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© Closure Systems
@ Concept Intents as Closed Sets
@ NEXT CLOSURE Algorithm
@ Iceberg Concept Lattices
@ TrITANIC Algorithm
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Closure Systems

Def.: A closure system on a set G is a set 2 < 2¢ of subsets of G if
@ it contains G, i.e., G €2 and

@ it is closed under intersections, i.e., X < 2 implies [y X € 2.

Def.: A closure operator on G is a map ¢ : 2¢ — 2¢ assigning to each
subset X < G its closure p(X) < G satisfying the following conditions:

e X CY implies p(X) < p(Y), (monotonicity)
e X € ¢(X), and (extensivity)
o p(p(X)) = ¢(X). (idempotency)

Theorem (correspondence of closure systems and closure operators)

If is a closure system on G then ou(X) 1= (\acq xca A defines a
closure operator on GG. Conversely, for a closure operator ¢ on G, the set
A, = {©(A) | A < G} of all closures forms a closure system on G.
Moreover, pg, = ¢ and A, = 2.
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Closure Systems

Theorem (closure systems and complete lattices)

If A is a closure system, then (2(, <) is a complete lattice with

AX=Nxex X and \V/ X = g (Uxex X)-
Conversely, every complete lattice is isomorphic to the lattice of all
closures of a closure system.

In mathematics and computer science, we find a plethora of examples for
closure systems (e.g., subtrees, subintervals, convex sets, equivalence
relations).
For every formal context (G, M, I) holds:

@ The extents form a closure system on G.

@ The intents form a closure system on M.

e " is a closure operator.
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Concept Intents as Closed Sets

@ the line diagram of the
powerset of {a,b,c,e}

@ classes of attributes that
describe the same set of
objects

@ unique representatives:
concept intents (=closed
sets)

@ minimal generator

C be
2

X X
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NEXT CLOSURE Algorithm

Developed 1984 by Bernhard Ganter.

Can be used
@ to compute the concept lattice, or
@ to compute the concept lattice together with the stem base, or

o for interactive knowledge exploration.

The algorithm computes the concept intents in the lectic order.
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NEXT CLOSURE Algorithm: Lectic Order
Let M = {1,...,n}. We say that A < M is lectically smaller than

B < M, if B # A and the smallest element in which A and B differ
belongs to B:

A<B:e3dieBA:An{1,2,....i—1}=Bn{1,2,...,i—1}

1234

123
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NEXT CLOSURE Algorithm: Theorem

Some definitions before we start:
A<;Bi=ieBAAAN{1,2,...i—1}=Bn{1,2,...,i—1}

Ati=(An{1,2,...,i—1}) U {i}

Theorem

The smallest concept intent larger than a given set A = M with respect to
the lectic order is

A®i:=(A+1)",
with i being the largest element of M with A <; A@ 1.

Sebastian Rudolph (TUD) Formal Concept Analysis 8 /37



NEXT CLOSURE Algorithm

The NEXT CLOSURE algorithm to compute all concept intents:
© The lectically smallest concept intent is &5”.

@ If Ais a concept intent, we find the lectically next intent by checking
all attributes i € M\ A (starting with the largest), continuing in
descending order until for the first time A <; A®i. Then A®i is the
lectically next intent.

Q If A®i = M, we stop. Otherwise we set A := AP+ and go to step 2.
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Sinus 44

Nokia 6110

T-Fax 301
A

NEXT CLOSURE Algorithm: Example
| || mobile (1) | phone (2) | fax (3) | paper fax (4) |
<
T-Fax 360 PC
%

X
A4

X

A@i:=(A+1i)

X

X

new intent
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NEXT CLOSURE Algorithm: Lectic Order

1234

123

12
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lceberg Concept Lattices

veil type: partial

The seven most general concepts (for
minsupp = 85%) of the 32086
concepts of the mushroom database
(http://kdd.ics.uci.edu/).
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lceberg Concept Lattices

. 0 veil color: white
minsupp = 85% g &\
veil type: partial Q O

gill attachment: free

ring number: one 90.02 %

veil color: white
92.30 % 97.43 97.62 %

/5
3

minsupp = 70%
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lceberg Concept Lattices

veil type: partial
0O

veil color: white

— I
._.mw.\\
’ 0

S

m

stalk surface above ring: smooth

Q) O
5
Q

P
With decreasing

minimal support
more information

is revealed.
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lceberg Concept Lattices

veil type: partial
gill attachment: free
veil color: white

fing number: one

gill size: broad gillspacing: close

stalk color above ring: white

stal surface below ring: smooth
stalk surface abgve ring: snjooth

In a nested line
diagram we can
read off
implications.
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lceberg Concept Lattices: Support

Def.: The support of a set X © M of attributes is defined as

X/
supp(X) := ||G|‘

Def.: The iceberg concept lattice of a formal context (G, M, I) for a
given minimal support value minsupp is the set

{(A,B) € B(G, M, I) | supp(B) = minsupp}

The iceberg concept lattice can be computed using the TITANIC
algorithm. (Stumme et al., 2001)
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TiTANIC Algorithm

TITANIC computes the closure system of all (frequent) concept intents
using the support function supp(X) := X (for a set X < M of

_ G
attributes).

frequent: only concept intents above a threshold minsupp € [0, 1]
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TiTANIC Algorithm

TITANIC employs some simple properties of the support function:
Lemma 4. Let X,Y € M.

Q@ XY — supp(X) = supp(Y)
Q@ X"=Y" = supp(X) =supp(Y)
Q@ XY asupp(X) =supp(Y) = X" =Y"
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TiTANIC Algorithm

Lemma 4. Let X, Y € M.
Q X <Y = supp(X) = supp(Y)
Q X"=Y" = supp(X) = supp(Y)

Q@ X cVY Asupp(X) =supp(Y) =
X// — Y//

c be
2
a
1 3
_alblc]e]
1] x X
2 X X
3 X | x| x
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TiTANIC Algorithm

TITANIC tries to optimize the following three questions:

@ How can we compute the closure of an attribute set using only the
support values?

@ How can we compute the closure system such that we need to
compute as few closures as possible?

© How can we derive as many support values as possible from already
known support values?

Sebastian Rudolph (TUD) Formal Concept Analysis 20 / 37



TiTANIC Algorithm

© How can we compute the closure of an attribute set using only the

support values?

X" =X u{me M\X |supp(X) = supp(X u {m})}

Example:
{b,c}" = {b, c,e}, since

supp({b, c}) = 3

and

supp({a, b, c}) = %
supp({b, c, e}) = 3

Sebastian Rudolph (TUD)
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T1TANIC Algorithm

@ How can we compute the
closure system such that we
need to compute as few closures
as possible?

We compute only the closures of the
minimal generators.

C be
2
a
1 3
_[[afb]c]e]

1| x X
2 X X
3 X X

Sebastian Rudolph (TUD) Formal Concept Analysis

For this example
TITANIC needs two
runs (Apriori four).

22 /37



T1TANIC Algorithm

@ How can we compute the
closure system such that we
need to compute as few closures
as possible?

We compute only the closures of the
minimal generators.

A set is a minimal generator, iff its
support is unequal to the support of
its lower covers.

The minimal generators form an

order ideal (i.e., if a set is not a .|ﬂ|!ﬂ
X X

For this example

1 TITANIC needs two
2 X X runs (Apriori four).
3 X | X | x

minimal generator, then none of its
supersets is either)
— approach similar to Apriori
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TiTANIC Algorithm

TITANIC tries to optimize the following three questions:

© How can we compute the closure of an attribute set using only the
support values?

= X"=Xu{me M\X | supp(X) = supp(X u {m})}

© How can we compute the closure system such that we need to
compute as few closures as possible?

— approach similar to Apriori

© How can we derive as many support values as possible from already

known support values?
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T1TANIC Algorithm

© How can we derive as many support
values as possible from already known
support values?

Theorem: If X is not a minimal generator,

then

supp(X) = min{supp(K) | K is minimal
generator, K € X}

Example:

supp({a,b,c}) =min{3,%,%,2,2} =0

since the set is not a minimal generator and

supp({a, b}) = 3 supp({b, c}) = é
supp({a}) = 3, supp({b}) = 3, _
C
surw((e) - T
X X
Remark: It is sufficient, to check the 2 < »
largest minimal generators K with K € X,
i.e., in this example {a, b} and {b, c}. 3 XXX
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T1TANIC Algorithm

TITANIC tries to optimize the following three questions:

© How can we compute the closure of an attribute set using only the
support values?

= X" = X u{me M\X | supp(X) = supp(X U {m})}

@ How can we compute the closure system such that we need to
compute as few closures as possible?

— approach similar to Apriori

© How can we derive as many support values as possible from already
known support values?

— If X is no minimal generator, then
supp(X) = min{supp(K) | K is minimal generator, K < X}
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TrTANIC Al

gorithm

k1

Cy, < singletons

A la Apriori

i T |F i : in datab
—»’Determme support for all C' € Ck‘ or pot. min. generators: count in database.

Else: supp(X) = min{supp(K) | K < X, K m.g.}

’Determine closures for all C' € Cy._4 ‘ X" =X u{me M\X | supp(X) = supp(X u {m})}‘

!

’Prune non-minimal generators from Ck‘ ‘—‘ iff supp(X) # supp(X\{z}) fa. € X ‘

k—k+1

C). < Generate_Candidates(Cy,_1)

A la Apriori

End

!

TITANIC

An algorithm
v Yes similar to Apriori.
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TiTANIC Algorithm: Compared to Apriori

k1
Cy, < singletons

!

—»’Determine support for all C' e Ck‘

’Determine closures for all C' € Cj,_ ‘

!

’Prune non-minimal generators from Ck‘

!

k—k+1
C), < Generate_Candidates(Cy,_1)

Sebastian Rudolph (TUD)

v yes
End
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If the support is too
low or equal to the
support of a lower
cover, the candidate
is pruned.

We only generate
candidates for
minimal generators.
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T1TANIC Algorithm

1) SupporRT({});
2) Ko —{};
3) k< 1;
4) forall m € M do {m}.p_s — J.s;
5) C « {{m} | m e M};
6) loop begin
7) SuppoRT(C);
8) forall X € K1 do X.closure «— CLOSURE(X);
9) Kip—{XeC|Xs#Xps}
) if Kx = & then exit loop ;
1) k++
2) C <« TiTANIC-GEN(Kj_1);
13) end loop ;
14) return Uf;ol{X.closure | X € Ki}.

[ay

0

l—‘H

k is the counter which indicates the current iteration. In the kth iteration, all key k-sets
are determined.

K  contains after the kth iteration all key k-sets K together with their support K.s and their
closure K.closure.

C stores the candidate k-sets C together with a counter C.p_s which stores the minimum
of the supports of all (k — 1)-subsets of C. The counter is used in step 9 to prune all
non-key sets.

Sebastian Rudolph (TUD) Formal Concept Analysis 28 / 37



TiTANIC Algorithm: TITANIC-GEN

Input: Kk_1, the set of key (k — 1)-sets K with their support K.s.

Output: C, the set of candidate k-sets C
with the values C.p_s := min{supp(C\{m}) | m € C}.

The variables p_s assigned to the sets {my,...,my} which are generated in
step 1 are initialized by {m1,..., my}.p-s — Smax-
1) C « {{m1 <o < - < mk} | {ml, . ,mkfz,mkfl}, {ml, . ,mkfz,mk} € ICk,l}

2) forall X € C do begin

3) forall (k — 1)-subsets S of X do begin

4) if S ¢ Ki_1 then begin C — C\{X}, exit forall ; end;
5) X.p_s — min(X.p_s, S.s);

6) end;

7) end;

8) return C.
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T1TANIC Algorithm: CLOSURE(X) for X € Kj_4

)Y « X

2) forall me X do Y — Y u (X\{m}).closure;

3) forall m € M\Y do begin

4) if X u{m}eC then s — (X u{m}).s

5) else s — min{K.s | Ke K, K € X u {m}};
6) if s=X.sthenY « Y u {m}

7) end;

8) return Y.
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TiTANIC Algorithm: Example

cap surface: fibrous (i)

ORES
2 5 :
§ =3 edible () cap shape: flat (I)
z|=]a @
~ o|&|&
ol O|=|..
= |l
9 8 8 & cap shape: convex (c)
ORISR p shape- poisonous (p)
o c|lc|lc| >
=|0o|n nn
2|2/ alal g
B18| 8| 8| S| |[Mushroom 1 Mushroom 10
Mushroom 1 | X| X Mushroom 6
Mushroom 2 |X| [X| |X
Mushroom 3 | XX
Mushroom 4 X | XX Mushrbom 2 ﬂﬂiﬂ?ﬁﬁ[ﬂ j mz::zzﬁ ;
Mushroom 5 || X| [X Mushroom 5
Mushroom 6 | X| X Mushroom 9
Mushroom 7 X XX
Mushroom 8 X XX
Mushroom 9 XXX
Mushroom 10| |X| |X
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TiTANIC Algorithm: Example

k= 0:
step 1 step 2
X | Xs | Xeky?
%) 1 yes
k=1

steps 4+5 |step7 | step9

X | Xps| Xs | Xekg?
{e} 1 6/10 yes
{p} 1 4/10 yes
{c} 1 4/10 yes
{1} 1 6/10 yes
{i} 1 7/10 yes

Step 8 returns: (J.closure <
Then the algorithm repeats the loop for k = 2,3, and 4:
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OIS
1]
$o8
<ol
a 8|18 =
~ LD
0ol
33558
S22 2l5
=|0|niunlwn
2.2 ool
T|O|@| @ ©
L Q0|00
Mushroom 1 [ X| X
Mushroom 2 [ X| [X| [X
Mushroom 3 | X XX
Mushroom 4 || X XX
Mushroom 5 [X| [X| [X
Mushroom 6 |X| X
Mushroom 7 X XX
Mushroom 8 XXX
Mushroom 9 XXX
Mushroom 10| |X| X
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TiTANIC Algorithm: Example

k=2
step 12 step 7 step 9
X Xps| Xs | XeKg?
{e,p} | 4/10 0 yes
{e,c} | 4/10 | 4/10 no
{e,1} | 6/10 | 2/10 yes
{e,i} | 6/10 | 4/10 yes
{p,c} | 4/10 0 yes
{p,1} | 4/10 | 4/10 no
{p,i} | 4/10 | 3/10 yes
{c,1} | 4/10 0 yes
{c,i} | 4/10 | 2/10 yes
{l,3} | 6/10 | 5/10 yes
k=3
step 12 step 7 step 9
X Xps| Xs | XeKg?

{e,l,4} | 2/10 | 2/10 no
{e,p,i} 0 0 no
{p,c,i} 0 0 no
{e, 1,4} 0 0 no

Sebastian Rudolph (TUD)

Step 8 returns:
{e}.closure « {e}
{p}.closure — {p, 1}
{c}.closure « {c, e}
{1}.closure « {l}
{t}.closure « {i}

Step 8 returns:

{e, p}.closure < {e,p,c, 1,4}
{e,l}.closure « {e, 1,1}
{e,i}.closure « {e, i}

{p, c}.closure < {e, p,c,1,i}
{p,i}.closure <« {p, 1,1}
{c,1}.closure « {e,p, c, 1,1}
{c,i}.closure < {e, c, i}
{l,4}.closure « {l,4}

Formal Concept Analysis

9|
s
8
S @
BEEEE
2|g/5[6|2
2|2 alal ol
8|8/8|8[8
Mushroom 1 || [X]
Mushroom 2 || [X| [X]
Mushroom 3 || XX
Mushroom 4 || XX
Mushroom 5 || [X] [X]
Mushroom 6 | X| [X
Mushroom 7 X XX
Mushroom 8 X XX
Mushroom 9 X XX
Mushroom 10| [X] [
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TiTANIC Algorithm: Example

Since Ky, is empty the loop is exited in step 10.

Finally the algorithm collects all concept intents
(step 14):

&, {et Ap. 1} {c ed, {1}, {i}, {e;p, e, Lib e, 1 i},
{e,i}, {p,1,i}, {e,c,i}, {l,i}

(which are exactly the intents of the concepts of the
concept lattice on Slide 30). The algorithm
determined the support of 5 4+ 10 4+ 3 = 18 attribute
sets in three passes of the database.
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Mushroom 1 | X| X
Mushroom 2 [ X| [X| X
Mushroom 3 |[X XX
Mushroom 4 | X XX
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Mushroom 7 X XX
Mushroom 8 XXX
Mushroom 9 XXX
Mushroom 10| |X| X
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T1TANIC Algorithm: Example

cap surface: fibrous (i)
cap shape: flat ()

&, {e} {p, 1}, {c, e},

{1}, {i}, {e,p, ¢, 1,1},
{e, 1,1}, {e, i}, .

{p, 1,1}, {e,c,i}, {l,i}

cap shape: convex (c) poisonous (p)

Mushroom 10

Mushroom 1

Mushroom 6

Mushrbom 2 Mushrioom 3 Mushroom 7
Mushroom 5 Mushroom 4 Mushroom 8
Mushroom 9
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TiTANIC Algorithm: vs. NEXT CLOSURE

NEXT CLOSURE uses almost no memory.
NEXT CLOSURE can explicitly employ symmetries between attributes.
NEXT CLOSURE can be used for knowledge discovery.

TITANIC is much more performant, in particular on large datasets.

T1TANIC allows us to incorporate and employ minimal support
constraints (next slide).
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T1TANIC Algorithm: Computing lceberg Concept Lattices

@ stop as soon as only non-frequent minimal generators are computed
@ return only the closures of frequent minimal generators

@ generate candidates only from the frequent minimal generators

°

all subsets of candidates with k£ — 1 elements must be frequent
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