Exercise Sheet 10: More Advanced EXERCISE Sheet 10: More Advanced Maximilian Marx, Sebastian RudolphAcademic Skills in Computer Science, 2020-06-30, Summer Term 2020

Exercise 10.1. Read the introductions of the following papers and identify prince:ss, dragon, and magic sword:

- 1. Luigi Bellomarini, Emanuel Sallinger, and Georg Gottlob. The VadalogSystem: Datalogbased Reasoning for Knowledge Graphs. PVLDB, 11(9):975–987, 2018.
- 2. Georg Gottlob and Enrico Malizia. Achieving New Upper Bounds for the Hypergraph Duality Problem through Logic. SIAM J. Comput., 47(2), 456–492, 2018.

Exercise 10.2. Typeset the following set of equations, matching alignment and positioning as close as possible:

$$H_{n} \coloneqq \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \cdots & \frac{1}{n} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \cdots & \frac{1}{n+1} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \cdots & \frac{1}{n+2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{1}{n} & \frac{1}{n+1} & \frac{1}{n+2} & \cdots & \frac{1}{2n-1} \end{pmatrix}$$
(2.1)

$$(H_n^{-1})_{i,j} = \frac{(-1)^{i+j}}{(i+j-1)} \frac{(n+i-1)!(n+j-1)!}{((i-1)!(j-1)!)^2} = (-1)^{(i+j)}(i+j-1)\binom{n+i-1}{(n+i-1)}\binom{n+j-1}{(n+j-1)}\binom{i+j-2}{2}$$
(2.2)

$$= (-1)^{(i+j)} (i+j-1) \begin{pmatrix} n-j \end{pmatrix} \begin{pmatrix} i \\ n-i \end{pmatrix} \begin{pmatrix} i \\ i-1 \end{pmatrix}$$

et $H^{-1} - \prod^{n-1} (2k+1) \begin{pmatrix} 2k \end{pmatrix}^2$ (2.3)

$$\det H_n^{-1} = \prod_{k=1} (2k+1) \binom{2k}{k}$$
(2.3)

Exercise 10.3. Submit a paper to the Second Dresden Mock Conference on Academic Skills in Computer Science (DD-ASiCS'20). ¹ The deadline for submissions is 2020-07-06T23:59:59+2. Your paper should be two pages (excluding references) in LNCS format² and be anonymised for double-blind review (we expect every author to participate in the reviewing process).

Pick a foundational concept of computer science and imagine that you just invented this concept. Then write an abstract and an introduction for a paper introducing this concept (see below for a list of possible topics). You may also choose to submit a placeholder abstract; in this case a topic will be assigned to you.

Papers should consist of an abstract, an introduction, and references; no content or conclusions are required. While cited claims need not be substantiated by the sources, it should be plausible for the claim to appear therein.

Possible topics include:

- linked lists,
- hash maps,
- static typing,

¹https://easychair.org/conferences/?conf=ddasics20

²https://www.springer.com/de/it-informatik/lncs/conference-proceedings-guidelines

- dynamic typing,
- structured programming,
- object-oriented programming,
- functional programming,
- finite automata,
- push-down automata,
- turing machines,
- logic programming,

• ...