
A Fully Connectionist Model Generator for Covered First-Order Logic Programs

Sebastian Bader∗ and Pascal Hitzler† and Steffen Hölldobler∗ and Andreas Witzel‡
∗ International Center for Computational Logic, Technische Universität Dresden, Germany

† AIFB, Universiẗat Karlsruhe, Germany
‡ Institute for Logic, Language and Computation, Universiteit van Amsterdam

Abstract

We present a fully connectionist system for the
learning of first-order logic programs and the gen-
eration of corresponding models: Given a program
and a set of training examples, we embed the asso-
ciated semantic operator into a feed-forward net-
work and train the network using the examples.
This results in the learning of first-order knowledge
while damaged or noisy data is handled gracefully.

1 Motivation
Three long-standing open research problems in connection-
ism are the questions of how to instantiate the power of
symbolic computation within a fully connectionist system
[Smolensky, 1987], how to represent and reason about struc-
tured objects and structure sensitive processes[Fodor and
Pylyshyn, 1988], and how to overcome the propositional fix-
ation [McCarthy, 1988], i.e. how to use connectionist sys-
tems for symbolic learning and reasoning beyond proposi-
tional logic. It has been shown that feed-forward networks are
universal approximators and that artificial neural networks are
Turing complete. Thus we know that symbolic computation
is possible in principle, but at the same time the mentioned
results are mainly theoretical.

Here we are concerned with the model generation for first-
order logic programs, i.e. sets of rules which may contain
variables ranging over infinite domains. Our approach is
based on the following ideas first expressed in[Hölldobleret
al., 1999]: Various semantics of logic programs coincide with
fixed points of associated semantic operators. Given that the
semantic operator is continuous on the reals, the operator can
be approximated arbitrarily well by a feed-forward network.
In addition, if the operator is a contraction, then its fixed point
can be computed by a recurrent extension of the feed-forward
network.

Until now this approach was also purely theoretical for the
first-order case. In this paper we show how feed-forward net-
works approximating the semantic operator of a given first-
order logic program can be constructed, we show how these
networks can be trained using input-output examples, and we
demonstrate that the obtained connectionist system is robust
against damage and noise. In particular, and after stating

necessary preliminaries in Section 2, we make the follow-
ing novel contributions in Section 3: We define a new multi-
dimensional embedding of semantic operators into the reals,
we construct a feed-forward network to approximate these
operators and we present a new learning method using do-
main knowledge. The resulting system is evaluated in Sec-
tion 4. Finally, we draw some conclusions and point out what
needs to be done in the future in Section 5. For an overview
of related work we refer to[d’Avila Garcezet al., 2002] and
[Bader and Hitzler, 2005].

2 Preliminaries
In this section, some preliminary notions from logic program-
ming and connectionist systems are presented, along with the
Core Method as one approach to integrate both paradigms.

2.1 First-Order Logic Programs
A logic programover some first-order languageL is a set of
clausesof the formA ← L1 ∧ · · · ∧ Ln, A is anatomin L,
and theLi are literals in L, that is, atoms or negated atoms.
A is called theheadof the clause, theLi are calledbody lit-
erals, and their conjunctionL1 ∧ · · · ∧ Ln is called thebody
of the clause. Ifn = 0, A is called afact. A clause isground
if it does not contain any variables.Local variablesare those
variables occurring in some body but not in the correspond-
ing head. A logic program iscoveredif none of the clauses
contain local variables.

Example 1. The following is a covered logic program which
will serve as our running example.

e(0). % 0 is even

e(s(X))← o(X). % the successor s(X) of an odd X is even

o(X)← ¬e(X). % X is odd if it is not even

TheHerbrand universeUL is the set of all ground terms of
L, theHerbrand baseBL is the set of all ground atoms, which
we assume to be infinite – indeed the case of a finiteBL can
be reduced to a propositional setting. Aground instanceof
a literal or a clause is obtained by replacing all variables by
terms fromUL. For a logic programP , G(P) denotes the set
of all ground instances of clauses fromP .

A level mappingis a function assigning a natural number
|A| ≥ 1 to each ground atomA. For negative ground literals
we define|¬A| := |A|. A logic programP is calledacyclic

if there exists a level mapping| · | such that for all clauses
A← L1∧· · ·∧Ln ∈ G(P) we have|A| > |Li| for 1 ≤ i ≤ n.

Example 2. Consider the program from Example 1 and letsn

denote then-fold application ofs. With |e(sn(0))| := 2n +1
and|o(sn(0))| := 2n + 2, we find thatP is acyclic.

A (Herbrand) interpretationI is a subset ofBL. Those
atomsA with A ∈ I are said to betrue underI, those with
A 6∈ I are said to befalseunderI. IL denotes the set of all
interpretations. An interpretationI is a (Herbrand) modelof
a logic programP (in symbols:I |= P) if I is a model for
each clause inG(P) in the usual sense.

Example 3. For the programP from Example 1 we have
M := {e(sn(0)) | n even} ∪ {o(sm(0)) | m odd} |= P .

Given a logic programP , the single-step operatorTP :
IL → IL maps an interpretationI to the set of exactly those
atomsA for which there is a clauseA ← body ∈ G(P)
such that the body is true underI. The operatorTP captures
the semantics ofP as the Herbrand models of the latter are
exactly the pre-fixed points of the former, i.e. those interpre-
tationsI with TP (I) ⊆ I. For logic programming purposes it
is usually preferable to consider fixed points ofTP , instead of
pre-fixed points, as the intended meaning of programs. These
fixed points are calledsupported modelsof the program[Apt
et al., 1988]. In Example 1, the (obviously intended) model
M is supported, whileBL is a model but not supported.

Logic programming is an established and mature paradigm
for knowledge representation and reasoning (see e.g.[Lloyd,
1988]) with recent applications in areas like rational agents or
semantic web technologies (e.g.[Angele and Lausen, 2004]).

2.2 Connectionist Systems

A connectionist systemis a network of simple computational
units, which accumulate real numbers from their inputs and
send a real number to their output. Each unit’s output iscon-
nectedto other units’ inputs with a certain real-valuedweight.
Those units without incoming connections are calledinput
units, those without outgoing ones are calledoutput units.

We will consider 3-layered feed-forward networks, i.e. net-
works without cycles where the outputs of units in one layer
are only connected to the inputs of units in the next layer. The
first and last layers contain the input and output units respec-
tively, the intermediate layer is called thehidden layer.

Each unit has aninput functionwhich uses the connections’
weights to merge its inputs into one single value, and anout-
put function. An example for a so-calledradial basisinput
function is (~w, ~x) 7→

√∑n
i=1(xi − wi)2, where thexi are

the inputs and thewi are the corresponding weights. Possible
output functions are the sigmoidal function (x 7→ 1

1+e−x , for
the hidden layer) and the identity (x 7→ x, usually used in the
output layer). If only one unit of a layer is allowed to output
a value6= 0, the layer implements awinner-take-allbehavior.

Connectionist systems are successfully used for the learn-
ing of complex functions from raw data called training sam-
ples. Desirable properties include robustness with respect to
damage and noise; see e.g.[Rojas, 1996] for details.

2.3 The Core Method
In [Hölldobler and Kalinke, 1994; Hitzleret al., 2004] a
method was proposed to translate a propositional logic pro-
gramP into a neural network, such that the network will set-
tle down in a stable state corresponding to a model of the pro-
gram. To achieve this goal, the single-step operatorTP asso-
ciated withP was implemented using a connectionist system.
This general approach is nowadays called theCore Method
[Bader and Hitzler, 2005].

In [Hölldobleret al., 1999], the idea was extended to first-
order logic programs: It was shown that theTP -operator of
acyclic programs can be represented as a continuous function
on the real numbers. Exploiting the universal approximation
capabilities of 3-layered feed-forward networks, it was shown
that those networks can approximateTP up to any given ac-
curacy. However, no algorithms for the generation of the net-
works from given programs were presented. This was finally
done in[Baderet al., 2005] in a preliminary fashion.

3 The FineBlend System
In this section we will first discuss a new embedding of in-
terpretations into vectors of real numbers. This extends the
approach presented in[Hölldobleret al., 1999] by computing
m-dimensional vectors instead of a single real number, thus
allowing for a higher and scalable precision. Afterwards, we
will show how to construct a connectionist system approxi-
mating theTP -operator of a given programP up to a given
accuracyε. As mentioned above, in[Baderet al., 2005] first
algorithms were presented. However, the accuracy obtainable
in practice was limited through the use of a single real num-
ber for the embedding. The approach presented here allows
for arbitrarily precise approximations. Additionally, we will
present a novel training method, tailored for our specific set-
ting. The system presented here is a fine blend of techniques
from theSupervised Growing Neural Gas (SGNG)[Fritzke,
1998] and the approach presented in[Baderet al., 2005].

3.1 Embedding
Obviously, we need to link the space of interpretations and
the space of real vectors in order to feed the former into a
connectionist system. To this end, we will first extend level
mappings to a multi-dimensional setting, and then use them
to represent interpretations as real vectors.
Definition 4. Anm-dimensional level mappingis a bijective
function‖ · ‖ : BL → (N+, {1, . . . ,m}). For A ∈ BL, if
‖A‖ = (l, d), thenl andd are calledlevel anddimensionof
A, respectively. Again, we define‖¬A‖ := ‖A‖.
Definition 5. Let b ≥ 3 and letA ∈ BL be an atom with
‖A‖ = (l, d). Them-dimensional embeddingι : BL →
Rm and its extensionι : IL → Rm are defined asι(A) :=
(ι1(A), . . . , ιm(A)) where

ιj(A) :=
{

b−l if j = d

0 otherwise
and ι(I) :=

∑
A∈I

ι(A).

With Cm we denote the set of all embedded interpretations,
i.e.Cm := {ι(I) | I ∈ IL} ⊂ Rm.1

1For b = 2, ι is not injective, as0.01̄2 = 0.12. We useb = 4.

x

0.3̄

x

0.3̄

y
0.3̄

ι(M)

Figure 1:C1 (left) andC2 (right) for b = 4 andM from Ex. 6.

x

y

;

x

y

;

x

y

;

x

y

Figure 2: The first steps while constructing the limitC2.

Example 6. Using the 1-dimensional level mapping from
Example 2, we obtainC1 as depicted in Figure 1 on the
left. Using the 2-dimensional level mapping‖e(sn(0))‖ :=
(n + 1, 1) and ‖o(sn(0))‖ := (n + 1, 2), we obtainC2 as
depicted on the right andι(M) = (0.1010b, 0.0101b) ≈
(0.2666667, 0.0666667) for the embedding ofM .

For readers familiar with fractal geometry, we note thatC1

is the classical Cantor set andC2 the 2-dimensional variant
of it [Barnsley, 1993]. Obviously,ι is injective for a bijec-
tive level mapping and it is bijective onCm. Using them-
dimensional embedding, theTP -operator can be embedded
into the real vectors to obtain a real-valued functionfP .

Definition 7. Them-dimensional embedding ofTP , namely
fP : Cm → Cm, is defined asfP (~x) := ι

(
TP

(
ι−1(~x)

))
.

Them-dimensional embedding ofTP is preferable to the
one introduced in[Hölldobleret al., 1999] and used in[Bader
et al., 2005], because it allows for scalable approximation
precision on real computers. Otherwise, only 16 atoms could
be represented with 32 bits.

Now we introducehyper-squareswhich will play an im-
portant role in the sequel. Without going into detail, Figure 2
shows the first 4 steps in the construction ofC2. The big
square is first replaced by2m shrunken copies of itself, the
result is again replaced by2m smaller copies and so on. The
limit of this iterative replacement isC2. We will useCm

i to
denote the result of thei-th replacement, i.e. Figure 2 de-
pictsC2

0,C
2
1,C

2
2 andC2

3. Again, for readers with background
in fractal geometry we note, that these are the first 4 appli-
cations of an iterated function system[Barnsley, 1993]. The
squares occurring in the intermediate results of the construc-
tions are referred to ashyper-squaresin the sequel.Hl de-
notes a hyper-square of levell, i.e. one of the squares occur-
ring in Cm

l . An approximation ofTP up to some levell will
yield a function constant on all hyper-squares of levell.

Definition 8. The largest exclusive hyper-squareof a vector
~u ∈ Cm

0 and a set of vectorsV = {~v1, . . . , ~vk} ⊆ Cm
0 , de-

noted byHex(~u, V), either does not exist or is the hyper-
squareH of least level for which~u ∈ H andV ∩H = ∅. The
smallest inclusive hyper-squareof a non-empty set of vectors
U = {~u1, . . . , ~uk} ⊆ Cm

0 , denoted byHin(U), is the hyper-
squareH of greatest level for whichU ⊆ H.

x

0.3̄

fP (x)

0.25

0.3̄

x

0.3̄

fQ(x)

0.25

0.3̄

Figure 3:fP for the program from Example 1 and the embed-
ding from Example 2 is shown on the left. A piecewise con-
stant approximationfQ (level l = 2) is shown on the right.

3.2 Construction
In this section, we will show how to construct a connection-
ist networkN for a given covered programP and a given
accuracyε, such that the dimension-wise maximum distance
d(fP , fN) := maxx,j(|πj(fP (x)) − πj(fN (x))|) between
the embeddedTP -operatorfP and the functionfN computed
by N is at mostε. We will use a 3-layered network with a
winner-take-all hidden layer.

With l =
⌈
−ln((b−1)ε)

ln(b)

⌉
, we obtain a levell such that when-

ever two interpretationsI andJ agree on all atoms up to level
l in dimensionj, we find that|ιj(I)− ιj(J)| ≤ ε. For a cov-
ered programP , we can construct a finite subsetQ ⊆ G(P)
such that for allI ∈ IL, TP (I) andTQ(I) agree on all atoms
up to levell in all dimensions, henced(fP , fQ) ≤ ε. Fur-
thermore, we find that the embeddingfQ is constant on all
hyper-squares of levell [Baderet al., 2005], i.e. we obtain a
piecewise constant functionfQ such thatd(fP , fQ) ≤ ε.

We can now construct the feed-forward network as follows:
For each hyper-squareH of level l, we add a unit to the hid-
den layer, such that the input weights encode the position of
the center ofH. The unit shall output1 if it is selected as
winner, and0 otherwise. The weight associated with the out-
put connections of this unit is the value offQ on that hyper-
square. Thus, we obtain a connectionist network approximat-
ing the semantic operatorTP up to the given accuracyε. To
determine the winner for a given input, we designed a locally
receptive activation function such that its outcome is smallest
for the closest “responsible” unit. Responsible units here are
defined as follows: Given some hyper-squareH, units which
are positioned inH but not in any of its sub-hyper-squares are
calleddefault unitsof H, and they are responsible for inputs
from H except for inputs from sub-hyper-squares containing
other units. IfH does not have any default units, the units po-
sitioned in its sub-hyper-squares are responsible for all inputs
from H as well. When all units’ activations have been (lo-
cally) computed, the unit with the smallest value is selected
as the winner.

The following example is taken from[Witzel, 2006] and
used to convey the underlying intuitions. All constructions
work for m-dimensional embeddings in general, but for clar-
ity the graphs here result from a1-dimensional level mapping.

Example 9. Using the program from Example 1 and the1-
dimensional level mapping from Example 2 we obtainfP and
fQ for levell = 2 as depicted in Figure 3. The corresponding
network consists of 1 input, 4 hidden and 1 output units.

3.3 Training
In this section, we will describe the adaptation of the sys-
tem during training, i.e. how the weights and the structure
of a network are changed, given training samples with input
and desired output, in such a way that the distribution under-
lying the training data is better represented by the network.
This process can be used to refine a network resulting from
an incorrect program, or to train a network from scratch. The
training samples in our case come from the original (non ap-
proximated) program, but might also be observed in the real
world or given by experts. First we discuss the adaptation of
the weights and then the adaptation of the structure by adding
and removing units. Some of the methods used here are adap-
tations of ideas described in[Fritzke, 1998]. For a more de-
tailed discussion of the training algorithms and modifications
we refer to[Witzel, 2006].

Adapting the weights Let ~x be the input,~y be the desired
output andu be the winner-unit from the hidden layer. To
adapt the system, we change the output weights foru towards
the desired output, i.e.~wout ← η · ~y + (1 − η) · ~wout. Fur-
thermore, we moveu towards the center~c of Hin({~x, u}),
i.e. ~win ← µ · ~c + (1 − µ) · ~win, whereη andµ are prede-
fined learning rates. Note that the winner unit is not moved
towards the input but towards the center of the smallest hyper-
square including the unit and the input. The intention is that
units should be positioned in the center of the hyper-square
for which they are responsible.

Adding new units The adjustment described above enables
a certain kind of expansion of the network by allowing units
to move to positions where they are responsible for larger ar-
eas of the input space. A refinement now should take care of
densifying the network in areas where a great error is caused.
Therefore, when a unitu is selected for refinement,2 we try to
figure out the area it is responsible for and a suitable position
to add a new unit.

If u occupies a hyper-square on its own, then the largest
such hyper-square is considered to beu’s responsibility area.
Otherwise, we take the smallest hyper-square containingu.
Now u is moved to the center of this area, and some informa-
tion gathered byu is used to determine a sub-hyper-square
into whose center a new unit is placed, and to set up the out-
put weights for the new unit.

Removing inutile units Each unit maintains a utility value,
initially set to1, which decreases over time and increases only
if the unit contributes to the network’s output.3 If a unit’s
utility drops below a threshold, the unit will be removed.

3.4 Robustness
The described system is able to handle noisy data and to cope
with damage. Indeed, the effects of damage to the system are

2The error for a given sample is ascribed to the winner unit. After
a predefined number of training cycles, the unit with the greatest
accumulated error is refined, if the error exceeds a given threshold.

3The contribution of a unit is the expected increase of error if the
unit would be removed[Fritzke, 1998].

 0.01

 0.1

 1

 10

 100

 0 2000 4000 6000 8000 10000
 0

 10

 20

 30

 40

 50

 60

 70

 80

er
ro

r

#u
ni

ts

#examples

#units (FineBlend 1)
error (FineBlend 1)

#units (FineBlend 2)
error (FineBlend 2)

Figure 4: FineBlend 1 versus FineBlend 2.

quite obvious: If a hidden unitu fails, the receptive area is
taken over by other units, thus only the specific results learned
for u’s receptive area are lost. While a corruption of the input
weights may cause no changes at all in the network function,
generally it can alter the unit’s receptive area. If the output
weights are corrupted, only certain inputs are effected. If the
damage to the system occurs during training, it will be re-
paired very quickly as indicated by the experiment reported
in Section 4.3. Noise is generally handled gracefully, because
wrong or unnecessary adjustments or refinements can be un-
done in the further training process.

4 Evaluation

In this section we will discuss some preliminary experiments.
In the diagrams, we use a logarithmic scale for the error axis,
and the error values are relative toε, i.e. a value of1 desig-
nates an absolute error ofε. For incorrect network initializa-
tion, we used the following wrong program:

e(s(X))← ¬o(X).
o(X)← e(X).

Training samples were created randomly using the semantic
operator of the program from Example 1.

4.1 Variants of Fine Blend

To illustrate the effects of varying the parameters, we use two
setups: One with softer utility criteria (FineBlend 1) and one
with stricter ones (FineBlend 2). Figure 4 shows that, start-
ing from the incorrect initialization, the former decreases the
initial error, paying with an increasing number of units, while
the latter significantly decreases the number of units, paying
with an increasing error. Hence, the performance of the net-
work critically depends on the choice of the parameters. The
optimal parameters obviously depend on the concrete setting,
e.g. the kind and amount of noise present in the training data,
and methods for finding them will be investigated in the fu-
ture. For our further experiments we will use the FineBlend 1
parameters, which resulted from a mixture of intuition and
(non-exhaustive) comparative simulations.

 0.01

 0.1

 1

 10

 100

 0 2000 4000 6000 8000 10000 12000 14000
 0

 20

 40

 60

 80

 100

 120

 140

er
ro

r

#u
ni

ts

#examples

#units (FineBlend 1)
error (FineBlend 1)

#units (SGNG)
error (SGNG)

Figure 5: FineBlend 1 versus SGNG.

4.2 Fine Blend versus SGNG
Figure 5 compares FineBlend 1 with SGNG[Fritzke, 1998].
Both start off similarly, but soon SGNG fails to improve fur-
ther. The increasing number of units is partly due to the fact
that no error threshold is used to inhibit refinement, but this
should not be the cause for the constantly high error level.
The choice of SGNG parameters is rather subjective, and even
though some testing was done to find them, they might be far
from optimal. Finding the optimal parameters for SGNG is
beyond the scope of this paper; however, it should be clear
that it is not perfectly suited for our specific application. This
comparison to an established generic architecture shows that
our specialized architecture actually works, i.e. it is able to
learn, and that it achieves the goal of specialization, i.e. it
outperforms the generic architecture in our specific setting.

4.3 Unit Failure
Figure 6 shows the effects of unit failure. A FineBlend 1
network is (correctly) initialized and refined through train-
ing with 5000 samples, then one third of its hidden units are
removed randomly, and then training is continued as if noth-
ing had happened. The network proves to handle the damage
gracefully and to recover quickly. The relative error exceeds
1 only slightly and drops back very soon; the number of units
continues to increase to the previous level, recreating the re-
dundancy necessary for robustness.

4.4 Iterating Random Inputs
One of the original aims of the Core Method is to obtain con-
nectionist systems for logic programs which, when iteratively
feeding their output back as input, settle to a stable state cor-
responding to an approximation of a fixed point of the pro-
gram’s single-step operator. In our running example, a unique
fixed point is known to exist. To check whether our system
reflects this, we proceed as follows:

1. Train a network from scratch until the relative error
caused by the network is below1, i.e. network outputs
are in theε-neighborhood of the desired output.

2. Transform the obtained network into a recurrent one by
connecting the outputs to the corresponding inputs.

 0.01

 0.1

 1

 10

 100

 0 2000 4000 6000 8000 10000 12000 14000 16000
 0

 10

 20

 30

 40

 50

 60

 70

 80

er
ro

r

#u
ni

ts

#examples

#units (FineBlend 1)
error (FineBlend 1)

Figure 6: The effects of unit failure.

M

x

0.3̄

y
0.3̄

Figure 7: Iterating random inputs. The two dimensions
of the input vectors are plotted against each other. Theε-
neighborhood of the fixed pointM is shown as a small box.

3. Choose a random input vector∈ Cm
0 (which is not nec-

essarily a valid embedded interpretation) and use it as
initial input to the network.

4. Iterate the network until it reaches a stable state, i.e. until
the outputs stay inside anε-neighborhood.

For our example program, the unique fixed point ofTP is
M as given in Example 3. Figure 7 shows the input space
and theε-neighborhood ofM , along with all intermediate
results of the iteration for5 random initial inputs. The ex-
ample computations converge, because the underlying pro-
gram is acyclic[Witzel, 2006; Ḧolldobler et al., 1999]. Af-
ter at most6 steps, the network is stable in all cases, in fact
it is completely stable in the sense that all outputs stay ex-
actly the same and not only within anε-neighborhood. This
corresponds roughly to the number of applications of our
program’sTP operator required to fix the significant atoms,
which confirms that the training method really implements
our intention of learningTP . The fact that even a network ob-
tained through training from scratch converges in this sense
further underlines the efficacy of our training method.

5 Conclusions and Further Work
We have reported on new results for overcoming the propo-
sitional fixation of current neural-symbolic systems: To the
best of our knowledge this is the first constructive approach
of approximating the semantic operators of first-order logic
programs as well as their least fixed points in a fully connec-
tionist setting. We also showed how the semantic operators

can be learned from given training examples using a mod-
ified neural gas method which exploits domain knowledge.
The resulting system degrades gracefully under damage and
noise, and recovers using training.

Whereas we define the embeddingι externally, in[Gust
and Kühnberger, 2005] such embeddings are learned using
ideas from category theory. In[Seda and Lane, 2005], con-
nectionist systems for a covered programP are constructed
by generating finite subsets ofG(P) and employing the con-
structions presented in[Hölldobler and Kalinke, 1994].

Besides a thorough comparison of these approaches much
remains to be done. The presented methods and procedures
involve parameters, which are set manually; we would like
to find (preferably optimal) parameters automatically. We
would like to extract first-order logic programs after train-
ing, but all the extraction methods that we are aware of are
propositional. This is a prerequisite not only to compare our
method of learning semantic operators of logic programs with
that of inductive logic programming, but also to complete
the neural-symbolic learning cycle[Bader and Hitzler, 2005].
The investigation of realistic applications, e.g. to the learning
of ontologies and other types of knowledge bases[Hitzler et
al., 2005] will follow.

Acknowledgments
We would like to thank three anonymous referees for their
valuable comments on the preliminary version of this pa-
per. Sebastian Bader is supported by the GK334 of the Ger-
man Research Foundation (DFG). Pascal Hitzler is supported
by the German Federal Ministry of Education and Research
(BMBF) under the SmartWeb project (grant 01 IMD01 B),
and by the X-Media project (www.x-media-project.org) spon-
sored by the European Commission as part of the Information
Society Technologies (IST) programme under EC grant num-
ber IST-FP6-026978. Andreas Witzel is supported by a Marie
Curie Early Stage Research fellowship in the project GloRi-
Class (MEST-CT-2005-020841).

References
[Angele and Lausen, 2004] J. Angele and G. Lausen. On-

tologies in F-Logic. In S. Staab and R. Studer, editors,
Handbook on Ontologies, pages 29–50. Springer, 2004.

[Apt et al., 1988] K. R. Apt, H. A. Blair, and A. Walker. To-
wards a theory of declarative knowledge. In J. Minker, ed-
itor, Foundations of Deductive Databases and Logic Pro-
gramming, pages 89–148. Morgan Kaufmann, 1988.

[Bader and Hitzler, 2005] S. Bader and P. Hitzler. Dimen-
sions of neural-symbolic integration — a structured sur-
vey. In S. Artemov et al., editor,We Will Show Them: Es-
says in Honour of Dov Gabbay, volume 1, pages 167–194.
King’s College Publications, JUL 2005.

[Baderet al., 2005] S. Bader, P. Hitzler, and A. Witzel. In-
tegrating first-order logic programs and connectionist sys-
tems — a constructive approach. In A. S. d’Avila Garcez et
al., editor, Proceedings of the IJCAI-05 Workshop on
Neural-Symbolic Learning and Reasoning, NeSy’05, Ed-
inburgh, UK, 2005.

[Barnsley, 1993] M. Barnsley. Fractals Everywhere. Aca-
demic Press, San Diego, CA, USA, 1993.

[d’Avila Garcezet al., 2002] A. S. d’Avila Garcez, K. B.
Broda, and D. M. Gabbay.Neural-Symbolic Learning Sys-
tems — Foundations and Applications. Perspectives in
Neural Computing. Springer, Berlin, 2002.

[Fodor and Pylyshyn, 1988] J. A. Fodor and Z. W. Pylyshyn.
Connectionism and cognitive architecture: A critical anal-
ysis. In Pinker and Mehler, editors,Connections and Sym-
bols, pages 3–71. MIT Press, 1988.

[Fritzke, 1998] B. Fritzke. Vektorbasierte Neuronale Netze.
Habilitation, Technische Universität Dresden, 1998.

[Gust and K̈uhnberger, 2005] H. Gust and K.-U. K̈uhnber-
ger. Learning symbolic inferences with neural networks.
In B. Bara, L. Barsalou, and M. Bucciarelli, editors,
CogSci 2005: XXVII Annual Conference of the Cognitive
Science Society, pages 875–880, 2005.

[Hitzler et al., 2004] P. Hitzler, S. Ḧolldobler, and A. K.
Seda. Logic programs and connectionist networks.Jour-
nal of Applied Logic, 3(2):245–272, 2004.

[Hitzler et al., 2005] P. Hitzler, S. Bader, and A. d’Avila
Garcez. Ontology leaning as a use case for neural-sym-
bolic integration. In A. Garcez et al., editor,Proceedings
of the IJCAI-05 Workshop on Neural-Symbolic Learning
and Reasoning, NeSy, 2005.

[Hölldobler and Kalinke, 1994] S. Hölldobler and Y. Kalin-
ke. Towards a massively parallel computational model for
logic programming. InProceedings ECAI94 Workshop on
Combining Symbolic and Connectionist Processing, pages
68–77. ECCAI, 1994.

[Hölldobleret al., 1999] S. Hölldobler, Y. Kalinke, and H.-P.
Störr. Approximating the semantics of logic programs by
recurrent neural networks.Applied Intelligence, 11:45–58,
1999.

[Lloyd, 1988] J. W. Lloyd. Foundations of Logic Program-
ming. Springer, Berlin, 1988.

[McCarthy, 1988] J. McCarthy. Epistemological challenges
for connectionism. Behavioural and Brain Sciences,
11:44, 1988.

[Rojas, 1996] Raul Rojas.Neural Networks. Springer, 1996.
[Seda and Lane, 2005] Anthony K. Seda and Maire Lane.

On approximation in the integration of connectionist and
logic-based systems. InProceedings of the Third Interna-
tional Conference on Information (Information’04), pages
297–300, Tokyo, November 2005. International Informa-
tion Institute.

[Smolensky, 1987] P. Smolensky. On variable binding and
the representation of symbolic structures in connectionist
systems. Technical Report CU-CS-355-87, Department of
Computer Science & Institute of Cognitive Science, Uni-
versity of Colorado, Boulder, CO 80309-0430, 1987.

[Witzel, 2006] A. Witzel. Neural-symbolic integration –
constructive approaches. Master’s thesis, Department of
Computer Science, Technische Universität Dresden, Dres-
den, Germany, 2006.

