

COMPLEXITY THEORY

Lecture 6: Nondeterministic Polynomial Time

Markus Krötzsch Knowledge-Based Systems

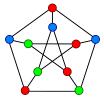
TU Dresden, 7th Nov 2017

Beyond PTime

- We have seen that the class PTime provides a useful model of "tractable" problems
- This includes 2-Sat and 2-Colourability
- But what about 3-Sat and 3-Colourability?
- No polynomial time algorithms for these problems are known
- On the other hand ...

Verifying Solutions

For many seemingly difficult problems, it is easy to verify the correctness of a "solution" if given.



5		3				7		
			8					6
	7			6			4	
	4		1					
7		8		5		3		9
					9		6	
	5			1			7	
6					4			
		2				5		3

- Satisfiability a satisfying assignment
- *k*-Colourability a *k*-colouring
- Sudoku a completed puzzle

Verifiers

Definition 6.1: A Turing machine \mathcal{M} which halts on all inputs is called a verifier for a language L if

 $\mathbf{L} = \{w \mid \mathcal{M} \text{ accepts } (w \# c) \text{ for some string } c\}$

The string c is called a certificate (or witness) for w.

Notation: # is a new separator symbol not used in words or certificates.

Verifiers

Definition 6.1: A Turing machine \mathcal{M} which halts on all inputs is called a verifier for a language L if

 $\mathbf{L} = \{w \mid \mathcal{M} \text{ accepts } (w \# c) \text{ for some string } c\}$

The string c is called a certificate (or witness) for w.

Notation: # is a new separator symbol not used in words or certificates.

Definition 6.2: A Turing machine \mathcal{M} is a polynomial-time verifier for **L** if \mathcal{M} is polynomially time bounded and

 $\mathbf{L} = \{w \mid \mathcal{M} \text{ accepts } (w \# c) \text{ for some string } c \text{ with } |c| \le p(|w|) \}$

for some fixed polynomial *p*.

NP: "The class of dashed hopes and idle dreams."1

¹https://complexityzoo.uwaterloo.ca/Complexity_Zoo:N#np Markus Krötzsch, 7th Nov 2017 Complexity Theory

NP: "The class of dashed hopes and idle dreams."1

More formally:

the class of problems for which a possible solution can be verified in P

Definition 6.3: The class of languages that have polynomial-time verifiers is called NP.

¹https://complexityzoo.uwaterloo.ca/Complexity_Zoo:N#np Markus Krötzsch, 7th Nov 2017 Complexity Theory

NP: "The class of dashed hopes and idle dreams."1

More formally:

the class of problems for which a possible solution can be verified in P

Definition 6.3: The class of languages that have polynomial-time verifiers is called NP.

In other words: NP is the class of all languages L such that:

- for every $w \in \mathbf{L}$, there is a certificate $c_w \in \Sigma^*$, where
- the length of c_w is polynomial in the length of w, and
- the language $\{(w \# c_w) \mid w \in \mathbf{L}\}$ is in P

¹https://complexityzoo.uwaterloo.ca/Complexity_Zoo:N#np Markus Krötzsch, 7th Nov 2017 Complexity Theory

More Examples of Problems in NP

HAMILTONIAN PATH

Input:	An undirected graph G
Problem:	Is there a path in <i>G</i> that contains each vertex exactly once?

k-Clique	
Input:	An undirected graph G
Problem:	Does G contain a fully connected graph (clique) with k vertices?

More Examples of Problems in NP

Subset Sum				
Input:	A collection of positive integers			
	$S = \{a_1, \ldots, a_k\}$ and a target integer <i>t</i> .			
Problem:	Is there a subset $T \subseteq S$ such that $\sum_{a_i \in T} a_i = t$?			

TRAVELLING SALESPERSON				
Input:	A weighted graph G and a target number t .			
Problem:	Is there a simple path in G with weight $\leq t$?			

Complements of NP are often not known to be in NP

No Hamiltonian Path

Input: An undirected graph G

Problem: Is there no path in *G* that contains each vertex exactly once?

Whereas it is easy to certify that a graph has a Hamiltonian path, there does not seem to be a polynomial certificate that it has not.

But we may just not be clever enough to find one.

More Examples

COMPOSITE (NON-PRIME) NUMBER

```
Input: A positive integer n > 1
```

Problem: Are there integers u, v > 1 such that $u \cdot v = n$?

PRIME NUMBER

Input: A positive integer n > 1

Problem: Is *n* a prime number?

More Examples

COMPOSITE (NON-PRIME) NUMBER

```
Input: A positive integer n > 1
```

Problem: Are there integers u, v > 1 such that $u \cdot v = n$?

PRIME NUMBER

Input: A positive integer n > 1

Problem: Is *n* a prime number?

Surprisingly: both are in NP (see Wikipedia "Primality certificate")

More Examples

COMPOSITE (NON-PRIME) NUMBER

```
Input: A positive integer n > 1
```

Problem: Are there integers u, v > 1 such that $u \cdot v = n$?

PRIME NUMBER

Input: A positive integer n > 1

Problem: Is *n* a prime number?

Surprisingly: both are in NP (see Wikipedia "Primality certificate")

In fact: Composite Number (and thus Prime Number) was shown to be in P

N is for Nondeterministic

Reprise: Nondeterministic Turing Machines

A nondeterministic Turing Machine (NTM) $\mathcal{M} = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}})$ consists of

- a finite set Q of **states**,
- an **input alphabet** Σ not containing \Box ,
- a **tape alphabet** Γ such that $\Gamma \supseteq \Sigma \cup \{\Box\}$.
- a transition function $\delta: Q \times \Gamma \to 2^{Q \times \Gamma \times \{L,R\}}$
- an initial state $q_0 \in Q$,
- an accepting state $q_{\text{accept}} \in Q$.

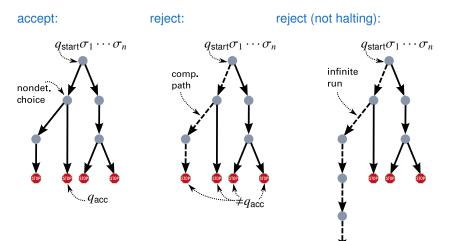
Note

An NTM can halt in any state if there are no options to continue \rightsquigarrow no need for a special rejecting state

Reprise: Runs of NTMs

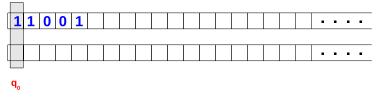
An (N)TM configuration can be written as a word uqv where $q \in Q$ is a state and $uv \in \Gamma^*$ is the current tape contents.

NTMs produce configuration trees that contain all possible runs:



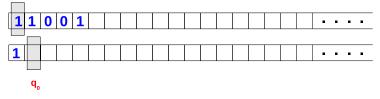
Consider the NTM $\mathcal{M} = (Q, \{0, 1\}, \{0, 1, \Box\}, q_0, \Delta, q_{\text{accept}})$ where

$$\Delta = \begin{cases} (q_0, \ \begin{pmatrix} -\\ - \end{pmatrix}, q_0, \begin{pmatrix} -\\ 0 \end{pmatrix}, \begin{pmatrix} N\\ R \end{pmatrix}) \\ (q_0, \ \begin{pmatrix} -\\ - \end{pmatrix}, q_0, \begin{pmatrix} -\\ 1 \end{pmatrix}, \begin{pmatrix} N\\ R \end{pmatrix}) \\ (q_0, \ \begin{pmatrix} -\\ - \end{pmatrix}, q_{check}, \begin{pmatrix} -\\ - \end{pmatrix}, \begin{pmatrix} N\\ N \end{pmatrix}) \\ \dots \\ \text{transition rules for } \mathcal{M}_{check} \end{cases}$$



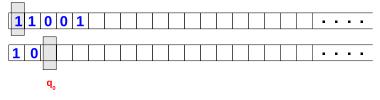
Consider the NTM $\mathcal{M} = (Q, \{0, 1\}, \{0, 1, \Box\}, q_0, \Delta, q_{\text{accept}})$ where

$$\Delta = \begin{cases} (q_0, (\stackrel{-}{_{-}}), q_0, (\stackrel{-}{_{0}}), \binom{N}{R}) \\ (q_0, (\stackrel{-}{_{-}}), q_0, (\stackrel{-}{_{1}}), \binom{N}{R}) \\ (q_0, (\stackrel{-}{_{-}}), q_{check}, (\stackrel{-}{_{-}}), \binom{N}{N}) \\ \dots \\ \text{transition rules for } \mathcal{M}_{check} \end{cases}$$



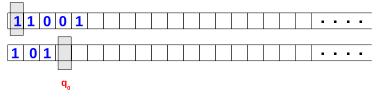
Consider the NTM $\mathcal{M} = (Q, \{0, 1\}, \{0, 1, \Box\}, q_0, \Delta, q_{\text{accept}})$ where

$$\Delta = \begin{cases} (q_0, (\stackrel{-}{_{-}}), q_0, (\stackrel{-}{_{0}}), \binom{N}{R}) \\ (q_0, (\stackrel{-}{_{-}}), q_0, (\stackrel{-}{_{1}}), \binom{N}{R}) \\ (q_0, (\stackrel{-}{_{-}}), q_{check}, (\stackrel{-}{_{-}}), \binom{N}{N}) \\ \dots \\ \text{transition rules for } \mathcal{M}_{check} \end{cases}$$



Consider the NTM $\mathcal{M} = (Q, \{0, 1\}, \{0, 1, \Box\}, q_0, \Delta, q_{\text{accept}})$ where

$$\Delta = \begin{cases} (q_0, (\stackrel{-}{_{-}}), q_0, (\stackrel{-}{_{0}}), \binom{N}{R}) \\ (q_0, (\stackrel{-}{_{-}}), q_0, (\stackrel{-}{_{1}}), \binom{N}{R}) \\ (q_0, (\stackrel{-}{_{-}}), q_{check}, (\stackrel{-}{_{-}}), \binom{N}{N}) \\ \dots \\ \text{transition rules for } \mathcal{M}_{check} \end{cases}$$



Consider the NTM $\mathcal{M} = (Q, \{0, 1\}, \{0, 1, \Box\}, q_0, \Delta, q_{\text{accept}})$ where

$$\Delta = \begin{cases} (q_0, (\frac{-}{-}), q_0, (\frac{-}{0}), \binom{N}{R}) \\ (q_0, (\frac{-}{-}), q_0, (\frac{-}{1}), \binom{N}{R}) \\ (q_0, (\frac{-}{-}), q_{check}, (\frac{-}{-}), \binom{N}{N}) \\ \dots \\ \text{transition rules for } \mathcal{M}_{check} \end{cases}$$

and where $\mathcal{M}_{\text{check}}$ is a deterministic TM deciding whether number on second tape is > 1 and divides the number on the first.

The machine \mathcal{M} decides if the input is a composite number:

- guess a number on the second tape
- check if it divides the number on the first tape
- accept if a suitable number exists

Time and Space Bounded NTMs

Q: Which of the nondeterministic runs do time/space bounds apply to?

Time and Space Bounded NTMs

Q: Which of the nondeterministic runs do time/space bounds apply to? A: To all of them!

Definition 6.4: Let \mathcal{M} be a nondeterministic Turing machine and let $f : \mathbb{N} \to \mathbb{R}^+$ be a function.

- *M* is *f*-time bounded if it halts on every input w ∈ Σ* and on every computation path after ≤*f*(|w|) steps.
- (2) *M* is *f*-space bounded if it halts on every input w ∈ Σ* and on every computation path using ≤*f*(|w|) cells on its tapes.

(Here we typically assume that Turing machines have a separate input tape that we do not count in measuring space complexity.)

Nondeterministic Complexity Classes

Definition 6.5: Let $f : \mathbb{N} \to \mathbb{R}^+$ be a function.

- NTime(f(n)) is the class of all languages L for which there is an O(f(n))-time bounded nondeterministic Turing machine deciding L.
- (2) NSpace(f(n)) is the class of all languages L for which there is an O(f(n))-space bounded nondeterministic Turing machine deciding L.

All Complexity Classes Have a Nondeterministic Variant

NPTime =
$$\bigcup_{d \ge 1} \operatorname{NTime}(n^d)$$

NExp = NExpTime = $\bigcup_{d \ge 1} \operatorname{NTime}(2^{n^d})$
N2Exp = N2ExpTime = $\bigcup_{d \ge 1} \operatorname{NTime}(2^{2^{n^d}})$

nondet. polynomial time

nondet. exponential time

nond. double-exponential time

NL = NLogSpace = NSpace(log n) NPSpace = $\bigcup_{d \ge 1}$ NSpace(n^d) NExpSpace = $\bigcup_{d \ge 1}$ NSpace(2^{n^d}) nondet. logarithmic space nondet. polynomial space

nondet. exponential space

Theorem 6.6: NP = NPTime.

Theorem 6.6: NP = NPTime.

Proof: We first show NP \supseteq NPTime:

Theorem 6.6: NP = NPTime.

Proof: We first show NP \supseteq NPTime:

- Suppose $L \in NPTime$.
- Then there is an NTM ${\mathcal M}$ such that

```
w \in \mathbf{L} \iff there is an accepting run of \mathcal{M} of length O(n^d)
```

```
for some d.
```

Theorem 6.6: NP = NPTime.

Proof: We first show NP \supseteq NPTime:

- Suppose $L \in NPTime$.
- Then there is an NTM ${\mathcal M}$ such that

```
w \in \mathbf{L} \iff there is an accepting run of \mathcal{M} of length O(n^d)
```

for some *d*.

• This path can be used as a certificate for *w*.

Theorem 6.6: NP = NPTime.

Proof: We first show NP \supseteq NPTime:

- Suppose $L \in NPTime$.
- Then there is an NTM ${\mathcal M}$ such that

```
w \in \mathbf{L} \iff there is an accepting run of \mathcal{M} of length O(n^d)
```

for some d.

- This path can be used as a certificate for *w*.
- A DTM can check in polynomial time that a candidate certificate is a valid accepting run.

Therefore NP \supseteq NPTime.

Theorem 6.6: NP = NPTime.

Proof: We now show NP \subseteq NPTime:

Theorem 6.6: NP = NPTime.

Proof: We now show NP \subseteq NPTime:

• Assume L has a polynomial-time verifier *M* with certificates of length at most *p*(*n*) for a polynomial *p*.

Theorem 6.6: NP = NPTime.

Proof: We now show NP \subseteq NPTime:

- Assume L has a polynomial-time verifier *M* with certificates of length at most *p*(*n*) for a polynomial *p*.
- Then we can construct an NTM \mathcal{M}^* deciding $\boldsymbol{\mathsf{L}}$ as follows:
 - (1) \mathcal{M}^* guesses a string of length p(n)
 - (2) \mathcal{M}^* checks in deterministic polynomial time if this is a certificate.

Therefore NP \subseteq NPTime.

NP and coNP

Note: the definition of NP is not symmetric

- there does not seem to be any polynomial certificate for Sudoku unsolvability or propositional logic unsatisfiability ...
- converse of an NP problem is coNP
- similar for NExpTime and N2ExpTime

Other complexity classes are symmetric:

- Deterministic classes (coP = P etc.)
- Space classes mentioned above (esp. coNL = NL)

Deterministic vs. Nondeterminsitic Time

Theorem 6.7: $P \subseteq NP$, and also $P \subseteq coNP$.

(Clear since DTMs are a special case of NTMs)

It is not known to date if the converse is true or not.

- Put differently: "If it is easy to check a candidate solution to a problem, is it also easy to find one?"
- Exaggerated: "Can creativity be automated?" (Wigderson, 2006)
- Unresolved since over 35 years of effort
- · One of the major problems in computer science and math of our time
- 1,000,000 USD prize for resolving it ("Millenium Problem") (might not be much money at the time it is actually solved)

Status of P vs. NP

Many people believe that $P \neq NP$

- Main argument: "If NP = P, someone ought to have found some polynomial algorithm for an NP-complete problem by now."
- "This is, in my opinion, a very weak argument. The space of algorithms is very large and we are only at the beginning of its exploration." (Moshe Vardi, 2002)
- Another source of intuition: Humans find it hard to solve NP-problems, and hard to imagine how to make them simpler – possibly "human chauvinistic bravado" (Zeilenberger, 2006)
- There are better arguments, but none more than an intuition

Status of P vs. NP

• P = NP could be shown with a non-constructive proof

- P = NP could be shown with a non-constructive proof
- The question might be independent of standard mathematics (ZFC)

- P = NP could be shown with a non-constructive proof
- The question might be independent of standard mathematics (ZFC)
- Even if NP ≠ P, it is unclear if NP problems require exponential time in a strict sense many super-polynomial functions exist . . .

- P = NP could be shown with a non-constructive proof
- The question might be independent of standard mathematics (ZFC)
- Even if NP ≠ P, it is unclear if NP problems require exponential time in a strict sense many super-polynomial functions exist . . .
- The problem might never be solved

Status of P vs. NP

Current status in research:

- Results of a poll among 152 experts [Gasarch 2012]:
 - P ≠ NP: 126 (83%)
 - P = NP: 12 (9%)
 - Don't know or don't care: 7 (4%)
 - Independent: 5 (3%)
 - And 1 person (0.6%) answered: "I don't want it to be equal."
- Experts have guessed wrongly in other major questions before
- Over 100 "proofs" show P = NP to be true/false/both/neither: https://www.win.tue.nl/~gwoegi/P-versus-NP.htm

A Simple Proof for P = NP

Clearly	$\textbf{L}\in P$	implies	$\bm{L}\inNP$	
therefore	L ∉ NP	implies	L∉P	
hence	$\textbf{L}\in coNP$	implies	$\bm{L}\in coP$	
that is	coN	$coNP \subseteq coP$		
using $coP = P$	$coNP \subseteq P$			
and hence	$NP \subseteq P$			
so by $P \subseteq NP$	NP = P			

q.e.d.

A Simple Proof for P = NP

Clearly	$L \in P$	implies	$\bm{L}\inNP$	
therefore	L∉NP	implies	L∉P	
hence	$\textbf{L} \in \text{coNP}$	implies	$\bm{L}\in coP$	
that is	coN	$coNP \subseteq coP$		
using $coP = P$	$coNP \subseteq P$			
and hence	$NP\subseteqP$			
so by $P\subseteqNP$	NP = P			

q.e.d.?

Summary and Outlook

NP can be defined using polynomial-time verifiers or polynomial-time nondeterministic Turing machines

Many problems are easily seen to be in NP

NTM acceptance is not symmetric: coNP as complement class, which is assumed to be unequal to NP

What's next?

- NP hardness and completeness
- More examples of problems
- Space complexities