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Abstract

Previous results for combining decision procedures for the word problem in the non-
disjoint case do not apply to equational theories induced by modal logics—which
are not disjoint for sharing the theory of Boolean algebras. Conversely, decidability
results for the fusion of modal logics are strongly tailored towards the special theories
at hand, and thus do not generalize to other types of equational theories.

In this paper, we present a new approach for combining decision procedures for
the word problem in the non-disjoint case that applies to equational theories induced
by modal logics, but is not restricted to them. The known fusion decidability results
for modal logics are instances of our approach. However, even for equational theories
induced by modal logics our results are more general since they are not restricted
to so-called normal modal logics.

1 Introduction

The combination of decision procedures for logical theories arises in many
areas of logic in computer science, such as constraint solving, automated de-
duction, term rewriting, modal logics, and description logics. In general, one
has two first-order theories T1 and T2 over the signatures Σ1 and Σ2, for which
validity of a certain type of formulae (e.g., universal, existential positive, etc.)
is decidable. The question is then whether one can combine the decision pro-
cedures for T1 and T2 into one for their union T1 ∪ T2. The problem is usually

1 Partially suported by the German Research Foundation (DFG) under grant BA
1122/3–3.
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much easier, though not at all trivial, if the theories do not share symbols, i.e.,
if Σ1 ∩ Σ2 = ∅. For non-disjoint signatures, the combination of theories can
easily lead to undecidability, and thus one must find appropriate restrictions
on the theories to be combined.

In automated deduction, the Nelson-Oppen combination procedure [1,2] as
well as the problem of combining decision procedures for the word problem
[3–7] have drawn considerable attention. The Nelson-Oppen method combines
decision procedures for the validity of quantifier-free formulae in so-called
stably infinite theories. If we restrict the attention to equational theories, 2

then it is easy to see that the validity of arbitrary quantifier-free formulae can
be reduced to the validity of formulae of the form

s1 ≈ t1 ∧ . . . ∧ sn ≈ tn → s ≈ t

where s1, . . . , t are terms. This is an easy consequence of the fact that equa-
tional theories are convex [2], i.e., a conjunction of equations implies a dis-
junction of equations iff it implies one of the disjuncts. Thus, in the case of
equational theories the Nelson-Oppen method combines decision procedures
for the conditional word problem (i.e., for the validity of conditional equations
of the above form).

Though this may at first sight sound surprising, combining decision proce-
dures for the word problem (i.e., for validity of equations s ≈ t) is a harder
task: the known combination algorithms for the word problem are more com-
plicated than the Nelson-Oppen method, and the same applies to their proofs
of correctness. The reason is that the algorithms for the component theories
are then less powerful. For example, if one applies the Nelson-Oppen method
to a word problem s ≈ t, then the method will generate as input for the com-
ponent procedures conditional word problems, not word problems—see [7] for
a more detailed discussion. Both the Nelson-Oppen method and the methods
for combining decision procedures for the word problem have been general-
ized to the non-disjoint case [8–11]. The main restriction on the theories to be
combined is that they share only so-called constructors.

In modal logic, one is interested in the question of which properties (such as
decidability, interpolation, finite axiomatizability) transfer from component
modal logics to their fusion. For the decidability transfer, one usually consid-
ers two different decision problems, the validity problem (Is the formula ϕ a
theorem of the logic?) and the relativized validity problem (Does the formula
ϕ follow from the global assumption ψ?). There are strong combination re-
sults showing that in many cases decidability transfers from two modal logics
to their fusion [12–18]. Again, transfer results for the harder decision problem,

2 Equational theories are stably infinite if one adds the axiom ∃x, y. x 6≈ y that
prevents trivial, one-element models [7].
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relativized validity, are easier to show than for the simpler one, validity. 3

In fact, for validity the results only apply to so-called normal modal logics, 4

whereas this restriction is not necessary for relativized validity.

There is a close connection between the (conditional) word problem and the
(relativized) validity problem in modal logics. In fact, in classical modal logics,
which encompass most well-known modal logics, modal formulae can be viewed
as terms on which the equivalence of formulae induces an equational theory.
The fusion of modal logics then corresponds to the union of the corresponding
equational theories, and the (relativized) validity problem to the (conditional)
word problem. The union of the equational theories corresponding to two
modal logics is over non-disjoint signatures since the Boolean operators are
shared. Unfortunately, in this setting the Boolean operators are not shared
constructors in the sense of [9,10] (see [11]), and thus the decidability transfer
results for fusions of modal logics cannot be obtained as special cases of the
results in [9–11].

Recently, a new generalization of the Nelson-Oppen combination method to
non-disjoint theories was developed in [19,20]. The main restriction on the
theories T1 and T2 to be combined is that they are compatible with their
shared theory T0, and that their shared theory is locally finite (i.e., its finitely
generated models are finite). A theory T is compatible with a theory T0 iff

(1) T0 ⊆ T ;
(2) T0 has a model completion T ∗0 ; and
(3) every model of T embeds into a model of T ∪ T ∗0 .

It is well-known that the theory BA of Boolean algebras is locally finite, and
in [20] it is shown that the equational theories induced by modal logics are
compatible with BA. Thus, the combination method in [20] applies to (equa-
tional theories induced by) modal logics. However, since it generalizes the
Nelson-Oppen method, it only yields transfer results for the decidability of
the conditional word problem (i.e., the relativized validity problem).

In the present paper, we address the harder problem of designing a combi-
nation method for the word problem in the non-disjoint case which has the
known transfer results for decidability of validity in modal logics as instances.
As we will see, our approach strictly generalizes these results since it does not
require the modal logics to be normal. The question of whether such trans-
fer results also held for non-normal modal logics was a long-standing open
problem in modal logics. In addition to the conditions imposed in [19,20] (i.e.,

3 Relativized validity is indeed a harder problem since in modal logics the deduction
theorem typically does not hold.
4 An exception is [17], where only the existence of “covering normal terms” is
required.

3



compatibility of the component theories with the shared theory T0, which is
locally finite), our method needs the shared theory T0 to have local solvers.
Roughly speaking, this is the case if in T0 one can solve an arbitrary sys-
tem of equations with respect to any of its variables. Since this allows one to
solve systems of equations by an elimination procedure similar to Gaussian
elimination known from linear algebra, we call such theories Gaussian.

In the next section, we introduce some basic notions and results from univer-
sal algebra and model theory. In Section 3 we define the restrictions under
which our combination approach applies, and give some examples of theories
satisfying these restrictions. In Section 4, we describe the new combination
procedure, and in Section 5 we show that it is sound and complete. Section 6
shows that the restrictions imposed by our procedure are satisfied by all modal
logics where equivalence of formulae induces an equational theory. In particu-
lar, we show there that the theory of Boolean algebras is Gaussian. This result
is obtained as a consequence of results for unification in Boolean rings [21].
In this section, we also analyze the complexity of our combination procedure
if applied to modal logics, and illustrate the working of the procedure on two
examples.

2 Preliminaries

In this paper we will use standard notions from equational logic, universal al-
gebra and term rewriting (see, e.g., [22]). We consider only first-order theories
(with equality ≈) over a functional signature.

A signature Σ is a set of function symbols, each with an associated arity, an
integer n ≥ 0. A constant symbol is a function symbol of zero arity. We use
the letters Σ,Ω, possibly with subscripts, to denote signatures. Throughout
the paper, we fix a countably-infinite set V of variables and a countably-
infinite set C of free constants, both disjoint with any signature Σ. 5 For any
X ⊆ V ∪C, T (Σ, X) denotes the set of Σ-terms over X, i.e., first-order terms
with variables and free constants in X and function symbols in Σ. First-order
Σ-formulae are defined in the usual way, using equality as the only predicate
symbol. A Σ-sentence is a Σ-formula without free variables. We use ⊥ and >
to denote the universally false and the universally true formula, respectively.
An equational theory E over Σ is a set of (implicitly universally quantified)
Σ-identities of the form s ≈ t, where s, t ∈ T (Σ, V ).

As usual, first-order interpretations of Σ are called Σ-algebras. We denote
algebras by calligraphic letters (A, B, . . . ), and their carriers by the corre-

5 Note that Σ may also contain constants.
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sponding Roman letter (A, B, . . . ). The interpretation of the symbol f ∈ Σ
in the Σ-algebra A is denoted by fA. A Σ-algebra A is a model of a set Γ
of Σ-sentences iff it satisfies every sentence in Γ. For every theory E, set Γ
of sentences and sentence ϕ, we write Γ |=E ϕ if every model of E that sat-
isfies Γ also satisfies ϕ. When Γ is the empty set, we write just |=E ϕ, as
usual. We denote by ≈E the equational consequences of E, i.e., the relation
≈E = {(s, t) ∈ T (Σ, V ∪ C)× T (Σ, V ∪ C) | |=E s ≈ t}. The word problem for
E is the problem of deciding the relation ≈E, that is, deciding for any two
terms s, t ∈ T (Σ, V ∪C) whether s ≈E t holds or not. We have defined the word
problem for terms including free constants since we will consider such terms
later on. Note however that, since free constants behave just like variables in
validity problems, the word problem is decidable for terms in T (Σ, V ∪ C) iff
it is decidable for terms in T (Σ, V ).

Given a Σ-algebra A and a subset G ⊆ A, the element a ∈ A is Σ-generated
by G in A if a can be obtained from G by iterated application of the algebra
operations (i.e., the interpretations of the function symbols from Σ in A). The
algebra A is Σ-generated by G if all its elements are Σ-generated by G.

A Σ-algebra A is called free over the generators G ⊆ A in a class of Σ-algebras
K iff

• A is Σ-generated by G;
• A belongs to K;
• every mapping f : G → B from G into the carrier of a Σ-algebra B ∈ K

can be extended to a Σ-homomorphism h : A → B. 6

It is easy to see that algebras that are free for the same class over sets of
generators of the same cardinality are isomorphic. If the set G is empty, then
the free algebra with generators G in K is also called the initial algebra of K.

Free and initial algebras need not exist for arbitrary classes of Σ-algebras, but
they exist for classes defined by identities. A given equational theory E over
Σ defines a Σ-variety, the class of all models of E. When E is non-trivial,
i.e., has models of cardinality greater than 1, this variety, also referred to as
non-trivial, contains free algebras for any set of generators. We will call these
algebras E-free algebras. Given a set of generators X, the E-free algebra with
generators X can be obtained as the quotient term algebra T (Σ, X)/≈E. In
particular, if s, t ∈ T (Σ, X), then the identity s ≈ t holds in the E-free algebra
with generators X iff |=E s ≈ t.

6 The concept of a free algebra in a class K of algebras can be more generally defined
by a suitable universal property that does not refer to the notion of generators
[23,24]. When K is a non-trivial variety (see later), the definition used in this paper—
and in most books on universal algebra (see, e.g., [25]) and model theory (e.g.,
[26])—coincides with the one obtained through the universal property.
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In this paper, we often consider several signatures at the same time. If Σ ⊆ Ω,
then any Ω-algebra can also be viewed as a Σ-algebra: if A is an Ω-algebra and
Σ ⊆ Ω, we denote by AΣ the Σ-reduct of A, i.e., the algebra obtained from A
by ignoring the symbols in Ω \ Σ. In this setting, A is called an expansion of
AΣ to the signature Ω.

An embedding of a Σ-algebra A into a Σ-algebra B is an injective Σ-homo-
morphism from A to B. If such an embedding exists, we say that A can be
embedded into B. The algebra A is a subalgebra of B iff A can be embedded
into B by the inclusion function. It is easy to show that the composition of two
embeddings is also an embedding. If A is Σ-algebra and B is an Ω-algebra with
Σ ⊆ Ω, we say that A can be Σ-embedded into B if there is an embedding of A
into BΣ. We call the corresponding embedding a Σ-embedding of A into B. If
this embedding is the inclusion function, then we say that A is a Σ-subalgebra
of B.

If E is an equational theory over Σ and X ⊆ Y are sets (of generators),
then the E-free algebra with generators X can be Σ-embedded into the E-free
algebra with generators Y by the embedding induced by the inclusion function
from X to Y . In particular, the initial algebra for E can be Σ-embedded into
any E-free algebra.

Given a signature Σ and a set X disjoint with Σ, we denote by Σ(X) the
signature obtained by adding the elements of X as constant symbols to Σ.
A ground Σ(X)-literal is a literal over the signature Σ(X) not containing
variables, i.e., an identity s ≈ t or a negated identity ¬s ≈ t for terms s, t ∈
T (Σ, X). A ground Σ(X)-formula is a Boolean combination of ground Σ(X)-
literals. When X is included in the carrier of a Σ-algebra A, we can view
A as a Σ(X)-algebra by interpreting each x ∈ X by itself. If X is a set of
generators for A, the Σ-diagram ∆Σ

X(A) of A (w.r.t. X) consists of all ground
Σ(X)-literals that hold in A. We write just ∆Σ(A) when X coincides with
the whole carrier of A. By a result known as Robinson’s Diagram Lemma [27]
embeddings and diagrams are related as follows.

Lemma 2.1 Let A be a Σ-algebra generated by a set X, and let B be an Ω-
algebra for some Ω ⊇ Σ(X). Then A can be Σ(X)-embedded into B iff B is a
model of ∆Σ

X(A).

A consequence of the lemma above, which we will use later, is that if two
Σ-algebras A, B are both generated by a set X and if one of them, say B,
satisfies the other’s diagram w.r.t. X, then the two algebras are isomorphic:
in fact, if one views A and B as Σ(X)-algebras, then “B satisfies the diagram
of A (w.r.t. X)” implies that there is a Σ(X)-embedding of A into B. This
embedding maps X to X and, since X generates B, it is surjective, and thus
an isomorphism.
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Ground formulae are invariant under embeddings in the following sense.

Lemma 2.2 Let A be a Σ-algebra that can be Σ-embedded into an Ω-algebra
B, where Σ ⊆ Ω. For all ground Σ(A)-formulae ϕ, A satisfies ϕ iff B satisfies
ϕ where B is extended to an Ω(A)-algebra by interpreting a ∈ A by its image
under the embedding.

When defining our combinability conditions in the next section, we will use
the notion of a model completion from model theory. This notion can be
defined for arbitrary first-order theories, but here we are interested only in
the equational case. Notice however that, even if we start with an equational
theory, its model completion is usually not equational.

Definition 2.3 (Model Completion) Let E be an equational Σ-theory and
let E∗ be a first-order Σ-theory entailing every identity in E. Then E∗ is a
model completion of E iff for every model A of E

(1) A can be embedded into a model of E∗, and
(2) E∗ ∪∆Σ(A) is a complete Σ(A)-theory. 7

One can show that, when it exists, the model completion of a theory is unique
[27]. We observe that Condition 2 of Definition 2.3 is always satisfied when
the theory E∗ admits quantifier elimination.

Lemma 2.4 If every Σ-formula ϕ(x) is equivalent modulo the theory E∗ to
some quantifier-free formula ϕ′(x), then E∗∪∆Σ(A) is a complete Σ(A)-theory
for every model A of E.

Proof. Let A be a model of E and assume by contradiction that there is a
Σ(A)-sentence ϕ such that neither ϕ nor ¬ϕ is entailed by E∗∪∆Σ(A). Then,
there are models A1,A2 of E∗ ∪ ∆Σ(A) such that ϕ is true in A1 and false
in A2. By Lemma 2.1, A can be Σ(A)-embedded into both A1 and A2. If E
admits quantifier elimination, it is easy to see that ϕ is equivalent to a ground
Σ(A)-formula ϕ′ in every model of E∗. It follows that ϕ′ is true in A1 (a model
of E∗), hence in A (by Lemma 2.2), and also in A2 (again by Lemma 2.2).
But this contradicts the assumption that ϕ is false in A2 (also a model of E∗).
�

In this paper we consider theories that are obtained as the union of two theo-
ries whose signatures may share some symbols. Robinson’s Joint Consistency
Lemma [27] provides a general sufficient condition for such unions to be con-
sistent.

7 A first-order Σ-theory T is complete iff for every Σ-sentence ϕ, either ϕ or ¬ϕ is
entailed by T .

7



Lemma 2.5 Let Σ1,Σ2 be signatures and Σ0 := Σ1∩Σ2. Assume that T0, T1,
T2 are first-order theories over the respective signatures Σ0,Σ1,Σ2, and T0 is
complete and contained in both T1 and T2. Then the consistency of T1 and of
T2 imply the consistency of T1 ∪ T2.

This lemma can be used to show the following result, which will be used in
the proof of completeness of our combination procedure.

Lemma 2.6 For i = 1, 2, let Ei be an equational theory of signature Σi, and
assume there is an equational theory E0 of signature Σ0 = Σ1 ∩ Σ2 with a
model completion E∗

0 and such that ≈E0 ⊆ ≈Ei
. Let Ai be a model of Ei that

Σi-embeds into a model of Ei∪E∗
0 . If A1 and A2 have a common Σ0-subalgebra

A0, then there are a model A of E1 ∪ E2 and Σi-embeddings fi of Ai into A
whose restrictions to A0 coincide.

Proof. To simplify the notation, let us assume that Σ0 contains all the elements
of A0 as constants, and that A0 interprets each such constant by itself, i.e.,
aA0 = a for all a ∈ A0. Otherwise we can always add those elements to all
the signatures in question. 8 Let A0 be a Σ0-subalgebra of A1 and A2, and let
i ∈ {1, 2}.

By assumption, there is a model Bi of Ei∪E∗
0 and a Σi-embedding hi : Ai −→

Bi. We can assume without loss of generality that Ai is contained in Bi and
that hi is the inclusion mapping, i.e., Ai is a Σi-subalgebra of Bi. Otherwise,
we could just rename the carrier of Bi appropriately. Let Ti be the set of all
first-order Σi(Bi)-sentences satisfied by Bi. We claim that E∗

0 ∪∆Σ0(A0) ⊆ Ti.
The inclusion is immediate for E∗

0 as Bi is a model of Ei ∪ E∗
0 . To see that

∆Σ0(A0) ⊆ Ti, note that A0 is a Σ0-subalgebra of Bi. Since A0 ⊆ Σ0, this
implies by Lemma 2.1 that Bi satisfies ∆Σ0(A0), hence ∆Σ0(A0) ⊆ Ti.

We have then that E∗
0∪∆Σ0(A0), which is a complete theory by Definition 2.3,

is included in both T1 and T2. It follows by Robinson’s Joint Consistency
Lemma (Lemma 2.5) that T1∪T2 is consistent. Therefore, let A be any model
of T1 ∪ T2 and let i ∈ {1, 2}. First notice that A is a model of E1 ∪E2 as well,
because for i = 1, 2, every sentence in Ei is satisfied by Bi and so is included in
Ti by construction. Again by construction of Ti, A satisfies ∆Σi(Bi), therefore,
by Lemma 2.1, there is a Σi(Bi)-embedding h′i of Bi into A. Let fi be the
restriction of h′i to Ai ⊆ Bi. From the assumption that Ai is a subalgebra of
Bi it easily follows that fi is a Σi-embedding of Ai into A.

Finally, to see that f1 coincides with f2 on A0, note that for all a ∈ A0 ⊆ Σ0

we have f1(a) = f1(a
A0) = f1(a

B1) = aA = f2(a
B2) = f2(a

A0) = f2(a). �

8 This causes no loss of generality because a Σ-embedding is a Σ′-embedding for
all Σ′ ⊆ Σ.
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3 The combinability conditions

Given the equational theories E1 and E2 to be combined, we want to define
conditions under which the decidability of the word problem for E1 and E2

transfers to their union. We first state the four conditions needed for our
transfer result to hold, and then illustrate these conditions by simple examples.
The treatment of the main example of this paper, equational theories induced
by classical modal logics, is postponed to Section 6.

3.1 Defining the conditions

For the rest of the section we fix two equational theories E1 and E2 of respec-
tive signatures Σ1 and Σ2 with a possibly non-empty intersection Σ0.

Our first condition is that both E1 and E2 are compatible with a shared
subtheory E0 over the shared signature Σ0 := Σ1 ∩ Σ2 in the following sense.

Definition 3.1 (Compatibility) Let E be an equational theory over the sig-
nature Σ, and let E0 be an equational theory over a subsignature Σ0 ⊆ Σ. We
say that E is E0-compatible iff

(1) ≈E0 ⊆ ≈E;
(2) E0 has a model completion E∗

0 ;
(3) every finitely generated free model of E embeds into a model of E ∪ E∗

0 .

Some examples of theories that satisfy this definition are discussed in Subsec-
tion 3.2 below, in Section 6, and also in [19,20] where a very similar notion of
compatibility is introduced for arbitrary first-order theories. When restricted
to equational theories, the definition of compatibility in [19,20] is more strin-
gent than the one above because it requires every model of E to embed into a
model of E ∪ E∗

0 , as opposed to just every finitely generated free model. The
intuition behind either notion of compatibility is explained in [19,20].

The second condition is that the shared theory E0 is locally finite, i.e., all
of its finitely generated models are finite. From a more syntactical point of
view this means that if C0 is a finite subset of C (the set of free constants),
then there are only finitely many E0-equivalence classes of terms in T (Σ0, C0).
For our combination procedure to be effective, we must be able to compute
representatives of these equivalence classes.

Definition 3.2 An equational theory E0 over the signature Σ0 is effectively
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locally finite iff for every (finite) tuple c of constants 9 from C one can effec-
tively compute a finite set of terms RE0(c) ⊆ T (Σ0, c) such that

(1) s 6≈E0 t for all distinct s, t ∈ RE0(c);
(2) for all terms s ∈ T (Σ0, c), there is some t ∈ RE0(c) such that s ≈E0 t.

The third condition on our theories E1 and E2 is that they are both a conser-
vative extensions of E0.

Definition 3.3 Let E0, E be equational theories over the respective signatures
Σ0,Σ where Σ0 ⊆ Σ. Then E is a conservative extensions of E0 iff

s ≈E0 t iff s ≈E t

for all terms s, t ∈ T (Σ0, V ).

The fourth condition is that the theory E0 has local solvers, in the sense that
any finite set of equations can be solved with respect to any of its variables.
Since this means that finite sets of equations can be solved by something
similar to the Gaussian elimination procedure known from linear algebra, we
call a theory like that Gaussian.

In the following, we call conjunctions of Σ-identities e-formulae. We will write
ϕ(x) to denote an e-formula ϕ all of whose variables are included in the tuple
x. If x = (x1, . . . , xn) we will write ϕ(a) to denote that a is a tuple of constant
symbols of the form (a1, . . . , an) and ϕ(a) is the formula obtained from ϕ by
replacing every occurrence of xi by ai for i = 1, . . . , n.

Definition 3.4 (Gaussian) An equational theory E0 is Gaussian iff for ev-
ery e-formula ϕ(x, y) it is possible to compute an e-formula C(x) and a term
s(x, z) with fresh variables z such that

|=E0 ϕ(x, y) ⇔ (C(x) ∧ ∃z.(y ≈ s(x, z))) (1)

We call the formula C the solvability condition of ϕ w.r.t. y, and the term s
a (local) solver of ϕ w.r.t. y in E0.

The precise connection between the above definition and Gaussian elimination
is explained in Example 3.6 below.

In the next subsection we give examples of theories satisfying even stronger
conditions than the combinability conditions introduced above. Let E0 and
E be equational theories over the respective signatures Σ0 and Σ. Then E
is called an equational extension of E0 iff Σ0 ⊆ Σ and ≈E0 ⊆ ≈E. Such an

9 In the following, we will treat tuples also as sets when convenient.
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extension is called trivial iff E is the trivial equational theory, i.e., it has only
trivial, one-element models.

Definition 3.5 An equational theory E0 is absolutely combinable iff E0 is
Gaussian and effectively locally finite, and every non-trivial equational exten-
sion E of E0 is an E0-compatible conservative extension of E0.

Thus, all the four conditions we introduced above are satisfied by any pair of
non-trivial theories E1, E2 whose shared theory is absolutely combinable.

3.2 Examples

Despite the fact that absolute combinability is a very strong requirement,
there are non-artificial examples of theories satisfying it.

Example 3.6 Let K be a fixed field. We consider the theory TK of vector
spaces over K whose signature consists of a symbol for addition, a constant 0
for the zero vector, a symbol for the additive inverse and, for every scalar k ∈
K, a unary function symbol k ·(−). Axioms are the usual vector spaces axioms
(namely, the Abelian group axioms plus the axioms for scalar multiplication).

In this theory, terms are equivalent to linear homogeneous polynomials (with
non-zero coefficients) over K, i.e., terms of the form

k1 · y1 + . . .+ kn · yn,

where ki ∈ K \ {0} and yi is a variable or a free constant. Obviously, this
implies that the theory TK is effectively locally finite iff the field K is finite.

Next, we show that TK is Gaussian. Every e-formula ϕ(x, y) can be trans-
formed into an equivalent homogeneous system

t1(x, y) ≈ 0 ∧ . . . ∧ tk(x, y) ≈ 0

of linear equations with unknowns x, y. If y does not occur in ϕ, then ϕ is
its own solvability condition and z is a local solver. 10 If y occurs in ϕ, then
(modulo easy algebraic transformations) we can assume that ϕ contains an
equation of the form y ≈ t(x); this equation gives the local solver, which is
t(x) (the sequence of existential quantifiers ∃z in (1) is empty), whereas the
solvability condition is the e-formula obtained from ϕ by eliminating y, i.e.,
replacing y by t(x) everywhere in ϕ.

10 Note that ϕ is trivially equivalent to ϕ ∧ ∃z.(y ≈ z).
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The theory TK admits a model completion T ∗K whose models are exactly the
infinite models of TK . 11 To see that, it is enough to note that every vector
space embeds into an infinite vector space (e.g. into one having an infinite
basis), which satisfies the first condition of Definition 2.3. As for the second
condition, by Lemma 2.4 it is sufficient to show that T ∗K admits quantifier-
elimination. To do that we can consider with no loss of generality only formulae
of the form ∃x.ϕ, where ϕ is a conjunction of literals each inequivalent to ⊥
and to > in the original theory. To eliminate the quantifier ∃x we can proceed
as follows. If ϕ contains an identity involving x, by solving with respect to
x with the usual Gaussian elimination algorithm, we can convert ϕ into a
conjunction of the form x ≈ t ∧ ϕ′ where neither t nor ϕ′ contain x. The
resulting formula ∃x.(x ≈ t ∧ ϕ′), to which ∃x.ϕ is equivalent in the original
theory TK , is in turn logically equivalent to ϕ′. If ϕ contains no (positive)
identities involving x, we can rewrite each negated identity in ϕ containing x
into one of the form x 6≈ t, with x not occurring in t. The resulting formula,
which is equivalent to ∃x.ϕ in TK , has the form

∃x. (x 6≈ t1 ∧ · · · ∧ x 6≈ tk ∧ ϕ′)

where t1, . . . , tk, and ϕ′ do not contain x. This formula is equivalent to ϕ′ in
the extended theory T ∗K since all the models of that theory are infinite.

It is now very easy to build TK-compatible theories. In fact, any non-trivial
equational extension E of TK is TK-compatible: this is because every finitely
generated E-free algebra embeds into the countably generated E-free algebra,
and the latter is always infinite for non-trivial E.

Also, notice that, if E is an equational extension of TK that is not conservative,
then E is trivial. In fact, if E is a non-conservative extension of TK , then it
is not difficult to see that there must be a non-zero linear polynomial that
is equivalent to zero in E, i.e., there is k 6= 0 and a polynomial p(x) not
containing y such that

|=E k · y + p(x) ≈ 0.

Then |=E y ≈ k−1p(x) and also |=E y′ ≈ k−1p(x) (by renaming y into y′),
which shows that |=E y ≈ y′, i.e. E is trivial.

Thus, we have shown that the theory TK of vector spaces over the field K is
absolutely combinable if K is finite. �

Example 3.7 Another example, which is very similar to the one above, is
the pure equality theory E=, that is, the empty theory in the empty signature.

11 If the field K is infinite, adding the sentence ∃x.(x 6≈ 0) to TK is enough to obtain
T ∗

K . Otherwise, it is enough to add for each n > 0 a sentence satisfied in exactly all
models of cardinality at least n.
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This theory is Gaussian: to show this, one can argue as in the previous ex-
ample. Specifically, let ϕ(x, y) be an e-formula: if ϕ contains an equation like
y ≈ xi, then xi is the local solver and the solvability condition is obtained by
replacing y by xi in ϕ. Otherwise, we first remove the trivial equations y ≈ y;
at this point, ϕ(x, y) does not contain y anymore, so it is its own solvability
condition (the solvability condition reduces to the tautology > if no equation
survives); the local solver is clearly z.

E= admits the theory E∗
= of an infinite set as a model completion: in fact,

by an argument very similar to the one in the previous example, it is easy to
show that E∗

= has quantifier elimination and that every model of E (i.e., every
set) can be embedded into a model of E∗

= (i.e., into an infinite set). That E=

is effectively locally finite is also clear.

Take now any non-trivial equational theory E. It is immediate that, for being
non-trivial, E is a conservative extension of E=. We show that E is also E=-
compatible. Now, points 1 and 2 of Definition 3.1—requiring that ≈E= ⊆ ≈E

and E= admits a model completion—are immediately satisfied as already ex-
plained. Point 3—requiring that every free model of E with finitely many gen-
erators be embeddable in a model of E∪E∗

=—is satisfied because every finitely
generated free model of an equational theory E embeds into an infinitely gen-
erated free model of E. Since the latter model is infinite for non-trivial E, it
is also a model of E ∪ E∗

=.

Thus, we have shown that the pure equality theory E= is absolutely combin-
able. �

In Section 6, we will prove the remarkable fact that the theory of Boolean
algebras is absolutely combinable as well. In particular, we will show that the
theory of Boolean algebras is Gaussian. This is a more sophisticated example
of a Gaussian theory, in which the string of existential quantifiers ∃z in (1)
can be both not empty and applied to a non-trivial solver. 12

Next, we give an example of a theory that is not Gaussian.

Example 3.8 Let Σ be a signature consisting of a single unary function sym-
bol f , and let E∅ be the empty theory over this signature. This theory is not
Gaussian. In fact, consider the e-formula y ≈ f(y), and assume that it has a
local solver s and a solvability condition C such that

|=E∅ y ≈ f(y) ⇔ (C ∧ ∃z.(y ≈ s(z))).

Since C does not contain variables and there are no variable-free Σ-terms, C

12 Note that in the above examples, we always have that either there are no param-
eters z, or that the solver is the trivial term z for a new variable z.
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must be the empty conjunction, which is trivially valid in E∅. Since Σ contains
only the unary function symbol f , the solver s must be of the form s = fk(z)
for some k ≥ 0 and a variable z different from y. Thus, we have

|=E∅ y ≈ f(y) ⇔ ∃z.(y ≈ fk(z)).

However, this equivalence does not hold in E∅. For example, consider the
model whose domain are the natural numbers and where f is interpreted as
the successor function. For y = k there exists a z (namely, z = 0) such that
k = fk(z) = z + k. However, k 6= k + 1 = f(k). �

We recall that an equational theory E has unitary unification type iff every
solvable unification problem has a most general E-unifier (see, e.g., [28]). The
last example shows that not every theory with unitary unification type is
Gaussian. Even if we will not need this result in the rest of the paper it is
interesting to point out the opposite inclusion does hold. We show that in the
following, using basic notions from unification theory (as, e.g., introduced in
[28]).

Lemma 3.9 Every Gaussian equational theory has a unitary unification type.

Proof. Let E be a Gaussian equational theory. Since E-unification problems
are sets of equations, they can be viewed as e-formulae. Thus, let us consider
the unification problem ϕ(x), where ϕ is an e-formula. We recall that a solution
of this problem, also called a E-unifier, is a substitution σ (i.e., a replacement
of the variables x by terms) such that |=E ϕσ. 13 E-unifiers are compared
with respect to instantiation modulo E on the variables x occurring in ϕ: a
substitution µ is more general than a substitution σ w.r.t. x (µ ≤x

E σ) iff there
is a substitution λ such that |=E xσ ≈ xµλ for all variables x in x. We show
that every solvable E-unification problem ϕ(x) has a most general E-unifier
(mgu), i.e., an E-unifier µ such that µ ≤x

E σ for all E-unifiers σ of ϕ(x).

Assume that ϕ(x) has a solution. Since E is Gaussian, we can successively
eliminate all the variables x = x1, . . . , xn from ϕ and obtain that

|=E ϕ(x) ⇔ C ∧ ∃z.(
n∧

i=1

xi ≈ si(z)), (2)

where C is a ground e-formula and the si are terms containing only variables
from the tuple of fresh variables z. From (2) and the fact that ϕ(x) has a
solution it follows that E |= C. This means that (2) can be restated as

|=E ϕ(x) ⇔ ∃z.(
n∧

i=1

xi ≈ si(z)). (3)

13 As usual, ϕσ denotes the result of applying the substitution σ to the expression
ϕ.
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We claim that the substitution

µ := {x1 7→ s1(z), . . . , xn 7→ sn(z)}

is an mgu of ϕ(x). To see that µ is an E-unifier of ϕ(x) observe that the right
to left implication of (3) is equivalent to

|=E

n∧
i=1

xi ≈ si(z) ⇒ ϕ(x),

which obviously implies that |=E ϕµ. To see that µ is most general w.r.t. x,
we must show that it is more general than any other unifier σ. Thus, assume
that σ is a unifier of ϕ(x). This means that |=E ϕσ, and thus we have by (3)
that

|=E ∃z.
n∧

i=1

xiσ ≈ si(z),

that is, the formula ψ := ∃z.∧n
i=1 xiσ ≈ si(z) holds in all models of E.

In particular, ψ holds in the E-free algebra with a countably infinite set of
generators. The elements of this algebra are ≈E-equivalence classes of terms
over the countably infinite set X of all variables. Thus, we obtain that

|=E

n∧
i=1

xiσ ≈ si(t)

for some tuple of terms t. Let λ be the substitution that maps every element
of z to the corresponding element of t. Then we have that |=E xiσ ≈ xiµλ for
i = 1, . . . , n. This shows that µ ≤x

E σ, making µ a most general E-unifier of
ϕ(x). �

4 The combination procedure

In this section we describe an algorithm for combining two procedures deciding
the world problem in two theories E1 and E2, respectively, into a procedure
deciding the world problem in E1 ∪ E2. For that we assume that E1, E2 are
equational theories over the signatures Σ1,Σ2 with decidable word problems,
and that there exists an equational theory E0 over the signature Σ0 := Σ1∩Σ2

such that

• E0 is Gaussian and effectively locally finite;
• for i = 1, 2, Ei is E0-compatible and a conservative extension of E0.
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4.1 Abstraction rewrite systems

Our combination procedure works on the following data structure.

Definition 4.1 An abstraction rewrite system (ARS) R is a finite ground
rewrite system that can be partitioned into two subsets R1 and R2 such that

• for i = 1, 2, the rules of Ri are of the form a → t where a ∈ C and
t ∈ T (Σi, C), and every constant a occurs at most once as a left-hand side
in Ri;

• R = R1 ∪R2 is terminating.

The ARS R is an initial ARS iff every constant occurs at most once as a
left-hand side in the whole R.

Since every ARS R is terminating, we can find a strict total ordering > on the
left-hand side constants of R such that for all a→ t ∈ R, the term t contains
only left-hand side constants smaller than a. In particular, for i = 1, 2, Ri is
also terminating, and the restriction that every constant occurs at most once
as a left-hand side in Ri implies that Ri is confluent. We denote the unique
normal form of a term s w.r.t. Ri by s↓Ri

.

Given a ground rewrite system R, an equational theory E, and an e-formula
ψ, we write R |=E ψ to express that {l ≈ r | l→ r ∈ R} |=E ψ.

The following results about ARS’s will be used several times in the rest of the
paper.

Lemma 4.2 Consider an ARS R = R1 ∪ R2 and let i ∈ {1, 2}. Let a collect
the left-hand side constants of Ri and c collect the remaining free constants of
Ri. For every Σi(c)-model A of Ei the following holds:

(1) A can be expanded to a Σi(a, c)-model Â of Ei that satisfies Ri.
(2) If A is an initial Σi(c)-model of Ei, then its expansion Â is an initial

Σi(a, c)-model of Ei ∪ {a ≈ t | a→ t ∈ Ri}.

Proof. Let an > an−1 > · · · > a1 be a total ordering of the left-hand side
(lhs) constants of Ri = {aj → tj | j = 1, . . . , n} such that tj contains only lhs
constants smaller than aj. Let A be a Σi(c)-model of Ei.

(1) We define expansions Aj of A that interpret the lhs constants a1, . . . , aj

by induction on j = 0, . . . , n:

• The algebra A0 is defined simply as A.
• For j > 0, the algebra Aj expands Aj−1 by interpreting aj by the interpre-
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tation of tj in Aj−1, i.e., a
Aj

j := t
Aj−1

j . Note that t
Aj−1

j is well-defined since
tj does not contain any of the constants aj, . . . , an.

Now, let Â be An. It is easy to see that this algebra is a Σi(a, c)-model of
Ei ∪ {aj ≈ tj | j = 1, . . . , n}.

(2) Assume A is an initial model of Ei. Since A is Σi(c)-generated by ∅ and
the carrier of Â coincides with the carrier of A, the expansion Â is obviously
Σi(a, c)-generated by ∅. By (1), Â is a model of Ei ∪ {aj ≈ tj | j = 1, . . . , n}.

To show that Â is initial, assume that the algebra B is a Σi(a, c)-model of
Ei ∪{aj ≈ tj | j = 1, . . . , n}. It is enough to show that there exists a Σi(a, c)-
homomorphism from Â to B. The reduct BΣi(c) is a model of Ei, and thus
there is a Σi(c)-homomorphism h : A → BΣi(c). We claim that h is also a

Σi(a, c)-homomorphism from Â to B, i.e., h(aÂj ) = aBj for all j = 1, . . . , n.
This can be proved by induction on j:

• For j = 1, we have h(aÂ1 ) = h(tA1 ) = tB1 = aB1 , where the first identity holds
by the definition of Â, the second since h is a Σi(c)-homomorphism, and
the third since B satisfies a1 ≈ t1.

• For j > 1, we have h(aÂj ) = h(tAj ) = tBj = aBj , where the first identity holds

by the definition of Â, the second since we know by induction that h is a
Σi(a1, . . . , aj−1, c)-homomorphism, and the third since B satisfies aj ≈ tj.
�

Lemma 4.3 Let R = R1 ∪ R2 be an ARS, and s, t ∈ T (Σi, C) for some
i ∈ {1, 2}. Then Ri |=Ei

s ≈ t iff s↓Ri
≈Ei

t↓Ri
.

Proof. Let i ∈ {1, 2}.

(⇐) Obviously, s↓Ri
≈Ei

t↓Ri
implies Ri |=Ei

s ≈ t.

(⇒) Assume that Ri |=Ei
s ≈ t. Since Ri |=Ei

s ≈ s↓Ri
and Ri |=Ei

t ≈ t↓Ri
,

this yields Ri |=Ei
s↓Ri

≈ t↓Ri
. Now assume that s↓Ri

6≈Ei
t↓Ri

, i.e., there is a
model A of Ei in which the identity s↓Ri

≈ t↓Ri
does not hold. Since the terms

s↓Ri
, t↓Ri

do not contain the left-hand side constants of Ri, we may assume
that A does not interpret these constants. By Lemma 4.2, we can expand A
to a model Â of Ei that also interprets these constants and satisfies Ri. Since
the interpretation of the terms s↓Ri

, t↓Ri
in Â coincides with the one in A,

this implies that Ri 6|=Ei
s↓Ri

≈ t↓Ri
, a contradiction. �

If we want to decide the word problem in E1 ∪ E2, it is sufficient to consider
ground terms with free constants, i.e., terms s, t ∈ T (Σ1 ∪ Σ2, C). Given
such terms s, t we can employ the usual abstraction procedures that replace
subterms by new constants in C (see, e.g., [10]) to generate terms u, v ∈
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Input: an initial ARS R = R1 ∪R2 = {ai → ti | i = 1, . . . , n} and
terms u, v ∈ T (Σ0, C).

Let c collect the free constants in R, u, and v that are not in {a1, . . . , an}.
for i = 1 to n do

1. Let j be such that ai → ti ∈ Rj and k such that {j, k} = {1, 2}.
2. Let T = RE0(ai, c) (see Definition 3.2).

3. For each pair of distinct terms t, t′ ∈ T , test whether R
(i)
j |=Ej

t ≈ t′.

4. Let ϕ(ai, c) be the conjunction of those identities t ≈ t′ for which
the test succeeds.

5. Let s(ai−1, c,d) be a local solver of ϕ w.r.t. ai in E0.

6. Add to Rk the new rule ai → s(ai−1, c,d).

done

Output: “yes” if R1 |=E1 u ≈ v, and “no” otherwise.

Fig. 1. The combination procedure.

T (Σ0, C) and an initial ARS R = R1 ∪R2 such that

s ≈E1∪E2 t iff R |=E1∪E2 u ≈ v.

For example, assume that Σ1 = {f, g} and Σ2 = {f, h}, and consider the terms
s = f(h(c1), g(h(c1))) and t = g(f(h(c1), c2)). Then we can take u = f(a1, a2),
v = a3, R1 = {a2 → g(a1), a3 → g(f(a1, c2))}, and R1 = {a1 → h(c1)}.

Thus, to decide the word problem in E1 ∪ E2, it is sufficient to devise a pro-
cedure that can solve problems of the form “R |=E1∪E2 u ≈ v?” where R is an
initial ARS and u, v ∈ T (Σ0, C). We present this procedure next.

4.2 The combination procedure

The input of the procedure is an initial ARS R = R1 ∪ R2 and two terms
u, v ∈ T (Σ0, C). Let > be a total ordering of the left-hand side (lhs) constants
of R such that for all a → t ∈ R, t contains only lhs constants smaller than
a. Given this ordering, we can assume that R = {ai → ti | i = 1, . . . , n} for
some n ≥ 0 where an > an−1 > · · · > a1.

Note that u, v and each ti may also contain free constants from C that are
not left-hand side constants. In the following, we use c to denote a tuple of
all these constants. Furthermore, for j = 1, 2 and i = 0, . . . , n, we denote by
R

(i)
j the restriction of Rj to the rules whose left-hand sides are smaller than

or equal to ai—where, by convention, R
(0)
j is the empty system. Finally, for

i = 1, . . . , n, we denote by ai the tuple (a1, . . . , ai).
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The combination procedure is described in Figure 1. Similarly to previous
combination procedures for the word problem, the procedure works in essence
by incrementally propagating from one component decision procedure to the
other entailed identities between ground terms in the shared signature. At
each step i of the procedure’s main loop, the propagated information is the
one expressed by the identities in the formula ϕ(ai, c), recognized by the

decision procedure for Ej as consequences of R
(i)
j . The main difference with

previous combination methods is that this information is first distilled, so to
speak, into a single identity—ai ≈ s(ai−1, c,d)—obtained by solving ϕ(ai, c)
w.r.t. ai. This is possible precisely because the shared theory E0 is Gaussian.
The propagation process is incremental in that at each step i the procedure
considers for propagation only equational consequences of R

(i)
j in the signature

Σ0(ai, c), as opposed to equational consequences of the whole Rj in the full
shared signature Σ0(an, c).

We point out that all of the steps of the procedure are effective. In fact,
Step 1 of the for loop is trivially effective; Step 2 is effective because E0 is
effectively locally finite by assumption. Step 3 is effective because the test that
R

(i)
j |=Ej

t ≈ t′ can be reduced by Lemma 4.3 to testing that t↓
R

(i)
j
≈Ej

t′↓
R

(i)
j

.

The latter test is effective because, (i) the word problem in Ej is decidable by

assumption and (ii) R
(i)
j is confluent and terminating at each iteration of the

loop. Now, in Step 4 the formula ϕ can be computed because T is finite and
the local solver in Step 5 can be computed by the algorithm provided by the
definition of a Gaussian theory. Step 6 is trivial and for the final test after the
loop, the same observations as for Step 3 apply.

A few more remarks on the procedure are in order. In the fifth step of the loop,
d is a tuple of new constants introduced by the solver s. In the definition of
a local solver, we have used variables instead of constants, but this difference
will turn out to be irrelevant since free constants behave like variables. One
may wonder why the procedure ignores the solvability condition for the local
solver. The reason is that this condition follows from both R1 and R2, as will
be shown in the proof of completeness.

Adding the new rule to Rk in the sixth step of the loop does not destroy the
property of R1 ∪ R2 being an ARS—although it will make it non-initial. In
fact, s(ai−1, c,d) contains only lhs constants smaller than ai, and Rk before
did not contain a rule with lhs ai because the input was an initial ARS.

The test after the loop is performed using R1, E1. The choice R1 and E1 versus
R2 and E2 is arbitrary. As it will be made clear by the completeness proof for
the procedure, using R2, E2 instead would produce the same results.

Before proving the correctness of the procedure, we illustrate it by a simple
example. While the example is restricted to the well studied case of signature-
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disjoint theories, it is enough to show the essence of the propagation mecha-
nism implemented by our procedure.

Example 4.4 Let E1 := {f(x, y) ≈ f(y, x)} and E2 := {g(x, x) ≈ x}. Its is
easy to see that both theories are non-trivial and have decidable word prob-
lems. Since these two theories do not share any function symbols, we can use
the theory E= from Example 3.7 as the shared theory. As argued in that ex-
ample, E1, E2, and E= satisfy all of our combinability conditions. Assume
then that we want to use our procedure to show whether

|=E1∪E2 g(f(x, y), f(y, g(x, x))) ≈ f(x, y).

After the abstraction process, we get the rewrite systems:

R1 = {a4 → f(c1, c2), a3 → f(c2, a1), a2 → f(c1, c2)} and

R2 = {a5 → g(a2, a3), a1 → g(c1, c1)},

and the goal identity

a5 ≈ a4,

where a1, . . . , a5, c1 and c2 are fresh constants, with c1 and c2 replacing the
variables x and y, respectively.

During the first execution of the procedure’s loop, the procedure considers
the lhs constant a1 and the free constants c1, c2. Since the signature of E=

is empty, these are also the terms to be considered for RE0(a1, c1, c2). The
identity a1 ≈ c1 is the only identity between distinct terms of RE0(a1, c1, c2)
for which the test in Step 3 of the procedure succeeds. Using the procedure
described in Example 3.7, Step 5 computes the solver s = c1 for the formula
ϕ(a1, c1, c2) = a1 ≈ c1. Hence, Step 5 adds the rule a1 → c1 to R1 yielding the
new systems:

R1 = {a4 → f(c1, c2), a3 → f(c2, a1), a2 → f(c1, c2), a1 → c1}

R2 = {a5 → g(a2, a3), a1 → g(c1, c1)}.

The second iteration of the loop considers the constants a1, a2 and c1, c2. The
only non-trivial identity involving the terms a1, a2, c1, c2 that is entailed by
R

(2)
1 in E1 is a1 ≈ c1. Solving ϕ(a1, a2, c1, c2) = a1 ≈ c1 w.r.t. a2 using the

procedure described in Example 3.7 produces the solver s = d1, where d1 is
a fresh constant. Consequently, Step 6 adds the rewrite rule a2 → d1 to R2,
yielding the new systems:

R1 = {a4 → f(c1, c2), a3 → f(c2, a1), a2 → f(c1, c2), a1 → c1}

R2 = {a5 → g(a2, a3), a2 → d1, a1 → g(c1, c1)}.
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The third iteration of the loop considers the constants a1, a2, a3 and c1, c2. The
only relevant new identity (i.e., non-trivial and involving a3) that can now be
derived in Step 3 is a3 ≈ a2, which leads to the solver s = a2 w.r.t. a3 and the
new systems:

R1 = {a4 → f(c1, c2), a3 → f(c2, a1), a2 → f(c1, c2), a1 → c1}

R2 = {a5 → g(a2, a3), a3 → a2, a2 → d1, a1 → g(c1, c1)}.

In the fourth iteration of the loop, the only non-trivial identity for a4 in Step 3
is a4 ≈ a3, which yields the solver s = a3 and the new systems:

R1 = {a4 → f(c1, c2), a3 → f(c2, a1), a2 → f(c1, c2), a1 → c1}

R2 = {a5 → g(a2, a3), a4 → a3, a3 → a2, a2 → d1, a1 → g(c1, c1)}.

Finally, in the fifth iteration of the loop, the only non-trivial identity for a5 in
Step 3 is a5 ≈ a4, which yields the solver s = a4 and the final rewrite systems:

R1 = {a5 → a4, a4 → f(c1, c2), a3 → f(c2, a1), a2 → f(c1, c2), a1 → c1}

R2 = {a5 → g(a2, a3), a4 → a3, a3 → a2, a2 → d1, a1 → g(c1, c1)}.

We can now perform the final test on the goal identity a5 ≈ a4. If we test
R1 |=E1 a5 ≈ a4 following the procedure suggested by Lemma 4.3, we first
compute the R1-normal forms of a4, a5, and then check whether they are equal
w.r.t. E1. Since both a4 and a5 rewrite to the same normal form f(c1, c2), this
test clearly succeeds, and thus the procedure answers “yes.” Note that the test
R2 |=E2 a5 ≈ a4 succeeds as well, since a4 and a5 rewrite w.r.t. R2 to d1 and
g(d1, d1), respectively, and d1 ≈E2 g(d1, d1). �

5 Correctness of the combination procedure

Since the combinations procedure obviously terminates for any input, we only
need to prove its soundness and completeness. In the proof below, we will use
the notation R1,i, R2,i to denote the updated rewrite systems obtained after
step i in the loop (R1,0 and R2,0 are the input systems R1 and R2).

Proposition 5.1 (Soundness) If the combination procedure answers “yes”,
then R1 ∪R2 |=E1∪E2 u ≈ v.

Proof. Let i ∈ {1, . . . , n}. We start by showing that

R1,i ∪R2,i |=E1∪E2 u ≈ v implies R1,i−1 ∪R2,i−1 |=E1∪E2 u ≈ v. (4)
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First observe that

R1,i ∪R2,i =R1,i−1 ∪R2,i−1 ∪ {ai ≈ s(ai−1, c,d)} (5)

where (i) the term s(ai−1, c,d) is a local solver of ϕ(ai, c) w.r.t. the free
constant ai in E0, and (ii) ϕ(ai, c) is an e-formula such that Rj,i−1 |=Ei

ϕ(ai, c)
for some j ∈ {1, 2}.

Now assume that R1,i∪R2,i |=E1∪E2 u ≈ v. By (5) above and the fact that the
constants d occur only in the solver s, we have that

R1,i−1 ∪R2,i−1 ∪ {∃z.(ai ≈ s(ai−1, c, z))} |=E1∪E2 u ≈ v.

To prove that R1,i−1 ∪R2,i−1 |=E1∪E2 u ≈ v it is enough to show that R1,i−1 ∪
R2,i−1 |=E1∪E2 ∃z.(ai ≈ s(ai−1, c, z)). To that end, first observe that R1,i−1 ∪
R2,i−1 |=E1∪E2 ϕ(ai, c) by monotonicity of |= and (ii) above. Second, by con-
struction of s (see Definition 3.4) and the fact that E1 ∪ E2 extends E0 it
follows, again by monotonicity, that

R1,i−1 ∪R2,i−1 |=E1∪E2 ∃z.(ai ≈ s(ai−1, c, z)).

Thus, we have completed the proof of Property (4). To prove the proposition
now, assume that procedure answers “yes”. Then it must be that R1,n |=E1

u ≈ v which implies that R1,n ∪ R2,n |=E1∪E2 u ≈ v. But then, by a repeated
application of Property (4) above, we have that R1 ∪R2 = R1,0 ∪R2,0 |=E1∪E2

u ≈ v. �

The following two lemmas will be useful to prove the completeness of the
combination procedure.

Lemma 5.2 Let ψ2(x,y, z) be an e-formula in the signature Σ0 such that

R
(i)
k,i |=Ek

ψ2(ai, c, b), where R
(i)
k,i, ai, and c are defined as in the procedure,

and b is a set of free constants not in R
(i)
k,i. Then, there is an e-formula ψ0(x,y)

in the signature Σ0, such that

R
(i)
k,i |=Ek

ψ0(ai, c) and ψ0(ai, c) |=E0 ψ2(ai, c, b).

Proof. For notational simplicity, we prove the lemma for the case in which
k = 1, as the proof for the case k = 2 is identical. Let Γ0 be the set of ground
identities γ0 in the signature Σ0(ai, c) such that R

(i)
1,i |=E1 γ0 or, equivalently

(by treating the rules of R
(i)
1,i as ground identities), such that E1 ∪ R(i)

1,i |= γ0.
By compactness, it is enough to show that E0 ∪ Γ0 |= ψ2(ai, c, b).

Let ci collect in addition to the elements of c all the other free constants of
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R
(i)
1,i that do not occur in ai.

14 Let F1 be the Σ1(ai, ci)-theory axiomatized by

E1∪R(i)
1,i and let F2 be the Σ0(ai, c, b)-theory axiomatized by E0. We construct

below two algebras A1 and A2 such that

(1) A1 is a model of F1 that Σ1(ai, ci)-embeds into a model of F1 ∪ E∗
0 ,

(2) A2 is a model of F2 that Σ0(ai, c, b)-embeds into a model of F2 ∪E∗
0 and

is initial for E0 ∪ Γ0,
(3) A1 and A2 have a common Σ0(ai, c)-subalgebra A0.

Given these algebras, by applying Lemma 2.6 to F1 and F2 we know that there
is a model A of F1 ∪ F2 and embeddings f1 and f2 of A1 and A2 into A that
agree on A0. Since A is a model of F1 ∪ F2, it is also a Σ1(ai, ci, b)-model of

E1 ∪R(i)
1,i. Therefore, by the assumption that R

(i)
1,i |=E1 ψ2(ai, c, b), A must be

a model of (the ground Σ0(ai, c, b)-formula) ψ2(ai, c, b). By Lemma 2.2 and
the fact that A2 is Σ0(ai, c, b)-embedded into A, we then have that A2 models
ψ2(ai, c, b) as well. Given that A2 is an initial Σ0(ai, ci, b)-model of E0 ∪ Γ0,
it follows that E0 ∪ Γ0 |= ψ2(ai, c, b).

To conclude the proof then we need to define the algebras A0,A1,A2 and
prove that they satisfy each of the three points above.

For Point 1, let C1 be the initial Σ1(ci)-model of E1. Observe that by construc-

tion the left-hand side constants of R
(i)
1,i are exactly ai. Therefore, we can use

Lemma 4.2 to expand C1 to an initial Σ1(ai, ci)-model A1 of F1 = E1∪R(i)
1,i. To

see that A1 embeds into a model of F1∪E∗
0 , first observe that CΣ1

1 is a finitely
generated free model of E1 with generators ci. By Definition 3.1, there is then
a Σ1-embedding h of CΣ1

1 into a model of E1 ∪E∗
0 . Let B1 be the expansion of

this model to Σ1(ai, ci) defined by interpreting the constants of ai ∪ ci as in
A1; that is, by having dB1 := h(dA1) for all d ∈ ai∪ ci. It is not difficult to see
that B1 models F1 ∪ E∗

0 and that h is a Σ1(ai, ci)-embedding of A1 into B1.

To prove Point 2, let A2 be an initial Σ0(ai, c, b)-model of E0 ∪Γ0. Since AΣ0
2

is a model of E0 and E∗
0 is E0’s model completion, it follows that there is a

Σ0-embedding h of A2 into a Σ0-model of E0 ∪E∗
0 . Let C2 be the expansion of

this model to Σ0(ai, c, b) defined by interpreting the constants of ai∪ c∪b as
in A2; that is, by having dC2 := h(dA2) for all d ∈ ai ∪ c ∪ b. It is immediate
that C2 models F2 ∪ E∗

0 and that h is a Σ0(ai, c, b)-embedding of A2 into C2.

To prove Point 3, let A0 be an initial Σ0(ai, c)-model of E0∪Γ0. We first show
that A0 can be Σ0(ai, c)-embedded into A1. By Lemma 2.1, it is enough to

show that A1 satisfies ∆
Σ0(ai,c)
∅ (A0). So let P be a positive ground Σ0(ai, c)-

literal satisfied by A0. Since A0 is an initial model of E0 ∪ Γ0, we have that

14 These additional constants may arise from the introduction of solvers into R1 in
previous steps of the procedure.
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E0 ∪ Γ0 |= P . But then, E1 ∪ R
(i)
1,i |= P because E1 ∪ R

(i)
1,i |= E0 ∪ Γ0.

15

Since A1 is a model of E1 ∪R(i)
1,i, we can conclude that A1 satisfies P as well.

Now let ¬P be a negative ground Σ0(ai, c)-literal satisfied by A0 and assume
by contradiction that A1 satisfies P . Then, since A1 is an initial model of
E1 ∪ R(i)

1,i, we have that E1 ∪ R(i)
1,i |= P . It follows that P ∈ Γ0 and so it must

be satisfied by A0, against the assumption that A0 satisfies ¬P .

We now show that A0 can be Σ0(ai, c)-embedded in A2. First note that, since
A2 is an initial Σ0(ai, c, b)-model of E0∪Γ0, the reduct of A2 to Σ0(ai, c) is a
free model of E0∪Γ0 over the generators (denoted by) b. Since A0 is an initial
Σ0(ai, c)-model of E0 ∪ Γ0, it follows by well-known results on free algebras
that A0 can be embedded into that reduct and so can be Σ0(ai, c)-embedded
into A2.

In conclusion, we have that A0 is Σ0(ai, c)-embedded into both A1 and A2.
By renaming the elements of A1 and A2 appropriately, we can assume with
no loss of generality that these embeddings are in fact inclusions. Hence A0 is
a Σ0(ai, c)-subalgebra of both A1 and A2, as required by Point 3. �

Lemma 5.3 For every i = 1, . . . , n and every ground e-formula ψ(ai, c) in
the signature Σ0(ai, c),

R
(i)
1,i |=E1 ψ iff R

(i)
2,i |=E2 ψ.

In particular, R1,n |=E1 ψ iff R2,n |=E2 ψ for every ground e-formula ψ(an, c)
in the signature Σ0(an, c).

Proof. We prove the lemma by induction on i. The base case i = 0 is trivial
since R

(0)
1,0 and R

(0)
2,0 are empty, and E1, E2 are conservative extensions of the

same theory E0 over Σ0.

Thus, let i > 0 and assume that the lemma holds for i−1. Let j, k, ti, ϕ(ai, c),
and s(ai−1, c,d) be defined as in the i-th iteration of the loop in the com-
bination procedure. Then we have Rj,i = Rj,i−1 and Rk,i = Rk,i−1 ∪ {ai →
s(ai−1, c,d)}.

First, we show that R
(i)
j,i |=Ej

ψ implies R
(i)
k,i |=Ek

ψ. Observe that R
(i)
j,i is

equal to R
(i)
j,i−1 and that R

(i)
k,i is equal to to R

(i−1)
k,i−1 ∪ {ai → s(ai−1, c,d)}. From

R
(i)
j,i |=Ej

ψ it follows that ϕ |=E0 ψ (since, modulo E0, every conjunct of
ψ occurs as a conjunct in ϕ by the definition of ϕ). Thus, it is sufficient to

show that R
(i)
k,i |=Ek

ϕ. Because ai → s(ai−1, c,d) belongs to R
(i)
k,i and since

s(ai−1, c,d) is a local solver of ϕ w.r.t. ai, it is sufficient to show that the cor-

responding solvability condition C(ai−1, c) follows from Ek and R
(i)
k,i. However,

15 E1∪R
(i)
1,i |= Γ0 by construction of Γ0, and E1∪R

(i)
1,i |= E0 because E1 extends E0.
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this formula does not contain ai, and thus we can argue as follows. Since ϕ
implies its own solvability condition (in E0, and thus also in Ej), R

(i)
j,i |=Ej

ϕ

implies R
(i)
j,i |=Ej

C(ai−1, c). Because C(ai−1, c) does not contain ai and since

Rj,i = Rj,i−1, this implies that R
(i−1)
j,i−1 |=Ej

C(ai−1, c) by Lemma 4.3. 16 Thus,

the induction hypothesis yields R
(i−1)
k,i−1 |=Ek

C(ai−1, c). Since R
(i−1)
k,i−1 ⊆ R

(i)
k,i,

this finally implies R
(i)
k,i |=Ek

C(ai−1, c). In conclusion, we have shown that

R
(i)
k,i |=Ek

ψ.

Second, we show that R
(i)
k,i |=Ek

ψ implies R
(i)
j,i |=Ej

ψ. Since Rk,i := Rk,i−1 ∪
{ai → s(ai−1, c,d)}, we know (again by Lemma 4.3) that R

(i)
k,i |=Ek

ψ im-

plies that R
(i−1)
k,i−1 |=Ek

ψ2(ai−1, c,d) where ψ2 is obtained from ψ by replacing

every occurrence of ai by s(ai−1, c,d). Applying Lemma 5.2 to R
(i−1)
k,i−1 |=Ek

ψ2(ai−1, c,d), we then obtain an e-formula ψ0(x1, . . . , xi−1,y) in the shared
signature Σ0 such that

(1) R
(i−1)
k,i−1 |=Ek

ψ0(ai−1, c) and
(2) ψ0(ai−1, c) |=E0 ψ2(ai−1, c,d).

By applying the induction hypothesis to the first entailment, we then have
R

(i−1)
j,i−1 |=Ej

ψ0(ai−1, c), and so, since Rj,i−1 = Rj,i, also R
(i)
j,i |=Ej

ψ0(ai−1, c).

By the substitutivity property of equality and the construction of ψ2, the
second entailment implies that ψ0(ai−1, c) ∧ ai ≈ s(ai−1, c,d) |=E0 ψ, which
is equivalent to

ψ0(ai−1, c) ∧ ∃z. (ai ≈ s(ai−1, c, z)) |=E0 ψ,

as the constants d do not occur in ψ. Given that s(ai−1, c, z) is a local solver for
ϕ(ai, c), we have by Definition 3.4 that ϕ(ai, c) |=E0 ∃z. (ai ≈ s(ai−1, c, z)).
It follows that {ψ0, ϕ} |=E0 ψ.

Recalling that R
(i)
j,i |=Ej

ϕ by construction of ϕ and that R
(i)
j,i |=Ej

ψ0 as shown

above, we can conclude that R
(i)
j,i |=Ej

ψ. �

Proposition 5.4 (Completeness) If R1 ∪R2 |=E1∪E2 u ≈ v, then the com-
bination procedure answers “yes”.

Proof. Since the procedure is terminating, it is enough to show that R1,0 ∪
R2,0 6|=E1∪E2 u ≈ v whenever the combination procedure answer “no”. We do
that by building a model of R1,0 ∪R2,0 ∪ E1 ∪ E2 that falsifies u ≈ v.

16 Lemma 4.3 applies here because C(ai−1, c) is a conjunction of identities, and so
it is entailed by a set of formulae iff each of its identities is.
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Assume then that the combination procedure answer “no” and let k ∈ {1, 2}.
Where c is defined as in Figure 1 and dk is a tuple collecting all the new con-
stants introduced in the rewrite system Rk during execution of the procedure
(see Step 4 of the loop), let Ak,0 be the initial model of Ek over the signature
Σk(c,dk). By Lemma 4.2, Ak,0 can be expanded to a Σk(an, c,dk)-algebra Ak,
which is the initial Σk(an, c,dk)-model of the theory Ek ∪Rk,n.

In particular, the fact that Ak is initial implies for every ground e-formula ϕ
in the signature Σ0(an, c),

Ak satisfies ϕ iff Rk,n |=Ek
ϕ. (6)

Now, let Bk be the Σ0-subalgebra of Ak generated by (the interpretations in
Ak of) the constants an∪c. We claim that the algebras B1 and B2 satisfy each
other’s diagram. To see that, let ψ be a ground Σ0(an, c)-identity. Then,

ψ ∈ ∆Σ0
an∪c(Bk) iff Bk satisfies ψ [by definition of ∆Σ0

an∪c(Bk)]

iff Ak satisfies ψ [by construction of Bk and Lemma 2.2]

iff Rk,n |=Ek
ψ [by (6) above].

By Lemma 5.3, we can conclude that ψ ∈ ∆Σ0
a∪c(B1) iff ψ ∈ ∆Σ0

a∪c(B2). It follows
from the observation after Lemma 2.1 that B1 and B2 are Σ0-isomorphic, hence
they can be identified with no loss of generality. Therefore, let A0 := B1 = B2

and observe that for k = 1, 2,

(1) AΣk
k is, by construction, a finitely generated free model of Ek,

17 and so
by the E0-compatibility of Ek it embeds into a model of Ek ∪ E∗

0 ;
(2) A0 is a Σ0-subalgebra of AΣk

k ;
(3) A0 is a model of E0—because AΣ0

k is a model of E0 and the set of models
of an equational theory is closed under building subalgebras.

By Lemma 2.6 it follows that there is a model A of E1 ∪ E2 such that for
k = 1, 2 there is a Σk-embedding fk of AΣk

k into A. By the same lemma we
also have that f1(c

A1) = f2(c
A2) for all c ∈ an ∪ c, the generators of A0.

Let then A′ be the expansion of A to the signature (Σ1 ∪ Σ2)(an, c) such
that cA

′
= f1(c

A1) for every c ∈ an ∪ c. It is not difficult to see that fk is a
Σk(an, c)-embedding of Ak into A′ for k = 1, 2.

Observe that A′, which is clearly a model of E1 ∪ E2, is also a model of
R1,0∪R2,0. In fact, by construction of R1,n and R2,n, for all a→ t ∈ R1,0∪R2,0,
there is a k ∈ {1, 2} such that a → t ∈ Rk,n. It follows immediately that
Rk,n |=Ek

a ≈ t, which implies by (6) above that Ak satisfies a ≈ t. But then
A′ satisfies a ≈ t as well by Lemma 2.2.

17 With generators c ∪ dk.
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In conclusion, we have thatA′ is a (Σ1∪Σ2)(an, c)-model of R1,0∪R2,0∪E1∪E2.
All we need to show then is that A′ falsifies u ≈ v. Now, since the procedure
returns “no” by assumption, it must be that R1,n 6|=E1 u ≈ v. We then have
that A1 falsifies u ≈ v by (6) above and A′ falsifies u ≈ v by Lemma 2.2. �

Note that in the last paragraph of the proof above we could have given a
completely symmetrical argument if the final test in the procedure had been
on whether R2,n |=E2 u ≈ v. In other words, the procedure’s completeness
does not depend on which component theory is used for the final test.

From the total correctness of the combination procedure, we then obtain the
following modular decidability result.

Theorem 5.5 Let E0, E1, E2 be three equational theories of respective signa-
ture Σ0,Σ1,Σ2 such that

• Σ0 = Σ1 ∩ Σ2;
• E0 is Gaussian and effectively locally finite;
• for i = 1, 2, Ei is E0-compatible and a conservative extension of E0.

If the word problem in E1 and in E2 is decidable, then the word problem in
E1 ∪ E2 is also decidable.

An immediate consequence of the above result is that, if the shared theory E0

of E1 and E2 is absolutely combinable, then the word problem is decidable
in E1 ∪ E2 iff it is decidable in E1 and E2 separately. In fact, the conditions
of Theorem 5.5 are all satisfied, with the possible exception that one of the
two theories may not be a conservative extension of E0. However, if this is
the case, say for E1, then E1 is trivial (because E0 is absolutely combinable).
Hence E1 ∪ E2 is trivial as well, and thus the word problem in E1 ∪ E2 is
trivially decidable.

In particular, from the absolute combinability of the pure equality theory E=

(see Example 3.7), we obtain as a corollary to Theorem 5.5 the well-known
decidability result for the word problem in the union of two equational theories
with disjoint signatures and decidable word problems (see, e.g., [3]).

Example 3.6 concerning the absolute combinability of the theory TK of vector
spaces over a finite field K shows further applications of Theorem 5.5: for
instance, one can take as E1 the theory of K-algebras, 18 as E2 the theory
of vector spaces with an endomorphism, and obtain as a consequence the
decidability of the word problem for the theory E1 ∪ E2 of K-algebras over a
finite field K endowed with a linear endomorphism.

18 See any textbook in Algebra, like [29], for the definition.
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In the next section, we use Theorem 5.5 to show that the decidability of
validity transfers from classical modal logics to their fusion.

6 Fusion decidability in modal logics

In this section, we first show that the theory of Boolean algebras is absolutely
combinable. This allows us then to apply Theorem 5.5 to show a strong trans-
fer result for decidability of validity from modal logics to their fusion. The
modal logics to which this result applies are called classical modal logics in
the literature.

6.1 Boolean algebras

The theory BA of Boolean algebras is the equational theory over the signature
{∩,∪, ( ), 1, 0} given by the following identities:

x ∩ y ≈ y ∩ x x ∪ y ≈ y ∪ x
x ∩ (y ∩ z) ≈ (x ∩ y) ∩ z x ∪ (y ∪ z) ≈ (x ∪ y) ∪ z
(x ∩ y) ∪ y ≈ y (x ∪ y) ∩ y ≈ y

x ∩ (y ∪ z) ≈ (x ∩ y) ∪ (x ∩ z) x ∪ (y ∩ z) ≈ (x ∪ y) ∩ (x ∪ z)
x ∩ x ≈ x x ∪ x ≈ x

x ∩ 0 ≈ 0 x ∪ 0 ≈ x

x ∩ 1 ≈ x x ∪ 1 ≈ 1

x ∩ x ≈ 0 x ∪ x ≈ 1

It is well-known that BA is locally finite. In fact, let c = (c1, . . . , cn) be a finite
collection of free constants. Every Boolean ground term over the constants in
c is equivalent in BA to a term in “conjunctive normal form,” a meet of terms
of the form d1 ∪ · · · ∪ dn, where each di is either ci or ci. It is easy to see
that the set RBA(c) of such normal forms is isomorphic to the powerset of the
powerset of c, which is effectively computable and has cardinality 22n

. Hence
we have the following result:

Proposition 6.1 BA is effectively locally finite.

It is not possible to extend BA with proper axioms in its own signature: in
fact, as soon as one extends BA with an axiom s ≈ t for any s and t such
that s 6≈BA t, the equation 0 ≈ 1 becomes valid. This can be shown by
an appropriate instantiation of the variables of s ≈ t by 0 and 1, followed by
simple Boolean simplifications. The validity of 0 ≈ 1 in turn makes all Boolean
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terms equivalent to 0 (as one can easily show), making the extension a trivial
equational theory. Thus we have the following result:

Proposition 6.2 All non-trivial equational extensions of BA are conservative
extensions of BA.

Recall (e.g., from [27,30]) that BA admits as a model completion the theory
of atomless Boolean algebras. 19 A Boolean algebra B is said to be atomless
iff it does not have atoms, where an atom is a nonzero element a ∈ B such
that for all b ∈ B either a ≤ b or a ≤ b. 20

Proposition 6.3 If E is a non-trivial equational extension of BA, then E is
BA-compatible.

Proof. We need to embed any finitely generated E-free algebra into a model
of E whose Boolean reduct is atomless. Since any finitely generated E-free
algebra can be embedded into the E-free algebra A with a countably infinite
set X of generators, it is sufficient to show that this algebra A is atomless.

We know that A = T (Σ, X)/≈E where Σ is the signature of E. Take a can-
didate atom a = [t]≈E

for some term t ∈ T (Σ, X). Pick a variable x ∈ X that
does not occur in t (this is possible as X is infinite). For [t]≈E

to be an atom
we must have in A either [t]≈E

≤ [x]≈E
or [t]≈E

≤ [x]≈E
, but in both cases

this yields [t]≈E
= 0. In fact, in the former case, we have

|=E t ∩ x ≈ t,

so that if we replace x by 0, we get |=E 0 ≈ t, proving that in fact a = [t]≈E
= 0

is not an atom. The latter case is analogous: we can just use 1 instead of 0 in
the argument above. �

To prove that BA is absolutely combinable, it remains to be shown that it is
Gaussian. This is done in the next subsection.

6.2 Boolean solved forms

Since we will make essential use of results from the Boolean unification liter-
ature, we prefer to switch temporarily to a Boolean ring notation, commonly
adopted in that literature. It should be recalled anyway that Boolean algebras

19 In the context of fusions, atomless Boolean algebras were first used in [31] to
prove that fusions are conservative extensions of their components. The proof of the
decidability transfer result in [15] also makes use of atomless Boolean algebras.
20 Where a ≤ b means that a ∩ b = a.
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and Boolean rings are essentially the same theory, expressed in different signa-
tures. The difference is merely a notational question: one can convert terms in
the signature of Boolean algebras into terms in the signature of Boolean rings
and vice versa, the conversion being bijective modulo the axioms of the respec-
tive theories. The theory BR of Boolean rings is the theory in the signature
ΣBR = {+, ∗, 0, 1}, one of whose possible axiomatizations is the following:

x ∗ y ≈ y ∗ x, x+ y ≈ y + x,

x ∗ (y ∗ z) ≈ (x ∗ y) ∗ z, x+ (y + z) ≈ (x+ y) + z,

x ∗ (y + z) ≈ (x ∗ y) + (x ∗ z), x ∗ x ≈ x,

x+ x ≈ 0, x ∗ 0 ≈ 0,

x+ 0 ≈ x, x ∗ 1 ≈ x.

It is well-known that when working with e-formulae in the theory BA, it is
enough to consider only e-formulae of the form t ≈ 1. The reason is that for
every e-formula ϕ of the form s1 ≈ t1 ∧ · · · ∧ sn ≈ tn in the signature of BA
the following first-order equivalence holds: 21

|=BA ϕ ⇔ ((s1 ⊃ t1) ∩ (t1 ⊃ s1) ∩ · · · ∩ (sn ⊃ tn) ∩ (tn ⊃ sn)) ≈ 1

Note that the symbol ⇔ here denotes bi-implication at the first order logic
level; it should not be confused with bi-implication at the level of modal logics
or of Boolean algebra terms.

In a similar way, when working with e-formulae in the theory BR, it is enough
to consider only e-formulae of the form t ≈ 0. The reason now is that, for
every e-formula ϕ of the form s1 ≈ t1 ∧ · · · ∧ sn ≈ tn in the signature of BR
the following equivalence holds:

|=BR ϕ ⇔ (((s1 + t1 + 1) ∗ · · · ∗ (sn + tn + 1)) + 1) ≈ 0.

We show below that every formula of the form t(x, y) ≈ 0 can be effectively
turned into the conjunction of a solvability condition c(x) ≈ 0 and of a lo-
cal solver parametrization ∃z.(y ≈ s(x, z)). It then follows immediately by
Definition 3.4 that BR is Gaussian. As a consequence, BA is Gaussian as well.

We will use the following general result, adapted from [21], on the computation
of most general BR-unifiers based on Löwnheim’s formula.

Proposition 6.4 Let t(c, y) ≈ 0 be a BR-unification problem with (free) con-
stants c and (only) variable y. For all unifiers {y 7→ r(c)} of t(c, y) ≈ 0 and

21 Where the syntax s ⊃ t abbreviates the formula s ∪ t.
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fresh variables z, the substitution

{y 7→ z + t(c, z) ∗ (z + r(c))}

is a most general BR-unifier of t(c, y) ≈ 0.

We will also need the next two lemmas.

Lemma 6.5 Let t(x, y) be any ΣBR-term and let c(x) = t(x, 1) ∗ t(x, 0).
Then,

|=BR c(x) ∗ (1 + t(x, y)) ≈ 0.

Proof. To prove the claim we can use the fact that the two-element Boolean
ring B2, with carrier {0, 1}, generates the whole variety of Boolean rings. 22

Then, it is enough to check that c(x) ∗ (1 + t(x, y)) evaluates to 0 for every
assignment V of the variables y,x into {0, 1}.

Let V be such an assignment and for every term u let V [u] be the value
denoted by u in B2 under the assignment V . If V [t(x, y)] = 1, the claim follows
immediately from the axioms of BR. If instead V [t(x, y)] = 0, depending on
whether V [y] = 1 or V [y] = 0, we have also V [t(x, 1)] = 0 or V [t(x, 0)] = 0
and in any case V [c(x)] = 0. �

The next lemma is related to Boole’s method for computing most general
BR-unifiers [21].

Lemma 6.6 Let t(x, y) be a ΣBR-term and let c(x) = t(x, 1) ∗ t(x, 0). The
substitution σ := {y 7→ 1 + t(x, 1)} is a BR-unifier of the unification problem

t(x, y) ∗ (1 + c(x)) ≈ 0

in which the elements of x are treated as (free) constants and y is the only
variable.

Proof. For notational convenience, let us denote the term tσ obtained by apply-
ing the substitution σ to t by t(x, 1+t(x, 1)). Let B2 be again the two-element
Boolean ring with carrier {0, 1} as in the proof of Lemma 6.5. It is enough to
show that the term

u = t(x, 1 + t(x, 1)) ∗ (1 + c(x))

evaluates to 0 for every assignment of the variables y,x into {0, 1}.

22 This means that an identity is entailed by BR iff it is valid in B2. This may be
seen as a consequence e.g. of Stone representation theorem [32], saying that any
Boolean ring embeds into a Cartesian power of B2.
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Let V be such an assignment. If V [c(x)] = 1, the whole term u trivially
evaluates to 0. Therefore, suppose that V [c(x)] = 0. Then it is enough to show
that V [t(x, 1 + t(x, 1))] = 0. Since V [c(x)] = 0, from the definition of c(x), it
must be that either (i) V [t(x, 1)] = 0 or (ii) V [t(x, 1)] = 1 and V [t(x, 0)] = 0.
In the first case, we get that V [t(x, 1+t(x, 1))] = V [t(x, 1)] = 0. In the second
case, we get that V [t(x, 1 + t(x, 1))] = V [t(x, 0)] = 0. �

We are now ready to prove the existence (and computability) of solvability
conditions and local solvers in BR for all e-formulae of the form t(x, y) ≈ 0.

Proposition 6.7 For every ΣBR-term t(x, y), there exist ΣBR-terms c(x) and
s(x, z), computable from t in linear time, such that

|=BR t(x, y) ≈ 0 ⇔ (c(x) ≈ 0 ∧ ∃z. (y ≈ s(x, z))).

Proof. Let

c(x) = t(x, 1) ∗ t(x, 0) (7)

as in Lemmas 6.5 and 6.6. We show that we can define a local solver s(x, z)
for t(x, y) ≈ 0 based on the solvability condition c(x) ≈ 0.

By Lemma 6.6, the substitution {y 7→ 1 + t(x, 1)} is a BR-unifier of the
unification problem

t(x, y) ∗ (1 + c(x)) ≈ 0. (8)

By Proposition 6.4 then, where z is a fresh variable and

s(x, z) := z + t(x, z) ∗ (1 + c(x)) ∗ (z + 1 + t(x, 1)), (9)

the substitution {y 7→ s(x, z)} is a most general BR-unifier of (8), which
means in particular that s(x, z) is a solution of (8), i.e.,

|=BR t(x, s(x, z)) ∗ (1 + c(x)) ≈ 0. (10)

We use (10) to show that

(i) t(x, y) ≈ 0 |=BR c(x) ≈ 0 ∧ ∃z.(y ≈ s(x, z)) and
(ii) c(x) ≈ 0 ∧ ∃z.(y ≈ s(x, z)) |=BR t(x, y) ≈ 0,

from which the proposition’s equivalence immediately follows.

(i) Let B be any model of BR and let V be any assignment of the variables x, y
into B such that V [t(x, y)] = 0. 23 Then extend V to z by letting V [z] = V [y].
From Lemma 6.5 (and the axioms of BR) we can deduce that V [c(x)] = 0 and

23 By a slight abuse of notation we denote 0B by 0.
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V [s(x, z)] =V [s(x, y)]

=V [y + t(x, y) ∗ (1 + c(x)) ∗ (y + 1 + t(x, 1))]

=V [y + 0 ∗ (1 + c(x)) ∗ (y + 1 + t(x, 1))]

=V [y + 0] = V [y].

It follows that B satisfies c(x) ≈ 0∧∃z.(y ≈ s(x, z)) under the assignment V ,
which proves claim (i).

(ii) Let B be any model of BR and let V be any assignment of x, y into B such
that B satisfies c(x) ≈ 0∧∃z.(y ≈ s(x, z)). Clearly, it is possible to extend V
to z so that V [c(x)] = 0 and V [y] = V [s(x, z)]. Together with (10), we then
have

V [t(x, y)] =V [t(x, s(x, z))]

=V [t(x, s(x, z)) ∗ (1 + 0)]

=V [t(x, s(x, z)) ∗ (1 + c(x))] = 0.

It follows that B satisfies t(x, y) ≈ 0 under the assignment V , which proves
claim (ii).

To conclude the proof, we need to show that c(x) and s(x, y) are computable
in linear time from t(x, y) ≈ 0. This, however, is immediate from the explicit
definitions we have provided for them above. �

Strictly speaking, the result above proves that the theory BR of Boolean
rings, not the theory BA of Boolean algebras, is Gaussian. However, given
an e-formula u(x, y) ≈ 1 in the signature ΣBA, one can translate it into a
corresponding formula t(x, y) ≈ 0, compute a satisfiability condition and local
solver for t(x, y) ≈ 0 in BR, and translate those back into a satisfiability
condition and local solver for u(x, y) ≈ 1. Since both translation processes
are clearly effective, it follows that, with the possible exception of the linear
complexity claim, a result like that in Proposition 6.7 holds for BA as well. It
follows that the theory BA of Boolean algebras is Gaussian.

Furthermore, the computational complexity of computing local solvers in BA
is indeed linear. This is thanks to the fact that local solvers in BA can be
computed directly, without a translation into the signature of BR. In fact, for
each e-formula u(x, y) ≈ 1 (and fresh variable z), the term

s′(x, z) = (u(x, 1) ⊃ u(x, z)) ⊃ (z ∩ (u(x, 0) ⊃ u(x, z))) (11)

is a local solver for u(x, y) ≈ 1 in BA w.r.t. y. It is immediate that s′(x, z)
can be computed in linear time from u(x, y). To see that it is indeed a local
solver of u(x, y), one can argue as follows. From formulas (9) and (7), we have
that
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s(x, z) = z + t(x, z) ∗ (1 + t(x, 1) ∗ t(x, 0)) ∗ (z + 1 + t(x, 1)) (12)

is a local solver of the formula t(x, y) ≈ 0 for any ΣBR-term t(x, y). Observing
that u ≈ 1 is equivalent in BA to u ≈ 0, let t(x, y) be the translation of
u into the signature of BR. 24 Then, modulo the signature translation, t is
equivalent to u. Let uz, u0, u1 abbreviate respectively u(x, z), u(x, 0), u(x, 1).
If we replace every occurrence of t(x, z), t(x, 0), t(x, 1) in (12) by uz, u0, u1,
respectively, and translate the formula (11) into the signature of BR, we obtain
a formula that is equivalent in BR to (12). To see that, consider the following
chains of equalities modulo the signature translation and the axioms of BA
and BR: 25

s′(x, z) ≈ (u1 ⊃ uz) ⊃ (z ∩ (u0 ⊃ uz))

≈ u1 ⊃ uz ∪ (z ∩ (u0 ⊃ uz))

≈ (u1 ∩ uz) ∪ (z ∩ (u0 ∪ uz))

≈ (u1uz) ∪ (z(u0 + uz + u0uz))

≈ (u1uz) ∪ (z(1 + u0 + u0uz))

≈ (u1uz) ∪ (z + u0z + u0uzz)

≈ u1uz + z + u0z + u0uzz + u1uzz + u1uzu0z + u1uzu0uzz

≈ u1uz + z + u0z + u0uzz + u1uzz + u0u1uzz

≈ u1 + u1uz + z + u0z + u0uzz + u1z + u1uzz + u0u1z + u0u1uzz,

s(x, z) ≈ z + t(x, z)(1 + t(x, 1)t(x, 0))(z + 1 + t(x, 1))

≈ z + uz(1 + u1u0)(z + u1)

≈ z + uz(u1 + u0 + u0u1)(z + u1)

≈ z + uz(u1z + u0z + u0u1z + u1 + u0u1 + u0u1)

≈ z + (1 + uz)(u1z + u0z + u0u1z + u1)

≈ z + u1z + u0z + u0u1z + u1 + u1uzz + u0uzz + u0u1uzz + u1uz.

It is easy to verify at this point that both s and s′ reduce to the same ΣBR-
term, hence they are equivalent.

6.3 Equational theories induced by modal logics

Taken together, the results of the previous two subsections (Propositions 6.1,
6.2, 6.3, 6.7) show that the theory BA is absolutely combinable.

24 This translation can be achieved by the rewrite rules x → x + 1, x ∩ y → x ∗ y,
and x ∪ y → x + y + x ∗ y.
25 To simplify the notation, we omit writing the operator ∗ explicitly, and use the
standard precedence rules for ∗ and +.
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Theorem 6.8 Let E1, E2 be equational extensions of BA having decidable
word problems. Then the word problem in their union E1∪E2 is also decidable.

Recall that an equational extension of BA is an equational theory E over a
signature extending the signature of BA and satisfying ≈BA ⊆ ≈E. Proposi-
tion 6.2 says that ≈E is in fact a conservative extension of ≈BA whenever E is
non-trivial. If one of the theories Ei in the formulation of the above theorem is
trivial, then the theorem holds trivially. Otherwise, we can apply Theorem 5.5.

It remains to show what all this has to do with modal logics and their fusions.
In this subsection we show that there is a close connection between equational
extensions of BA and so-called classical modal logics, and that the union of
such theories corresponds to the fusion of such modal logics.

A modal signature ΣM is a set of operation symbols endowed with corre-
sponding arities; from ΣM , propositional formulae are built using countably
many propositional variables, the operation symbols in ΣM , the Boolean con-
nectives, and the constant > for truth and ⊥ for falsity. We use the letters
x, x1, . . . , y, y1, . . . to denote propositional variables and the letters t, t1, . . . , u,
u1, . . . to denote propositional formulae.

The following definition is taken from [33], pp. 8–9: 26

Definition 6.9 A classical modal logic L based on a modal signature ΣM is
a set of propositional formulae that

(i) contains all classical propositional tautologies;
(ii) is closed under uniform substitution of propositional variables by proposi-

tional formulae;
(iii) is closed under the modus ponens rule (‘from t and t⇒ u infer u’);
(iv) is closed under the replacement rules, which are specified as follows. We

have one such rule for each n-ary o ∈ ΣM , namely:

t1 ⇔ u1, . . . , tn ⇔ un

o(t1, . . . , tn) ⇔ o(u1, . . . , un)

Since classical modal logics (based on a given modal signature) are closed
under intersections, it makes sense to speak of the least classical modal logic
[S] containing a certain set of propositional formulae S. If L = [S], we say
that S is a set of axiom schemata for L and write S ` t for t ∈ [S].

26 Strictly speaking, K. Segerberg in [33] considers only modal signatures consisting
of a single unary modal operator (i.e., unary unimodal logics; more general multi-
modal systems became popular only later on). The least classical modal logic with
a single unary operator is usually called E.
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Notice that giving a set of axiom schemata for L is not the only way to
introduce a classical modal logic L: for instance, one can introduce L just by
specifying a certain (e.g. Kripke, neighborhood, algebraic, etc.) semantics and
saying that L is the set of formulae that are valid in that semantics.

We say that a classical modal logic L is decidable iff L is a recursive set of
propositional formulae; the decision problem for L is just the membership
problem for L.

A classical modal logic L is said to be normal iff for every n-ary modal operator
o in the signature of L and every i = 1, . . . , n, L contains the formula

o(x,>,x′)

and also the formula

o(x, (y ⇒ z),x′) ⇒ (o(x, y,x′) ⇒ o(x, z,x′)),

where x abbreviates the tuple (x1, . . . , xi−1) and x′ abbreviates the tuple
(xi+1, . . . , xn). The latter schema is called the “Aristotle law”. 27 The least
normal (classical modal, unary, unimodal) logic is the modal logic usually
called K [34].

Most well-known modal logics considered in the literature (both normal and
non-normal) fit Definition 6.9: these include standard unary unimodal systems
like K, T, K4, S4, S5 and so on [34], tense systems like Kt and other tempo-
ral logics [35], the propositional dynamic logic PDL [36], common knowledge
systems [37], and computational tree logic CTL [38]. 28 Modal logics with
so-called graded modalities [40–42] (which correspond to qualified number re-
strictions in Description Logics [43]) are examples of classical modal logics
that are not normal [17].

We want to show that any classical modal logic L gives rise to an equational
extension EL of BA such that the decision problem for L corresponds to the
word problem for EL. For notational convenience, we will assume that ΣBA

also contains the binary symbol ⊃, defined by the axiom x ⊃ y ≈ x ∪ y.

Given a logic L with modal signature ΣM , we define EL as the theory having
as signature ΣM ∪ ΣBA and as set of axioms the set

BA ∪ {tBA ≈ 1 | t ∈ L},
27 The axiom schema o(x,>,x′) can be dropped by closing the logic under the
necessitation rule: from t infer o(x, t,x′); in that case, thanks to the Aristotle laws,
the replacement rules become redundant.
28 On the other hand, the full computational tree logic CTL∗ [39] is not a classi-
cal modal system in the sense of Definition 6.9, as it is not closed under uniform
substitution.
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where tBA is obtained from t by replacing t’s logical connectives (¬,∧,∨,⇒)
by the corresponding Boolean algebra operators (( ),∩,∪,⊃), and the logical
constants > and ⊥ by 1 and 0, respectively.

Vice versa, given an equational extension E of BA over the signature Σ, we
define LE as the classical modal logic over the modal signature Σ \ ΣBA ax-
iomatized by the formulae

{tL | |=E t ≈ 1},

where tL is obtained from t by the inverse of the replacement process above.

Classical modal logics (in our sense) and equational extensions of BA are
equivalent formalisms, as is well-known from algebraic logic [44]. In particular,
for our purposes, the following standard proposition is crucial, as it reduces
the decision problem for a classical modal logic L to the word problem in EL.

Proposition 6.10 For every classical modal logic L and for every proposi-
tional formula t, we have that t ∈ L iff |=EL

tBA ≈ 1.

Proof. The direction from left to right is immediate from the definition of EL.

For the opposite direction, we can use the well-known Lindenbaum algebra
construction (see e.g. [44]). 29 We define a model AL of EL as follows. Where
ΣL is the signature of L, the carrier of AL is defined as the set of all the
equivalence classes of ΣL-formulae with respect to the equivalence relation 30

≡ := {(t, u) | t⇔ u ∈ L}.

It is easy to see that, since L is closed under the replacement rules, ≡ is in fact
a congruence relation with respect to the modal operators in ΣL. We define
these operators in AL as prescribed by L, that is, we interpret each n-ary
modal operator o as the n-ary function oAL such that

oAL([t1]≡, . . . , [tn]≡) = [o(t1, . . . , tn)]≡.

We then define the Boolean operators in the obvious way, that is, we interpret
∩, say, as the binary function ∩AL such that ∩AL([t1]≡, [t2]≡) = [t1 ∧ t2]≡,
and so on. It is a standard exercise to show that AL is well-defined. From the
closure of L under uniform substitution, we obtain for arbitrary formulae t, u
that AL |= tBA ≈ uBA iff t⇔ u ∈ L; for u = 1, we also get (by modus ponens

29 Readers familiar with this construction will notice that the closure conditions
required by Definition 6.9 are precisely the closure conditions that make the con-
struction work.
30 That ≡ is in fact an equivalence relation follows from modus ponens and tautolo-
gies.
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and tautologies) that AL |= tBA ≈ 1 iff t ∈ L. This shows, in particular, that
AL is a model of the equational theory EL. Hence if |=EL

tBA ≈ 1, we have in
particular that AL |= tBA ≈ 1 and finally that t ∈ L, as claimed. �

Given two classical modal logics L1, L2 over two disjoint modal signatures
Σ1

M ,Σ
2
M , the fusion of L1 and L2 is the classical modal logic

L1 ⊗ L2

over the signature Σ1
M ∪Σ2

M defined as [L1∪L2], the least classical modal logic
extending L1 ∪L2. Since EL1⊗L2 is easily seen to be deductively equivalent to
the theory EL1 ∪ EL2 (i.e., ≈EL1⊗L2

= ≈EL1
∪EL2

), it is clear that the decision
problem L1 ∪ L2 ` t reduces to the word problem EL1 ∪ EL2 |= tBA ≈ 1.
Theorem 6.8 thus yields the following transfer theorem for classical modal
logics.

Theorem 6.11 If L1, L2 are decidable classical modal logics, then their fusion
L1 ⊗ L2 is also decidable.

6.4 Complexity issues

The complexity of our combination procedure applied to fusion decidability
in modal logic is the same as the complexity of the combination procedures
proposed for the classical normal modal logics case in [15] and for the classical
modal logics with covering normal terms treated in [17]. In fact, the same
remarks as in [17] apply, as we will see below.

To begin with, let us recall that

• the preprocessing abstraction procedure 31 takes only linear time;
• the computation of a local solver takes also linear time—although it might

be applied to an exponentially long formula, as we will see;
• only linearly many iterations of our procedure’s loop (see Fig. 1) need to be

executed on any input.

Consequently, the only sources of real complexity in the whole procedure are
the tests of Step 3 of the loop (the final test, after the loop, is of the same
nature). Hence we have to analyze:

• how many such tests are performed;
• how expensive each of them is.

31 The one that converts a formula in the signature of the fusion logic into an initial
ARS and two Boolean terms u and v.
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Suppose that n is the number of the free constants in the procedure’s input—
the initial ARS R and the shared terms u and v. This number is obviously
linear in the size of the input. Let us assume for simplicity that the only
free constants in the input are the lhs constants in R: a1, . . . , an. 32 Now,
as we discussed before stating Proposition 6.1, the number of non-equivalent
Boolean terms over n constants is 22n

, hence one might conclude that during
the ith iteration of the procedure’s loop we will need to execute O(22i · 22i

)
equivalence tests in Step 3 of the loop. Instead, we can limit ourselves to 2i

tests for the following reason.

Recall that the e-formula ϕ built at Step 4 of the loop is equivalent in the
shared theory BA to an identity of the form t ≈ 1, where t is a Boolean term.
This term is in turn equivalent in BA to a term of the form t1∩· · ·∩ tm, where
each tk is a term-clause, i.e., a term of the form b1 ∪ · · · ∪ bi where each bj is
either aj or aj. It is an immediate consequence of BA that

|=BA (t1 ∩ · · · ∩ tm) ≈ 1 iff |=BA tk ≈ 1 for all k = 1, . . . ,m.

It follows that to generate ϕ it is enough to consider in the test of Step 3
only identities of the form t ≈ 1 where t is a term-clause over a1, . . . , ai. And
we already know that, modulo BA, there are only 2i such identities. As an
additional consequence of the above we have that the size of the e-formula ϕ
is linear in 2i, which in turn means that the local solver computed in Step 6
of the loop is also linear in 2i, and so exponential in the size of the input.

Let us now consider the cost of the test

R
(i)
j |=ELj

t ≈ 1,

where t is any term-clause. This test requires R
(i)
j -normalization first and then

a call to the decision procedure for the input logic Lj. In the worst case, R
(i)
j

is of the form {a1 → t1, . . . , ai → ti} with each right-hand side term being a
recursively computed, exponentially long solver.

Normalizing the term t with respect to R
(i)
j can then raise the length of t from

linear to 2q(n), where q(n) is a quadratic polynomial. To see this it is helpful to

observe that, because of the way R
(i)
j is defined, normalizing t amounts to first

replacing every occurrence of a1 in t by t1, then replacing every occurrence of
a2 in the resulting term by t2 and so on. Now let us first consider how the
size of the terms t1, . . . , ti grows when we apply the rewrite system to them.
First of all, t1 is irreducible, and so it does not change in size, i.e., its size after
rewriting is still O(2n). The term t2 is of size O(2n) and thus may contain
at most O(2n) occurrences of a1. Thus, by rewriting, its size may grow to
O(2n +2n ·2n) = O(22n). The term t3 is of size O(2n) and thus may contain at

32 The complexity analysis does not change if we ignore other possible free constants.

39



most O(2n) occurrences of a1, a2. Considering the worst-case that all of them
are occurrences of a2, the size of t3 may grow to O(2n + 2n · 22n) = O(23n). If
we continue this argument until we reach tn, we see that indeed tn may grow
by rewriting to size O(2(n2)). Since the size of the term t is linear in n, 33 its
size may grow by rewriting (where in the worst case we replace O(n) constants
by terms of size O(2(n2))) to size O(2(n2+1)).

In conclusion, the decision procedures for L1 and for L2 may have to deal
with exponentially many, exponentially long instances of the decision problem
in each of the linearly many iterations of the loop. If these procedures are
in PSPACE, we get an EXPSPACE combined decision procedure. If instead
the procedures are in EXPTIME, we get a 2EXPTIME combined decision
procedure. These are the same as the complexity bounds given in [17] for
their combination procedure.

6.5 Examples

Here we give two examples of our combination procedure at work in the case
of classical modal logics.

Example 6.12 Consider the classical modal logic KT with modal signature
{2} and obtained by adding to K the axiom schema

2 x⇒ x.

Now let KT1 and KT2 be two signature disjoint renamings of KT in which
21 and 22, respectively, replace 2, and consider the fusion logic KT1⊗KT2.
We can use our combination procedure to show that

KT1 ⊗KT2 ` 22x⇒ 31x

(where as usual 31x abbreviates ¬21 ¬x).

For i = 1, 2, let Ei be the equational theory corresponding to KTi. It is enough
to show that

|=E1∪E2 (22(x) ⊃ 31(x)) ≈ 1, (13)

where now 31x abbreviates 21(x).

After the abstraction process, we get the two rewrite systems:

R1 = {a1 → 31(c)} and R2 = {a2 → 22(c)},

and the goal equation
(a2 ⊃ a1) ≈ 1,

33 Recall that t is a term clause over {a1, . . . , ai}.
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where a1, a2 and c are fresh constants.

Recall from our discussion in Section 6.4 that for the test in Step 3 of the
procedure’s loop we need to consider only identities of the form t ≈ 1 where
t is a term-clause over the set of constants under consideration. During the
first execution of the procedure’s loop the constants in question are a1 and c;
therefore there are only four identities to consider:

a1 ∪ c ≈ 1, a1 ∪ c ≈ 1, a1 ∪ c ≈ 1, a1 ∪ c ≈ 1.

The only identity for which the test in Step 3 is positive is a1 ∪ c. In fact,
a1 ∪ c rewrites to 31(c)∪ c, which is equivalent to c ⊃ 31(c). This is basically
the contrapositive of (the translation of) the axiom schema 21(c) ⊃ c. 34

Using the formula

s(x, z) = (u(x, 1) ⊃ u(x, z)) ⊃ (z ∩ (u(x, 0) ⊃ u(x, z))) (14)

from Subsection 6.2, we can produce a solver for that identity, which reduces
to c ∪ d1 after some simplifications, where d1 is a fresh free constant. Hence,
the following rewrite rule is added to R2 in Step 6 of the loop:

a1 → c ∪ d1.

Note that at this time we could already quit the loop and provide an output
using R2 and E2 in the final test instead of R1 and E1.

35 If we did that, the
final test R2 |=E2 (a2 ⊃ a1) ≈ 1 (that is, |=E2 22(c) ⊃ (c ∪ d1) ≈ 1) would
succeed because the corresponding modal formula

22 c⇒ (c ∨ d1)

is in fact a theorem of KT2.

Continuing the execution of the loop with the second—and final—iteration,
we get instead the following. Among the eight term-clauses involving a1, a2, c,
the test in Step 3 is positive for four of them. The conjunction of such term-
clauses gives a Boolean e-formula that is equivalent to (a2 ⊃ c)∩ (c ⊃ a1) ≈ 1.
This e-formula, once solved with respect to a2, gives (after simplifications) the
rewrite rule

a2 → d2 ∩ ((c ⊃ a1) ⊃ (d2 ⊃ c)),

34 Another approach for checking this, and also that the tests for the other term-
clauses are negative, is to translate the rewritten term-clauses into the corresponding
modal formulae, and then check whether their complement is unsatisfiable in all
Kripke structures with a reflexive accessibility relation (see [45], Fig. 5.1).
35 Recall that it is immaterial whether R1 and E1 or R2 and E2 are used for the
final test.
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which is added to R1 before quitting the loop. Using this R1, the final test of
the procedure (R1 |=E1 a2 ⊃ a1 ≈ 1) succeeds because the modal formula

d2 ∧ ((c⇒ 31c) ⇒ (d2 ⇒ c)) ⇒ 31c

is a theorem of KT1.

Example 6.13 Here we consider the fusion R ⊗ KTB, where KTB is the
classical modal logic obtained by adding to KT the axiom schema

32 x⇒ x

and R is obtained from the minimum classical unimodal system E, with modal
operator c, by adding to it the regularity rule: 36

t⇒ uct⇒ cu.
Note that R is classical, but not normal. We consider the fusion R ⊗KTB.
In the combination procedure, we must test term clauses for validity in R and
in KTB. For KTB, this can be achieved, for instance, by checking the com-
plement of the modal formulae obtained after rewriting for unsatisfiability in
all Kripke structures with a reflexive and symmetric accessibility relation (see
again [45], Figure 5.1). For R, one can check, for instance, the complement of
the modal formulae obtained after rewriting for unsatisfiability in all neigh-
borhood frames where the set of sets of worlds associated with each world is
closed under supersets (see, e.g., [33], page 43).

We apply our combined procedure to show that

R⊗KTB ` 32 cx⇒ c3x.

After purification, we obtain the ARS consisting of

R1 = {a4 → ca1, a2 → cc} and R2 = {a1 → 3c, a3 → 32 a2},

and the goal identity
(a3 ⊃ a4) ≈ 1.

In the first iteration of the loop, we test the term-clauses over a1, c, and get
(a1 ∪ c) ≈ 1 as the e-formula to be solved with respect to a1. As in the first
step of the previous example, the solver (after simplifications) gives the rewrite
rule a1 → (c ∪ d1).

36 Instead of the regularity rule, one may equivalently use the axiom schema c(t ∧
u) ⇒ cu to get the logic R (see [33], page 45).
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In the second iteration, nothing relevant happens because the e-formula to be
solved with respect to a2 is equivalent to an e-formula (namely (a1 ∪ c) ≈ 1
again) in which a2 does not occur. This entails that using (14) to compute the
local solver yields the trivial rewrite rule a2 → d2 for some fresh constant d2.
In the third iteration, term-clauses involving a1, a2, a3, c are tested; this results
in an e-formula equivalent to (a3 ⊃ a2)∩ (c ⊃ a1) ≈ 1. Solving it with respect
to a3 gives (after simplifications) the rule a3 → d3 ∩ ((c ⊃ a1) ⊃ (d3 ⊃ a2)).

We can ignore the last iteration of the loop because it modifies R2, which is
not used afterwards. Performing the final test using R1, the modal formula to
be tested for validity in R is then

(d3 ∧ ((c⇒ (c ∨ d1)) ⇒ (d3 ⇒ cc))) ⇒ c(c ∨ d1).

This formula is indeed valid in R. To see that, first notice that the subformula
c⇒ (c ∨ d1) is a tautology. Therefore it is enough to show the validity of

(d3 ∧ (d3 ⇒ cc)) ⇒ c(c ∨ d1).

This follows from the transitivity of implication, because (d3∧(d3 ⇒ cc)) ⇒ cc
and cc ⇒ c(c ∨ d1) are both valid in R (for the latter, apply the regularity
rule to the tautology c⇒ (c ∨ d1)).

As a final remark observe that if we replace in the example the logic R by
the logic E, the execution of the procedure is the same but the final test is
negative. To get a falsifying model for the modal propositional formula in the
final test, it is sufficient to observe that any Boolean algebra in which the
operator c is interpreted as the Boolean complement is a model of E. 37

7 Conclusion

In this paper, we have described a new approach for combining decision proce-
dures for the word problem in equational theories over non-disjoint signatures.
Unlike the previous combination methods for the word problem in the non-
disjoint case [10,11], this approach has the known decidability transfer results
for validity in the fusion of modal logics [12,15] as consequences. Our com-
bination result is, however, more general than these transfer results since it
applies also to non-normal modal logics—thus answering in the affirmative a
long-standing open question in modal logics—and to equational theories not
induced by modal logics (see, e.g., Example 3.6). Despite the generality of our

37 It goes without saying that these are not models for R, as they violate the regu-
larity rule.
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approach, for the modal logic application the complexity upper-bounds we
obtain are the same as for the existing, more restricted approaches [15,17].

Our results are not consequences of combination results for the conditional
word problem (the relativized validity problem) recently obtained by general-
izing the Nelson-Oppen combination method [19,20]. In fact, there are modal
logics for which the validity problem is decidable, but the relativized validity
problem is not. This is, e.g, the case for the modal logic obtained from the
product of the modal logic K with itself [18], and for modal logics obtained
by translating certain description logics into modal logic notation, such as
description logics with feature agreements [46] or with concrete domains [47].

Our new combination approach is orthogonal to the previous combination
approaches for the word problem in equational theories over non-disjoint sig-
nature [10,11]. On the one hand, the previous results do not apply to theories
induced by modal logics [11]. On the other hand, there are equational theories
that satisfy the restrictions imposed by the previous approaches, but are not
locally finite [10], and thus do not satisfy our restrictions. Both the approach
described in this paper and those in [10,11] have the known combination re-
sults for the case of disjoint signatures as a consequence. For the previous
approaches, this was already pointed out in [10,11]. For our approach, this is
an immediate consequence of the fact that the pure equality theory E= (see
Example 3.7) is absolutely combinable.

Compared to the compatibility condition introduced in a preliminary version
of this work [48], the one defined here is less restrictive (i.e., it applies to
more theories). Whereas in [48] we required that every model of E embeds
into a model of E ∪ E∗

0 , Definition 3.1 only requires this for every finitely
generated free model of E. In our examples, this greatly simplifies proving
that the compatibility condition is satisfied.

One direction for future research could be to check whether the algebraic
approach employed in this paper can also be used to obtain transfer results
for other interesting properties of modal logics, such as interpolation. Another
direction could be to find absolutely combinable theories other than the ones
considered here. In the context of modal logics, it would be interesting to find
cases in which decidability transfers even if the component theories share a
theory strictly extending the theory of Boolean algebras. A good candidate
for such a shared theory might be the equational theory ES5 induced by the
modal logic S5 since it is locally finite. Working with S5, however, would
require substantial modifications to our combination procedure because ES5

is not Gaussian.

Further research could also go in the direction of enhancing our procedure to
improve its performance in practice. The current formulation of the procedure
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privileges simplicity of exposition over efficiency. Several efficiency improve-
ments are however conceivable. For instance, it is clear from the definition
of local solver that when computing the formula ϕ(ai, c) in Steps 3 and 4 of
the main loop it is enough to consider only those identities that contain the
constant ai—and so ignore, in particular, the identities already considered in
previous steps. Also, it should be possible to remove the totality requirement
on the ordering > of the left-hand side constants in the input ARS R without
affecting the correctness of the procedure. It should be enough to consider
the smallest partial ordering > such that for all a → t ∈ R, the constant a
is greater than all left-hand side constants in t. The net effect of this relax-
ation is that the rewrite system and the tuple of constants considered in each
iteration of the loop would often be smaller, reducing again the number of
identities to consider in Step 3. Additional efficiency in computing ϕ(ai, c)
can come from using theory specific information as well. We have already seen
an example of this in Subsection 6.4, where we argue that for the theory of
Boolean algebras it is enough to consider only identities of the form t ≈ 1
with t a term-clause over the relevant constants. This reduces the number of
identities to be considered from double-exponential to single-exponential.
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