®

Check for
updates

IASCAR: Incremental Answer Set
Counting by Anytime Refinement

Johannes Klaus Fichte!@®, Sarah Alice Gaggl?>®, Markus Hecher'®,
and Dominik Rusovac?(®)

! Institute of Logic and Computation, TU Wien, Vienna, Austria
{johannes.fichte,markus.hecher}@tuwien.ac.at
2 Logic Programming and Argumentation Group, TU Dresden, Dresden, Germany
{sarah.gaggl ,dominik.rusovac}@tu-dresden.de

Abstract. Answer set programming (ASP) is a popular declarative pro-
gramming paradigm with various applications. Programs can easily have
so many answer sets that they cannot be enumerated in practice, but
counting still allows to quantify solution spaces. If one counts under
assumptions on literals, one obtains a tool to comprehend parts of the
solution space, so called answer set navigation. But navigating through
parts of the solution space requires counting many times, which is expen-
sive in theory. There, knowledge compilation compiles instances into rep-
resentations on which counting works in polynomial time. However, these
techniques exist only for CNF formulas and compiling ASP programs into
CNF formulas can introduce an exponential overhead. In this paper, we
introduce a technique to iteratively count answer sets under assumptions
on knowledge compilations of CNFs that encode supported models. Our
anytime technique uses the principle of inclusion-exclusion to system-
atically improve bounds by over- and undercounting. In a preliminary
empirical analysis we demonstrate promising results. After compiling the
input (offline phase) our approach quickly (re)counts.

Keywords: ASP - Answer set counting -+ Knowledge compilation

1 Introduction

Answer set programming (ASP) [11] is a widely used declarative problem mod-
eling and solving paradigm with many applications in knowledge representation,
artificial intelligence, planning, and many more. It is widely used to solve difficult
search problems while allowing compact modeling [7]. In ASP, a problem is rep-
resented as a set of rules, called logic program, over atoms. Models of a program
under the stable semantics form its solutions, so-called answer sets. Beyond the
search for one solution or an optimal solution, an increasingly popular ques-
tion is counting answer sets, which provides extensive applications for quantita-
tive reasoning. For example, counting is crucial for probabilistic logic program-
ming, c.f., [6,13] or encoding Bayesian networks and their inference [12]. Interest-
ingly, counting also facilitates more fine-grained reasoning modes between brave

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Gottlob et al. (Eds.): LPNMR 2022, LNAI 13416, pp. 217-230, 2022.
https://doi.org/10.1007/978-3-031-15707-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-15707-3_17&domain=pdf
http://orcid.org/0000-0002-8681-7470
http://orcid.org/0000-0003-2425-6089
http://orcid.org/0000-0003-0131-6771
http://orcid.org/0000-0002-3172-5827
https://doi.org/10.1007/978-3-031-15707-3_17

218 J. K. Fichte et al.

and cautious reasoning. To this end, one examines the ratio of an atom occur-
ring in answer sets over all answer sets, which yields a notion of plausibility of
an atom. When considering sets of literals, which represent assumptions, one
obtains a detailed tool to comprehend search spaces that contain a large num-
ber of answer sets [5]. However, already for ground normal programs, answer
set counting is #-P-complete, making it harder than decision problems. Recall
that brave reasoning is just NP-complete, but by Toda’s Theorem we know that
PH C P#T where J, oy At = PH and NP C A7 = PP, Approximate count-
ing is in fact easier, i.e., approx-#-P C BPPNY C XP and approximate answer
set counters have very recently been suggested [§8]. Still, when navigating large
search spaces, we need to count answer sets many times rendering such tools
conceptually ineffective. There, knowledge compilation comes in handy [3].

In knowledge compilation, computation is split in two phases. Formulas are
compiled in a potentially very expensive step into a representation in an offiine
phase and reasoning is carried out in polynomial time on such representations in
an online phase. Such a conceptual framework would be perfectly suited when
answer sets are counted many times, providing us with quick re-counting. While
we can translate programs into propositional formulas and directly apply tech-
niques from propositional formulas, it is widely known that one can easily run
into an exponential blowup [10] or introduce level mappings that are oftentimes
large grids and hence expensive for counters. In practice, solvers that find one
answer set or optimal answer sets can avoid a blowup by computing supported
models, which can be encoded into propositional formulas with limited overhead,
and implementing propagators on top [7].

In this paper, we explore a counterpart of a propagator-style approach for
counting answer sets. We encode finding supported models as a propositional
formula and use a knowledge compiler to obtain, in an offline phase, a represen-
tation, which allows us to construct a counting graph that in turn can be used
to efficiently compute the number of supported models. The resulting counting
graph can be quite large, but can be evaluated in parallel. Counting supported
models provides us only with an upper bound on the number of answer sets. We
suggest a combinatorial technique to systematically improve bounds by over-
and undercounting while incorporating the external support, whose absence can
be seen as cause of overcounting in the first place. Our technique can be used
to approximate the counts, but also provides the exact count on the number of
answer sets when taking the entire external support into account.

Contributions. Our main contributions are as follows.

1. We consider knowledge compilation from an ASP perspective. We recap
features such as counting under assumptions, known as conditioning, that
make knowledge compilations (sd-DNNFs) quite suitable for navigating search
spaces. We suggest a domain-specific technique to compress counting graphs
that were constructed for supported models using Clark’s completion.

2. We establish a novel combinatorial algorithm that takes an sd-DNNF of a
completion formula and allows for systematically improving bounds by over-

TASCAR: Incremental Answer Set Counting by Anytime Refinement 219

and undercounting. The technique identifies not supported atoms and com-
pensates overcounting on the sd-DNNF.

3. We apply our approach to instances tailored to navigate incomprehensible
answer set search spaces. While the problem is challenging in general, we
demonstrate feasibility and promising results on quickly (re-)counting. We
can quickly (re-)count after every search space navigation step.

Related Works. Previous work [1] considered knowledge compilation for logic
programs. There an eager incremental approximation technique incrementally
computes the result whereas our approach can be seen as an incremental lazy
approach on the counting graph. Moreover, the technique by Bogarts and Broeck
focuses on well-founded models and stratified negation, which does not work
for normal programs in general without translating ASP programs into CNFs
directly. Note that common reasoning problems on answer set programs without
negation can be solved in polynomial time. Model counting can significantly
benefit from preprocessing techniques, which eliminate variables. Widely used
propositional knowledge compilers are c¢2d [2] and d4 [9].

2 Preliminaries

We assume familiarity with propositional satisfiability, graph theory, proposi-
tional ASP [7]. Recall that a cycle C on a (di)graph G is a (directed) walk of G
where the first and the last vertex coincide. For cycle C, we let Vo be its vertices
and cycles(G) = {V¢ | C is a cycle of G}. We consider propositional variables
and mean by formula a propositional formula. By T and L we refer to the vari-
ables that are always evaluated to 1 or 0 (constants). A literal is an atom a or
its negation —a, we assume ——a = a, and vars(yp) denotes the set of variables
that occur in formula ¢. The set of models of a formula ¢ is given by M(y).

Answer Set Programming (ASP). In the context of ASP, we usually say
atom instead of variable. A (logic) program II is a finite set of rules r of the form
Qg < A1,y Gy Gy, - - -, 0y, where 0 < m < n and ao,...,a, are atoms
and usually omit T and L. For a rule r, we define H(r) := {agp} called head
of r. The body consists of B*(r) :== {a1,...,am} and B (r) = {amt1,---,an}-
The set at(r) of atoms of r consists of H(r) U BY(r) U B~ (r). Let II be a
program. Then, we let the set at(II) = |J,c at(r) of II contain its atoms.
Its positive dependency digraph DP(IT) = (V,E) is defined by V = at(II)
and E = {(a1,a0) | a1 € B*(r),ap € H(r),r € II}. The cycles of II are
given by cycles(IT) = cycles(DP(II)). II is tight, if DP(IT) is acyclic. An
interpretation of IT is a set I C at(IT) of atoms. I satisfies a rule r € IT if
H(r)N1I # 0 whenever BT (r) C I and B~ (r) NI = (. I satisfies II, if I
satisfies each rule r € II. The GL-reduct IT' is defined by II' = {H(r) «
Bt (r) | INB~(r) = 0,r € II}. I is an answer set, sometimes also called sta-
ble model, if I satisfies IT! and I is subset-minimal. The completion of I is
the formula comp(Il) = {a < V,cpq gy BF(r) VL | a € at(Il)} where
BF(r) == Nyep+) bANeep- () "¢A T. An interpretation I is a supported model

220 J. K. Fichte et al.

Fig. 1. Counting graph G(¢ A —c) labeled with literals, operations and val.

of I1, if it is a model of the formula comp(IT). Let S(IT) be the set of all supported
models of IT. It holds that AS(IT) C S(IT), but not vice-versa. If IT is tight, then
AS(IT) = S(II). In practice, we use the completion in CNF, thereby introducing
auxiliary variables and still preserving the number of supported models.

Ezample 1. Let II; = {a « b;b «;c < c}. We see that DP(II) is cyclic due
to rule ¢ «— ¢. Thus, II; is not tight and its respective answer sets AS(II;) =
{{a,b}} and supported models S(I1;) = {{a, b}, {a,b,c}} differ.

Assumptions. We define —L := {—a | a € L} for a set L of literals. Let IT
be a program and L(IT) := at(IT) U —at(IT) be its literals. An assumption is a
literal ¢ € L(IT) interpreted as rule ic(¢) :== { L « —¢}. For set L of assumptions
of II, we say that L is consistent, if there is no atom a € L for which —a € L.

Throughout this paper, by L we refer to consistent assumptions. Furthermore,
we define ic(L) := Uy ic(¢) and let ITF == IT Uic(L).

Ezample 2 (cont’d). Since AS(I11) = {{a,b}}, we see that if L C {a,b, ~c}, we
obtain AS(II1) = AS(IIf), and otherwise AS(IT¥) = 0.

3 Counting Supported Models

In our applications mentioned in the introduction, we are interested in count-
ing multiple times under assumptions. Therefore, we extend known techniques
from knowledge compilation [3]. The general outline for a given program IT is as
follows: (i) we construct the formula comp(I7) that can (ii) be compiled in a com-
putationally expensive step into a formula @comp(s7) in a normal form, so-called
sd-DNNF by existing knowledge compilers. Then, (iii) on the sd-DNNF @517
counting can be done in polynomial time in the size of @coump(r7)-We can even
count under a set L of propositional assumptions by a technique used as con-
ditioning. However, this approach yields only the number of supported models
under assumptions and we overcount compared to the number of answer sets. To
this end, in Sect. 4, (iv) we present a technique to incrementally reduce the over-
count. First, we recall how knowledge compilation can be used to count formulas

TASCAR: Incremental Answer Set Counting by Anytime Refinement 221

under assumptions by assuming that a formula is in sd-DNNF and constructing
a counting graph.

Knowledge Compilation [3] and Counting on Formulas in sd-DNNF.
Let ¢ be a formula. ¢ is in NNF' (negation normal form) if negations (—) occur
only directly in front of variables and the only other operators are conjunction
(A) and disjunction (V). NNFs can be represented in terms of rooted directed
acyclic graphs (DAGs) where each leaf node is labeled with a literal, and each
internal node is labeled with either a conjunction (A-node) or a disjunction (V-
node). We use an NNF and its DAG interchangeably. The size of an NNF ¢,
denoted by |¢]|, is given by the number of edges in its DAG. Formula ¢ is in
DNNF, if it is in NNF and it satisfies the decomposability property, that is,
for any distinct subformulas 1);,%; in a conjunction ¢ = ¥ A --- A4, with
i # j, we have vars(y;) Nvars(y;) = 0. ¢ is in d-DNNF, if it is in DNNF and it
satisfies the decision property, that is, disjunctions are of the form ¢ = (x A1)V
(—x A 12). Note that x does not occur in ¢; and ¥ because of decomposability.
11 and 19 may be conjunctions. ¢ is in sd-DNNF, if all disjunctions in ¢ are
smooth, meaning for 1 = 11 V ¥y we have vars(¢1) = vars(¢2). Determinism
and smoothness permit traversal operations on sd-DNNFs to count models of ¢
in linear time in |p|. The traversal takes place on the so called counting graph of
an sd-DNNF. The counting graph G(p) is the DAG of ¢ where each node N is
additionally labeled by val(IN) := 1, if N consists of a literal; labeled by val(N) =
X;val(V;), if N is an V-node with children V;; labeled by val(N) = II; val(N;),
if N is an A-node. By val(G(p)) we refer to val(N) for the root N of G(y).
Function val can be constructed by traversing G(p) in post-order in polynomial
time. It is well-known that val(G(p)) equals the model count of ¢. For a set L
of literals, counting of ¢ = ¢ A Avcr, £ can be carried out by conditioning of ¢
on L [2]. Therefore, the function val on the counting graph is modified by setting
val(N) = 0, if N counsists of ¢ and —¢ € L. This corresponds to replacing each
literal ¢ of the NNF ¢ by constant | or T, respectively. From now on, we denote
by @2 an equivalent sd-DNNF of comp(/I1”) and its counting graph by Gz.
Note that IT* = IT for L =). The conditioning of G;7 on L is denoted by (Gr7)*.

Ezample 3. Consider sd-DNNF @1 = ((x3 A—c)V (mzg Ac)) A(—xy A—zg A—as A
aAb). We observe in Fig. 1 that its DAG has 14 nodes, 7 variables and 13 edges,
so that 1] = 13. By conditioning, each variable in L will be removed from G(¢1)
and o1 A—c = ((x3 A L)V (ma3 A L)) A (mxyp A—ag A—xs AaAb). From Fig. 1,
we observe that the model count val(G(¢ A —¢)) of ¢ A —e is 1.

Counting Supported Models. Using the techniques as described above, we
can compile the formula comp(/) into an sd-DNNF @,y and count the
number |S(IT)| of supported models. We illustrate this in the following example.

Ezample 4. Consider IT; from Example 1. When constructing comp(I7;) in CNF,
we obtain 10 clauses with 4 new auxiliary variables x1, 2, z3, 5. We can compile
it into an sd-DNNF &7, which is logically equivalent to comp(II;). For illustra-
tion purposes, we chose ¢; from Example3 such that @, is equivalent to .
Hence, we can obtain the number | S(II1)| of supported models from val(Gp,).

222 J. K. Fichte et al.

3.1 Counting Supported Models Under Assumptions

Since assumptions of formulas and programs slightly differ, it is not immediately
clear that we can use conditioning to obtain the number of supported models
of a program under given assumptions. However, supported models of I under
assumptions L coincide with models of @z.

Observation 1. M(®;.) = S(IT*) for program II and assumptions L.

For any program I the conditioning (®57)* on assumptions L allows us to
identify supported models of a program IT%.

Lemma 1 (x'). M((®7)F) = S(ITY) for program II and assumptions L.

Immediately, we obtain that we can count the number of supported models by
first compiling the completion into an sd-DNNF and then applying conditioning.
For tight programs, this already yields the number of answer sets.

Corollary 1. val((G)L) = | M((@n)Y)| = |SUTIEY)| for program II and
assumptions L. If IT is tight, also val((Grr)*) = |AS(ITY)| holds. Furthermore,
counting can be done in time linear in |P|.

Ezample 5 (cont’d). IT; has two supported models {a, b} and {a,b, c}. Without
setting val(c) to 0 in Fig. 1, we would obtain 2, which corresponds to these two
models. By assumption —¢, we set val(c) to 0, which results in total count of 1
as the A-node (+) gives only one count in the subgraph.

3.2 Compressing Counting Graphs

When computing the counting graph of the completion of a program II, in prac-
tice, we usually construct a CNF of the completion by the well-known Tseitin
transformation. It is well-known that there is a one-to-one correspondence, how-
ever, auxiliary variables are introduced. For counting, the one-to-one correspon-
dence immediately allows to establish a bijection between the models of the CNF
and the supported models making it practicable on CNFs.

However, from Corollary1, we know that the runtime counting models
on (Gr7)¥ depends on the size of 7. In consequence, introducing auxiliary vari-
ables affects the runtime of our approach. To this end, we introduce a compress-
ing technique in Algorithm 1 that takes a counting graph G and produces a
compressed counting graph (CCG) 7(Gr), thereby removing auxiliary variables
that have been introduced by the Tseitin transformation, which we describe by
Algorithm 1. Algorithm 1 takes as input an sd-DNNF &, and literals £(IT);
and returns the compressed counting graph 7(Gr7). In Line 2, we check whether
the literal node consists of an auxiliary variable, and if so, it will be ignored.
The case distinction in Lines 5-7 distinguishes how many not ignored children
a non-literal node still has. Remember that each non-literal node is either an
A-node or an V-node. In Line5, the node can be removed, as it has no child.

! Statements marked by “x” are proven in appendix https://tinyurl.com /iascar-p.

https://tinyurl.com/iascar-p

TASCAR: Incremental Answer Set Counting by Anytime Refinement 223

Algorithm 1. Counting Graph Compression

In: Program I1, sd-DNNF &;7; Out: 7(Grr)

1: initialize array t and traverse nodes N € @ bottom-up such that

2: if N contains a literal £ € £(II) then label N with val(V)

else if N contains a literal £ ¢ £(II) then mark N as ignored

else check the number of children of N that are not marked as ignored
if N has no remaining children then mark N as ignored
else if N has one remaining child C' then N < C and mark N as ignored
else v « val(N) w.r.t. t and remaining children of N and label N with v

8: add N to t

9: remove all nodes marked with ignored from t

10: return t

In Line 6, the node needs to be absorbed, as it has only one child meaning that
the node ultimately becomes its child. In all other cases (Line 7), the node needs
to be evaluated on the CCG t such that the ignored nodes are treated as neu-
tral element of the respective sum or product. Ignored nodes are then removed
from t. It remains to show that compressing G; leaves val unchanged.

Lemma 2 (x). Let IT be a program, ®;; an sd-DNNF of comp(II) after a trans-
formation that preserves the number of models, but introduces auxiliary variables,
and Gy its counting graph. Then, val(7(Grr)) = val(Grr) and 7(Gr) can be con-
structed in time O(2 - |®r7]).

Corollary 2. If II is tight, then val(7(Grr)) = |AS(II)].

4 Incremental Counting by Inclusion-Exclusion

In the previous section, we illustrated how counting on tight programs works
and introduced a technique to speed-up practical counting. To count answer sets
of a non-tight program, we need to distinguish supported models from answer
sets on 7(Grr), which can become quite tedious. Therefore, we use the positive
dependency graph DP(IT) of IT. A set X C at(IT) of atoms is an answer set,
whenever it can be derived from I7 in a finite number of steps. In particular, the
mismatch between answer sets and supported models is caused by cyclic atoms
C € cycles(I) in DP(II) that are not supported by atoms from outside the
cycle. We call those supporting atoms of C' the external support of C.

Definition 1. Let II be a program and r € II. An atom a € BT (r) is an
external support?of C' € cycles(II), whenever H(r) C C and a ¢ C. By ES(C)
we denote the set of all external supports of C.

Next, we illustrate the effect of external supports on the answer sets derivation.

2 Note that external supports are sets of literals. However, we can simulate such

a set by introducing an auxiliary atom; hence one atom, as in this definition, is
sufficient [7].

224 J. K. Fichte et al.

Ezample 6. Let IIy = {a < b;b «— a;a <« ¢;c «+— —d;d «— —c}. We obtain a cycle
C = {a, b} due to rules a «— b and b < a with external support ES(C) = {c} due
to rule a «+ c¢. However, due to rules ¢ « —d and d < —c¢, we see that whenever
d is true, c is false, so that d deactivates the support of C, which means that
{a,b,d} cannot be derived from II5 in a finite number of steps. Accordingly, we

have S(II1) = {{a,b,c},{a,b,d},{d}}, but AS(II2) = {{a,b,c},{d}}.

Ezxample 7. Let a < b, b < a, and b < ¢, —~d be rules. Then the external support
of cyclic atoms {a,b} is {c,~d}. If instead of b «— ¢, ~d we use two alternative
rules b, <« ¢,—d and b «— b,, we have ES({a,b}) = {b,}, see Footnote (see
Footnote 2).

To approach the answer set count of a non-tight program under assump-
tions, we employ the well-known inclusion-exclusion principle, which is a count-
ing technique to determine the number of elements in a finite union of finite sets
X1,...,X,. Therefore, first the cardinalities of the singletons are summed up.
Then, to compensate for potential overcounting, the cardinalities of all inter-
sections of two sets are subtracted. Next, the number of elements that appear
in at least three sets are added back, i.e., the cardinality of the intersection
of all three sets — to compensate for potential undercounting — and so on.
As an example, for three sets X7, X5, X3 the procedure can be expressed as
|X1UX2UX3| = |X1|+|X2|+‘X3|—‘X10X2|—|X10X2|—|X20X3‘+|X10X20X3|.
This principle can be used to count answer sets via supported model counting.

We define the unsupported constraint A(C) for a set C = {cg,...,cn} €
cycles(IT) of cyclic atoms and its resp. external supports ES(C) = {so, ..., Sm} by
AC) = L« coy...,Cn, 80, -, Sm. The unsupported constraints as defined
here contain the whole set C, which is slightly weaker than constraints (nogoods)
defined in related work [7], but sufficient for characterizing answer sets.

Lemma 3 (x). For any given program II where C; € cycles(II) and 1 <i <mn,
we have that AS(IT) = S(IT U{X(Cy),...,A\(Cp)}).

Before we discuss our approach on incremental answer set counting, we need
some further notation. From now on, by A4(II) = {{A(Ci),...,A(Ca)} |
{C1,...,Cq} C cycles(II)} we denote the set of all combinations of unsup-
ported constraints of cycles that occur in any subset of cycles(II) with cardinal-
ity 0 < d < n, where n := |cycles(IT)|. Now, we define the approach of |AS(IT%)|
by ag, using the combinatorial principle of inclusion-exclusion as follows:

L .__ d EREY) L . Ly .
af =3 (DY oy ST UD =S =3 IS U)|

L d L
+ Zrem(n) N e ZFEAd(”) [SArTu D)

By subtracting |S(ITY U I')| for each I" € A;(II) we subtract the number of
supported models that are not answer sets under assumptions L with respect to
each cycle C € cycles(IT). However, we need to take into account the interaction
of cycles and their respective external supports under assumptions L. Thus we
enter the first alternation step, where we proceed by adding back |S(IT* U I)|

TASCAR: Incremental Answer Set Counting by Anytime Refinement 225

Algorithm 2. Incremental Counting by Anytime Refinement

In: program II; assumptions L; compressed counting graph 7(Gr); alternation depth
d; Out: aﬁ
count «— val(T(gn)L) and c — 0
if dis odd then d « d+1
: forevery 1 <i<d
if ¢ = count then break else ¢ «+ count
forevery 1 < j <1
c — val(T(gn)LUL/) where L' is the set of literals appearing in I'; € A;(IT)
count « count — ¢ if i is odd otherwise count « count + ¢’
return count

[

for each I' € Ay(IT), which means that we add back the number of supported
models that were mistakenly subtracted from |S(IT%)| in the previous step, and
so on, until we went through all A; where 0 < i < d. Note that therefore in total
we have d alternations. In general, we show that a% = |AS(IT*)| as follows.

Theorem 1 (x). Let IT be a program, cycles(IT) = {C4,...,Cy}, and further
U = {AC1),...,A(Ch)} be the set of all unsupported constraints of II. Then,
|S(IITF U U)| =30) (—1) 2 oreA.(m |S(ITE U T)| for assumptions L.

Finally, one can count answer sets correctly.

Corollary 3 (x). Let n = |cycles(IT)|. Then, ak = |AS(IT")| for program IT
and assumptions L.

In fact, we can characterize aZ with respect to alternation depths. If there is no
change from one alternation to another, the point is reached where the number
of answer sets is obtained, as the following lemma states.

Lemma 4 (%). Let IT be a program and L be assumptions. If aF = a{iH for
some integer i > 0, then al = |AS(ITF)].

Using our approach on computing aZ, we end up with 2" (supported model)

counting operations where n := |cycles(II)| on the respective compressed count-
ing graph 7(Gr), which, since counting is linear in k := |7(G(II))|, gives us that
approaching the answer set count under assumptions is by 2" - k exponential in
time. However, we can restrict the alternation depth to d such that 0 < d < n in
order to stop after A4(IT). Then we need to count n times for each cycle and its
respective unsupported constraints and another (?) times for 1 < ¢ < d, that is,
for each number of subsets of cycles and their respective unsupported constraints
with cardinality 7. These considerations yield the following result.

Theorem 2. Let I be a program, L be assumptions, and 0 < d < n with n ==
|cycles(IT)|. We can compute a} in time O(m-|r(G(II))|) where m = > i<d M.

1
Note that if we choose an even d, we will stop on adding back, potentially over-
counting, and otherwise we will stop on subtracting, potentially undercounting.
Algorithm 2 ensures that we end on an add-operation to avoid undercounting in
Line 2. Furthermore, it uses Lemma4 as a termination criterion in Line 4.

226 J. K. Fichte et al.

Table 1. Runtimes of compiling input program to an NNF when directly counting
answer sets (sat), counting supported models (comp), compressing counting graphs (T)
and approaching the answer set count (A) under assumptions with specified alternation
depth (d) of several instances with varying numbers of simple cycles (#SC) and sup-
ported models (#S), sd-DNNF sizes (NNF size) and CCG sizes (CCG size). Depths
marked with * indicates restricting alternation depths. IASCAR# corresponds to the
approximation of the number of answer sets.

Instance sat[s] comp[s] NNF size T[s] CCG size #S #SC d TIASCAR# Als]
8 queens 5.2 4.5 48,791 0.0 3,490 9.200- 10" 0 0 0.000-10° 0.0
10_queens 9.7 6.9 532,645 0.0 31,172 7.240- 102 0 0 1.200-10" 0.0
12 _queens 95.6 46.0 12,529,332 0.7 649,354 1.420-10" 0 0 7.500-10" 0.1
3x3_grid 5.7 4.5 788,711 0.1 210,893 3.629-10° 0 0 7.200-10? 0.0
AF_stable 3.0 2.9 11,141 0.0 3,284 7.696-10° 0 0 3.080-10° 0.0
3_coloring 8.5 7.2 6,677 0.0 2,839 1.026 - 107 0 0 3.028-10° 0.0
arb_2_ coloring 0.4 0.4 1,061 0.0 446 5.193-10% 0 0 6.490-10* 0.0
simple 1.3 0.1 90 0.0 59 1.400- 10 3 3 0.000-10° 0.0
nrp_accenture 6.0 0.3 119 0.0 84 6.000 - 10° 5 5 0.000-10° 0.0
nrp_autorit 6.6 0.4 166 0.0 123 1.600 - 10" 5 5 4.000-10" 0.0
nrp_california 12.8 0.5 201 0.0 133 8.000-10° 15 15 0.000-10° 0.5
nrp_hanoi 280.2 4.1 4,119 0.0 3,128 1.017-10" 77 2 3.197-10"* 0.3
nrp_berkshire 311.3 2.7 10,626 0.0 7,914 1.162-10" 206 %2 0.000-10° 5.0
nrp_benton 20.4 0.7 642 0.0 446 5.200 - 10* 38 *2 0.000-10° 0.0
nrp_bart 105.1 2.1 1,645 0.0 1,223 2.295- 107 46 *2 5.767-10° 0.1
nrp_aircoach 253.8 3.2 8,874 0.0 6,667 8.563-10"" 130 *2 0.000-10° 1.6
nrp_al210993 64.7 1.6 1,280 0.0 954 3.642-10° 29 *2 0.000-10° 0.0
nrp_kyoto 0.0 0.0 57 0.0 38 2.000 - 10° 22 0.000-10° 0.0

Ezample 8. Let IIs = Il U{b «— g¢;f «— g;e «— f;f « e}, which has 2
cycles Cy = {a,b} and C; = {e, f}. Their corresponding external supports
are ES(Cy) = {c,g} and ES(C1) = {g}. Program II5 has 6 supported mod-
els {{d},{d,e, f},{a,b,d},{a,b,c},{a,b,c e, f},{a,b,d,e, f}} of which {d} and
{d}

{a,b,c} are answer sets. Suppose we want to determine aid}, then: a7’ =
(ST =[S U {L — a,b,m¢,~g})| — [SUTH U{L — ¢ f,~g})| =
4 —2—2=0. We see that restricting the alternation depth to 1, leads to under-
counting. However, not restricting the depth leads to the exact count as: aéd} =

ol H (ST U {L — a,b,~¢,~g; L — ¢, f,~g})| = 0+1=1=|AS(ITI)|.

5 Preliminary Empirical Evaluation

To demonstrate the capability of our approach, we implemented a prototypical
system, called IASCAR. The system binary is publicly available for download?.
Our system counts on CCGs constructed from sd-DNNFs. Therefore, we imple-
ment Algorithms 1 and 2, which first construct a CCG and then count based on

3 See https://tinyurl.com/iascar-b for a Linux binary, instances, and raw data.
gringo cuts off trivial supported models when grounding, not affecting us here.

https://tinyurl.com/iascar-b

TASCAR: Incremental Answer Set Counting by Anytime Refinement 227

the inclusion-exclusion technique. However, for simplicity in our experiments we
use IASCAR only on simple cycles, i.e., only first and last vertex repeat. While in
theory, as stated in Corollary 3, we need to take all cycles into account to obtain
an exact result, our use of IASCAR approximates by overcounting.

In order to obtain the CCGs, we use a chain that consists of (a) construct-
ing a positive dependency graph from ground input program and encoding
simple cycles as unsupported constraints for later use separately; (b) convert-
ing extended rules of the ground input program (gringo) into normal rules
(1p2normal); (c) constructing as CNF the completion of the resulting program
(1p2sat); and (d) compiling CNF into an (sd-D)NNF (c2d). Alternatively, when
converting programs into CNF instances for directly counting the number of
answer sets, we insert a Step (b1) after (b) which adds loop formulas (1p2atomic)
and obtain the count after Step (d) without using IASCAR.

We design a small experiment to study the questions: (1) are modern knowl-
edge compilers capable of outputting sd-DNNFs that allow for counting sup-
ported models or can we even output sd-DNNFs that allow for counting answer
sets; (2) do we benefit from counting on sd-DNNFs when counting many times
for counting under assumptions; (3) how much do we benefit from our approach
to systematically reduce overcounting.

We take instances that encode a prototypical ASP domain with reachability
(nrp_*) and use of transitive closure [4] containing cycles. This problem distin-
guishes from simple SAT for which we could use knowledge compilers without
encoding a program into CNF by using level mappings or loop formulas. There-
fore, we take as instances real-world graphs of public transport networks from all
over the world, which were used in the PACE’16 and ’17 challenges. In addition,
we chose the well-known n-queens problem for n € {8,10, 12}; a sudoku sub-grid
(3x3_grid) that has to be filled uniquely with numbers from 1 to 9; an encoding
for stable extensions of an argumentation framework instance (AF _stable) [5];
the 3-coloring problem on a graph (3 _coloring); an encoding that ensures arbi-
trary 2-coloring for the same graph (arb_2 coloring). These instances admit no
simple cycles. In general, the instances result in varying NNF sizes, CCG sizes,
and number of simple cycles, answer sets and supported models. Prototypical
problems benefiting from counting many times are probabilistic settings or nav-
igation problems. These domains are quite unexplored due to absence of ASP
systems, and to the best of our knowledge, there are no standard benchmark sets
for counting under assumptions. For counting under assumptions, we selected a
small number of atoms (3) in the program to keep it consistent and having a
sufficiently high number of solutions. We selected uniform at random.

We ran the experiments on an 8-core intel 17-10510U CPU 1.8 GHz with
16 GB of RAM on Manjaro Linux 21.1.1 (Kernel 5.10.59-1-MANJARO). We
follow standard guidelines for empirical evaluations; runtime is measured by
perf.

Before we state the results, we formulate expectations from the design of
experiment and our theoretical understanding. (E1): We anticipate limitations
of counting answer sets when compiling plain level encodings/loop formulas,

228 J. K. Fichte et al.

as generating sd-DNNF takes long. (E2.1): Compressing the counting graph
can significantly reduce its size and works fast. (E2.2): The runtime of TASCAR
depends on the number of cycles and size of the CCG due to the structural
parameter of the underlying algorithm. (E2.3): Counting works fast on instances
with few cycles. Otherwise, depth restriction makes our approach utilizable.
(E3): There are instances on which simple cycles are insufficient for counting
answer sets.

We summarize our results in Tablel. (O1): From column sat[s], we can
see that constructing an sd-DNNF of a CNF, which encodes answer sets of
an input program, and subsequent counting varies notably. For example, on
smaller instances such as 8 queens, 3x3 _grid, or arb_2 coloring, we can com-
pile and count answer sets in reasonable time. Whereas on instances such as
nrp_california, nrp__hanoi, or nrp_ berkshire we observe a high runtime; in par-
ticular, there we see that sd-DNNFs can become quite large. By correlating this
observation with column #S, we can see that instances, which can be solved
fast, have no simple cycles. This matches with our expectation E1 and the
knowledge on how CNFs are generated from a program as cycles are a pri-
mary source of hardness in ASP. Unsurprisingly, compiling CNFs without level
encodings/loop formulas, as stated in column compls|, works much faster. This
is particularly visible for instances nrp california, nrp hanoi, nrp_berkshire,
nrp_bart, nrp_aircoach, or nrp_a1210993. (02): From column T|s], we can see
that compressing the counting graph can significantly reduce its size. On many
instances, we see a reduction by one order, for example, 10 __queens by factor 17.1,
12 queens by 19.3, 3x3_grid by 3.7, or AF _stable by 3.4. This confirms Expec-
tation (E2.1). However, compressing instances with a large number of cycles,
such as nrp_berkshire, is less effective than on those with a small number of
cycles, such as nrp_kyoto and 12 _queens. (O3): From columns #SC, depth,
and Afs], we can see that the runtime depends on both parameters. A medium
number of simple cycles and depth effects the runtime; similar to high number
of simple cycles and small depth. Still, with a high number of simple cycles and
a small depth, we can obtain the count under assumption sufficiently fast. This
partially confirms our Expectation (E2.2). Interestingly, the size of the CCG
itself has a much less impact than anticipated, see instance 12 queens. (O4):
The runtime, as stated in column A[s|, indicates that we can still obtain a rea-
sonable count for instances, which ran with restricted depth, marked by *; see for
example nrp hanoi, nrp aircoach, or nrp berkshire. Restricting depth d to 2
led to overcounting for instance nrp_hanoi. (O5): Finally, there is one instance,
namely, nrp_autorit, for which we overcounted by 3 when restricting to simple
cycles, which confirms Expectation (E3). However, on all other instances, we
obtained the exact number of answer sets.

The evaluation indicates that our approach clearly pays off on instances con-
taining reasonably many cycles. In particular, we see promising results when
counting under assumptions, clearly benefiting from knowledge compilation.

TASCAR: Incremental Answer Set Counting by Anytime Refinement 229

6 Conclusion and Future Work

We establish a novel technique for counting answer sets under assumptions com-
bining ideas from knowledge compilation and combinatorial solving. Knowledge
compilation and known transformations of ASP programs into CNF formulas
already provide us with a basic toolbox for counting answer sets. However, com-
pilations suffer from an overhead when constructing CNFs. One can view our
approach similar to propagation-based solving when searching for one solution.
We construct compilations that allow reasoning for supported models and apply
a combinatorial principle to count answer sets. Our approach gradually reduces
overcounting that we obtain when simply considering supported models. Further,
we introduce domain specific simplification techniques on counting graphs.

We expect our technique to be useful for navigating answer sets or answering
probabilistic questions on ASP programs, requiring counting under assumptions.
For future work, we plan to investigate techniques to reduce the size of compi-
lations for supported models, which can in fact already be a bottleneck due
to the added clauses modeling the support of an atom. There, domain specific
preprocessing or an alternative compilation could be promising. A large scale
in-depth analysis of benefits of various counting techniques, such as enumera-
tion on instances with few expected answer sets, approximations if one needs
to count only once, or knowledge compilations could be fruitful for users. From
the theoretical side, questions on effectiveness of knowledge compilations in ASP
might be interesting similar to considerations for formulas [3].

Acknowledgements. Research was funded by the DFG through the Collabo-
rative Research Center, Grant TRR 248 project ID 389792660, the BMBF, Grant
01IS20056 _NAVAS, the Vienna Science and Technology Fund (WWTF) grant ICT19-
065, and the Austrian Science Fund (FWF) grants P32830 and Y698.

References

1. Bogaerts, B., den Broeck, G.V.: Knowledge compilation of logic programs using
approximation fixpoint theory. TPLP 15(4-5), 464-480 (2015)

2. Darwiche, A.: Compiling knowledge into decomposable negation normal form. In:
IJCAT 1999, pp. 284-289. Morgan Kaufmann (1999)

3. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17,
229-264 (2002)

4. FEiter, T., Hecher, M., Kiesel, R.: Treewidth-aware cycle breaking for algebraic
answer set counting. In: KR 2021, vol. 18, pp. 269-279 (2021)

5. Fichte, J.K., Gaggl, S.A., Rusovac, D.: Rushing and strolling among answer sets -
navigation made easy. In: AAAT 2022 (2022)

6. Fierens, D., et al.: Inference and learning in probabilistic logic programs using
weighted Boolean formulas. TPLP 15(3), 358-401 (2015)

7. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From
theory to practice. Artif. Intell. 187—188, 52-89 (2012)

8. Kabir, M., Everardo, F., Shukla, A., Fichte, J.K., Hecher, M., Meel, K.: ApproxASP
- a scalable approximate answer set counter. In: AAAT 2022 (2022, in Press)

https://perspicuous-computing.science

230

10.

11.

12.

13.

J. K. Fichte et al.

Lagniez, J.M., Marquis, P.: An improved decision-DDNF compiler. In: IJCAI 2017,
pp. 667-673. The AAAI Press (2017)

Lifschitz, V., Razborov, A.: Why are there so many loop formulas? ACM Trans.
Comput. Log. 7(2), 261-268 (2006)

Marek, V.W., Truszczyniski, M.: Stable models and an alternative logic program-
ming paradigm. In: Apt, K.R., Marek, V.W., Truszczynski, M., Warren, D.S. (eds.)
The Logic Programming Paradigm, pp. 375-398. Springer, Heidelberg (1999).
https://doi.org/10.1007/978-3-642-60085-2 17

Sang, T., Beame, P., Kautz, H.: Performing Bayesian inference by weighted model
counting. In: AAAT 2005. The AAAI Press (2005)

Wang, Y., Lee, J.: Handling uncertainty in answer set programming. In: AAAI
2015, pp. 4218-4219. The AAAI Press (2015)

https://doi.org/10.1007/978-3-642-60085-2_17

	IASCAR: Incremental Answer Set Counting by Anytime Refinement
	1 Introduction
	2 Preliminaries
	3 Counting Supported Models
	3.1 Counting Supported Models Under Assumptions
	3.2 Compressing Counting Graphs

	4 Incremental Counting by Inclusion-Exclusion
	5 Preliminary Empirical Evaluation
	6 Conclusion and Future Work
	References

