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Abstract

In a previous paper we have investigated subsumption in the presence of termi-
nological cycles for the description logic EL, which allows conjunctions, existential
restrictions, and the top concept, and have shown that the subsumption problem
remains polynomial for all three types of semantics usually considered for cyclic
definitions in description logics.

In this paper we show that subsumption in EL (with or without cyclic defi-
nitions) remains polynomial even if one adds a certain restricted form of global
role-value-maps to EL. In particular, this kind of role-value-maps can express
transitivity of roles.

1 Introduction

In a previous paper [4], we have investigated terminological cycles in the DL EL, which
allows for conjunctions, existential restrictions, and the top-concept. In contrast to
(even very inexpressive) DLs with value restrictions [1, 2], subsumption in EL remains
polynomial in the presence of terminological cycles for the three types of semantics
(least fixpoint (lfp) semantics, greatest fixpoint (gfp) semantics, and descriptive se-
mantics) introduced by Nebel [11].

Although EL is of a very limited expressive power, there are indeed applications
where the small DL EL appears to be sufficient. In fact, SNOMED, the Systematized
Nomenclature of Medicine [6] employs EL [16, 17]. Even though SNOMED does not
appear to use cyclic definitions, this may be due to a lack of technology rather than
need. In fact, the Galen medical knowledge base contains many cyclic dependencies
[12].

In the medical application mentioned above [15] (but also in other applications
[13]) one often uses roles that are not just arbitrary binary relations, but should
satisfy certain relationships. A prominent example are transitive roles r, which satisfy
r ◦ r v r, i.e., the composition of r with itself is a subrelation of r. In this paper
we consider more general constraints of the form r1 ◦ r2 v r3, which say that the
composition of r1 with r2 is a subrelation of r3. Obviously, this is a special form
of role-value-maps [14], which are global in the sense that they must hold for every
∗Partially supported by the DFG under grant BA 1122/4-3.



name of constructor Syntax Semantics
concept name A ∈ NC A AI ⊆ ∆I

role name r ∈ NR r rI ⊆ ∆I ×∆I

top-concept > ∆I

conjunction C uD CI ∩DI
existential restriction ∃r.C {x ∈ ∆I | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
concept definition A ≡ D AI = DI

Table 1: Syntax and semantics of EL-concept descriptions and TBox definitions.

individual in the interpretation domain. The right-identity rule in [15] is a special case
where r1 is identical with r3. As an example, consider the roles location, which assigns
objects with their location, and contained, which relates each spacial region with those
regions containing it. Then it makes sense to assert the condition location◦contained v
location. We can show that adding global role-value-maps of the form r1 ◦ r2 v r3

to EL with cyclic terminologies (interpreted with gfp or descriptive semantics) leaves
the subsumption problem polynomial. In particular, this shows that subsumption of
EL-concept descriptions (with or without acyclic terminologies) remains polynomial
when adding these global role-value-maps. The restriction that the right-hand side
of role value maps consists of a single role is vital for these results to hold. In fact,
we will also show that subsumption in EL becomes undecidable (even without cyclic
terminologies) if general (global) role-value-maps are allowed.

Because of the space constraints, we cannot prove the results in detail. More
detailed definitions and proofs can be found in [3].

2 Basic definitions

Concept descriptions are inductively defined with the help of a set of constructors,
starting with a set NC of concept names and a set NR of role names. The constructors
determine the expressive power of the DL. In this paper, we restrict the attention to
the DL EL, whose concept descriptions are formed using the constructors top-concept
(>), conjunction (C u D), and existential restriction (∃r.C). The semantics of EL-
concept descriptions is defined in terms of an interpretation I = (∆I , ·I). The domain
∆I of I is a non-empty set of individuals and the interpretation function ·I maps each
concept name A ∈ NC to a subset AI of ∆I and each role r ∈ NR to a binary relation
rI on ∆I . The extension of ·I to arbitrary concept descriptions is inductively defined,
as shown in the third column of Table 1.

A terminology (or TBox for short) is a finite set of concept definitions of the
form A ≡ D, where A is a concept name and D a concept description. In addition,
we require that TBoxes do not contain multiple definitions, i.e., there cannot be two
distinct concept descriptions D1 and D2 such that both A ≡ D1 and A ≡ D2 belongs
to the TBox. Concept names occurring on the left-hand side of a definition are called
defined concepts. All other concept names occurring in the TBox are called primitive
concepts. Note that we allow for cyclic dependencies between the defined concepts,
i.e., the definition of A may refer (directly or indirectly) to A itself. An interpretation



I is a model of the TBox T iff it satisfies all its concept definitions, i.e., AI = DI for
all definitions A ≡ D in T .

The semantics of (possibly cyclic) EL-TBoxes we have defined above is called
descriptive semantic by Nebel [11]. For some applications, it is more appropriate to
interpret cyclic concept definitions with the help of appropriate fixpoint semantics.
Before we can define these semantics, we must introduce some notation. Let T be
an EL-TBox containing the roles Nrole, the primitive concepts Nprim, and the defined
concepts Ndef = {A1, . . . , Ak}. A primitive interpretations J for T is given by a
domain ∆J , an interpretation of the roles r ∈ Nrole by binary relations rJ on ∆J ,
and an interpretation of the primitive concepts P ∈ Nprim by subsets PJ of ∆J .
Obviously, a primitive interpretation differs from an interpretation in that it does not
interpret the defined concepts in Ndef . We say that the interpretation I is based on
the primitive interpretation J iff it has the same domain as J and coincides with
J on Nrole and Nprim. For a fixed primitive interpretation J , the interpretations I
based on it are uniquely determined by the tuple (AI1 , . . . , A

I
k ) of the interpretations

of the defined concepts in Ndef . We define

Int(J ) := {I | I is an interpretation based on J }.

Interpretations based on J can be compared by the following ordering, which realizes
a pairwise inclusion test between the respective interpretations of the defined concepts:
if I1, I2 ∈ Int(J ), then

I1 �J I2 iff AI1i ⊆ A
I2
i for all i, 1 ≤ i ≤ k.

It is easy to see that �J induces a complete lattice on Int(J ), i.e., every subset
of Int(J ) has a least upper bound (lub) and a greatest lower bound (glb). Using
Tarski’s fixpoint theorem [18] for complete lattices, it is not hard to show that, for a
given primitive interpretation J , there is always a greatest and a least (w.r.t. �J )
model of T based on J . We call these models respectively the greatest fixpoint
model (gfp-model) and the least fixpoint model (lfp-model) of T . Greatest (least)
fixpoint semantics considers only gfp-models (lfp-models) as admissible models. In the
following, we restrict our attention to gfp- and descriptive semantics since the results
in [4] show that cyclic definitions with least fixpoint semantics are not interesting in
EL.

Definition 1 Let T be an EL-TBox and A an EL-ABox, let A,B be defined concepts
occurring in T , and a an individual name occurring in A. Then,

• A is subsumed by B w.r.t. descriptive semantics (A vT B) iff AI ⊆ BI holds
for all models I of T .

• A is subsumed by B w.r.t. gfp-semantics (A vgfp,T B) iff AI ⊆ BI holds for all
gfp-models I of T .

3 Characterizing subsumption in EL
In this section, we recall the characterizations of subsumption w.r.t. gfp-semantics and
descriptive semantics developed in [4]. To this purpose, we must represent TBoxes by
description graphs, and introduce the notion of a simulation on description graphs.



Before we can translate EL-TBoxes into description graphs, we must normalize
the TBoxes. In the following, let T be an EL-TBox, Ndef the defined concepts of T ,
Nprim the primitive concepts of T , and Nrole the roles of T .

We say that the EL-TBox T is normalized iff A ≡ D ∈ T implies that D is of the
form

P1 u . . . u Pm u ∃r1.B1 u . . . u ∃r`.B`,

for m, ` ≥ 0, P1, . . . , Pm ∈ Nprim, r1, . . . , r` ∈ Nrole, and B1, . . . , B` ∈ Ndef . If
m = ` = 0, then D = >.

As shown in [4], one can (without loss of generality) restrict the attention to
normalized TBox. In the following, we thus assume that all TBoxes are normalized.
Normalized EL-TBoxes can be viewed as graphs whose nodes are the defined concepts,
which are labeled by sets of primitive concepts, and whose edges are given by the
existential restrictions. For the rest of this section, we fix a normalized EL-TBox T
with primitive concepts Nprim, defined concepts Ndef , and roles Nrole.

Definition 2 An EL-description graph is a graph G = (V,E, L) where

• V is a set of nodes;

• E ⊆ V ×Nrole × V is a set of edges labeled by role names;

• L: V → 2Nprim is a function that labels nodes with sets of primitive concepts.

The normalized TBox T can be translated into the following EL-description graph
GT = (Ndef , ET , LT ):

• the nodes of GT are the defined concepts of T ;

• if A is a defined concept and

A ≡ P1 u . . . u Pm u ∃r1.B1 u . . . u ∃r`.B`

its definition in T , then

– LT (A) = {P1, . . . , Pm}, and

– A is the source of the edges (A, r1, B1), . . . , (A, r`, B`) ∈ ET .

Simulations are binary relations between nodes of two EL-description graphs that
respect labels and edges in the sense defined below.

Definition 3 Let Gi = (Vi, Ei, Li) (i = 1, 2) be two EL-description graphs. The
binary relation Z ⊆ V1 × V2 is a simulation from G1 to G2 iff

(S1) (v1, v2) ∈ Z implies L1(v1) ⊆ L2(v2); and

(S2) if (v1, v2) ∈ Z and (v1, r, v
′
1) ∈ E1, then there exists a node v′2 ∈ V2 such that

(v′1, v
′
2) ∈ Z and (v2, r, v

′
2) ∈ E2.

We write Z: G1
⇀∼ G2 to express that Z is a simulation from G1 to G2.

Subsumption w.r.t. gfp-semantics corresponds to the existence of a simulation
relation such that the subsumee simulates the subsumer:



B = B0
r1→ B1

r2→ B2
r3→ B3

r4→ · · ·
Z↓ Z↓ Z↓ Z↓

A = A0
r1→ A1

r2→ A2
r3→ A3

r4→ · · ·

Figure 1: A (B,A)-simulation chain.

Theorem 4 Let T be an EL-TBox and A,B defined concepts in T . Then the follow-
ing are equivalent:

1. A vgfp,T B.

2. There is a simulation Z: GT ⇀∼ GT such that (B,A) ∈ Z.

This theorem shows that subsumption w.r.t. gfp-semantics in EL is tractable. In
fact, it is easy to see that the set of all simulations from GT to GT is closed under
arbitrary unions. Consequently, there always exists a greatest simulation from GT to
GT . In [8] it is shown that this greatest simulation can be computed in polynomial
time. Since there is a simulation Z: GT ⇀∼ GT such that (B,A) ∈ Z iff the great-
est simulation contains the tuple (B,A), we have the following complexity result for
subsumption in EL w.r.t. gfp-semantics.

Corollary 5 Subsumption w.r.t. gfp-semantics in EL can be decided in polynomial
time.

Now, let us turn to subsumption w.r.t. descriptive semantics. Since every gfp-
model of T is a model of T , A vT B implies A vgfp,T B. Consequently, A vT B
implies that there is a simulation Z: GT ⇀∼ GT with (B,A) ∈ Z. However, the
simulation Z must satisfy some additional properties for the implication in the other
direction to hold. To define these properties, we must introduce some notation.

Let T be an EL-TBox, GT the corresponding EL-description graph, and Z: GT ⇀∼
GT a simulation.

Definition 6 The path p1: B = B0
r1→ B1

r2→ B2
r3→ B3

r4→ · · · in GT is Z-simulated
by the path p2: A = A0

r1→ A1
r2→ A2

r3→ A3
r4→ · · · in GT iff (Bi, Ai) ∈ Z for all i ≥ 0.

In this case we say that the pair (p1, p2) is a (B,A)-simulation chain w.r.t. Z. (see
Figure 1).

If (B,A) ∈ Z, then (S2) of Definition 3 implies that, for every infinite path p1

starting with B0 := B, there is an infinite path p2 starting with A0 := A such that
p1 is Z-simulated by p2. In the following we construct such a simulating path step by
step. The main point is, however, that the decision which concept An to take in step
n should depend only on the partial (B,A)-simulation chain already constructed, and
not on the parts of the path p1 not yet considered.

Definition 7 A partial (B,A)-simulation chain is of the form depicted in Figure 2.
A selection function S for A,B and Z assigns to each partial (B,A)-simulation chain
of this form a defined concept An such that (An−1, rn, An) is an edge in GT and
(Bn, An) ∈ Z.



B = B0
r1→ B1

r2→ · · · rn−1→ Bn−1
rn→ Bn

Z↓ Z↓ Z↓
A = A0

r1→ A1
r2→ · · · rn−1→ An−1

Figure 2: A partial (B,A)-simulation chain.

Given a path B = B0
r1→ B1

r2→ B2
r3→ B3

r4→ · · · and a defined concept A such
that (B,A) ∈ Z, one can use a selection function S for A,B and Z to construct a
Z-simulating path. In this case we say that the resulting (B,A)-simulation chain is
S-selected.

Definition 8 Let A,B be defined concepts in T , and Z: GT ⇀∼ GT a simulation with
(B,A) ∈ Z. Then Z is called (B,A)-synchronized iff there exists a selection function
S for A,B and Z such that the following holds: for every infinite S-selected (B,A)-
simulation chain of the form depicted in Figure 1 there exists an i ≥ 0 such that
Ai = Bi.

We are now ready to recall the characterization of subsumption w.r.t. descriptive
semantics from [4].

Theorem 9 Let T be an EL-TBox, and A,B defined concepts in T . Then the fol-
lowing are equivalent:

1. A vT B.

2. There is a (B,A)-synchronized simulation Z: GT ⇀∼ GT such that (B,A) ∈ Z.

In [4] it is also shown that, for a given EL-TBox T and defined concepts A,B in
T , the existence of a (B,A)-synchronized simulation Z: GT ⇀∼ GT with (B,A) ∈ Z
can be decided in polynomial time.

Corollary 10 Subsumption w.r.t. descriptive semantics in EL can be decided in poly-
nomial time.

4 Role-value-maps in EL
The DL of the original Kl-One system [5] contained a concept constructor called
role-value-map that allowed the user to express relationships between roles. However,
it was shown in [14] that role-value-maps make the subsumption problem in Kl-One

undecidable. The role-value-maps that we consider in the following differ from the
ones in [5, 14] in the following respects:

1. Instead of arbitrary role-value-maps of the form r1 ◦ · · · ◦ rm v s1 ◦ · · · ◦ sn
we restrict the attention to role-value-maps of the form r1 ◦ r2 v s, i.e., the
right-hand side must be a single role.

2. We consider global role-value-maps, i.e., role-value-maps that must hold for all
individuals of an interpretation, rather than local ones, which can be asserted
selectively for certain individuals.



3. We consider the DL EL, which does not allow value restrictions, whereas the
DLs considered in [5, 14] have value restrictions.

The undecidability proof in [14] would also work with the second restriction in place.
However, the proof does not work in the presence of the first or the third restriction.
Role-value-maps satisfying the first and the second restriction have recently drawn
considerable attention [7, 19, 9]. However, for the expressive DLs usually considered
there, subsumption easily becomes undecidable [7, 19], and it is quite hard to obtain
decidable special cases [9].

For EL (with or without cyclic terminologies), things are a lot simpler. Not only
does subsumption remain decidable, it even stays polynomial when we add role-value-
maps satisfying the first two restrictions.

Definition 11 A (global) role-value-map is an expression of the form r1 ◦ · · · ◦ rm v
s1 ◦ · · · ◦ sn where m,n ≥ 1 and r1, . . . , sn are role names. It is satisfied in an
interpretation I iff rI1 ◦ · · · ◦ rIm ⊆ sI1 ◦ · · · ◦ sIn, where ◦ denotes composition of binary
relations. We say that this role-value-map is restricted if m = 2 and n = 1.1 A finite
set of restricted role-value-maps is called an RBox. The interpretation I is a model
of the RBox R iff I satisfies every role-value-map in R. Given an EL-TBox T and
an RBox R, subsumption w.r.t. T and R is defined in the obvious way: Let A,B be
defined concepts in T . Then

• A vRT B iff AI ⊆ BI holds for all models of T and R.

• A vRgfp,T B iff AI ⊆ BI holds for all gfp-models of T that are models of R.

In order to solve the subsumption problem w.r.t. a cyclic EL-TBox T and an RBox
R, we view the restricted role-value-maps r ◦ s v t ∈ R as rules that add new edges
to GT .

Definition 12 We say that the role-value-map r ◦s v t applies to the EL-description
graph G iff G contains edges (u, r, v) and (v, s, w), but does not contain the edge
(u, t, w). An application of this rule then adds the edge (u, t, w). Given an EL-
description graph G and an RBox R, we can iterate the application of the role-value-
maps in R to G until no role-value-map applies. We call the EL-description graph Ĝ
obtained this way the completion of G w.r.t. R.

Lemma 13 Given a finite EL-description graph G and an RBox R, the completion
Ĝ of G w.r.t. R always exists, is unique, and can be computed in time polynomial in
the size of G and R.

Let T be an EL-TBox, R an RBox, and ĜT the completion of GT w.r.t. R. The
EL-description graph ĜT corresponds to a TBox T̂ (i.e., there is a TBox T̂ such that
ĜT = GT̂ ). We call this TBox the completion of T w.r.t. R.

Lemma 14 Let T be an EL-TBox, R an RBox, and T̂ the completion of T w.r.t. R.
If I is a model of R, then I is a model of T iff I is a model of T̂ .

1The restriction m = 2 is not really necessary. It is easy to see that all our results would still hold
if the left-hand sides were compositions of m ≥ 1 roles for an arbitrary m. However, the restriction
n = 1 is vital (see Theorem 18 below).



In order to test subsumption w.r.t. T and R, we compute the completion T̂ of T
w.r.t. R, and then test subsumption w.r.t. T̂ .

Theorem 15 Let T be an EL-TBox, R an RBox, T̂ the completion of T w.r.t. R,
and A,B defined concepts. Then A vRgfp,T B iff A v

gfp,T̂ B.

Subsumption w.r.t. descriptive semantics can be treated similarly.

Theorem 16 Let T be an EL-TBox, R an RBox, T̂ the completion of T w.r.t. R,
and A,B defined concepts. Then A vRT B iff A vT̂ B.

Since the completion T̂ of an EL-TBox T can be computed in polynomial time,
and since subsumption w.r.t. gfp- and descriptive semantics in EL can be decided in
polynomial time, we have the following corollary.

Corollary 17 The subsumption problem w.r.t. gfp-semantics in EL remains polyno-
mial in the presence of RBoxes. The same is true for the subsumption problem w.r.t.
descriptive semantics.

The main restriction on the role-value-maps allowed to occur in RBoxes is that the
right-hand side must consist of a single role. If we allow for arbitrary role-value-maps,
then subsumption becomes undecidable.

Theorem 18 Subsumption in EL becomes undecidable in the presence of general
(global) role-value-maps.

The proof is by reduction of the word problem for semi-Thue systems to the
subsumption problem in EL with general (global) role-value-maps. Let Σ be a finite
alphabet. A semi-Thue system (STS) over Σ is a finite set of rules of the form x→ y
where x, y ∈ Σ+. Given an STS T and two words u, v ∈ Σ+ we write u→T v iff there
is a rule x → y ∈ T and words u1, u2 ∈ Σ∗ such that u = u1xu2 and v = u1yu2. Let
∼T denote the reflexive, transitive, and symmetric closure of →T . The word problem
for T is the following question: given words u, v ∈ Σ+, does u ∼T v hold or not. It is
well-known that this problem is in general undecidable [10].

In our reduction, we view the elements of Σ as role names. A non-empty word
w = r1 . . . rm over Σ then stands for the composition r1◦· · ·◦rm of the roles r1, . . . , rm.
If I is an interpretation, the wI stands for rI1 ◦ · · · ◦ rIm. Given a word w = r1 . . . rm
over Σ, we abbreviate ∃r1.∃r2. . . .∃rm.C by ∃w.C.

A given STS T induces the following set of role-value-maps:

RT := {x v y, y v x | x→ y ∈ T}.

Given two word u, v ∈ Σ+, we define the EL-TBox

Tu,v := {A ≡ ∃u.P, B ≡ ∃v.P}.

Since Tu,v is acyclic, descriptive semantics coincides with gfp-semantics.

Lemma 19 A is subsumed by B w.r.t. Tu,v and RT iff u ∼T v.



Since the question whether u ∼T v holds for given words u, v and STS T is in
general undecidable, this shows that the subsumption problem becomes undecidable
in EL if one allows for general (global) role-value-maps.

The above reduction is similar to the one used in [14] to show undecidability of
subsumption in Kl-One. Note, however, that the result itself is not a consequence of
the one in [14] and that there are some differences both in the reduction and in the
proof of its correctness due to the fact that we consider a language with existential
restrictions, and without value restrictions. It is not clear whether the undecidability
result also holds if we consider local role-value-maps in EL. In fact, the technique
used in [14] to simulate global role-value-maps with the help of local ones only works
in the presence of value restrictions.

References

[1] Franz Baader. Terminological cycles in KL-ONE-based knowledge representation
languages. In Proc. of the 8th Nat. Conf. on Artificial Intelligence (AAAI’90),
pages 621–626, Boston (Ma, USA), 1990.

[2] Franz Baader. Using automata theory for characterizing the semantics of ter-
minological cycles. Ann. of Mathematics and Artificial Intelligence, 18:175–219,
1996.

[3] Franz Baader. Least common subsumers, most specific concepts, and role-value-
maps in a description logic with existential restrictions and terminological cycles.
LTCS Report 02-07, Theoretical Computer Science, TU Dresden, 2002. Available
at http://lat.inf.tu-dresden.de/research/reports.html.

[4] Franz Baader. Terminological cycles in a description logic with existential re-
strictions. In Proceedings of the 18th International Joint Conference on Arti-
ficial Intelligence, 2003. A long version can found as LTCS Report 02-02 at
http://lat.inf.tu-dresden.de/research/reports.html.

[5] Ronald J. Brachman and James G. Schmolze. An overview of the KL-ONE
knowledge representation system. Cognitive Science, 9(2):171–216, 1985.

[6] R.A. Cote, D.J. Rothwell, J.L. Palotay, R.S. Beckett, and L. Brochu. The sys-
tematized nomenclature of human and veterinary medicine. Technical report,
SNOMED International, Northfield, IL: College of American Pathologists, 1993.

[7] Stephane Demri. The complexity of regularity in grammar logics and related
modal logics. J. of Logic and Computation, 11(6), 2001.

[8] Monika R. Henzinger, Thomas A. Henzinger, and Peter W. Kopke. Computing
simulations on finite and infinite graphs. In 36th Annual Symposium on Foun-
dations of Computer Science, pages 453–462, Milwaukee, Wisconsin, 1995. IEEE
Computer Society Press.

[9] Ian Horrocks and Ulrike Sattler. Description logics with complex role inclusion
axioms. In Proceedings of the 18th International Joint Conference on Artifi-



cial Intelligence, 2003. A long version can be found as LTCS Report 02-06 at
http://lat.inf.tu-dresden.de/research/reports.html.

[10] Juri V. Matijasevic. Simple examples of undecidable associative calculi. Soviet
Mathematics (Doklady), 8(2):555–557, 1967.

[11] Bernhard Nebel. Terminological cycles: Semantics and computational properties.
In John F. Sowa, editor, Principles of Semantic Networks, pages 331–361. Morgan
Kaufmann, Los Altos, 1991.

[12] A. Rector and I. Horrocks. Experience building a large, re-usable medical ontology
using a description logic with transitivity and concept inclusions. In Proc. of
the WS on Ontological Engineering, AAAI Spring Symposium (AAAI’97). AAAI
Press, 1997.

[13] Ulrike Sattler. A concept language extended with different kinds of transitive
roles. In Günter Görz and Steffen Hölldobler, editors, Proc. of the 20th German
Annual Conf. on Artificial Intelligence (KI’96), number 1137 in Lecture Notes in
Artificial Intelligence, pages 333–345. Springer-Verlag, 1996.

[14] Manfred Schmidt-Schauß. Subsumption in KL-ONE is undecidable. In Ron J.
Brachman, Hector J. Levesque, and Ray Reiter, editors, Proc. of the 1st Int.
Conf. on the Principles of Knowledge Representation and Reasoning (KR’89),
pages 421–431. Morgan Kaufmann, Los Altos, 1989.

[15] K.A. Spackman. Managing clinical terminology hierarchies using algorithmic
calculation of subsumption: Experience with SNOMED-RT. J. of the American
Medical Informatics Association, 2000. Fall Symposium Special Issue.

[16] K.A. Spackman. Normal forms for description logic expressions of clinical con-
cepts in SNOMED RT. J. of the American Medical Informatics Association,
pages 627–631, 2001. Symposium Supplement.

[17] K.A. Spackman, K.E. Campbell, and R.A. Cote. SNOMED RT: A reference
terminology for health care. J. of the American Medical Informatics Association,
pages 640–644, 1997. Fall Symposium Supplement.

[18] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5:285–309, 1955.

[19] Michael Wessel. Obstacles on the way to qualitative spatial reasoning with de-
scription logics: Some undecidability results. In Proc. of the 2001 Description
Logic Workshop (DL 2001), 2001.


