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ATM vs. DTM

We have observed four major relationships between alternating and deterministic
complexity classes. For the special case of polynomial bounds, we got:

APTime ⊆ PSpace

How? Deterministic depth-first search on ATMs computation tree.

APTime ⊇ PSpace

How? Use alternation to implement Savitch-style middle-first search in polyspace.

APSpace ⊆ ExpTime

How? Analyse the exponential ATM configuration graph deterministically.

APSpace ⊇ ExpTime

How? Re-trace exponential computation path by verifying local changes.
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From Deterministic Time To Alternating Space
Let h : N→ R be a function in O(g) that defines the exact time bound forM (no
O-notation), and that can be computed in space O(log g).

01 AtmSimulateTm(TMM, input word w, time bound h) :
02 existentially guess s ≤ h(|w|) // halting step
03 existentially guess i ∈ {0, . . . , s} // halting position
04 existentially guess ω ∈ Q × Γ // halting cell + state
05 if M would not halt in ω :
06 return false
07 for j = s, . . . , 1 do :
08 existentially guess 〈ω−1,ω0,ω1〉 ∈ Ω3

09 if M(ω−1,ω0,ω+1) ! ω :
10 return false
11 universally choose ℓ ∈ {−1, 0, 1}
12 ω := ωℓ
13 i := i + ℓ
14 // after tracing back s steps, check input configuration:
15 return “input configuration ofM on w has ω at position i”
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A Remark on (Non)determinism

For each cell that is to be verified:

• we guess three predecessor cells,

• which we then verify recursively.

" The contents of the same cell is guessed in several places of the ATM computation
tree (“in several recursive subprocesses”)

If processes do not exchange information,
how do we know that the guesses are not contradicting each other?

Because of determinism:

• The simulated TM is deterministic

• Hence, if the starting point is determined, every future cell in every position is
determined too

• Therefore, for every cell, there is only one possible guess that eventually leads to
the right input tape

" Independent guesses, if correct, must generally be the same
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A Remark on Space-Constructibility

Our algorithm needs to compute h in logarithmic space w.r.t. its absolute value to
implement the line

02 existentially guess s ≤ h(|w|) // halting step

However, we could also avoid this:

• The algorithm from line 03 on checks if the TM halts after s steps

• We can make a similar algorithm that checks if the TM does not halt after s steps
• We can then use an overall algorithm that increments s one by one (starting from 1):

– For each value of s, guess if the TM halts after this time or not
– Check the guess using the above procedures
– Stop when the halting configuration has been found

• Because of the time bound on the simulated TM, s will not become larger than 2O(f )

here, so we can always store it in space f .
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Summary: Alternating vs. Deterministic Classes

We can sum up our findings as follows:

L ⊆ PTime ⊆ PSpace ⊆ ExpTime ⊆ ExpSpace

= = = =

ALogSpace ⊆ APTime ⊆ APSpace ⊆ AExpTime

David Carral, January 1, 2021 Foundations of Complexity Theory slide 7 of 24



The Polynomial Hierarchy
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Bounding Alternation

For ATMs, alternation itself is a resource. We can distinguish problems by how much
alternation they need to be solved.

We first classify computations by counting their quantifier alternations:

Definition 17.1: Let P be a computation path of an ATM on some input.

• P is of type Σ1 if it consists only of existential configurations (with the
exception of the final configuration)

• P is of type Π1 if it consists only of universal configurations

• P is of type Σi+1 if it starts with a sequence of existential configurations,
followed by a path of type Πi

• P is of type Πi+1 if it starts with a sequence of universal configurations,
followed by a path of type Σi
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Alternation-Bounded ATMs

We apply alternation bounds to every computation path:

Definition 17.2: A Σi Alternating Turing Machine is an ATM for which every com-
putation path on every input is of type Σj for some j ≤ i.
A Πi Alternating Turing Machine is an ATM for which every computation path on
every input is of type Πj for some j ≤ i.

Note that it’s always ok to use fewer alternations (“j ≤ i”) but computation has to start
with the right kind of quantifier (∃ for Σi and ∀ for Πi).

Example 17.3: A Σ1 ATM is simply an NTM.
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Alternation-Bounded Complexity

We are interested in the power of ATMs that are both time/space-bounded and
alternation-bounded:

Definition 17.4: Let f : N → R+ be a function. ΣiTime(f (n)) is the class of all
languages that are decided by some O(f (n))-time bounded Σi ATM. The classes
ΠiTime(f (n)), ΣiSpace(f (n)) and ΠiSpace(f (n)) are defined similarly.

The most popular classes of these problems are the alternation-bounded polynomial
time classes:

ΣiP =
!

d≥1

ΣiTime(nd) and ΠiP =
!

d≥1

ΠiTime(nd)

Hardness for these classes is defined by polynomial many-one reductions as usual.
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Basic Observations

Theorem 17.5: Σ1P = NP and Π1P = coNP.

Proof: Immediate from the definitions. □

Theorem 17.6: coΣiP = ΠiP and coΠiP = ΣiP.

Proof: We observed previously that ATMs can be complemented by simply exchanging
their universal and existential states. This does not affect the amount of time or space
needed. □
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Example

MinFormula

Input: A propositional formula ϕ.

Problem: Is ϕ the shortest formula that is satisfied
by the same assignments as ϕ?

One can show that MinFormula is Π2P-complete. Inclusion is easy:

01 MinFormula(formula ϕ) :

02 universally choose ψ := formula shorter than ϕ

03 existentially guess I := assignment for variables in ϕ
04 if ϕI = ψI :
05 return false
06 else :
07 return true
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The Polynomial Hierarchy

Like for NP and coNP, we do not know if ΣiP equals ΠiP or not.
What we do know, however, is this:

Theorem 17.7:

• ΣiP ⊆ Σi+1P and ΣiP ⊆ Πi+1P

• ΠiP ⊆ Πi+1P and ΠiP ⊆ Σi+1P

Proof: Immediate from the definitions. □

Thus, the classes ΣiP and ΠiP form a kind of hierarchy:
the Polynomial (Time) Hierarchy. Its entirety is denoted PH:

PH :=
!

i≥1

ΣiP =
!

i≥1

ΠiP
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Problems in the Polynomial Hierarchy

The “typical” problems in the Polynomial Hierarchy are restricted forms of True QBF:

True ΣkQBF

Input: A quantified Boolean formula ϕ with at
most k quantifier alternations of the form
∃X1

1 , X1
2 , · · ·∀X2

1 , X2
2 , · · · QkXk

1, Xk
2, · · · .ψ.

Problem: Is ϕ true?

True ΠkQBF is defined analogously, using formulae with k quantifier alternations that
start with ∀ rather than ∃.

Theorem 17.8: For every k, True ΣkQBF is ΣkP-complete and True ΠkQBF is
ΠkP-complete.

Note: It is not known if there is any PH-complete problem.
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Alternative Views on the Polynomial Hierarchy
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Certificates

For NP, we gave an alternative definition based on polynomial-time verifiers that use a
given polynomial certificate (witness) to check acceptance. Can we extend this idea to
alternation-bounded ATMs?

Notation: Given an input word w and a polynomial p, we write ∃pc as abbreviation for
“there is a word c of length |c| ≤ p(|w|).” Similarly for ∀pc.

We can rephrase our earlier characterisation of polynomial-time verifiers:

L ∈ NP iff there is a polynomial p and language V ∈ P such that

L = {w | ∃pc such that (w#c) ∈ V}
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Certificates for bounded ATMs

Theorem 17.9: L ∈ ΣkP iff there is a polynomial p and language V ∈ P such that

L = {w | ∃pc1.∀pc2 . . . Qpkck such that (w#c1#c2# . . . #ck) ∈ V}

where Qk = ∃ if k is odd, and Qk = ∀ if k is even.

An analoguous result holds for L ∈ ΠkP.

Proof sketch:
⇒: Similar as for NP. Use ci to encode the non-deterministic choices of the ATM. With all
choices given, the acceptance on the specified path can be checked in polynomial time.
⇐: Use an ATM to implement the certificate-based definition of L, by using universal and
existential choices to guess the certificate before running a polynomial time verifier. □
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Oracles (Revision)

Recall how we defined oracle TMs:

Definition 3.15: An Oracle Turing Machine (OTM) is a Turing machine M with a
special tape, called the oracle tape, and distinguished states q?, qyes, and qno. For
a language O, the oracle machine MO can, in addition to the normal TM opera-
tions, do the following:

Whenever MO reaches q?, its next state is qyes if the content of the oracle tape is
in O, and qno otherwise.

Let C be a complexity class:

• For a language O, we write CO for the class of all problems that can be solved by a
C-TM with oracle O.

• For a complexity class O, we write CO for the class of all problems that can be
solved by a C-TM with an oracle from class O.

Note: this notation will only be used for complexity classes C where it is clear what a “C-TM with an oracle” is.
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The Polynomial Hierarchy – Alternative Definition

We recursively define the following complexity classes:

Definition 17.10:

• ΣP
0 := P and ΣP

k+1 := NPΣ
P
k

• ΠP
0 := P and ΠP

k+1 := coNPΠ
P
k

Remark:
Complementing an oracle (language/class) does not change expressivity: we can just
swap states qyes and qno. Therefore ΣP

k+1 = NPΠ
P
k and ΠP

k+1 := coNPΣ
P
k .

Hence, we can also see that ΣP
k = coΠP

k .

Question:
How do these relate to our earlier definitions of the PH classes?
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Oracle TMs vs. ATMs

It turns out that this new definition leads to a familiar class of problems:1

Theorem 17.11: For all k ≥ 1, we have ΣP
k = ΣkP and ΠP

k = ΠkP.

Proof: We only prove the case ΣP
k = ΣkP – the other follows by complementation.

The proof is by induction on k.

Base case: k = 1.
The claim follows since ΣP

1 = NPP = NP and Σ1P = NP (as noted before).

1Because of this result, both of our notations are used interchangeably in the literature,
independently of the definition used.
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Oracle TMs vs. ATMs (2)

Induction step: assume the claim holds for k. We show ΣP
k+1 = Σk+1P.

“⊇” Assume L ∈ Σk+1P.

• By Theorem 17.9, for some language V ∈ P and polynomial p:
L = {w | ∃pc1.∀pc2 . . . Qpk+1ck+1 such that (w#c1#c2# . . . #ck+1) ∈ V}

• By Theorem 17.9, the following defines a language in ΠkP:
L′ := {(w#c1) | ∀pc2 . . . Qpkck+1 such that (w#c1#c2# . . . #ck+1) ∈ V}.

• The following algorithm in NPL′ decides L:
on input w, non-deterministically guess c1;
then check (w#c1) ∈ L′ using the L′ oracle

• By induction, L′ ∈ ΠP
k . Hence, the algorithm runs in NPΠ

P
k = NPΣ

P
k = ΣP

k+1
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Oracle TMs vs. ATMs (3)

Induction step: assume the claim holds for k. We show ΣP
k+1 = Σk+1P.

“⊆” Assume L ∈ ΣP
k+1.

• There is an ΣP
k+1-TMM that accepts L, using an oracle O ∈ ΣP

k .

• By induction, O ∈ ΣkP and thus Ō ∈ ΠkP for its complement

• For an Σk+1P algorithm, first guess (and verify) an accepting path ofM including
results of all oracle queries.

• Then universally branch to verify all guessed oracle queries:
– For queries w ∈ O with guessed answer “no”, use ΠkP check for w ∈ Ō
– For queries w ∈ O with guessed answer “yes”, use Πk−1P check for

(w#c1) ∈ O′, where O′ is constructed as in the ⊇-case, and c1 is guessed in
the first ∃-phase □
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Summary and Outlook

The Polynomial Hierarchy is a hierarchy of complexity classes between P and PSpace

It can be defined by stacking NP-oracles on top of P/NP/coNP, or, equivalently, by
bounding alternation in polytime ATMs

The typical complete problems for the classes in the polynomial hierarchy are QBF with
bounded forms of quantifier alternation

What’s next?

• Some more about the polynomial hierarchy

• End-of-year consultation

• Computing with circuits
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