A Fully Connectionist Model Generator for Covered First-Order Logic Programs

Sebastian Badet and Pascal Hitzler' and Steffen Holldobler* and Andreas Witzel
* International Center for Computational Logic, Technische Univargitesden, Germany
T AIFB, Universitat Karlsruhe, Germany
! Institute for Logic, Language and Computation, Universiteit van Amsterdam

Abstract necessary preliminaries in Section 2, we make the follow-

o ing novel contributions in Section 3: We define a new multi-
We present a fully connectionist system for the dimensional embedding of semantic operators into the reals,
learning of first-order logic programs and the gen- e construct a feed-forward network to approximate these
eration of corresponding models: Given a program operators and we present a new learning method using do-
and a set of training examples, we embed the asso- main knowledge. The resulting system is evaluated in Sec-
ciated semantic operator into a feed-forward net- tjon 4. Finally, we draw some conclusions and point out what

work and train the network using the examples. needs to be done in the future in Section 5. For an overview
This results in the learning of first-order knowledge of related work we refer tfd’Avila Garcezet al., 2004 and
while damaged or noisy data is handled gracefully. [Bader and Hitzler, 2045

2 Preliminaries

1 Motivation _ . i : .
)) ~ Inthis section, some preliminary notions from logic program-
Three long-standing open research problems in connectionning and connectionist systems are presented, along with the

ism are the questions of how to instantiate the power otCore Method as one approach to integrate both paradigms.
symbolic computation within a fully connectionist system

[Smolensky, 1987 how to represent and reason about struc2.1 First-Order Logic Programs

tured objects and structure sensitive procegseslor and A |ogic programover some first-order languaggis a set of
Pylyshyn, 1988 and how to overcome the propositional fix- clausesof the form A « Ly A---AL,, Aisanatomin L,
ation [McCarthy, 1988, i.e. how to use connectionist sys- and theL, areliterals in £, that is, atoms or negated atoms.

tems for symbolic learning and reasoning beyond proposi s called theheadof the clause, thé; are callecbody lit-
tional logic. It has been shown that feed-forward networks arerals and their conjunctiot; A - - - A L, is called thebody

universal approximators and that artificial neural networks argf the clause. If, = 0, A is called afact A clause isground

Turing complete. Thus we know that symbolic computationif it does not contain any variablekocal variablesare those
is possible in principle, but at the same time the mentionedariables occurring in some body but not in the correspond-

results are mainly theoretical. ing head. A logic program isoveredif none of the clauses
Here we are concerned with the model generation for firsteontain local variables.

ord.er logic programs, 1.e. sets of rul_es which may Conta'.rExampIe 1. The following is a covered logic program which

variables ranging over infinite domains. Our approach IR4ill serve as our runnina example

based on the following ideas first expressefHilldobleret 9 pie.

al., 1999: Various semantics of logic programs coincide with ¢(0). % 0 is even

fixed points of associated semantic operators. Given that the s x)) — o(X). % the successor s(X) of an odd X is even

semantic operator is continuous on the reals, the operator caraX Y % X is odd ifiti N

be approximated arbitrarily well by a feed-forward network. °) — e(X). % Xisoddifitis noteven

In addition, if the operator is a contraction, then its fixed point TheHerbrand universé/, is the set of all ground terms of

can be computed by a recurrent extension of the feed-forwarg, theHerbrand bases; is the set of all ground atoms, which

network. we assume to be infinite — indeed the case of a fiijtecan
Until now this approach was also purely theoretical for thebe reduced to a propositional setting. gfound instanceof

first-order case. In this paper we show how feed-forward neta literal or a clause is obtained by replacing all variables by

works approximating the semantic operator of a given firstterms froml{. For a logic progranP, G(P) denotes the set

order logic program can be constructed, we show how thesef all ground instances of clauses fraf

networks can be trained using input-output examples, and we A level mappings a function assigning a natural number

demonstrate that the obtained connectionist system is robusf| > 1 to each ground atom. For negative ground literals

against damage and noise. In particular, and after statingre defing|—A| := | A|. A logic programP is calledacyclic

if there exists a level mapping: | such that for all clauses 2.3 The Core Method

A — LyiA-- ALy € G(P)we havelA| > [Li[forl1 <i<n. |n [Holldobler and Kalinke, 1994; Hitzleet al, 2004 a
Example 2. Consider the program from Example 1 andd&t method_was proposed to translate a propositional Ioglc pro-
denote the:-fold application ofs. With |e(s(0))] := 2n + 1 gramP into a neural network, such that the network will set-
and|o(s™(0))| := 2n + 2, we find thatP is acyclic. tle downina s_table state corresppndlng to a model of the pro-
gram. To achieve this goal, the single-step operaoasso-

A (Herbrand) interpretation/ is a subset of3;. Those ciated withP was implemented using a connectionist system.
atomsA with A € I are said to bérue underI, those with This general approach is nowadays called @wee Method
A ¢ I are said to béalseunderI. Z, denotes the set of all [Bader and Hitzler, 2045

interpretations. An interpretatiohis a(Herbrand) modebf In [Holldobleret al, 1999, the idea was extended to first-
a logic programP (in symbols:I = P) if I is a model for order logic programs: It was shown that thip-operator of
each clause ig(P) in the usual sense. acyclic programs can be represented as a continuous function

on the real numbers. Exploiting the universal approximation
Example %i For the program P JLrom Example 1 we have capapilities of 3-layered feed-forward networks, it was shown
M :={e(s"(0)) [n ever U {o(s™(0)) | m odd} = P. that those networks can approximdte up to any given ac-

Given a logic programP, the single-step operatop : Curacy. However, no algorithms for the generation of the net-
T — T, maps an interpretatiohto the set of exactly those WOrKs from given programs were presented. This was finally
atoms A for which there is a clausé — body € G(P) done in[Baderet al,, 2003 in a preliminary fashion.
such that the body is true undér The operatofl’» captures .
the semantics of’ as the Herbrand models of the latter are3 The FineBlend System
exactly the pre-fixed points of the former, i.e. those interpredn this section we will first discuss a new embedding of in-
tationsI with Tp(I) C I. For logic programming purposes it terpretations into vectors of real numbers. This extends the
is usually preferable to consider fixed pointsigf, instead of approach presented [holldobleret al,, 1999 by computing
pre-fixed points, as the intended meaning of programs. Thesg-dimensional vectors instead of a single real number, thus
fixed points are calledupported modelsf the progranfApt allowing for a higher and scalable precision. Afterwards, we
et al, 1989. In Example 1, the (obviously intended) model will show how to construct a connectionist system approxi-
M is supported, whilés is a model but not supported. mating theTp-operator of a given prograr® up to a given

Logic programming is an established and mature paradigraccuracye. As mentioned above, ifBaderet al,, 2009 first
for knowledge representation and reasoning (sed ldayd, algorithms were presented. However, the accuracy obtainable
1989) with recent applications in areas like rational agents oiin practice was limited through the use of a single real num-
semantic web technologies (el&ngele and Lausen, 204 ber for the embedding. The approach presented here allows

for arbitrarily precise approximations. Additionally, we will
2.2 Connectionist Systems present a novel training method, tailored for our specific set-
ting. The system presented here is a fine blend of techniques
A connectionist systeis a network of simple computational from the Supervised Growing Neural Gas (SGNIFJitzke,
units, which accumulate real numbers from their inputs and 999 and the approach presented Baderet al,, 2004.
send a real number to their output. Each unit’s outpabis- .
nectedo other units’ inputs with a certain real-valuegight 3.1 Embedding
Those units without incoming connections are caliggut ~ Obviously, we need to link the space of interpretations and
units those without outgoing ones are callaatput units the space of real vectors in order to feed the former into a

We will consider 3-layered feed-forward networks, i.e. net-connectionist system. To this end, we will first extend level
works without cycles where the outputs of units in one layermappings to a multi-dimensional setting, and then use them
are only connected to the inputs of units in the next layer. Tho represent interpretations as real vectors.
first and last layers contain the input and output units respe@efinition 4. Anm-dimensional level mappinig a bijective

tively, the intermediate layer is called thalden layer function|| - || : B, — (NT,{1,...,m}). For A € B, if
Each unit has aimput functionrwhich uses the connections’ || A|| = (I, d), thenl andd are calledlevel and dimensionof

weights to merge its inputs into one single value, andath A, respectively. Again, we defifjeA|| := || 4]|.

put function An example for a so-callethdial basisinput pefinition 5. Letb > 3 and letA € B, be an atom with

function is (@, &) — /> ;_,(x; — w;)?, where ther; are ||A| = (I,d). Them-dimensional embedding : B, —

the inputs and the; are the corresponding weights. PossibleR™ and its extensiom : Z, — R™ are defined ag(A) :=

output functions are the sigmoidal function - ==, for (1, (A),...,,,(A)) where

the hidden layer) and the identity (~ z, usually used in the b=l if i —d

output layer). If only one unit of a layer is allowed to output Lj(A) = { J=a and (I):= Z L(A).

avalue# 0, the layer implementswinner-take-albehavior. 0 otherwise aer
Connectionist systems are successfully used for the learfin ¢ we denote the set of all embedded interpretations,

ing of complex functions from raw data called training sam-; o gm ._ ()| I€T} cR™Y

ples. Desirable properties include robustness with respect

damage and noise; see dgojas, 199bfor details. 'Forb = 2, ¢ is not injective, a9.0T» = 0.1,. We useb = 4.

Ry fe(x) fq(@)

Figure 3: fp for the program from Example 1 and the embed-
ding from Example 2 is shown on the left. A piecewise con-
stant approximatiorf, (levell = 2) is shown on the right.

y y - Yi. .. Vi,
. - c . { L] 3.2 Construction

In this section, we will show how to construct a connection-
Figure 2: The first steps while constructing the lit ist network N for a given covered prograr® and a given
accuracye, such that the dimension-wise maximum distance
d(fp, fn) = maxg ;(|m;(fp(x)) — m;(fn(x))]) between
the embedde@’»-operatorfr and the functiory computed
by N is at moste. We will use a 3-layered network with a

Figure 1:¢! (left) and¢? (right) for b = 4 and M from EX. 6.

Example 6. Using the 1-dimensional level mapping from
Example 2, we obtair¢! as depicted in Figure 1 on the
left. Using the 2-dimensional level mappifig(s™(0))]| := d .
(n+1,1) and o(s”(0))]| = (n + 1,2), we obtaine? as ~ “innertake-al hidden layer.
depicted on the right and(M) = (0.10104,0.0101,) =~ With [= [%},we obtain a level such that when-
(0.2666667,0.0666667) for the embedding at/. ever two interpretationsand.J agree on all atoms up to level
For readers familiar with fractal geometry, we note &t [in dimensiony, we find that.; (1) — +;(J)| < e. For a cov-
is the classical Cantor set add the 2-dimensional variant ered progranmP, we can construct a finite subsgtC G(P)
of it [Barnsley, 199R Obviously, is injective for a bijec- such thatforall € 7, Tp(I) andT (1) agree on all atoms
tive level mapping and it is bijective o&™. Using them- up to levell in all dimensions, hencé(fp, fq) < e. Fur-
dimensional embedding, tHEr-operator can be embedded thermore, we find that the embedditfg is constant on all
into the real vectors to obtain a real-valued functfgn hyper-squares of IevéI[Bgderet al, 2004, i.e. we obtain a
Definition 7. Them-dimensional embedding @, namely ~ Piecewise constant functiofy, such thatl(fp, fq) < e.
fp 1 @™ — &m is defined agp(7) := ¢ (Tp (¢ (E))). We can now construct the feed-forward network as follows:
. .) _ For each hyper-squaté of level I, we add a unit to the hid-
The m-dimensional embedding dfp is preferable to the yep, jayer, such that the input weights encode the position of
one introduced ifHolldobleret al, 1999 and used iflBader he center of4. The unit shall output if it is selected as
et al, 2009, because it allows for scalable approximation yinner and) otherwise. The weight associated with the out-
precision on real computers. Otherwise, only 16 atoms coulgut connections of this unit is the value fif on that hyper-
be represented with 32 bits. L . square. Thus, we obtain a connectionist network approximat-
Now we introducehyper-squaresvhich will play an im- jq4 the semantic operatéts up to the given accuracy. To
portant role In the sequell. Without going into detail, Figure 24etermine the winner for a given input, we designed a locally
shows the first 4 steps in the construction® The big receptive activation function such that its outcome is smallest
square is first replaced ™ shrunken copies of itself, the {5 the closest “responsible” unit. Responsible units here are
result is again replaced by" smaller copies and so on. The gefined as follows: Given some hyper-squakeunits which
limit of this iterative rep_Iacement 6. We.W|II usedi"to 5 positioned if but not in any of its sub-hyper-squares are
denote the result of theth replacement, i.e. Figure 2 de- cqjieqdefault unitsof H, and they are responsible for inputs
picts &5, €7, & and&s. Again, for readers with background gom 7 except for inputs from sub-hyper-squares containing
in fractal geometry we note, that these are the first 4 appligher ynits. IfF does not have any default units, the units po-
cations of an iterated function systdBarnsley, 1998 The gjioned in its sub-hyper-squares are responsible for all inputs
squares occurring in the |ntermed|af[e results of the construGiom 7 as well. When all units’ activations have been (lo-
tions are referred to dsyper-squaresn the sequel.H; de- c4)1) computed, the unit with the smallest value is selected
notes a hyper-square of leveli.e. one of the squares occur- 45 the winner.
ring in &;". An approximation off’» up to some level will The following example is taken frofWitzel, 2006 and
yield a function constant on all hyper-squares of level used to convey the underlying intuitions. All constructions
Definition 8. Thelargest exclusive hyper-squapéa vector work for m-dimensional embeddings in general, but for clar-
u € ¢ and a set of vectory” = {v,...,0,} C &, de- ity the graphs here result fromladimensional level mapping.
noted byH.. (i, V), either does not exist or is the hyper-
squareH of least level for whichi € H andV N H = (). The
smallest inclusive hyper-squanéa non-empty set of vectors
U ={i,...,dr} C CF, denoted byd,,, (U), is the hyper-
squareH of greatest level for whict/ C H.

Example 9. Using the program from Example 1 and tie
dimensional level mapping from Example 2 we objgirand
fq forlevell = 2 as depicted in Figure 3. The corresponding
network consists of 1 input, 4 hidden and 1 output units.

3.3 Training

In this section, we will describe the adaptation of the sys-
tem during training, i.e. how the weights and the structure
of a network are changed, given training samples with input
and desired output, in such a way that the distribution under-
lying the training data is better represented by the network.
This process can be used to refine a network resulting from
an incorrect program, or to train a network from scratch. The
training samples in our case come from the original (non ap-
proximated) program, but might also be observed in the real o1t § 20
world or given by experts. First we discuss the adaptation of s (iestend 1) — |
the weights and then the adaptation of the structure by adding vomis (Eneslends)
and removing units. Some of the methods used here are adap- oo\ - - __coreer o
tations of ideas described [Rritzke, 1998. For a more de- examples

tailed discussion of the training algorithms and modifications) i)
we refer to[Witzel, 2004. Figure 4: FineBlend 1 versus FineBlend 2.

error
#units

Adapting the weights Let Z be the inputy be the desired quite obvious: If a hidden unit fails, the receptive area is
output andu be the winner-unit from the hidden layer. To taken over by other units, thus only the specific results learned
adapt the system, we change the output weights fowards for 4’s receptive area are lost. While a corruption of the input
the desired output, i.@bou: < 7+ ¥+ (1 — 1) - Wour- FU- weights may cause no changes at all in the network function,
thermore, we move: towards the centef of H;,({Z,u}), generally it can alter the unit's receptive area. If the output
I.e. Win < p- ¢+ (1 — p) - Win, Wheren andy are prede- weights are corrupted, only certain inputs are effected. If the
fined |earn|ng rates. Note that the winner unit is not move%amage to the system occurs during training, it will be re-
towards the input but towards the center of the smallest hypegaired very quickly as indicated by the experiment reported
square including the unit and the input. The intention is thain Section 4.3. Noise is generally handled gracefully, because
units should be positioned in the center of the hyper-squar@rong or unnecessary adjustments or refinements can be un-
for which they are responsible. done in the further training process.

Adding.ne\(v units The adjustment described abovc_e enab]es4 Evaluation
a certain kind of expansion of the network by allowing units
to move to positions where they are responsible for larger arn this section we will discuss some preliminary experiments.
eas of the input space. A refinement now should take care df the diagrams, we use a logarithmic scale for the error axis,
densifying the network in areas where a great error is causednd the error values are relativedpi.e. a value ofl desig-
Therefore, when a unit is selected for refinemeAtwve tryto nates an absolute error of For incorrect network initializa-
figure out the area it is responsible for and a suitable positiotion, we used the following wrong program:
to add a new unit.

If « occupies a hyper-square on its own, then the largest e(s(X)) < —o(X).
such hyper-square is considered tofmresponsibility area. o(X) « e(X).
Otherwise, we take the smallest hyper-square containing
Now u is moved to the center of this area, and some informaTraining samples were created randomly using the semantic
tion gathered by is used to determine a sub-hyper-squareoperator of the program from Example 1.
into whose center a new unit is placed, and to set up the out-
put weights for the new unit. 4.1 Variants of Fine Blend

L)) o N To illustrate the effects of varying the parameters, we use two
Removing inutile units Each unit maintains a utility value, setups: One with softer utility criteria (FineBlend 1) and one
initially setto1, which decreases over time and increases onlyyith stricter ones (FineBlend 2). Figure 4 shows that, start-
if the unit contributes to the network’s outptitlf a unit's ing from the incorrect initialization, the former decreases the
utility drops below a threshold, the unit will be removed. initial error, paying with an increasing number of units, while
3.4 Robustness the latter significantly decreases the number of units, paying

i i i with an increasing error. Hence, the performance of the net-
The described system is able to handle noisy data and to CORg,k critically depends on the choice of the parameters. The

with damage. Indeed, the effects of damage to the system aggyiimal parameters obviously depend on the concrete setting,

2The error for a given sample is ascribed to the winner unit. After€-9- the kind and amount of noise present in the training data,
a predefined number of training cycles, the unit with the greatesBnd methods for finding them will be investigated in the fu-
accumulated error is refined, if the error exceeds a given thresholdture. For our further experiments we will use the FineBlend 1

3The contribution of a unit is the expected increase of error if theparameters, which resulted from a mixture of intuition and
unit would be removedFritzke, 1998. (non-exhaustive) comparative simulations.

error
-

#units

error

-
IS
S

#units

01 0.1 4 20

#units (FineBlend 1) —— 410
error (FineBlend 1) -------
#units (SGNG) #units (FineBlend 1)
error (SGNG) error (FineBlend 1) -------
1 1 1 1 1 ! 0 0.01 1 1 1 1 ! I 0
0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000 16000

#examples #examples

0.01

Figure 5: FineBlend 1 versus SGNG. Figure 6: The effects of unit failure.

4.2 Fine Blend versus SGNG

Figure 5 compares FineBlend 1 with SGNRitzke, 1998.

Both start off similarly, but soon SGNG fails to improve fur-
ther. The increasing number of units is partly due to the fact
that no error threshold is used to inhibit refinement, but this
should not be the cause for the constantly high error level.
The choice of SGNG parameters is rather subjective, and even
though some testing was done to find them, they might be far))]]
from optimal. Finding the optimal parameters for SGNG isFigure 7: lterating random inputs. The two dimensions
beyond the scope of this paper; however, it should be cles®f the input vectors are plotted against each other. dhe
that it is not perfectly suited for our specific application. This Neighborhood of the fixed poirit/ is shown as a small box.
comparison to an established generic architecture shows that

our specialized architecture actually works, i.e. it is able to 3. Choose a random input vecter@g’ (WhICh is not nec-

learn, and that it achieves the goal of specialization, i.e. it essarily a valid embedded interpretation) and use it as
outperforms the generic architecture in our specific setting. initial input to the network.

4.3 Unit Failure 4. Iterate the network until it reaches a stable state, i.e. until

. oL , the outputs stay inside anneighborhood.
Figure 6 shows the effects of unit failure. A FineBlend 1

network is (correctly) initialized and refined through train- _FOr our example program, the unique fixed pointofis

ing with 5000 samples, then one third of its hidden units are!/ @S given in Example 3. Figure 7 shows the input space
removed randomly, and then training is continued as if noth&nd thee-neighborhood of\/, along with all intermediate

ing had happened. The network proves to handle the dama gsults of the iteration fob random initial inputs. The ex-
gracefully and to recover quickly. The relative error exceedstMPle computations converge, because the underlying pro-
1 only slightly and drops back very soon; the number of unitsd"am is acyclidWitzel, 2006; tblldobleret al, 1999. Af-
continues to increase to the previous level, recreating the rd€" &t Most steps, the network is stable in all cases, in fact

dundancy necessary for robustness. it is completely stable in the sense that all outputs stay ex-
actly the same and not only within ameighborhood. This
4.4 lterating Random Inputs corresponds roughly to the number of applications of our

i : . . _program’sT’» operator required to fix the significant atoms,
One of the original aims of the Core Method is to obtain con which confirms that the training method really implements

nectionist systems for logic programs which, when iteratively, e ntion of learningp. The fact that even a hetwork ob-
feeding their output back as input, settle to a stable state “Ofzined through training from scratch converges in this sense

responding to an approximation of a fixed point of the pro-¢ o nderlines the efficacy of our training method
gram’s single-step operator. In our running example, a unique '

fixed point is known to exist. To check whether our system5 Conclusions and Further Work

reflects this, we proceed as follows:

We have reported on new results for overcoming the propo-
sitional fixation of current neural-symbolic systems: To the
best of our knowledge this is the first constructive approach
of approximating the semantic operators of first-order logic
2. Transform the obtained network into a recurrent one byprograms as well as their least fixed points in a fully connec-

connecting the outputs to the corresponding inputs. tionist setting. We also showed how the semantic operators

1. Train a network from scratch until the relative error
caused by the network is beloly i.e. network outputs
are in thez-neighborhood of the desired output.

can be learned from given training examples using a modfBarnsley, 1998 M. Barnsley. Fractals Everywhere Aca-
ified neural gas method which exploits domain knowledge. demic Press, San Diego, CA, USA, 1993.

The resulting system degrades gracefully under damage arﬁQ’Avila Garcezet al, 2004 A. S. d'Avila Garcez, K. B.

noise, and recovers using training. Broda, and D. M. Gabbayeural-Symbolic Learning Sys-

Whereas we define the embeddingxternally, in[Gust tems — Foundations and ApplicationsPerspectives in
and Kihnberger, 2005such embeddings are learned using Neuyral Computing. Springer, Berlin, 2002.

ideas from category theory. [Beda and Lane, 205con- [
- Fodor and Pylyshyn, 1988]. A. Fodor and Z. W. Pylyshyn.
nectionist systems for a covered prografrare constructed Connectionism and cognitive architecture: A critical anal-

by generating finite subsets 6f P) and employing the con- ; ; ; .
: , : ysis. In Pinker and Mehler, editor€pnnections and Sym-
structions presented [Holldobler and Kalinke, 1994 bols pages 3-71. MIT Press, 1988.

Besides a thorough comparison of these approaches much °))
remains to be done. The presented methods and procedurdditzke, 1998 B. Fritzke. Vektorbasierte Neuronale Netze
involve parameters, which are set manually; we would like Habilitation, Technische Universit Dresden, 1998.
to find (preferably optimal) parameters automatically. We[Gust and Kihnberger, 2005H. Gust and K.-U. Kihnber-
would like to extract first-order logic programs after train- ger. Learning symbolic inferences with neural networks.
ing, but all the extraction methods that we are aware of are In B. Bara, L. Barsalou, and M. Bucciarelli, editors,
propositional. This is a prerequisite not only to compare our CogSci 2005: XXVII Annual Conference of the Cognitive
method_of Iea(ning semantic opergtors of logic programs with Science Societpages 875-880, 2005.
that of inductive logic programming, but also to complete i jor et a1, 2004 P. Hitzler, S. Holidobler, and A. K.
the neural-symbolic learning cydBader and Hitzler, 2045 Seda. Logic programs and connectionist netwotlaur-

The investigation of realistic applications, e.g. to the learning : ; oNE_
of ontologies and other types of knowledge bdstiszler et nal of Applied Logic3(2):245-272, 2004.

al., 2009 will follow. [Hitzler et al, 2009 P. Hitzler, S. Bader, and A. d'Avila
Garcez. Ontology leaning as a use case for neural-sym-
Acknowledgments bolic integration. In A. Garcez et al., editd®roceedings

We would like to thank three anonymous referees for their 0f the IJCAI-05 Workshop on Neural-Symbolic Learning

valuable comments on the preliminary version of this pa- and Reasoning, NeS¥005.

per. Sebastian Bader is supported by the GK334 of the GefHglidobler and Kalinke, 1994S. Holldobler and Y. Kalin-

man Research Foundation (DFG). Pascal Hitzler is supported ke. Towards a massively parallel computational model for

by the German Federal Ministry of Education and Research |ogic programming. IfProceedings ECAI94 Workshop on

(BMBF) under the SmartWeb project (grant 01 IMDO1 B), Combining Symbolic and Connectionist Processpages

and by the X-Media project (www.x-media-project.org) spon- 68—77. ECCAI, 1994.

Sored by the Europear commission as part of the Informatio s qopleret al, 1999 S. Holldobler, Y. Kalinke, and H.-P.
ociety Technologies (IST) programme under EC grant num= " gy, “Aporoximating the semantics of logic programs by

ber IST-FP6-026978. Andreas Witzel is supported by a Marie : : T
Curie Early Stage Research fellowship in the project GloRi- rlegcgugrrent neural networks\pplied Intelligence11:45-58,

Class (MEST-CT-2005-020841).
() [Lloyd, 1989 J. W. Lloyd. Foundations of Logic Program-

ming Springer, Berlin, 1988.
References . :
[McCarthy, 1988 J. McCarthy. Epistemological challenges

[Angele and Lausen, 20p4). Angele and G. Lausen. On- for connectionism. Behavioural and Brain Sciences
tologies in F-Logic. In S. Staab and R. Studer, editors, 11:44, 1988.

Handbook on Ontologiepages 29-50. Springer, 2004. [Rojas, 1996 Raul RojasNeural NetworksSpringer, 1996.
[Aptetal, 1989 K. R. Apt, H. A. Blair, and A. Walker. To- [seda and Lane, 20D5Anthony K. Seda and Maire Lane.
wards a theory of declarative knowledge. In J. Minker, ed- on approximation in the integration of connectionist and
itor, Foundations of Deductive Databases and Logic Pro- |ggic-based systems. Proceedings of the Third Interna-
gramming pages 89-148. Morgan Kaufmann, 1988. tional Conference on Information (Information’Q4)ages
[Bader and Hitzler, 2045S. Bader and P. Hitzler. Dimen- ~ 297-300, Tokyo, November 2005. International Informa-
sions of neural-symbolic integration — a structured sur- tion Institute.
vey. In S. Artemov et al., editoWve Will Show Them: Es- [Smolensky, 1987 P. Smolensky. On variable binding and
says in Honour of Dov Gabbayolume 1, pages 167-194. the representation of symbolic structures in connectionist
King's College Publications, JUL 2005. systems. Technical Report CU-CS-355-87, Department of
[Baderet al, 2009 S. Bader, P. Hitzler, and A. Witzel. In- ~ Computer Science & Institute of Cognitive Science, Uni-
tegrating first-order logic programs and connectionist sys- Versity of Colorado, Boulder, CO 80309-0430, 1987.
tems — a constructive approach. In A. S. d’Avila Garcez eff Witzel, 200§ A. Witzel. Neural-symbolic integration —
al., editor, Proceedings of the IJCAI-05 Workshop on constructive approaches. Master’s thesis, Department of
Neural-Symbolic Learning and Reasoning, NeSy’05, Ed- Computer Science, Technische UniveisDresden, Dres-
inburgh, UK 2005. den, Germany, 2006.

