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Today’s agenda

Goal: Investigate important properties of FO and see whether they stay true in the finite.

1. Diagrams and embeddings.
2. Preservation Theorem of Łoś-Tarski.
3. Failure of Łoś-Tarski in the finite.
4. Discussion of related preservation theorems.
5. Robinson’s Joint-Consistency (without a proof).
6. Craig Interpolation Property (CIP).
7. Projective Beth’s Definability Property (PBDP).

Based on Chapters 0.1, 0.2.1–0.2.3, 1.2 by [Otto]
Chapters 1.9–1.11 by [Väänänen]

+ recent research papers.

Feel free to ask questions and interrupt me!
Don’t be shy! If needed send me an email (bartosz.bednarczyk@cs.uni.wroc.pl) or approach me after the lecture!

Reminder: this is an advanced lecture. Target: people that had fun learning logic during BSc studies!
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Algebraic Diagrams and Embeddings

Goal: Describe a τ -structure A up to isomorphism with a (possibly infinite) FO theory TA

1. Start with TA := ∅.

fresh constants

2.With each domain element a ∈ A we associate a constant symbol “a”.

Let τA be the extended signature, and let AA := A + the interpretation of each a as the corresponding a ∈ A.

make them different

3. Append ∧
a6=b∈τA\τ

a 6= b to TA.

iterate through τ

4. For all n ∈ N, all n-tuples of constant symb. a from τA \ τ , and relational symb. R ∈ τ of arity n:

positive facts

• append R(a) to TA iff the corresponding n-tuple belongs to RA.

negative facts

• proceed similarly with ¬R(a) and n-tuples outside RA.
5. Close TA under ∧,∨. We denote it D(A) and call it the algebraic diagram of A.

Alternative definition: D(A) :=
{
ϕ ∈ FO[τA] | AA |= ϕ, ϕ is quantifier free

}
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Preservation Theorems

Common theme: Formulae having semantic properties are precisely these of a syntactic fragment of FO

Theorem (Łoś-Tarski 1954)
An FO formula is preserved under substructuresa iff it is equivalent to a universalb formula.

ai.e. A |= ϕ and B ⊆ A then B |= ϕ
b(possibly negated) atomic symbols + ∧, ∨ and ∀

• Finitary analogous of Łoś-Tarski fails in the finite, c.f. [Tait 1959].
• Łoś-Tarski over restricted classes, e.g. Sankaran et al. [MFCS 2014] or Atserias et al. [SIAM 2008].
• There are L ⊆ FO with Łoś-Tarski (also in the finite), e.g. the Guarded Neg. Frag. [JSL 2018]
• Open problem: Is there a non-trivial L ⊆ FO (without equality) without Łoś-Tarski? [B. 2022]
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Proof of Łoś-Tarski Preservation Theorem: Part I
Theorem (Łoś-Tarski 1954)

An FO formula is preserved under substructuresa iff it is equivalent to a universalb formula.
ai.e. A |= ϕ and B ⊆ A then B |= ϕ
b(possibly negated) atomic symbols + ∧, ∨ and ∀

Proof
Every universal formula is preserved under substructures, so let us focus on the other direction.
Assume that ϕ is preserved under substructures, and consider the set

collect universal consequences

Ψ :=
{
ψ | ϕ |= ψ, ψ is universal

}
.

Note that ϕ |= Ψ. It suffices to show that Ψ |= ϕ. Why?

compactness

By compactness there would be a finite subset Ψ0 ⊆fin Ψ such that Ψ0 |= ϕ.

universal formulae are closed under ∧

But then ∧
ψ∈Ψ0

ψ is the desired universal formula equivalent to ϕ.
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Proof of Łoś-Tarski Preservation Theorem: Part II

Recall that: ϕ is preserved under substructures, Ψ :=
{
ψ | ϕ |= ψ, ψ is universal

}
and our goal is: Ψ |= ϕ.

def of |=

Let A |= Ψ. We want to show A |= ϕ.

magic

It suffices to find a model B of ϕ containing A as a substructure.

assumption ϕ

Indeed, as ϕ is preserved under substructures, from B |= ϕ we conclude A |= ϕ.
How to find such B?

diagrams

Show that D(A) ∪ {ϕ} is satisfiable!

contradiction

Ad absurdum, assume that D(A) ∪ {ϕ} has no model.

def of |=

So ϕ |= ¬D(A) holds, i.e. ϕ |= ¬ ∧
ψ(a)∈D(A)

ψ(a).

compactness

By compactness there is a finite D0 ⊆fin D(A) such that ϕ |= ¬ ∧
ψ(a)∈D0

ψ(a).

D(A) clos.u.∧

But as diagrams are closed under conjunction, we get a single formula ξ(a) ∈ D(A) s.t. ϕ |= ¬ξ(a).

Shape of ξ/ϕ

Note that ϕ does not use extra constants from τA.

Strengthen ϕ |= ¬ξ(a)
and use Ψ.

Thus actually ϕ |= ∀x ¬ξ(x) holds.
As ∀x ¬ξ(x) is universal and follows from ϕ, we know that ∀x ¬ξ(x) ∈ Ψ.
From ξ(a) ∈ D(A) we infer A |= ∃xξ(x). A contradiction with A |= Ψ. �
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Failure of Łoś-Tarski in the finite. (Part I)
Theorem (Tait 1959)

There is an FO formula that is preserved under substructures of finite structures
but it is not equivalent (in the finite) to any universal formula.

Proof
Consider τ = {min(0), max(0), <(2),Next(2),P(1)}. Let ϕ0 be a universal stating that
A |= ϕ0 iff <A is a strict linear order with the minimal/maximal elements minA, maxA, and NextA ⊆ <A.

Moreover, take ϕ1 := ∀x∀y Next(x , y)↔ (x < y ∧ ¬(∃z x < z ∧ z < y)).
Note: if A |= ϕ0 ∧ ϕ1, then NextA is the induced successor of <A. Finally, let ϕ := ϕ0 ∧ (ϕ1 → ∃x P(x)).

Observation (The set of finite models of ϕ is closed under substructures.)
Take a finite A |= ϕ and B ⊆ A.

universals are preserved under ⊆
Observe that B |= ϕ0 (because ϕ0 is universal). If B 6|= ϕ1 we are done.

If B |= ϕ1 then finitenessA = B, concluding B |= ϕ. �
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Failure of Łoś-Tarski in the finite. (Part II)

A |= ϕ0 iff <A is a strict linear order with the minimal/maximal elements minA, maxA, and NextA ⊆ <A.

ϕ1 := ∀x∀y Next(x , y)↔ (x < y ∧ ¬(∃z x < z ∧ z < y)) and ϕ := ϕ0 ∧ (ϕ1 → ∃x P(x)).

Lemma (ϕ is not equivalent (in the finite) to any universal formula.)

contradiction

Ad absurdum, there exists quantifier-free χ(x) with n variables so that ϕ ≡fin ∀x χ(x). Take A as below.

0, min . . . n+1 n+2,max := A
<,Next <,Next <,Next

By construction A |= ϕ0 ∧ ϕ1.

def of P

Moreover, observe that (A,PA) |= ϕ iff PA 6= ∅.

when PA = ∅

Then (A, ∅) 6|= ϕ implies (A, ∅) 6|= ∀x χ(x).

witness

Thus (A, ∅) |= ¬χ(a) for suitable a.

select suitable b and make it satisfy P
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def of ϕ

Then (A, {b}) |= ϕ.
But (A, {b}) |= ¬χ(a) (A � a was not touched!). But it means (A, {b}) 6|= ∀x χ(x) ≡ ϕ.

A contradiction!
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Failure of Łoś-Tarski in the finite. (Part II)
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Can we make Łoś-Tarski theorem computable?

Input: First-Order ϕ closed under substructures (in the general setting).
Output: the equivalent universal formula.
Is this problem solvable?: YES! Ask Gödel for help!

Unfortunately, the finitary analogue is unsolvable. [Chen and Flum 2021]

Other preservation theorems?

Theorem (Lyndon–Tarski 1956, Rossmann 2005)
An FO formula is preserved under homomorphic imagesa iff
it is equivalent to a positive existentialb formula.

ai.e. A |= ϕ and there is a homomorphism from A to B then B |= ϕ
batomic symbols + ∧, ∨ and ∃

• A notable example of classical MT theorem that works in the finite, c.f. [Rossmann’s paper]
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