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Propositional Logic

We might consider using Propositional Logic
It is one of the simplest logics
It can be used to write simple representations of a domain
There exist reasoning algorithms that exhibit excellent
performance in practice
(Most of) you are already familiar with it!
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Syntax: Propositional Alphabet

1 Propositional variables (PL):
basic statements that can be true or false

2 The symbols > (“truth”) and ⊥ (“falsehood”)
3 Propositional connectives:

¬: negation (not)
∧: conjunction (and)
∨: disjunction (or)
→: implication (if . . . then)
↔: bi-directional implication (if and only if)

4 Punctuation symbols “(” and “)” can be used to avoid
ambiguity
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Syntax: Formulas

Atomic formulas (atoms): propositional variables

Formulas: Inductively defined from atoms, >, and ⊥ using connectives

Examples of formulas:

If the tumour is benign then it does not have metastasis

Benign → ¬Metastasis

A tumour is in Stage 4 if and only if it is not benign

Stage4 ↔ ¬Benign

If a tumour has a treatment, it is surgery, or chemotherapy, or
radiotherapy

Treatment → Surgery ∨ Chemo ∨ Radio
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Semantics: Interpretations

An interpretation I assigns truth values to propositional variables:

I : PL→ {true, false}

An interpretation for a (set of) formulas X interprets the propositional
variables occurring in X .

Example: An interpretation I for the formula R → ((Q ∨ R)→ R):

RI = true
QI = false

A formula with n propositional variables has 2n interpretations.

TU Dresden Logics for Knowledge Representation 5/42



Semantics of Formulas

The truth value of the propositional variables in a formula α
determines the truth value of α.

R → ((Q ∨ R)→ R)

R (Q ∨ R)→ R)

Q ∨ R

Q R

R

RI = true
QI = false

(Q ∨ R)I = true
((Q ∨ R)→ R)I = true

(R → ((Q ∨ R)→ R))I = true

We say that I is a model of α, written I |= α, if I makes α true.

Given I and α, checking whether I |= α can be done effectively, in
polynomial time.
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Using PL for KR

Propositional Logic provides a simple KR language.

To write down a representation of our domain do the following:

1 Identify the relevant propositions:

Benign The tumour is benign
Metastasis The tumour has metastasis

Stage4 The tumour is in Stage 4
. . .

2 Express our knowledge using a set of formulas (knowledge base):

Benign
Benign↔ ¬Metastasis

Stage4→ Metastasis
. . .
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Reasoning with a Knowledge Base

Knowledge Base K1:

Benign ∧ Stage4
Benign↔ ¬Metastasis

Stage4→ Metastasis
. . .

Knowledge Base K2:

Benign
Benign↔ ¬Metastasis

Stage4→ Metastasis
. . .

We would like to answer the following questions:

1 Do our KBs make sense?

K1 seems contradictory

2 What is the implicit knowledge we can derive from our KBs?

K2 seems to imply the formula ¬Stage4
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Satisfiability Problem

Satisfiability: An instance is a formula α.
The answer is true if there exists a model I of α
and false otherwise.

For α the formula R → ((Q ∨ R)→ R) the answer is true:
I assigning R to true and Q to false is a model of α.

For α the formula (R ∧Q)↔ (¬R ∨ ¬Q) the answer is false:
None of the 4 possible interpretations is a model of α.

Satisfiability defined for sets of formulas in the obvious way.

The following knowledge base is unsatisfiable:

K1 = {Benign ∧ Stage4
Benign↔ ¬Metastasis
Stage4→ Metastasis
. . .}
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Other Reasoning Problems

Validity: An instance is a formula α.
The answer is true if every interpretation for α is a model of α
and false otherwise.

Entailment: An instance is a pair of formulas α, β.
The answer is true if every model of α is also a model of β
and false otherwise.

Equivalence: An instance is a pair of formulas α, β.
The answer is true if the set of all models of α and β coincide
and false otherwise.
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Reductions Between Problems
Intuitively, these problems are strongly related:

α is valid if and only if ¬α is unsatisfiable

α and β are equivalent if and only if α entails β and β entails α

α entails β if and only if α ∧ ¬β is unsatisfiable

A reduction from problem P1 to P2 is a function f such that

for each input x to P1, the answer of P1 for input x coincides with
the answer of P2 for input f (x),

given x , the input f (x) can be efficiently computed.

The mentioned before (and many other) problems can be reduced to
(un)satisfiability
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Expressivity -v- Complexity

Propositional satisfiability is (famously) NP-complete:

Theorem (Cook-Levin)

Propositional satisfiability is an NP-complete problem:

1 It is in NP

2 It is NP-hard: all problems in NP are reducible to it

So should we just give up (as reasoning is intractable)?

NO!

Algorithms such as DPLL are effective in practice

Highly optimised SAT solvers can deal with problems containing
millions of propositional variables (www.maxsat.udl.cat)
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Limitations of Propositional Logic

Consider the following statements from a medical domain:

A juvenile disease affects only children or teenagers

Children and teenagers are not adults

Juvenile arthritis is a kind of arthritis and a juvenile disease

Arthritis affects some adults

Let us try to represent these statements in propositional logic:

JuvDisease → AffectsChild ∨ AffectsTeenager
Child ∨ Teenager → ¬Adult

JuvArthritis → JuvDisease ∧ Arthritis
Arthritis → AffectsAdult
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Limitations of Propositional Logic

Some intuitive consequences of our statements:

Juvenile arthritis does not affect adults

Arthritis is not a juvenile disease

We expect the following formulas to follow:

JuvArthritis → ¬AffectsAdult
Arthritis → ¬JuvDisease

However, neither of them is entailed.

Even worse, if we add to our initial formulas the following ones, we
obtain an unsatisfiable set of formulas.

JuvArthritis → ¬AffectsAdult
JuvArthritis
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Limitations of Propositional Logic

What is going wrong?

A juvenile disease affects only children or teenagers

Children and teenagers are not adults

Juvenile arthritis is a kind of arthritis and a juvenile disease

Arthritis affects some adults

Intuitively . . .

Green color represents sets of objects

Blue color represents relationships between objects

Red color indicates whether a statement holds for “all” or for
“some” objects.

We cannot make such distinctions in propositional logic!!!
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Limitations of Propositional Logic

We need a language that allows us to

1 Represent sets of objects

2 Represent relationships between objects

3 Write statements that are true for some or all objects satisfying
certain conditions

4 Express everything we can express in propositional logic (and, or,
implies, not, . . . )

Examples of conditions we want to express:

For all objects c,
if c belongs to the set of juvenile diseases

and it affects an object d ,
then d belongs to the set of children

or to the set of teenagers.

There exist objects c,d such that c belongs to the set of arthritis
and d belongs to the set of adults and c affects d .
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FOL Syntax: Symbols

A first-order alphabet consists of

Predicate Symbols, each with a fixed arity

Arthritis Unary Predicate
Affects Binary Predicate

Function symbols, each with a fixed arity

ssnOf Unary Function Symbol

Constants: JohnSmith, MaryJones, JRA

Variables: x, y, z

Propositional connectives {¬,∨,∧,→,↔}

Symbols > and ⊥.

The universal and existential quantifiers: ∀, ∃
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FOL Syntax: Terms

Terms stand for specific objects:

Variables are terms

Constants are terms

The application of a function symbol to terms leads to a term

JohnSmith stands for the person named John Smith
ssnOf (JohnSmith) stands for the ssn number of John Smith

x stands for some object (undetermined)
ssnOf (x) stands for some ssn number (undetermined)
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FOL Syntax: formulas

An atomic formula (atom) is of the form

P(t1, . . . , tn) P is an n-ary predicate, ti are terms

Examples:

Child(JohnSmith) John Smith is a child
JuvenileArthritis(JRA) JRA is a juvenile arthritis

Affects(JRA, JohnSmith) John Smith is affected by JRA

An atom represents simple statement:

similar to atoms in propositional logic,

but first-order atoms have finer-grained structure.
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FOL Syntax: Formulas

Complex formulas:

Every atom is a formula

Child(JohnSmith),Affects(x , JohnSmith)

> and ⊥ are formulas

If α is a formula, then ¬α is a formula

¬Affects(JRA, JohnSmith),¬Child(y)

If α, β are formulas, (α ◦ β) is a formula for ◦ ∈ {∧,∨,→,↔}

Affects(JRA, y)→Child(y)∨Teenager(y)

If α a formula and x a variable, (∀x .α), (∃x .α) are formulas

∀y .(Affects(JRA, y)→Child(y)∨Teenager(y))
¬(∃x .∃y(JuvArthritis(x)∧Affects(x , y)∧Adult(y)))
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FOL Syntax: Free and Bound Variables

Intuitively, a free variable occurrence in a formula is one that does not
appear in the scope of a quantifier:

Affects(JRA, y)→Child(y)∨Teenager(y)
∃x .(JuvArthritis(x)∧Affects(x , y)∧Adult(y))
∃x .(JuvArthritis(x))∧Affects(x , y)∧Adult(y)

A variable occurrence is bound if it is not free.
A formula is rectified if a variable does not appear both free and bound
and each quantifier refers to a different variable.

Affects(JRA, y)→∃x .(JuvArthritis(x))∧Affects(x , y)∧Adult(y) ×

A sentence is a formula with no free variable occurrences.
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Example FOL Sentences

A juvenile disease affects only children or teenagers

Children and teenagers are not adults

Juvenile arthritis is a kind of arthritis and a juvenile disease

Arthritis affects some adults

∀x .(∀y .(JuvDisease(x)∧Affects(x , y)→Child(y)∨Teenager(y)))
∀x .(Child(x)∨Teenager(x)→¬Adult(x))

∀x .(JuvArthritis(x)→Arthritis(x)∧JuvDisease(x))
∃x .(∃y .(Arthritis(x) ∧ Affects(x , y) ∧ Adult(y)))
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FOL Interpretations

As in PL, meaning of sentences given by interpretations

An interpretation is a pair I = 〈D, ·I〉 where:

D is a non-empty set, called the interpretation domain.

D = {u, v ,w , s}

·I is the interpretation function and it associates:

With each constant c an object cI ∈ D.

JohnSmithI = u MaryWilliamsI = v JRAI = w . . .

With each n-ary function symbol f , a function f I : Dn → D.

ssnOf I = {u 7→ s, . . .}

With each n-ary predicate symbol P, a relation PI ⊆ Dn.

ChildI = {u, v} AdultI = ∅ AffectsI = {〈w ,u〉, . . .}
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Evaluation of Terms
Terms are interpreted as elements of the interpretation domain.

We have already seen how to interpret constants

JohnSmithI = u MaryWilliamsI = v JRAI = w . . .

To interpret terms, we need to interpret (free) variables by means of a
mapping from variables to domain elements (an assignment)

Given I and assignment a, we can interpret any term. Let I be as
before and a map x to u:

JohnSmithI,a = u
xI,a = u

(ssnOf (x))I,a = ssnOf I(u) = s
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Formula Evaluation
Given I and a, a formula is interpreted as either true or false

Atomic formulas:

P(ti , . . . , tn)I,a = true iff 〈tI,ai , . . . , tI,an 〉 ∈ PI e.g.:

Child(JohnSmith)I,a = true since JohnSmithI,a = u
and ChildI = {u, v}

Affects(JRA, x)I,a = true since JRAI,a = w , xI,a = u
and AffectsI = {〈w ,u〉}

Propositional connectives are interpreted as usual:

(¬Child(JohnSmith))I,a = false
(Affects(JRA, x) ∧ Child(JohnSmith))I,a = true

(Child(JohnSmith)→ ¬Child(JohnSmith)I,a = false
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Formula Evaluation
Given I and a, a formula is interpreted as either true or false

Existential quantifiers:

(∃x .Affects(JRA, x))I,a∅ = true

since there exists an assignment a extending a∅ such that
Affects(JRA, x)I,a = true

Universal quantifiers:

(∀x .Affects(JRA, x))I,a∅ = false

since it is not true that, for any assignment a extending a∅,
Affects(JRA, x)I,a = true.
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Evaluation of Sentences
For interpreting sentences, assignments are irrelevant

∀x .(∀y .(JuvDisease(x)∧Affects(x , y)→Child(y)∨Teenager(y)))

And the interpretation I given as follows:

D = {u, v ,w}
JuvDiseaseI = {u}

ChildI = {w}
TeenagerI = ∅

AffectsI = {〈u,w〉}

The formula with no quantifiers must evaluate to true in I for all values
x , y ∈ D. Example for x = u and y = v :

JuvDisease(u)∧Affects(u, v)→Child(v)∨Teenager(v)
true ∧ false→ true ∨ false

true
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Propositional vs FOL Interpretations

More complicated to give meaning to FOL than to PL formulas:

JuvDisease→ AffectsChild ∨ AffectsTeenager (PL)
∀x .(∀y .(JuvDisease(x) ∧ Affects(x , y)→ Child(y) ∨ Teenager(y))) (FOL)

PL Interpretations

Assigns truth values to atoms

The truth value of complex
formulas determined by
induction

Example formula has 8 possible
interpretations and 7 models

FOL interpretations

Specify the domain for
quantifiers to quantify over

Interpret constants,
predicates, functions

Assign objects to variables

Example formula has∞ possible
interpretations and∞ models
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Basic Reasoning Problems in FOL

Exactly the same ones as in Propositional Logic

Satisfiability: An instance is a (set of) sentence(s) X .
The answer is true if X has a model and false otherwise.

Entailment: An instance is a pair of (sets of) sentence(s) X ,Y .
The answer is true if every model of X is also a model of Y
and false otherwise.

Equivalence: An instance is a pair of (sets of) sentence(s) X ,Y .
The answer is true if the set of all models of X and Y coincide
and false otherwise.

Again, these problems are reducible to satisfiability
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The Process of Knowledge Engineering

Starts with a problem/application:

FOL-based KR is being used in several countries to describe elec-
tronic patient records (e.g., by specifying knowledge about human
anatomy, drugs, surgical procedures, and so on).
We have been hired to write a FOL knowledge base about different
types of arthritis (to be used by a medical research company in the
annotation of patient data)

Next, we need to gather requirements

Find out what kind of data will be in the application
(⇒) Usually, no access to the actual data

Meet (or work closely with) with the company’s domain experts

Gather relevant documentation about the domain

Outcome: diagrams and list of textual descriptions

TU Dresden Logics for Knowledge Representation 30/42



Establishing the Vocabulary

Start from a textual description or diagram:

A juvenile disease affects only children or teenagers

Children and teenagers are not adults

Juvenile arthritis is a kind of arthritis and a juvenile disease

Arthritis affects some adults

Identify the important types of objects (unary FOL predicates):

juvenile disease, child, teenager, adult, . . .

Identify the important types of relationships (n-ary FOL predicates)

affects, . . .

Identify the important functions (none in this particular case)
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Basic Facts
Now that we have the basic vocabulary, we can acquire the data

Child(JohnSmith) John Smith is a child
JuvenileArthritis(JRA) JRA is a juvenile arthritis

¬Affects(JRA,MaryJones) Mary Jones not affected by JRA

Usually data consists of (possibly negated) atoms.

But data can also reflect more complex information:

Child(JohnSmith) ∨ Child(MaryJones) Either John or Mary is a child

In our case, the medical company will take care of the data
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Terminological Axioms
Sentences describing the general meaning of predicate and function symbols
(independently of the concrete data)

Sub-type statements

∀x .(JuvArthritis(x)→Arthritis(x))

Full definitions:

∀x .(JuvArthritis(x)↔Arthritis(x)∧JuvDisease(x))

Disjointness statements:

∀x .(Child(x)→¬Adult(x))

Covering statements:

∀x .(Person(x)→Adult(x)∨Child(x)∨Teenager(x))

Type restrictions:

∀x .(∀y .(Affects(x , y)→Arthritis(x)∧Person(y)))

Other general statements:

∀x .(∀y .(JuvDisease(x)∧Affects(x , y)→Child(y)∨Teenager(y)))
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Data vs Terminological Knowledge

The Data describes specific objects

(⇒) Sentences without variables or quantifiers (usually atoms)

Terminological axioms describe general properties of the application
domain, independently of the data.

(⇒) Universally quantified sentences with no constants

This separation is not theoretically “clean” in FOL:

∀y .(Affects(JRA, y)→ Child(y) ∨ Teenager(y))

∀x .(Cont(x)→ (x = Eur) ∨ (x = Asia) ∨ (x = Amer)

∨ (x = Afr) ∨ (x = Aus) ∨ (x = Antart))

But it is conceptually and practically very useful.

Set of Terminological Axioms often called an Ontology

Ontology + Data often called a Knowledge Base
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Model Selection
Initially, we have no data or terminological axioms

(⇒) We have said nothing about our application

(⇒) Any possible interpretation is a model

We now add to the knowledge base the axiom

∀x .(JuvArthritis(x)→Arthritis(x) ∧ JuvDisease(x))

Any interpretation I such that

JuvArthritisI 6⊆ ArthritisI ∩ JuvDiseaseI

is no longer a model

By writing down a FOL sentence we have:

Discarded (possibly infinitely many) models

Selected the models consistent with our statement
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Model Selection

All interpretations (Added a
sentence)

(Added
another

sentence)

By adding FOL statements to a knowledge base we gain knowledge:
Reduce the number of models
Obtain new logical consequences (recall entailment definition)

Two special cases:
New sentence entailed by previous ones: models stay the same

Redundant knowledge
Knowledge base becomes unsatisfiable: no models, everything follows

Meaningless knowledge (error in the modeling)
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Ontological Modelling

Situation(s) Conceptualisation C

Ontology	O

Language	L

Tarskian 
interpretation I

All L-models M(L)

Intended models M(C)

Ontology models M(O)
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Ontological Modelling

Good

Bad

Less Good

Worse
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Ontological Modelling

Less Good

Intended models M(C1) Intended models M(C2)

Ontology models M(O1) Ontology models M(O2)

False
Agreement!
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The Role of Reasoning
Why are reasoning problems (satisfiability, entailment) useful?

1 Detect errors

⇒ Knowledge base becomes unsatisfiable

⇒We get an unintuitive (and “wrong”) entailment

⇒We don’t get an intuitive (and “right”) entailment

2 Discover new knowledge

⇒ Things we weren’t aware we knew

3 Richer query answers

⇒ Retrieve more (relevant) data

Without reasoning, knowledge engineering becomes unfeasible

1 Knowledge bases grow very large (1,000s of sentences)

2 Errors are difficult to detect manually

3 Query answers do not take knowledge into account
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Expressivity -v- Complexity

Theorem

FOL satisfiability is an undecidable problem: there is no procedure that given
any set of first order sentences S:

1 Always terminates

2 Returns true if and only if S is satisfiable

Proof idea: [proof beyond the scope of this course]

1 Define a computable function f which takes a Turing Machine M to a
sentence f (M) in FOL.

2 M does not halt on the empty tape if and only if f (M) has a model

(The Halting problem on the empty tape is undecidable)

So should we just give up (reasoning is intractable)?

MAYBE!

Highly optimised FOL theorem provers are effective in practice

But still can’t cope with realistic KR problems
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Limitations of FOL
FOL is powerful, but still can’t capture

Transitive closure (Ancestor is the transitive closure of Parent)

Defaults and exceptions (Birds fly by default; Penguins are an exception)

Probabilistic knowledge (Children suffer from JRA with probability x)

Vague knowledge (Ian is Tall)

. . .

We will return to some of these issues later in the course
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