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Abstract

Answering queries in information systems that allow for ex-
pressive inferencing is currently a field of intense research.
This problem is often referred to as ontology-based data ac-
cess (OBDA). We focus on conjunctive query entailment un-
der logical rules known as tuple-generating dependencies,
existential rules or Datalog+/-. One of the most expressive
decidable classes of existential rules known today is that of
greedy bounded treewidth sets (gbts). We propose an algo-
rithm for this class, which is worst-case optimal for data and
combined complexities, with or without bound on the pred-
icate arity. A beneficial feature of this algorithm is that it
allows for separation between offline and online processing
steps: the knowledge base can be compiled independently
from queries, which are evaluated against the compiled form.
Moreover, very simple adaptations of the algorithm lead to
worst-case-optimal complexities for specific subclasses of
gbts which have lower complexities, such as guarded rules.

Introduction
Answering conjunctive queries (CQs) in information sys-
tems that allow for expressive inferencing is currently a field
of intense research, receiving input from several other do-
mains. Instances of this problem have been addressed in dif-
ferent research domains, most notably the field of Seman-
tic Web technologies where the problem is referred to as
ontology-based data access (OBDA), and the database area,
where the interest focusses on CQ entailment under rule-
based deduction formalisms such as tuple-generating depen-
dencies (TGDs) (Beeri and Vardi 1984) or Datalog+/- (Calı̀,
Gottlob, and Kifer 2008; Calı̀, Gottlob, and Lukasiewicz
2009), also referred to as existential rules (Baget et al. 2009;
2011). The body and the head of these rules are arbi-
trary conjunctions of atoms (without function symbols) and
variables occurring in the head but not in the body are
existentially quantified. While entailment with existential
rules is undecidable in general, lately, a plethora of log-
ical fragments has been identified for which CQ answer-
ing is decidable, alongside with tight complexity bounds
for most of them. One of the most expressive decidable
class of existential rules known today is that of greedy
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bounded treewidth sets (gbts) (Baget et al. 2011), which sub-
sumes well-known formalisms such as (plain) Datalog and
guarded rules, as well as generalizations of these (Calı̀, Got-
tlob, and Kifer 2008; Baget, Leclère, and Mugnier 2010;
Krötzsch and Rudolph 2011). These fragments cover the
core of lightweight description logics dedicated to query
answering, namely DL-Lite (Calvanese et al. 2007), EL
(Baader, Brandt, and Lutz 2005; Lutz, Toman, and Wolter
2009) – which are the basis of the tractable fragments of
the OWL Web Ontology Language – and more broadly the
family of Horn description logics (Krötzsch, Rudolph, and
Hitzler 2007; Ortiz, Rudolph, and Šimkus 2011).

While the decidability and complexity landscape of these
formalisms is clearing up, few attempts have been made
to find algorithms for CQ answering that are of more than
just theoretical interest – notable exceptions being OWL
tractable fragments and very simple Datalog+/- classes. Be-
yond these lightweight formalisms, CQ answering is usually
considered a problem too hard to be practically solvable.

We undertake a step in this direction by devising an
algorithm that sharply improves over an earlier proposal
(Baget et al. 2011) by (i) allowing a more direct computa-
tion without the use of oracles thus being conceptually sim-
pler and much easier to understand, (ii) allowing beneficial
separation between offline and online processing steps, as
the knowledge base can be compiled independently from
queries, which are evaluated against the compiled form, and
(iii) exhibiting worst-case-optimal complexity for gbts, as
well as for specific subclasses of gbts which have lower
complexities, by very simple adaptations of the algorithm.

Moreover, our endeavor is not without theoretical merit.
First, our algorithm improves over the earlier one in terms
of combined complexity from 3EXPTIME to 2EXPTIME,
thereby establishing a novel upper bound and yielding
that deciding CQ entailment under gbts rules is in fact
2EXPTIME-complete. Second, we establish a novel tight
bound for query complexity since we prove that CQ entail-
ment under gbts rules is NP-complete for query complexity.

Please see the accompanying research report (Thomazo et
al. 2012) for more details.

Outline
We give here an informal high-level description of the al-
gorithm. Due to the existential variables in rule heads, a



forward chaining mechanism (like for instance the so-called
chase in databases) does not halt in general. However, for
gbts rules, each sequence of rule applications gives rise to a
so-called derivation tree, which is a decomposition tree of
the derived set of facts; moreover, this tree can be built in a
greedy way: each rule application produces a new tree node
(called a bag), which contains the atoms created by the rule
application, such that the derived set of facts is the union
of all bag atoms from this tree. The set of derived facts is
potentially infinite, but thanks to its tree-like structure, the
forward chaining process can be stopped after a finite num-
ber of rule applications.

The algorithm proceeds in two steps: first, it computes
a finite tree, called a (full) blocked tree, which finitely rep-
resents all possible derivation trees; second, it evaluates a
query against this blocked tree. Building a blocked tree re-
lies on two notions:

• bag patterns: each bag is associated with a pattern, which
encodes all ways of mapping a (subset of a) rule body to
the current facts, while using some terms from this bag.
It follows that a rule is applicable to the current facts iff
one of the bag patterns contains its rule body. Then, the
forward chaining can be performed “on the bag-level” by
forgetting about the current facts and considering solely
the derivation tree decorated with patterns. At each step,
patterns are maintained and kept up-to-date by a propa-
gation procedure based on a join operation between the
patterns of adjacent bags.

• an equivalence relation on bags: thanks to patterns, an
equivalence relation can be defined on bags, so that two
bags are equivalent if and only if the “same” derivation
subtrees can be built under them. The algorithm devel-
ops only one node per equivalence class, the other be-
ing blocked (note however that equivalence classes evolve
during the computation, thus a blocked node can later be-
come unblocked, and vice-versa). This tree grows until
no new rule application can be performed to unblocked
bags: the full blocked tree is then obtained.

The evaluation of a conjunctive query against a blocked
tree cannot be performed by a simple homomorphism test.
Instead, we define the notion of a ∗-homomorphism, which
can be seen as a homomorphism to an “unfolding” or “devel-
opment” of this blocked tree. As the length of the developed
paths is bounded with an exponent that depends only on the
rule set (more precisely, the exponent is the maximal num-
ber of variables shared by the body and the head of a rule),
checking if there is a ∗-homomorphism from a conjunctive
query to a blocked tree is time polynomial in data complex-
ity and nondeterministically time polynomial in query com-
plexity.

Preliminaries
An atom is of the form p(t1, . . . , tk) where p is a predicate
with arity k, and the ti are terms, i.e. variables or constants.
A conjunct C[x] is a finite conjunction of atoms, where x is
the set of variables occurring in C. A fact is the existential

closure of a conjunct.1 A Boolean conjunctive query (CQ)
has the same form as a fact, thus we identify both notions.
We also represent conjuncts, facts and CQs as sets of atoms.
Given an atom or a set of atoms A, vars(A) and terms(A)
denote its set of variables and of terms, respectively. Given
conjuncts F and Q, a homomorphism π from Q to F is a
substitution of vars(Q) by terms of F s.t. π(Q) ⊆ F (we
say that π maps Q to F ). First-order semantic entailment is
denoted by |=. It is well-known that, given two facts F and
Q, F |= Q iff there is a homomorphism from Q to F .

Definition 1 (Existential Rule) An existential rule (or sim-
ply rule when not ambiguous) is a formula R =
∀x∀y(B[x,y] → (∃zH[y, z])) where B = body(R) and
H = head(R) are conjuncts, called the body and the head
of R, respectively. The frontier of R, denoted fr(R), is the
set of variables vars(B) ∩ vars(H) = y.

We can now omit quantifiers since there is no ambiguity.

Definition 2 (Application of a Rule) A rule R is applica-
ble to a fact F if there is a homomorphism π from body(R)
to F ; the result of the application of R to F w.r.t. π is a fact
α(F,R, π) = F ∪ πsafe(head(R)) where πsafe is a substi-
tution of head(R), that replaces each x ∈ fr(R) with π(x),
and each other variable with a “fresh” variable, i.e., not
introduced before. As α only depends on π|fr(R) (the re-
striction of π to fr(R)), we also write α(F,R, π|fr(R)).

Example 1 Let F = {r(a, b), r(c, d), p(d)} and R1 =
r(x, y) → r(y, z). There are two applications of R1

to F , respectively by h1 = {(x, a), (y, b)} and h2 =
{(x, c), (y, d)}. Let F1 = α(F,R1, h1) = F ∪ {r(b, z1)}.
Let F2 = α(F1, R1, h2) = F1 ∪ {r(d, z2)}.

Definition 3 (R-derivation) Let F be a fact, and R be a
set of rules. An R-derivation (from F to Fk) is a finite se-
quence (F0 = F ), (R0, π0, F1), . . . , (Rk−1, πk−1, Fk) s.t.
for all 0 ≤ i < k, Ri ∈ R and πi is a homomorphism from
body(Ri) to Fi s.t. Fi+1 = α(Fi, Ri, πi). When only the
successive facts are needed, we note (F0 = F ), F1, . . . , Fk.

Theorem 1 (Soundness and Completeness) Let F and Q
be two facts, and R be a set of rules. Then F,R |= Q iff
there exists anR-derivation from F to Fk s.t. Fk |= Q.

A knowledge base (KB) K = (F,R) is composed of a
finite set of facts (seen as a single fact) F and a finite set
of rules R. W.l.o.g. we assume that the rules have pairwise
disjoint sets of variables. We denote by C the set of constants
occurring in (F,R) and by T0 (called the “initial terms”) the
set vars(F ) ∪ C, i.e., T0 includes not only the terms from
F but also the constants occurring in rules. The Boolean
CQ entailment problem is the following: given a KB K =
(F,R) and a Boolean CQ Q, does F,R |= Q hold ?

A fact can naturally be seen as a hypergraph whose nodes
are the terms in the fact and whose hyperedges encode
atoms. The primal graph (also called Gaifman graph) of
this hypergraph has the same set of nodes and there is an

1Note that hereby we generalize the classical notion of a fact in
order to take existential variables into account.



edge between two nodes if they belong to the same hyper-
edge. The treewidth of a fact is defined as the treewidth2

of its associated primal graph. Given a fact Fi, a deriva-
tion S to Fi or a tree decomposition T of Fi, we note
atoms(S) = atoms(T ) = Fi.

A set of rules R is called a bounded treewidth set (bts) if
allR-derived facts have bounded treewidth, i.e., for any fact
F there exists an integer b such that, for any fact F ′ that can
beR-derived from F , treewidth(F ′) ≤ b.

The proof of decidability of CQ entailment with bts re-
lies on a result by Courcelle (Courcelle 1990), that states
that classes of first-order logic having the bounded treewidth
model property are decidable. It does not (at least not di-
rectly) provide a halting algorithm. Very recently, a subclass
of bts has been defined, namely greedy bts (gbts), which is
equipped with a halting algorithm (Baget et al. 2011). A
derivation is said to be greedy if, for every rule application
in this derivation, all the frontier variables not being mapped
to the initial terms T0 are jointly mapped to terms added by
a single previous rule application. This allows to build a tree
decomposition of a derived fact in a greedy way.

Definition 4 (Greedy Derivation) An R-derivation
F0, . . . , Fk is said to be greedy if, for all i with 0 < i < k,
there is j ≤ i s.t. πi(fr(Ri)) ⊆ vars(Aj) ∪ T0, where
Aj = πsafe

j (head(Rj)) (any j ≤ i can be chosen if fr(Ri) is
mapped to T0).

Definition 5 (Greedy bounded-treewidth set of rules)
A rule set R is said to be a greedy bounded-treewidth set
(gbts) if (for any fact F ) any R-derivation (from F ) is
greedy.

From now on, we restrict our focus to gbts and we assume
thatR denotes a gbts rule set.

Any greedy derivation gives rise to a derivation tree,
whose root corresponds to the initial fact, and each other
node corresponds to a rule application of the derivation. To
each node is assigned a set of terms and a set of atoms. Note
that the set of terms assigned to the root is T0, i.e., it in-
cludes the constants that may be brought by rule applica-
tions. Moreover, T0 is included in the set of terms of all
nodes. This ensures that the derivation tree is a decomposi-
tion tree of the associated derived fact.

Definition 6 (Derivation Tree) Let S = (F0 = F ), . . . , Fk

be a greedy derivation. The derivation tree as-
signed to S, notation DT (S), is a rooted tree T =
(B, terms, atoms, U, λ), where B = {B0, . . . , Bk} is a set
of nodes, also called bags, U is the set of edges, terms and
atoms are bag labeling mappings, and λ is an edge labeling
mapping, such that:

1. the root of T is B0 with terms(B0) = T0 and
atoms(B0) = atoms(F ).

2. For 0 < i ≤ k, let Ri−1 be the rule applied according
to homomorphism πi−1 to produce Fi; then terms(Bi) =
vars(Ai−1) ∪ T0 and atoms(Bi) = atoms(Ai−1), where
Ai−1 = πsafe

i−1(head(Ri−1)). There is an edge between Bi

2We assume that the reader is familiar with this notion, see e.g.
(Robertson and Seymour 1984).

a b c d z1 z3 

a b c d z2 a b c d z1 

a b c d 

r(d,z2) r(b,z1) 

r(z1,z3) r(z2,z4) 

r(a,b) r(c,d) p(d) 

(R1,b) (R1,d) 

(R1,z1) (R1,z2) 

B1 

B3 

B2 

B4 

B0 

a b c d z2 z4 

Figure 1: Derivation tree of Example 1. Only the image of
the single frontier variable from R1 is mentioned in edge
labels.

and the node Bj s.t. j is the smallest integer for which
πi−1(fr(Ri−1)) ⊆ terms(Bj) (since the derivation is
greedy, such a Bj always exists); this edge is labeled by
(Ri−1, πi−1|fr(Ri−1)).

The derivation tree is a decomposition tree of Fk, whose
width is bounded by |T0|+ maxR∈R(|vars(head(R))|).

Example 1 (contd.) See also Figure 1. We build DT(S) for
S = (F0 = F ), (R1, h1, F1), (R1, h2, F2). Let B0 be
the root of the DT (S). (R1, h1) yields a bag B1 child
of B0, with atoms(B1) = {r(b, z1)} and terms(B1) =
{a, b, c, d, z1}. (R1, h2) yields a bag B2 with atoms(B2) =
{r(d, z2)} and terms(B2) = {a, b, c, d, z2}. fr(R1) =
{y} and h2(y) = d, which is both in terms(B0) and
terms(B1), B2 is thus added as a child of the highest bag,
i.e., B0. R1 can be applied again, with homomorphisms
h3 = {(x, b), (y, z1)} and h4 = {(x, d), (y, z2)}, which
leads to create two bags, B3 and B4, under B1 and B2 re-
spectively. Clearly, this can be repeated indefinitely.

Given a rooted tree T and a node B in T , the subtree
rooted in B contains all descendants of B in T , including
B. A prefix subtree of a rooted tree T is obtained from T by
deleting some of its subtrees (i.e., turning some nodes of T
into leafs). Given derivations S and S′, if S′ = S.S′′ (i.e.,
the sequence S is a prefix of the sequence S′) then DT (S)
is a prefix subtree of DT (S′), but the converse is false.

It is not known wether gbts is recognizable,3 however
large and easily recognizable subsets of gbts are known.
These subsets are based on the guardedness notion, inspired
from guarded logic (Andréka, Németi, and van Benthem
1998), and/or on properties of rule frontiers. A rule R is
said to be guarded if there is an atom a in its body, called
a guard, that contains all the variables from the body, i.e.,
vars(a) = vars(body(R)) (Calı̀, Gottlob, and Kifer 2008).
Since any rule application necessarily maps a guard to the
atom of a bag from the derivation tree, it follows that all
derivations with guarded rules are greedy. The guardedness
constraint can be relaxed in two ways: first, by noticing that
variables necessarily mapped to initial terms do not need
to be guarded, we obtain weakly guarded rules (Calı̀, Got-
tlob, and Kifer 2008); second, by noticing that only frontier

3We conjecture that it is.



Class w unbounded w bounded Data Comp.
gbts 2EXPTIME ? 2EXPTIME EXPTIME
wfg, jfg 2EXPTIME 2EXPTIME EXPTIME
fr1, fg 2EXPTIME 2EXPTIME PTIME
wg 2EXPTIME EXPTIME EXPTIME
guarded 2EXPTIME EXPTIME PTIME

?: 2EXPTIME membership proven in this paper

Table 1: Combined and Data complexity for gbts classes.
Upper and lower bounds coincide.

variables need to be guarded, we obtain frontier-guarded
rules (Baget, Leclère, and Mugnier 2010); finally, both re-
laxations can be combined, which yields weakly frontier-
guarded rules (Baget, Leclère, and Mugnier 2010). More
precisely, a rule R is weakly guarded (wg) if there is an a ∈
body(R) that contains all affected variables from body(R);
a variable is said to be affected if it occurs only in affected
predicate positions, which are positions that may contain a
new variable generated by forward chaining (this notion re-
quires to consider the whole set of rules). The reader is re-
ferred to (Fagin et al. 2005) for a syntactic characterization
of affected variables. A rule R is frontier-guarded (fg) if
there is an a ∈ body(R) with vars(fr(R)) ⊆ vars(a). Note
that frontier-guarded rules generalize another class based
on a simple property of the frontier: a rule R is frontier-
one (fr1) if |fr(R)| = 1 (Baget et al. 2009). A rule R is
weakly-frontier guarded (wfg) if there is an a ∈ body(R)
that contains all affected variables from fr(R). By refin-
ing the notion of an affected variable, w(f)g can be further
generalized into jointly-(frontier)-guarded (j-(f)g) (Krötzsch
and Rudolph 2011).

Table 1 summarizes the complexity results for the above
rule classes, in terms of combined complexity (i.e., w.r.t. the
joint size of F ,R andQ), with unbounded or bounded pred-
icate arity (noted w), and of data complexity (i.e., w.r.t. the
size of F only, while R and Q are assumed to be fixed).
Note that frontier-guarded rules form the largest known sub-
class of gbts that enjoys polynomial data complexity. That
the combined complexity for gbts with unbounded arity is in
2EXPTIME is a novel result.

Patterned Forward Chaining
This section focusses on bag patterns. We first show that
forward chaining can be performed by considering solely the
derivation tree endowed with bag patterns. Then we define
joins on patterns in order to update them incrementally after
each rule application.
Definition 7 (Pattern) A pattern of a bag B is a set of pairs
(G, π), where G is subset of a rule body and π is a partial
mapping from terms(G) to terms(B). G and π are possibly
empty.

For any derivation S, we obtain a patterned deriva-
tion tree, noted PDT (S), by enriching the derivation tree
DT (S) assigning a pattern P (B) to each bag B of DT (S).
Definition 8 (Pattern soundness and completeness) Let
Fk be a fact obtained via a derivation S and let B be a bag

in PDT (S). P (B) is said to be sound w.r.t. Fk if for all
(G, π) ∈ P (B), π is extendible to a homomorphism from G
to Fk. P (B) is said to be complete w.r.t. Fk (and R), if for
any R ∈ R, any sbR ⊆ body(R) and any homomorphism
π from sbR to Fk, P (B) contains (sbR, π

′), where π′ is the
restriction of π to the inverse image of terms(B). PDT (S)
is said to be sound and complete w.r.t. Fk if for all its bags
B, P (B) is sound and complete w.r.t. Fk.

Provided that PDT (S) is sound and complete w.r.t. Fk,
a rule R is applicable to Fk iff there is a bag in PDT (S)
whose pattern contains a pair (body(R),−); then, the bag
created by a rule application (R, π) on Fk has parent Bj in
DT (S) iff Bj is the bag in PDT (S) at the smallest depth
s.t. P (Bj) contains (body(R), π′), with the restrictions of
π′ and π to fr(R) being equal. Patterns are managed as
follows: (1) The pattern of B0 is the minimal sound and
complete pattern with respect to F ; (2) after each addition
of a bagBi, the patterns of all bags are updated to ensure the
soundness and completeness with respect to Fi. It follows
that we can define a patterned derivation, where rule appli-
cability is checked on patterns, and the associated sound and
complete patterned derivation tree, which is isomorphic to
the derivation tree associated with the (regular) derivation.

Remember that our final goal is to avoid building the cur-
rent derived fact. We will now incrementally maintain sound
and complete patterns by a propagation mechanism on pat-
terns. This is where we need to consider patterns with sub-
sets of rule bodies and not just full rule bodies. We recall
that the rules have pairwise disjoint sets of variables.

Definition 9 (Elementary Join) Let B1 and B2 be two
bags, e1 = (sb1R, π1) ∈ P (B1) and e2 = (sb2R, π2) ∈
P (B2) where sb1R and sb2R are subsets of body(R) for some
rule R. Let V = vars(sb1R) ∩ vars(sb2R). The (elementary)
join of e1 with e2, noted J(e1, e2), is defined iff for all x ∈
V , π1(x) and π2(x) are both defined and π1(x) = π2(x).
Then J(e1, e2) = (sbR, π), where sbR = sb1R ∪ sb2R and
π = π1 ∪ π′2, where π′2 is the restriction of π2 to the inverse
image of terms(B1) (i.e., the domain of π′2 is the set of terms
with image in terms(B1)).

Note that V may be empty. The elementary join is not a
symmetrical operation since the range of the obtained map-
ping is included in terms(B1).

Definition 10 (Join) Let B1 and B2 be two bags with re-
spective patterns P1 and P2. The join of P1 with P2, de-
noted J(P1, P2), is the set of pairs J(e1, e2), where e1 =
(sb1R, π1) ∈ P1, e2 = (sb2R, π2) ∈ P2, sb1R and sb2R are
subsets of body(R) for some rule R.

Note that P1 ⊆ J(P1, P2) since each pair from P1 can
be obtained by an elementary join with (∅, ∅). Similarly,
J(P1, P2) contains all pairs (G, π) obtained from (G, π2) ∈
P2 by restricting π2 to the inverse image of terms(B1).

If a pattern is sound w.r.t. Fi−1 then it is sound w.r.t. Fi.
The following property follows from the definitions:

Property 2 If P1 and P2 are sound w.r.t. Fi then J(P1, P2)
is sound w.r.t. Fi.



We consider now the step from Fi−1 to Fi in a (patterned)
derivation sequence: let Bc be the created bag and Bp be its
parent in PDT (S).
Definition 11 (Initial pattern) The initial pattern of Bc is
the set of pairs (G, π) s.t. G is a subset of a rule body and π
is a homomorphism from G to atoms(Bc).
Property 3 (Soundness of initial pattern of Bc w.r.t. Fi)
The initial pattern of Bc is sound with respect to Fi.
Property 4 (Completeness of J(P (Bc), P (Bp)) w.r.t. Fi)
Let P (Bc) be the initial pattern of Bc and Bp be the parent
of Bc. Assume that P (Bp) is complete w.r.t. Fi−1 and R.
Then J(P (Bc), P (Bp)) is complete w.r.t. Fi.
Proof: Let π be a homomorphism from sbR ⊆ body(R)
to Fi, for some rule R. We show that J(P (Bc), P (Bp))
contains (sbR, π

′), where π′ is the restriction of π to the
inverse image of terms(Bc). Let us partition sbR into bi−1,
the subset of atoms mapped by π to Fi−1, and bi the other
atoms from sbR, which are necessarily mapped by π to
Fi \ Fi−1, i.e., atoms(Bc). If bi is not empty, by definition
of the initial pattern, P (Bc) contains (bi, πc), where πc
is the restriction of π to terms(bi). If bi−1 is not empty,
by hypothesis (completeness of P (Bp) w.r.t. Fi−1), Pp

contains (bi−1, πp), where πp is the restriction of π|bi−1

to the inverse image of terms(Bp). If bi−1 or bi is empty,
(sbR, π

′) belongs to J(P (Bc), P (Bp)) (Points 1 and 2 in
Def. 10). Otherwise, consider J((bi, πc), (bi−1, πp)): it is
equal to (sbR, π

′) (Point 3 in Def. 10). �

Property 5 (Completeness of join-based propagation)
Assume that PDT (S) is complete w.r.t. Fi−1, and P (Bc)
is computed by J(Pi(Bc), P (Bp)), where Pi(Bc) is the
initial pattern of Bc. Let d(B) denote the distance of a
bag B to Bc in PDT (S). Updating a bag B consists in
performing J(P (B), P (B′)), where B′ is the neighbor of
B s.t. d(B′) < d(B). Let T ′ be obtained from PDT (S)
by updating all bags by increasing value of d. Then T ′ is
complete w.r.t. Fi.
Proof: Similar to the proof of Property 4. The crucial
point is that if π maps an atom a of sbR to an atom b of
Fi \Fi−1, and b shares a term e withB, then e ∈ terms(Bc),
hence, thanks to the running intersection property of a
decomposition tree, e ∈ terms(B′), thus (e, π(e)) will be
propagated to P (B). �

It follows that the following steps performed at each
bag creation (where Bc is introduced as a child of Bp)
allow to maintain the soundness and completeness of the
patterned DT: (1) initialize P (Bc) with its initial pattern;
(2) update P (Bc) with J(P (Bc), P (Bp)) (3) propagate:
first, propagate from P (Bc) to P (Bp), i.e., update P (Bp)
by J(P (Bp), P (Bc)); then, for each bag B updated from
a bag B′, update its children Bi (for Bi 6= B′) by
J(P (Bi), P (B)) and its parent Bj by J(P (Bj), P (B)).

Bag Equivalence
In this section, we define an adequate relation of equivalence
on patterns, which will allow us to develop only one bag per

equivalence class. We begin with the immediate notion of
structural equivalence, then show that it has to be refined.

Definition 12 (Structural Equivalence) Let B and B′ be
two bags in the same (partial) DT, or in two (partial) DTs,
respectively created by applications (R, πi) and (R, πj) of
the same rule R. B and B′ are structurally equivalent if :

• ∀f, f ′ ∈ fr(R), πi(f) = πi(f
′)⇔ πj(f) = πj(f

′)

• ∀a ∈ T0,∀f ∈ fr(R), πi(f) = a⇔ πj(f) = a

Example 1 (contd.) Consider the DT in Example 1, de-
picted in Figure 1. Although bothB1 andB2 result fromR1,
they are not structurally equivalent because fr(R1) = y,
h1(y) ∈ T0, and h1(y) 6= h2(y). B3 and B4 are struc-
turally equivalent.

Structural equivalence is not sufficient to ensure that the
“same” derivations can be carried out under equivalent bags,
as shown by the next example.

Example 1 (contd.) Let us add the rule R2 = r(x, y) ∧
r(y, z) ∧ p(x)→ f(z). R2 is applicable to B4 (i.e., with its
frontier mapped to terms(B4)) but not to B3.

When B and B′ are structurally equivalent, a natural bi-
jection can be built between B and B′, which maps each
initial term to itself, and each variable introduced in B to
the respective variable introduced in B′. We will use this
natural bijection to compare patterns and refine bag equiva-
lence.

Definition 13 (Natural bijection) Let B and B′ be two
structurally equivalent bags in a (partial) DT. The natural
bijection from terms(B) to terms(B′) (in short from B to
B′), denoted ψB→B′ , is defined as follows:

• if x ∈ T0, ψB→B′(x) = x

• otherwise, let orig(x) = {u ∈ vars(head(R))|πsafe
i (u) =

x}. Since B and B′ are structurally equivalent, ∀u, u′ ∈
orig(x), πsafe

j (u) = πsafe
j (u′). We define ψB→B′(x) =

πsafe
j (u).

Definition 14 (Pattern inclusion / equivalence) LetB and
B′ be two bags in a (partial) DT with respective patterns
P (B) and P (B′). We say that P (B) includes P (B′), de-
noted P (B′) v P (B), if :

• B and B′ are structurally equivalent,

• P (B) contains all elements from P (B′), up to a vari-
able renaming given by the natural bijection: (G, π′) ∈
P (B′)⇒ (G,ψB′→B ◦ π′) ∈ P (B).

We say that P (B) and P (B′) are equivalent, denoted
P (B) ∼ P (B′), if P (B′) v P (B) and P (B) v P (B′).

By extension, two bags are said to be equivalent if their
patterns are equivalent. Given a derivation S, if two bags B
and B′ in DT(S) are equivalent, then the “same” derivations
can be made under them (i.e., with rule applications that
map the rule frontier to the subtree rooted in B, resp. B′).



Full Blocked Tree
We now define the notion of a full blocked tree, which
finitely represents all the R-derivations that can be per-
formed in the KB. Informally, for every derivation S,
DT (S) can be generated from this tree by copying the root,
then repeatedly copying children of unblocked nodes, while
respecting structural equivalence.

Definition 15 (Blocked Tree) A blocked tree is a structure
(Tb,∼), where Tb is a prefix of a patterned derivation tree
and ∼ is the equivalence relation on the bags of Tb s.t. for
each ∼-class, all but one bag are said to be blocked; this
bag is called the representative of its class and is the only
one that may have children.

With a blocked tree Tb is associated a possibly infinite set
of decomposition trees obtained by copying its bags. More
precisely, this set is composed of pairs (T , f), where T is
a decomposition tree obtained from Tb and f is a mapping
from the bags of T to the bags of Tb such that for anyB ∈ T ,
B and f(B) are structurally equivalent. We first define the
bag copy operation:

Definition 16 (Bag Copy) Let B1 and B2 be structurally
equivalent bags with natural bijection ψB1→B2

. Let B′1
be a child of B1. Copying B′1 under B2 (according to
ψB1→B2 ) consists in adding a childB′2 toB2, s.t. terms(B′2)
is obtained by the following bijection b, and atoms(B′2) =
b(atoms(B′1)): for all x ∈ terms(B′1), if x ∈ terms(B1)
then b(x) = ψB1→B2

(x), otherwise b(x) is a fresh variable.

Property 6 Let B′2 be obtained by copying B′1 under B2 as
in the previous definition. Let (R, π) be the label of the edge
(B1, B

′
1). Then B′2 can be obtained by applying R to B2

w.r.t. ψB1→B2
◦π (up to fresh variable renaming). Moreover,

B′1 and B′2 are structurally equivalent and ψB′1→B′2
= b.

Definition 17 (Set of Trees generated by a Blocked Tree)
With a blocked tree Tb is associated a set G(Tb) inductively
defined as follows:
• The pair (Tb[root], identity), where Tb[root] is the re-

striction of Tb to its root, belongs to G(Tb).
• Given a pair (T , f) ∈ G(Tb), let B be a bag in T ,

and B′ = f(B); let B′r be the representative of B′
∼-class (B′r 6= B′ if B′ is blocked) and B′c be a child
of B′r. If B has no child structurally equivalent to B′c,
let Tnew be obtained from T by copying B′c under B
(according to ψB′r→B), which yields a new bag Bc. Then
(Tnew, f ∪ (B′c, Bc)) belongs to G(Tb).

For each pair (T , f) ∈ G(Tb), T is said to be generated by
Tb via f .

Note that a generated decomposition tree is not necessar-
ily a derivation tree, but it is a prefix of a derivation tree.

Definition 18 A full blocked tree T ∗ (of F and R) is a
blocked tree satisfying the two following properties:
• (Soundness) If T ′ is generated by T ∗, then there is T ′′

generated by T ∗ and anR-derivation S from F such that
atoms(T ′′) = atoms(S) (up to fresh variable renaming)
and T ′ is a prefix subtree of T ′′.

z1 z2 z1 z2 ’   ’   z1 

 a z1  a z1    ’   b   a 

a b 

  z2   z2   ’ 

p(a) p(b) r(a,b) 

R6 R6 R1 R2 

R3 R3 R5 R5 

R4 R4 

  z1   ’ 

r1(a,z1) f(b) f(a) r1(a,z1) 

r2(z1,z2) 
f(z1) f(z1) r2(z1,z2) 

f(z2) f(z2) 

B1 B1 

B2 B2    ’ 

   ’ 

   ’ 

   ’ 

   ’    ’ 

   ’ 

Figure 2: The yoyo example (Example 2) – Partial drawing:
a, b omitted in some bags, π not drawn on edges.

• (Completeness) For all R-derivations from F , DT (S) is
generated by T ∗.

Building a Full Blocked Tree
To build a full blocked tree, the algorithm starts from a sin-
gle bag corresponding to F . Rules are applied on the bag
level, i.e., by considering only bag patterns. Patterns are
updated by means of join propagation. For each bag equiva-
lence class, all but one of the bags are blocked, which means
that no existential rule can be applied to these bags. How-
ever, in order to obtain a full blocked tree, we cannot simply
block bags, as shown by the next example.

Example 2 (yoyo rules) Let F = {p(a), p(b), r(a, b)}.
Consider the following rules:
R1: r(x, y)→ r1(x, z)
R2: r(x, y)→ r1(y, z)
R3: r1(x, y)→ r2(y, z)

R4: r2(x, y)→ f(y)
R5: r2(x, y) ∧ f(y)→ f(x)
R6: r1(x, y) ∧ f(y)→ f(x)

Figure 2 shows the DT that should be obtained. In
particular, the atoms f(a) and f(b) are produced. As-
sume now that patterned forward chaining is performed,
and that B′2 is created just after B2. Since these bags
are equivalent, B′2 is blocked. However, to apply R5 to
B′1 to produce f(z′1) (i.e., mapping the frontier variable x
to z′1) – which will then allow to produce f(b), we need
to have the pair (r2(x, y) ∧ f(y), {(x, z′1)}) in P (B′1).
(r2(x, y), {(x, z′1)}) belongs to P (B′1) but it cannot be ex-
panded into (r2(x, y) ∧ f(y), {(x, z′1)}) since R4 is not ap-
plied to z′2 (B′2 is blocked). This shows that the pattern of
a blocked bag has to evolve “as if the derivation subtree
rooted in this bag was built”, in order to correctly apply the
rules on its ancestors.

Therefore, we introduce a set Γ of pseudo-rules to prop-
agate pattern updates. A pseudo-rule has the form P → P ′

(“P evolves to P ′”), where P and P ′ are patterns. It is ap-
plicable to any bag B with P (B) ∼ P and its effect is to
replace P (B) by P ′. All the rules in Γ are “justified”, in the
sense that for all bags B, if P (B) is equivalent to P , then
there is a patterned derivation s.t. the pattern of B at the end
of the derivation contains P ′.



The sub-algorithms UPDATEPARENT and UPDATECHILD
perform join propagation, respectively from a bag to its par-
ent, and from a bag to one of its children. The reason
for having two procedures instead of one is that only UP-
DATEPARENT can create new pseudo-rules.

In addition to the derivation tree T and the set of pseudo-
rules Γ, we use a structure B, which allows to assign to each
bag its pattern and to create pseudo-rules. B is a set of pairs
of lists (Lp, Lb) s.t. Lp is a list of pattern equivalence classes
and Lb is a list of bags, whose patterns belong to Lp. We
maintain the following properties:
• the head of Lp includes all other patterns of Lp,
• the head of Lb is the representative of the bags with pat-

tern the head of Lp; it is unblocked, while all other bags
in Lb are blocked;

• if B ∈ Lb, its pattern can evolve (by an appropriate se-
quence of pseudo-rule applications) to a pattern equiva-
lent to the head of Lp.

Algorithm 1: FULLBLOCKEDTREE

Data: A fact F , a gbts rule setR
Result: A full blocked tree of (F,R)
Let T be the decomposition tree initialized with a single bag
B0, s.t. terms(B0) = T0, atoms(B0) = F and P (B0) is its
initial pattern
B = {([P (B0)], [B0])};
Γ = ∅;
while There is a new rule application (R, π) on an unblocked
node Bp do

Apply (R, π), creating Bc (with P (Bc) its initial
pattern);
UPDATECHILD(T ,B,Γ, Bc, Bp);
UPDATEPARENT(T ,B,Γ, Bp, Bc); // Γ may grow
while There is a pseudo-rule P (B)→ P ′ applicable on
a bag B do

Perform this application
UPDATEPARENT(T ,B,Γ, B, Parent(B))

return T,B

We use below the following notations:
• for any bag B, Lb(B) denotes the unique list contain-

ing B. Lp(B) denotes the list of patterns associated with
Lb(B),

• the dual notation is used for Lp(P ) and Lb(P ).
When we remove a bagB from the tree, we remove it also

from Lb(B). If it becomes empty, (Lp, Lb) is deleted.
Let s be the maximum size of a pattern, p the number of

patterns, f the maximum size of a rule frontier, b the maxi-
mum size of a bag.

Property 7 Algorithm 1 terminates in polynomial time in
the number of patterns.

Proof: The maximum number of bags nb in a blocked
tree is upper-bounded by p(1 + |R|bf ). The maximum
size of all patterns in a blocked tree is upper-bounded by
nb × s. As long as no bag is removed from T , at least one
of the following parameters increases at each loop iteration:

Algorithm 2: UPDATECHILD

Data: T ,B,Γ, Bc and Bp, two bags of T , where Bc is a
child of Bp

Result: T and B updated
Let P = JOIN(P (Bc), P (Bp));
if P 6= P (Bc) then

Remove Bc from Lb(Bc);
if P appears in B then

Remove the descendants of Bc;
Add Bc in Lb(P ) (at any but first position);
// Bc is blocked

else
Add ([P ], [Bc]) to B; // Bc is unblocked

for any child B′
c of Bc do

UPDATECHILD(T ,B,Γ, B′
c, Bc)

Algorithm 3: UPDATEPARENT

Data: T ,B,Γ,Bp and Bc, two bags of T , where Bc is a child
of Bp

Result: T , B and Γ updated
Let P = JOIN(P (Bp), P (Bc));
if P 6= P (Bp) then

for any P ′ ∈ Lp(Bp) do
Γ = Γ ∪ {P ′ → P}

if P appears in B then
Remove the descendants of Bp;
Append Lp(Bp) at the end of Lp(P );
Append Lb(Bp) at the end of Lb(P );
// Bp is blocked

else
Add P as head of Lp(Bp);
// Bp remains unblocked

UPDATEPARENT(T ,B,Γ, Parent(Bp), Bp)
for any child B′

c 6= Bc of Bp do
UPDATECHILD(T ,B,Γ, B′

c, Bp)

either the number of bags, or the sum of the sizes of the
patterns. However, during calls to either UpdateParent
or UpdateChild, these parameters might decrease (due to
descendants removal). We refine then the study by noticing
that UPDATECHILD can only delete a bag if is has been
called by UPDATEPARENT. Moreover, UPDATEPARENT has
an effect only if it creates a new pseudo-rule, and there are
at most p2 of them, where p is the number of patterns. Thus,
at most (p2 + 1)(nb + nbs) loop iterations are performed.
The cost of an inner loop iteration is linear in the size of
the decomposition tree, i.e., polynomial in p. In the end,
the algorithm runs in polynomial time in the number of
patterns. �

Theorem 8 Algorithm 1 outputs a full blocked tree of
(F,R).

Proof: (sketch) Let T ∗ be the blocked tree produced by the
algorithm. Completeness: We prove by induction on the
length of a derivation S thatDT (S) ∈ G(T ∗). Correctness:



We prove by induction on the number of bags in T that for
any (T , f) ∈ G(T ∗) there is S s.t. T is isomorphic (by Ψ)
to a prefix of DT (S), and, for any bag B in T , P (Ψ(B)) in
DT (S) includes P (f(B)) in T ∗. �

Summing up, a full blocked tree is built in polynomial
time in the number of patterns. The number of pairs in a pat-
tern is upper-bounded by 2aB × btB (where aB (resp. tB) is
the maximal number of atoms (resp. terms) in a rule body).
p is thus a double exponential in F andR, which drops to a
single exponential when R is fixed. This yields a novel up-
per bound for the combined complexity of CQ entailment.
Indeed, Q can be considered as a rule Q → match (where
match is a new 0-ary predicate). Then, F,R |= Q iff a pair
(Q, π) (with any π) appears in a bag pattern from the full
blocked tree.

Theorem 9 CQ entailment for gbts is in 2EXPTIME for
combined complexity.

Proof: Follows from the preceding remark and Theorem
8. �

Querying the Full Blocked Tree
As noted in the preceding section, building a full blocked
tree is sufficient to solve CQ entailment. However, we would
like to process Q independently from the rules, so that the
full blocked tree built from the KB can be reused for any
query. Next to providing a tight bound for query complex-
ity, this would allow to design an algorithm that precompiles
the KB offline in order to speed up the online query answer-
ing step. To this end, in this section, we define an extension
of the notion of homomorphism, called ∗-homomorphism,
s.t. there is a homomorphism from Q to a fact derived from
(F,R) iff there is a ∗-homomorphism from Q to T ∗ =
FULLBLOCKEDTREE(F,R).

From the soundness and completeness properties of T ∗,
it follows that F,R |= Q iff there is a homomorphism from
Q to (the atoms of) some tree in G(T ∗). However, G(T ∗)
being potentially infinite, we will have to ensure that only a
bounded finite part of it needs to be explored.

A homomorphism from Q to some tree (T , f) in G(T ∗)
induces a partition of the atoms of Q (two atoms are in the
same set if they are mapped to the same bag), and the tree
structure over these bags induces a tree structure over the
subsets of the partition. A pre-∗-homomorphism encodes
such a possible structure over Q, along with the mapping
from the partition sets to bags of T ∗.
Definition 19 (Pre-∗-homomorphism) Let Q be a query
and T ∗ be a full blocked tree of (F,R). A pre-
∗-homomorphism from Q to T ∗ is a tuple Π =
((TΠ, fΠ), (Q1, π1), . . . , (Qp, πp)) where:
• the Qi are pairwise disjoint (possibly empty) subsets of Q

s.t. ∪1≤i≤pQi = Q;
• TΠ is a rooted tree whose nodes are the Qi;
• fΠ maps each node of TΠ to a bag of T ∗;
• if Qi is empty, we define terms(Qi) as the set of terms

shared by at least two of its children;
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a, x1 a, y1
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Figure 3: The full blocked tree generated by Algorithm 1
(Example 3); L2 and D3 are equivalent, as well as L3 and
D2
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Figure 4: TΠ1 = TΠ2 (Example 3)

• ∀1 ≤ i ≤ p, πi is a substitution from terms(Qi) to
terms(fΠ(Qi)). If, moreover, Qi is not empty, then πi
is a homomorphism from Qi to atoms(fΠ(Qi)).

Example 3 Let F = {p(a), q(a)} and R = {R1 : p(x) →
r(x, y) ∧ q(y);R2 : q(x) → t(x, y) ∧ p(y)}. The full
blocked tree output by Algorithm 1 is drawn in Figure 3.
Let Q = {r(z, z1), t(z1, z2), r(z2, z3), t(z3, z4), t(z, z′1)}.
Among the pre-∗-homomorphisms are the following two:

• TΠ1 = TΠ2 , as drawn in Figure 4,
• fΠ1(1) = fΠ2(1) = B0, fΠ1(2) = fΠ2(2) =
L1, fΠ1(3) = fΠ2(3) = L2, fΠ1(4) = fΠ2(4) =
L3, fΠ1(6) = fΠ2(6) = D1,

• fΠ1(5) = D3, fΠ2(5) = D1,
• for i = 1, 2, πi

1(z) = πi
2(z) = πi

6(z) = a, πi
2(z1) =

πi
3(z1) = x1, π

i
3(z2) = πi

4(z2) = x2, π
i
4(z3) =

x3, π
i
6(z′1) = y1,

• π1
5(z3) = y2, π

1
5(z4) = y3, π

2
5(z3) = a, π2

5(z4) = y1



With a pre-∗-homomorphism, we have fixed, relying only
upon Q and T ∗, what will hopefully become a homomor-
phism from Q to some tree in G(T ∗). Note that the empty
Qi are used to encode the possible joins of their children.

Definition 20 (∗-homomorphism) Let Π =
((TΠ, fΠ), (Q1, π1), . . . , (Qp, πp)) be a pre-∗-
homomorphism from Q to T ∗. We say that Π is a
∗-homomorphism if there exists (T , f) ∈ G(T ∗) and an
injective mapping ω (called a ∗-proof to (T , f)) from the
nodes of TΠ to the bags of T such that:

• Qi is a descendant of Qj in TΠ iff ω(Qi) is a descendant
of ω(Qj) in T ;

• for every node Qi in TΠ, fΠ(Qi) = f(ω(Qi));
• ∀t ∈ terms(Qi), we note πω

i (t) = ψfΠ(Qi)→ω(Qi)(πi(t)).
Then for every term t shared by a node Qi and its parent
Qj , we have πω

i (t) = πω
j (t).

Example 3 (contd.) The pre-∗-homomorphism Π1 given in
the previous example is actually a ∗-homomorphism: we
build T by copyingD3 belowL3 (creatingL4) and we define
ω(1) = B0, ω(2) = L1, ω(3) = L2, ω(4) = L3, ω(5) =
L4, ω(6) = D1.

Π2 is not a ∗-homomorphism: since D1 cannot be copied
under any node and 5 is mapped to D1, all ancestors of 5
should be mapped to B0, which is not the case.

Let us first point out that, if there exists a ∗-homomorphism
from Q to T ∗, then there exists a ∗-homomorphism Π =
((TΠ, fΠ), (Q1, π1), . . . , (Qq, πq)) from Q to T ∗ such that:

• the leaves of TΠ are not empty and any empty node has at
least 2 children;

• a term t of Qi is called fixed if πi(t) ∈ T0; in that case,
for every Qj in which t appears one has πj(t) = πi(t);

• for any non-fixed term t, the nodes Qi containing t form
a connected component of TΠ.

A pre-∗-homomorphism that fulfills these additional condi-
tions is called reduced (since any ∗-homomorphism Π can
be put into this smaller form Π′, we only need to check re-
duced pre-∗-homomorphisms). Note already that there are
at most (q2 × t × a)q reduced pre-∗-homomorphisms from
Q to T ∗, where q = |Q|, t = |T ∗|, and a = |atoms(T ∗)|.
Property 10 There exist (T , f) ∈ G(T ∗) and a homo-
morphism from Q to the atoms of T iff there exists a ∗-
homomorphism from Q to T ∗.

Note JFB: Here is the proof of the property, rewritten to
match the new definitions.
Proof:

(⇒) Suppose a homomorphism π from Q to the atoms of
(T , f) ∈ G(T ∗). Consider a minimal set of bags
B1, . . . , Bn of T s.t. π(Q) ⊆ ∪1≤i≤natoms(Bi).
We complete recursively these bags to a set of bags
B1, . . . , Bn, Bn+1, . . . , Bp by adding the lower common
ancestors of the bags already present. We can now
exhibit a partition Q1, . . . , Qn of Q such that, ∀1 ≤
i ≤ n, π(Qi) ⊆ Bi. We complete it with empty
sets Qn+1, . . . , Qp, and can now fix, ∀1 ≤ i ≤ p,

ω(Qi) = Bi. We define fΠ(Qi) = f(Bi) and, ∀1 ≤
i ≤ n, for every term t ∈ Qi, we define πi(t) =
ψ−1
fΠ→Bi

(π(t)). The tree Ti is built from the nodes
Qi to satisfy the property ”Qi is a descendant of Qj

in TΠ iff ω(Qi) is a descendant of ω(Qj) in T ”. Fi-
nally, Π = ((TΠ, fΠ), (Q1, π1), . . . , (Qp, πp)) is a pre-
∗-homomorphism from Q to T ∗, and (T , f) and ω is a
∗-proof that Π it is a ∗-homomorphism.

(⇐) Let us consider a ∗-homomorphism Π =
((TΠ, fΠ), (Q1, π1), . . . , (Qp, πp)) from Q to T ∗.
Then there exists (T , f) ∈ G(T ∗) and ω that satisfy
Def. 20. For every term t appearing both in a Qi and
a Qj , we know that πω

i (t) = πω
j (t) = t′. We define

π(t) = t′. Then π is a homomorphism from Q to the
atoms of T .

�

The latter property provides us with the skeleton of a
brute-force algorithm to solve CQ entailment. Indeed, it
is sufficient to generate all reduced pre-∗-homomorphisms
from Q to T ∗, and check if one of them is a ∗-
homomorphism (or, in the case of a nondeterministic algo-
rithm, we guess and check the right Π). To show for some
Π that it is a ∗-homomorphism, we explore the tree TΠ (in a
breadth-first manner). At each step of the exploration, we
have explored a prefix tree T ′Π of TΠ. Let Qi1 , . . . , Qip
be the Qi appearing in T ′Π, and Q′ = Qi1 ∪ . . . ∪ Qip .
Then Π′ = ((T ′Π, fΠ|T ′Π

), (Qi1 , πi1), . . . , (Qip , πip)) is a
pre-∗-homomorphism from Q′ to T ∗ (we call it the pre-∗-
homomorphism generated by T ′Π). We consider that, having
explored T ′Π, we have exhibited a ∗-proof, i.e., some map-
ping ω′ to (T ′, f ′) ∈ G(T ∗) that respects the criteria of
Definition 20.

Now let us select another node Qi, child in TΠ of a node
Qj of T ′Π. An expansion of (Π′, (T ′, f ′), ω′) toQi is a triple
(Π′′, (T ′′, f ′′), ω′′) where Π′′ is a pre-∗-homomorphism
generated by T ′Π ∪ {Qi}, T ′′ ∈ G(T ∗) is built from T ′
by adding a finite branch from ω′(Qj), ω′′ extends ω′ by
stating that ω′′(Qi) is the leaf Bi of the added branch, and
f ′′(Bi) = fΠ(Qi). Moreover, we want the mapping ω′′ to
the bags of (T ′′, f ′′) to be a ∗-proof of Π′′: only the last
item from Definition 20 remains to be checked.

An important feature is that the expansion procedure
is greedy, thus does not require backtracking. Suppose
that there exists a ∗-proof ω to (T , f) that Π is a ∗-
homomorphism, and that we have exhibited a ∗-proof ω′
to (T ′, f ′) that some prefix Π′ of Π is a ∗-homomorphism
(where T ′ is not necessarily a prefix of T ). Then the ∗-proof
ω′ can be expanded to a ∗-proof ω′′ to (T ′′, f ′′) that Π is a
∗-homomorphism (sketch of proof: for every leaf B′i of T ′,
the bag Bi = ω(ω′−1(B′i)) is equivalent to B′i, thus the sub-
tree of T rooted in Bi can be merged with B′i to obtain the
tree T ′′).

It remains to bound the length of a branch necessary to
yield an expansion.

Definition 21 (Reachable state) Let B a bag of T ∗. A
reachable state fromB is a tuple (B′, σ) whereB′ is a bag of



T ∗ and σ is a partial mapping from terms(B′) to terms(B)
s.t. there exists (T , f) ∈ G(T ∗) that contains a bagB1 with
f(B1) = B, a descendant B2 of B1 with f(B2) = B′, and
for each t in terms(B′), ψB′→B2

(t) = ψB→B1
(σ(t)). We

say that B2 is in state (B′, σ) from B.

Intuitively, a reachable state is an equivalence class for
bags that can be generated under some B (or some copy of
B) and that join their terms to those of B in the same way.

There are at most t × ff different reachable states from
a bag B (with t = |T ∗| and f being the maximal size of a
rule frontier). We can write an algorithm that generates all
reachable states fromB in time t×(t×ff )2 (by maintaining
a boolean matrix M s.t. Mi,j = true iff there is a path from
B that contains first a bag B′ in state i from B, then a bag
in state j from f(B′)).

The following property ensures that reachable states can
be effectively used to compute ∗-proofs.

Property 11 A pre-∗-homomorphism Π =
((TΠ, fΠ), (Q1, π1), . . . , (Qp, πp)) from Q to T ∗ is a
∗-homomorphism iff there exist mappings τ1, . . . , τp
where τi maps Qi (with parent Qj) to a reachable state
(fΠ(Qi), σ) from fΠ(Qj) such that:

• for the root Q1 of TΠ, τ1 = π1;

• if τj is defined for some Qj , Qi is a child of Qj , and
τ(Qi) = (fΠ(Qi), σ), then for every t ∈ terms(Qi),
if πi(t) belongs to the domain of σ, we define τi(t) =
σ(πi(t)), otherwise τi(t) = t.

• for all term t shared by two nodes Qi and Qj , we have
τi(t) = τj(t).

Proof: TO DO JFB
�

The overall algorithm deciding whether F,R |= Q can
now be sketched as follows: We first build the full blocked
tree T ∗ of (F,R), then compute all reachable states from all
bags in T ∗ (in time t2×(t×ff )2). These two operations can
be performed offline. We consider now, online, the query
Q. For each reduced pre-∗-homomorphism Π from Q to T ∗
(there are at most (q2 × t × a)q such tuples), we greedily
try to assign a satisfying reachable state (as in Property 11)
to each node of TΠ (in time q × (t × ff )). The querying
part is thus polynomial in T ∗, and simply exponential in Q.
Since T ∗ is in the worst-case double exponential w.r.t. F and
R, the algorithm runs in 2EXPTIME. Last, given a (nonde-
terministically guessed) reduced pre-∗-homomorphism, we
can check in polynomial time (if R and F are fixed) that it
is indeed one, yielding:

Theorem 12 CQ entailment for gbts is NP-complete for
query complexity.

Thereby, the lower bound comes from the well-known
NP-complete query complexity of plain (i.e., rule-free) CQ
entailment.

Complexity of the Algorithm on gbts
Subclasses

We point out here that the algorithm can be adapted to spe-
cific gbts rules with smaller complexity (see Table 1) in or-
der to maintain worst-case optimality.

The combined complexity for (weakly) guarded rules
drops down to EXPTIME in the bounded arity case. For
these kinds of rules, a rule application necessarily maps all
the terms of a rule body to terms occurring in a single bag. If
we store all the possible mappings of a rule body atom, we
are able to construct any homomorphism from a rule body to
the current fact. The blocking procedure is then unchanged.
Since there are at most |terms(bag)|w such homomorphisms
for an atom, the number of (non-equivalent) patterns is sim-
ply exponential in the input (w being fixed).

The data complexity for guarded, fg and fr1 rules drops
down to PTIME. To get that bound, we slightly modify the
content of a bag. Instead of including in each bag all initial
terms (T0) in addition to the terms occurring in the atoms
created by the rule application, we just take in account the
latter. Since all terms to which the frontier is mapped are
arguments of the same atom, we can still build a correct de-
composition tree this way. The number of patterns is then
upper-bounded by 1 + 2|R|×2aB×ttBH (where aB (resp. tB)
is the maximal number of atoms (resp. terms) in a rule body
and tH is the maximal number of terms in a rule head).
When R is fixed, this number is polynomial. The querying
part being polynomial when Q is fixed, we get the PTIME
upper-bound.

Conclusion
In this paper we introduced a query answering algorithm
that is uniformly applicable to existential rule fragments that
qualify as greedy bounded treewidth sets. The algorithm
gives rise to novel tight complexity bounds w.r.t. combined
and query complexity and is also worst-case optimal for data
complexity. A slight modification of the algorithm allowed
us to maintain worst-case optimality for certain easier gbts
subclasses.

Compared to a predecessor version, the algorithm comes
with several theoretically and practically advantageous fea-
tures:

First, it provides a way of finitely representing infinite
models by means of a specific data-structure. This data-
structure and the way it is obtained exhibits similarities to
tableaux procedures in Description Logics (Baader et al.
2007) with the notable exception that instead of single in-
dividuals, whole bags are created, updated, and blocked.
Conceptually, the applied blocking technique is reminiscent
of anywhere blocking (Buchheit, Donini, and Schaerf 1993;
Motik, Shearer, and Horrocks 2009) in that the blocking en-
tity does not need to be a predecessor in the tree.

Second, our algorithm allows for pre-compilation of the
fact and rule set (i.e. the knowledge base) irrespective of
the query. This speeds up the subsequent query answer-
ing step and particularly pays off if many different queries
are to be posed against a fixed knowledge base. It also



allows for establishing our query complexity result. Sim-
ilar pre-compilation (aka materialization) techniques have
been proposed and proven useful for query answering in
lightweight description logics (Lutz, Toman, and Wolter
2009; Kontchakov et al. 2011). These logics however, fea-
ture the tree model property which makes blocking and
query answering much more straightforward than in our
case.

Third, by a more economic definition of the notion of pat-
terns, the algorithm does now run in 2EXPTIME worst case
complexity and allows for earlier blocking. Note also that
patterns (which could be referred to as “bag-types”) are cre-
ated on the fly as they occur in the constructed model rep-
resentation (instead of being a-priori present like in type-
elimination-based reasoning techniques), hence just like for
tableaux procedures, a good performance for practical cases
can be expected.

There is still much to do to enhance the practical interest
of the algorithm by (1) improving the complexity of the ∗-
homomorphism search (2) tuning the algorithm for special
subclasses of gbts, including lightweight description log-
ics like EL, which should lead to simpler patterns and ∗-
homomorphism tests. This theoretical work done, we will
first implement and experiment restricted versions of our al-
gorithm dedicated to specific gbts subclasses with polyno-
mial data complexity.
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