y .(Affects(x , y)→
Child(y) ∨ Teen(y)))  JuvDis v ∀Affects.(Child t Teen)

∀x .(Child(x) ∨ Teen(x)→ ¬Adult(x))  Child t Teen v ¬Adult

∀x .(Person(x)→ Child(x)∨
∨Teen(x) ∨ Adult(x))  Person v Child t Teen t Adult

∀x .(JuvArth(x)→ Arth(x) ∧ JuvDis(x))  JuvArth v Arth u JuvDis

∀x .(Arth(x)→ ∃y .(Damages(x , y)∧
∧Joint(y))  

Arth v ∃Damages.Joint

Note that we often use C ≡ D as an abbreviation for a symmetrical pair of
GCIs C v D and D v C, e.g.:

Arth u JuvDis v JuvArth
JuvArth v Arth u JuvDis

}
 JuvArth ≡ Arth u JuvDis

TU Dresden Description Logics 14/24



General Concept Inclusion Axioms

∀x .(JuvDis(x)→ ∀y .(Affects(x , y)→
Child(y) ∨ Teen(y)))  JuvDis v ∀Affects.(Child t Teen)

∀x .(Child(x) ∨ Teen(x)→ ¬Adult(x))  Child t Teen v ¬Adult

∀x .(Person(x)→ Child(x)∨
∨Teen(x) ∨ Adult(x))  Person v Child t Teen t Adult

∀x .(JuvArth(x)→ Arth(x) ∧ JuvDis(x))  JuvArth v Arth u JuvDis

∀x .(Arth(x)→ ∃y .(Damages(x , y)∧
∧Joint(y))  Arth v ∃Damages.Joint

Note that we often use C ≡ D as an abbreviation for a symmetrical pair of
GCIs C v D and D v C, e.g.:

Arth u JuvDis v JuvArth
JuvArth v Arth u JuvDis

}
 JuvArth ≡ Arth u JuvDis

TU Dresden Description Logics 14/24



Terminological Statements
GCIs allow us to represent a surprising variety of terminological statements

Sub-type statements

∀x .(JuvArth(x)→Arth(x))  JuvArth v Arth

Full definitions:

∀x .(JuvArth(x)↔Arth(x)∧JuvDis(x))  JuvArth ≡ Arth u JuvDis

Disjointness statements:

∀x .(Child(x)→¬Adult(x))  Child v ¬Adult

Covering statements:

∀x .(Person(x)→Adult(x)∨Child(x))  Person v Adult t Child

Type (domain and range) restrictions:

∀x .(∀y .(Affects(x , y)→Arth(x)∧Person(y)))  ∃Affects.> v Arth

> v ∀Affects.Person

TU Dresden Description Logics 15/24



Concept Inclusion Axioms & Definitions
Why call C v D a concept inclusion axiom?

Intuitively, every object belonging to C should belong also to D

States that C is more specific than D

Why call it a general concept inclusion axiom?

It may be interesting to consider restricted forms of inclusion

E.g., axioms where l.h.s. is atomic are sometimes called definitions

A concept definition specifies necessary and sufficient
conditions for instances, e.g.:

JuvArth ≡ Arth u JuvDis

A primitive concept definition specifies only necessary
conditions for instances, e.g.:

Arth v ∃Damages.Joint

TU Dresden Description Logics 16/24



Data Assertions
In description logics, we can also represent data:

Child(JohnSmith) John Smith is a child

JuvenileArthritis(JRA) JRA is a juvenile arthritis

Affects(JRA,MaryJones) Mary Jones is affected by JRA

Usually data assertions correspond to FOL ground atoms.

Often written like this:

JohnSmith : Child (JRA,MaryJones) : Affects

In ALC, we have two types of data assertions, for a,b individuals:

C(a)  C is an ALC concept

R(a, b)  R is an atomic role

Examples of acceptable data assertions in ALC:

∃hasChild .Teacher(John)  ∃y .(hasChild(John, y) ∧ Teacher(y))

HistorySt t ClassicsSt(John)  HistorySt(John) ∨ ClassicsSt(John)

TU Dresden Description Logics 17/24



DL Knowledge Base: TBox + ABox
An ALC knowledge base K = (T ,A) is composed of:

A TBox T (Terminological Component)

Finite set of GCIs

An ABox A (Assertional Component):

Finite set of assertions

TBox:

JuvArthritis v Arthritis u JuvDisease

Arthritis u JuvDisease v JuvArthritis

Arthritis v ∃Damages.Joint

JuvDisease v ∀Affects.(Child t Teen)

Child t Teen v ¬Adult

ABox:

Child(JohnSmith)

JuvArthritis(JRA)

Affects(JRA,MaryJones)

Child t Teen(MaryJones)

TU Dresden Description Logics 18/24



Semantics via FOL Translation
ALC semantics can be defined via translation into FOL:

Concepts translated as formulas with one free variable

πx (A) = A(x) πy (A) = A(y)

πx (¬C) = ¬πx (C) πy (¬C) = ¬πy (C)

πx (C u D) = πx (C) ∧ πx (D) πy (C u D) = πy (C) ∧ πy (D)

πx (C t D) = πx (C) ∨ πx (D) πy (C t D) = πy (C) ∨ πy (D)

πx (∃R.C) = ∃y .(R(x , y) ∧ πy (C)) πy (∃R.C) = ∃x .(R(y , x) ∧ πx (C))

πx (∀R.C) = ∀y .(R(x , y)→ πy (C)) πy (∀R.C) = ∀x .(R(y , x)→ πx (C))

GCIs and assertions translated as sentences

π(C v D) = ∀x .(πx (C)→ πx (D))

π(R(a, b)) = R(a, b)

π(C(a)) = πx/a(C)

TBoxes, ABoxes and KBs are translated in the obvious way.

TU Dresden Description Logics 19/24



Semantics via FOL Translation
Note redundancy in concept-forming operators:

⊥  ¬>
C t D  ¬(¬C u ¬D)

∀R.C  ¬(∃R.¬C)

These equivalences can be proved using FOL semantics:

πx (¬∃R.¬C) = ¬∃y .(R(x , y) ∧ ¬πy (C))

≡ ∀y .(¬(R(x , y) ∧ ¬πy (C)))

≡ ∀y .(¬R(x , y) ∨ πy (C))

≡ ∀y .(R(x , y)→ πy (C))

= πx (∀R.C)

We can define syntax of ALC using only conjunction and negation
operators and the existential role operator.

TU Dresden Description Logics 20/24



Direct (Model-Theoretic) Semantics
Direct semantics: An alternative (and convenient) way of specifying semantics

DL interpretation I = 〈∆I , ·I〉 is a FOL interpretation over the DL vocabulary:

Each individual a interpreted as an object aI ∈ ∆I .

Each atomic concept A interpreted as a set AI ⊆ ∆I .

Each atomic role R interpreted as a binary relation RI ⊆ ∆I ×∆I .

The mapping ·I is extended to >, ⊥ and compound concepts as follows:

>I = ∆I

⊥I = ∅
(¬C)I = ∆I \ CI

(C u D)I = CI ∩ DI

(C t D)I = CI ∪ DI

(∃R.C)I = {u ∈ ∆I | ∃w ∈ ∆I s.t. 〈u,w〉 ∈ RI and w ∈ CI}
(∀R.C)I = {u ∈ ∆I | ∀w ∈ ∆I , 〈u,w〉 ∈ RI implies w ∈ CI}

TU Dresden Description Logics 21/24



Direct (Model-Theoretic) Semantics

Consider the interpretation I = 〈∆I , ·I〉

∆I = {u, v ,w}
JuvDisI = {u}

ChildI = {w}
TeenI = ∅

AffectsI = {〈u,w〉}

We can then interpret any concept as a subset of ∆I :

(JuvDis u Child)I =

∅

(Child t Teen)I =

{w}

(∃Affects.(Child t Teen))I =

{u}

(¬Child)I =

{u, v}

(∀Affects.Teen)I =

{v ,w}

TU Dresden Description Logics 22/24



Direct (Model-Theoretic) Semantics

Consider the interpretation I = 〈∆I , ·I〉

∆I = {u, v ,w}
JuvDisI = {u}

ChildI = {w}
TeenI = ∅

AffectsI = {〈u,w〉}

We can then interpret any concept as a subset of ∆I :

(JuvDis u Child)I = ∅
(Child t Teen)I =

{w}

(∃Affects.(Child t Teen))I =

{u}

(¬Child)I =

{u, v}

(∀Affects.Teen)I =

{v ,w}

TU Dresden Description Logics 22/24



Direct (Model-Theoretic) Semantics

Consider the interpretation I = 〈∆I , ·I〉

∆I = {u, v ,w}
JuvDisI = {u}

ChildI = {w}
TeenI = ∅

AffectsI = {〈u,w〉}

We can then interpret any concept as a subset of ∆I :

(JuvDis u Child)I = ∅
(Child t Teen)I = {w}

(∃Affects.(Child t Teen))I =

{u}

(¬Child)I =

{u, v}

(∀Affects.Teen)I =

{v ,w}

TU Dresden Description Logics 22/24



Direct (Model-Theoretic) Semantics

Consider the interpretation I = 〈∆I , ·I〉

∆I = {u, v ,w}
JuvDisI = {u}

ChildI = {w}
TeenI = ∅

AffectsI = {〈u,w〉}

We can then interpret any concept as a subset of ∆I :

(JuvDis u Child)I = ∅
(Child t Teen)I = {w}

(∃Affects.(Child t Teen))I = {u}
(¬Child)I =

{u, v}

(∀Affects.Teen)I =

{v ,w}

TU Dresden Description Logics 22/24



Direct (Model-Theoretic) Semantics

Consider the interpretation I = 〈∆I , ·I〉

∆I = {u, v ,w}
JuvDisI = {u}

ChildI = {w}
TeenI = ∅

AffectsI = {〈u,w〉}

We can then interpret any concept as a subset of ∆I :

(JuvDis u Child)I = ∅
(Child t Teen)I = {w}

(∃Affects.(Child t Teen))I = {u}
(¬Child)I = {u, v}

(∀Affects.Teen)I =

{v ,w}

TU Dresden Description Logics 22/24



Direct (Model-Theoretic) Semantics

Consider the interpretation I = 〈∆I , ·I〉

∆I = {u, v ,w}
JuvDisI = {u}

ChildI = {w}
TeenI = ∅

AffectsI = {〈u,w〉}

We can then interpret any concept as a subset of ∆I :

(JuvDis u Child)I = ∅
(Child t Teen)I = {w}

(∃Affects.(Child t Teen))I = {u}
(¬Child)I = {u, v}

(∀Affects.Teen)I = {v ,w}

TU Dresden Description Logics 22/24



Direct (Model-Theoretic) Semantics

We can now determine whether I is a model of . . .

A General Concept Inclusion Axiom C v D:

I |= (C v D) iff CI ⊆ DI

An assertion C(a):

I |= C(a) iff aI ∈ CI

An assertion R(a,b):

I |= R(a,b) iff 〈aI ,bI〉 ∈ RI

A TBox T , ABox A, and knowledge base:

I |= T iff I |= α for each α ∈ T
I |= A iff I |= α for each α ∈ A
I |= K iff I |= T and I |= A

TU Dresden Description Logics 23/24



Direct (Model-Theoretic) Semantics

Consider our previous example interpretation:

∆I = {u, v ,w} AffectsI = {〈u,w〉}
JuvDisI = {u} ChildI = {w} TeenI = ∅

I is a model of the following axioms:

JuvDis v ∃Affects.Child  

{u} ⊆ {u}

Child v ¬Teen  

{w} ⊆ {u, v ,w}

JuvDis v ∀Affects.Child  

{u} ⊆ {u, v ,w}

However I is not a model of the following axioms:

JuvDis v ∃Affects.(Child u Teen)  

{u} 6⊆ ∅

¬Teen v Child  

{u, v ,w} 6⊆ {w}

∃Affects.> v Teen  

{u} 6⊆ ∅

TU Dresden Description Logics 24/24



Direct (Model-Theoretic) Semantics

Consider our previous example interpretation:

∆I = {u, v ,w} AffectsI = {〈u,w〉}
JuvDisI = {u} ChildI = {w} TeenI = ∅

I is a model of the following axioms:

JuvDis v ∃Affects.Child  {u} ⊆ {u}
Child v ¬Teen  

{w} ⊆ {u, v ,w}

JuvDis v ∀Affects.Child  

{u} ⊆ {u, v ,w}

However I is not a model of the following axioms:

JuvDis v ∃Affects.(Child u Teen)  

{u} 6⊆ ∅

¬Teen v Child  

{u, v ,w} 6⊆ {w}

∃Affects.> v Teen  

{u} 6⊆ ∅

TU Dresden Description Logics 24/24



Direct (Model-Theoretic) Semantics

Consider our previous example interpretation:

∆I = {u, v ,w} AffectsI = {〈u,w〉}
JuvDisI = {u} ChildI = {w} TeenI = ∅

I is a model of the following axioms:

JuvDis v ∃Affects.Child  {u} ⊆ {u}
Child v ¬Teen  {w} ⊆ {u, v ,w}

JuvDis v ∀Affects.Child  

{u} ⊆ {u, v ,w}

However I is not a model of the following axioms:

JuvDis v ∃Affects.(Child u Teen)  

{u} 6⊆ ∅

¬Teen v Child  

{u, v ,w} 6⊆ {w}

∃Affects.> v Teen  

{u} 6⊆ ∅

TU Dresden Description Logics 24/24



Direct (Model-Theoretic) Semantics

Consider our previous example interpretation:

∆I = {u, v ,w} AffectsI = {〈u,w〉}
JuvDisI = {u} ChildI = {w} TeenI = ∅

I is a model of the following axioms:

JuvDis v ∃Affects.Child  {u} ⊆ {u}
Child v ¬Teen  {w} ⊆ {u, v ,w}

JuvDis v ∀Affects.Child  {u} ⊆ {u, v ,w}

However I is not a model of the following axioms:

JuvDis v ∃Affects.(Child u Teen)  

{u} 6⊆ ∅

¬Teen v Child  

{u, v ,w} 6⊆ {w}

∃Affects.> v Teen  

{u} 6⊆ ∅

TU Dresden Description Logics 24/24



Direct (Model-Theoretic) Semantics

Consider our previous example interpretation:

∆I = {u, v ,w} AffectsI = {〈u,w〉}
JuvDisI = {u} ChildI = {w} TeenI = ∅

I is a model of the following axioms:

JuvDis v ∃Affects.Child  {u} ⊆ {u}
Child v ¬Teen  {w} ⊆ {u, v ,w}

JuvDis v ∀Affects.Child  {u} ⊆ {u, v ,w}

However I is not a model of the following axioms:

JuvDis v ∃Affects.(Child u Teen)  {u} 6⊆ ∅
¬Teen v Child  

{u, v ,w} 6⊆ {w}

∃Affects.> v Teen  

{u} 6⊆ ∅

TU Dresden Description Logics 24/24



Direct (Model-Theoretic) Semantics

Consider our previous example interpretation:

∆I = {u, v ,w} AffectsI = {〈u,w〉}
JuvDisI = {u} ChildI = {w} TeenI = ∅

I is a model of the following axioms:

JuvDis v ∃Affects.Child  {u} ⊆ {u}
Child v ¬Teen  {w} ⊆ {u, v ,w}

JuvDis v ∀Affects.Child  {u} ⊆ {u, v ,w}

However I is not a model of the following axioms:

JuvDis v ∃Affects.(Child u Teen)  {u} 6⊆ ∅
¬Teen v Child  {u, v ,w} 6⊆ {w}

∃Affects.> v Teen  

{u} 6⊆ ∅

TU Dresden Description Logics 24/24



Direct (Model-Theoretic) Semantics

Consider our previous example interpretation:

∆I = {u, v ,w} AffectsI = {〈u,w〉}
JuvDisI = {u} ChildI = {w} TeenI = ∅

I is a model of the following axioms:

JuvDis v ∃Affects.Child  {u} ⊆ {u}
Child v ¬Teen  {w} ⊆ {u, v ,w}

JuvDis v ∀Affects.Child  {u} ⊆ {u, v ,w}

However I is not a model of the following axioms:

JuvDis v ∃Affects.(Child u Teen)  {u} 6⊆ ∅
¬Teen v Child  {u, v ,w} 6⊆ {w}

∃Affects.> v Teen  {u} 6⊆ ∅

TU Dresden Description Logics 24/24


