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Closure Systems

Def.: A closure system on a set G is a set A Ď 2G of subsets of G if

it contains G, i.e., G P A and

it is closed under intersections, i.e., X Ď A implies
Ş

XPXX P A.

Def.: A closure operator on G is a map ϕ : 2G Ñ 2G assigning to each
subset X Ď G its closure ϕpXq Ď G satisfying the following conditions:

X Ď Y implies ϕpXq Ď ϕpY q, (monotonicity)

X Ď ϕpXq, and (extensivity)

ϕpϕpXqq “ ϕpXq. (idempotency)

Theorem (correspondence of closure systems and closure operators)

If A is a closure system on G then ϕApXq :“
Ş

APA,XĎAA defines a
closure operator on G. Conversely, for a closure operator ϕ on G, the set
Aϕ “ tϕpAq | A Ď Gu of all closures forms a closure system on G.
Moreover, ϕAϕ “ ϕ and AϕA

“ A.
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Closure Systems

Theorem (closure systems and complete lattices)

If A is a closure system, then pA,Ďq is a complete lattice with
Ź

X “
Ş

XPXX and
Ž

X “ ϕA p
Ť

XPXXq.
Conversely, every complete lattice is isomorphic to the lattice of all
closures of a closure system.

In mathematics and computer science, we find a plethora of examples for
closure systems (e.g., subtrees, subintervals, convex sets, equivalence
relations).

For every formal context pG,M, Iq holds:

The extents form a closure system on G.

The intents form a closure system on M .
2 is a closure operator.
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Concept Intents as Closed Sets

the line diagram of the
powerset of ta, b, c, eu

classes of attributes that
describe the same set of
objects

unique representatives:
concept intents (=closed
sets)

minimal generator
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3 ˆ ˆ ˆ

*

*
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Next Closure Algorithm

Developed 1984 by Bernhard Ganter.

Can be used

to compute the concept lattice, or

to compute the concept lattice together with the stem base, or

for interactive knowledge exploration.

The algorithm computes the concept intents in the lectic order.
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Next Closure Algorithm: Lectic Order

Let M “ t1, . . . , nu. We say that A ĎM is lectically smaller than
B ĎM , if B ‰ A and the smallest element in which A and B differ
belongs to B:

A ă B :ô Di P BzA : AX t1, 2, . . . , i´ 1u “ B X t1, 2, . . . , i´ 1u
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Next Closure Algorithm: Theorem

Some definitions before we start:

A ăi B :ô i P BzA^AX t1, 2, . . . , i´ 1u “ B X t1, 2, . . . , i´ 1u

A` i :“ pAX t1, 2, . . . , i´ 1uq Y tiu

Theorem

The smallest concept intent larger than a given set A ĂM with respect to
the lectic order is

A‘ i :“ pA` iq2,

with i being the largest element of M with A ăi A‘ i.
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Next Closure Algorithm

The Next Closure algorithm to compute all concept intents:

1 The lectically smallest concept intent is H2.

2 If A is a concept intent, we find the lectically next intent by checking
all attributes i PMzA (starting with the largest), continuing in
descending order until for the first time A ăi A‘ i. Then A‘ i is the
lectically next intent.

3 If A‘ i “M , we stop. Otherwise we set A :“ A‘ i and go to step 2.
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Next Closure Algorithm: Example
mobile (1) phone (2) fax (3) paper fax (4)

Sinus 44 ˆ

Nokia 6110 ˆ ˆ

T-Fax 301 ˆ ˆ

T-Fax 360 PC ˆ

A i A` i A‘ i :“ pA` iq2 A ăi A‘ i? new intent
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Next Closure Algorithm: Lectic Order
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Iceberg Concept Lattices

veil type: partial

ring number: one veil color: white

gill attachment: free100 %

92.30 % 97.62 %

97.43 %

97.34 %90.02 %

89.92 %

The seven most general concepts (for
minsupp = 85%) of the 32086
concepts of the mushroom database
(http://kdd.ics.uci.edu/).
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Iceberg Concept Lattices

minsupp = 85%

veil type: partial

ring number: one veil color: white

gill attachment: free100 %

92.30 % 97.62 %

97.43 %

97.34 %90.02 %

89.92 %

veil type: partial
ring number: one

veil color: white

gill attachment: free

gill spacing: close

100 %

92.30 % 97.62 %97.43 %

81.08 %

76.81 % 78.80 %

97.34 %90.02 %

89.92 %

78.52 %

74.52 %minsupp = 70%
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Iceberg Concept Lattices
veil type: partial

ring number: one

veil color: white

stalk surface below ring: smoothstalk surface above ring: smooth

gill attachment: free

gill size: broad

gill spacing: close

stalk shape: tapering

stalk color below ring: white

stalk color above ring: white

no bruises

100 %

92.30 % 97.62 %

60.31 %

55.09 %

63.17 %

57.94 %

97.43 %69.87 %

62.17 % 67.59 %

81.08 %

76.81 % 78.80 %

97.34 %90.02 %

89.92 %

57.79 %

55.13 %

56.37 %

58.03 %60.88 %

55.66 %

67.30 %

59.89 %

78.52 %

74.52 %

59.89 %

55.70 % 57.51 %57.32 %

57.22 %

With decreasing
minimal support
more information
is revealed.

minsupp = 55%
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Iceberg Concept Lattices

92.30%

90.02% 97.34%

89.92%

78.80%

78.52%

56,37%

55.09%

58.03%

57.79%

55.70%

57.22%

63.17%

57.94%

60.88%

55.66%

55.13%

67.59%

67.30%

58.89%

62.17%

69.87%

100%

97.62%

97.43% 81.08%

60.31%

58.89%

ring number: one veil color: white

veil type: partial

gill spacing: closegill size: broad

stalk color above ring: white

stalk surface above ring: smooth

stalk surface below ring: smooth

no bruisesstalk shape: tapering

stalk color below ring: white

gill attachment: free

In a nested line
diagram we can
read off
implications.

minsupp = 55%
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Iceberg Concept Lattices: Support

Def.: The support of a set X ĎM of attributes is defined as

supppXq :“
|X 1|

|G|

Def.: The iceberg concept lattice of a formal context pG,M, Iq for a
given minimal support value minsupp is the set

tpA,Bq P BpG,M, Iq | supppBq ě minsuppu

The iceberg concept lattice can be computed using the Titanic
algorithm. (Stumme et al., 2001)
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Titanic Algorithm

Titanic computes the closure system of all (frequent) concept intents

using the support function supppXq :“ |X 1|
|G| (for a set X ĎM of

attributes).

frequent: only concept intents above a threshold minsupp P r0, 1s
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Titanic Algorithm

Titanic employs some simple properties of the support function:
Lemma 4. Let X,Y ĎM .

1 X Ď Y ùñ supppXq ě supppY q

2 X2 “ Y 2 ùñ supppXq “ supppY q

3 X Ď Y ^ supppXq “ supppY q ùñ X2 “ Y 2
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Titanic Algorithm

Lemma 4. Let X,Y ĎM .

1 X Ď Y ùñ supppXq ě supppY q

2 X2
“ Y 2 ùñ supppXq “ supppY q

3 X Ď Y ^ supppXq “ supppY q ùñ
X2

“ Y 2
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a b c e

1 ˆ ˆ

2 ˆ ˆ

3 ˆ ˆ ˆ
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Titanic Algorithm

Titanic tries to optimize the following three questions:

1 How can we compute the closure of an attribute set using only the
support values?

2 How can we compute the closure system such that we need to
compute as few closures as possible?

3 How can we derive as many support values as possible from already
known support values?
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Titanic Algorithm

1 How can we compute the closure of an attribute set using only the
support values?

X2 “ X Y tm PMzX | supppXq “ supppX Y tmuqu

Example:
tb, cu2 “ tb, c, eu, since

suppptb, cuq “ 1
3

and

supppta, b, cuq “ 0
3

suppptb, c, euq “ 1
3

a b c e

1 ˆ ˆ

2 ˆ ˆ

3 ˆ ˆ ˆ
b

abe ace bce

abce

ac

abc

ca

ab ae bc ce

e

be
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Titanic Algorithm

2 How can we compute the
closure system such that we
need to compute as few closures
as possible?

We compute only the closures of the
minimal generators.

a

c

2

be

31

b

abe ace bce

abce

ac

abc

ca

ab ae bc ce

e

be

a b c e

1 ˆ ˆ

2 ˆ ˆ

3 ˆ ˆ ˆ

For this example
Titanic needs two
runs (Apriori four).
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Titanic Algorithm

2 How can we compute the
closure system such that we
need to compute as few closures
as possible?

We compute only the closures of the
minimal generators.

A set is a minimal generator, iff its
support is unequal to the support of
its lower covers.
The minimal generators form an
order ideal (i.e., if a set is not a
minimal generator, then none of its
supersets is either)
Þ approach similar to Apriori
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Titanic needs two
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Titanic Algorithm

Titanic tries to optimize the following three questions:

1 How can we compute the closure of an attribute set using only the
support values?

Þ X2 “ X Y tm PMzX | supppXq “ supppX Y tmuqu

2 How can we compute the closure system such that we need to
compute as few closures as possible?

Þ approach similar to Apriori

3 How can we derive as many support values as possible from already
known support values?
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Titanic Algorithm

3 How can we derive as many support
values as possible from already known
support values?

Theorem: If X is not a minimal generator,
then
supppXq “ mintsupppKq | K is minimal

generator,K Ď Xu
Example:
supppta, b, cuq “ mint 0

3
, 1
3
, 1
3
, 2
3
, 2
3
u “ 0

since the set is not a minimal generator and

supppta, buq “ 0
3

, suppptb, cuq “ 1
3

,
suppptauq “ 1

3
, suppptbuq “ 2

3
,

suppptcuq “ 2
3

Remark: It is sufficient, to check the
largest minimal generators K with K Ď X,
i.e., in this example ta, bu and tb, cu.
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Titanic Algorithm

Titanic tries to optimize the following three questions:

1 How can we compute the closure of an attribute set using only the
support values?

Þ X2 “ X Y tm PMzX | supppXq “ supppX Y tmuqu

2 How can we compute the closure system such that we need to
compute as few closures as possible?

Þ approach similar to Apriori

3 How can we derive as many support values as possible from already
known support values?

Þ If X is no minimal generator, then
supppXq “ mintsupppKq | K is minimal generator,K Ď Xu
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Titanic Algorithm

Determine support for all C P Ck

Determine closures for all C P Ck´1

yes

no Ck empty?

k Ð 1
Ck Ð singletons

For pot. min. generators: count in database.
Else: supppXq “ mintsupppKq | K Ď X,K m.g.u

X2 “ X Y tm PMzX | supppXq “ supppX Y tmuqu

iff supppXq ‰ supppXztxuq f.a. x P X

k Ð k ` 1
Ck Ð Generate CandidatespCk´1q

A la Apriori

A la Apriori

End

Prune non-minimal generators from Ck

Titanic

An algorithm
similar to Apriori.
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Titanic Algorithm: Compared to Apriori

Determine support for all C P Ck

Determine closures for all C P Ck´1

yes

no Ck empty?

k Ð 1
Ck Ð singletons

k Ð k ` 1
Ck Ð Generate CandidatespCk´1q

End

is pruned.
cover, the candidate
support of a lower
low or equal to the
If the support is too

We only generate
candidates for
minimal generators.

Prune non-minimal generators from Ck

Sebastian Rudolph (TUD) Formal Concept Analysis 27 / 37



Titanic Algorithm
1) SupportptHuq;
2) K0 Ð tHu;
3) k Ð 1;
4) forall m PM do tmu.p sÐH.s;
5) C Ð ttmu | m PMu;
6) loop begin
7) SupportpCq;
8) forall X P Kk´1 do X.closureÐ ClosurepXq;
9) Kk Ð tX P C | X.s ‰ X.p su;

10) if Kk “ H then exit loop ;
11) k ``;
12) C Ð Titanic-GenpKk´1q;
13) end loop ;

14) return
Ťk´1

i“0 tX.closure | X P Kiu.

k is the counter which indicates the current iteration. In the kth iteration, all key k-sets
are determined.

Kk contains after the kth iteration all key k-sets K together with their support K.s and their
closure K.closure.

C stores the candidate k-sets C together with a counter C.p s which stores the minimum
of the supports of all pk ´ 1q-subsets of C. The counter is used in step 9 to prune all
non-key sets.
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Titanic Algorithm: Titanic-Gen

Input: Kk´1, the set of key pk ´ 1q-sets K with their support K.s.

Output: C, the set of candidate k-sets C
with the values C.p s :“ mintsupppCztmuq | m P Cu.

The variables p s assigned to the sets tm1, . . . ,mku which are generated in
step 1 are initialized by tm1, . . . ,mku.p sÐ smax.

1) C Ð ttm1 ă m2 ă ¨ ¨ ¨ ă mku | tm1, . . . ,mk´2,mk´1u, tm1, . . . ,mk´2,mku P Kk´1u

2) forall X P C do begin
3) forall pk ´ 1q-subsets S of X do begin
4) if S R Kk´1 then begin C Ð CztXu; exit forall ; end;
5) X.p sÐ minpX.p s, S.sq;
6) end;
7) end;
8) return C.
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Titanic Algorithm: Closure(X) for X P Kk´1

1) Y Ð X;
2) forall m P X do Y Ð Y Y pXztmuq.closure;
3) forall m PMzY do begin
4) if X Y tmu P C then sÐ pX Y tmuq.s
5) else sÐ mintK.s | K P K, K Ď X Y tmuu;
6) if s “ X.s then Y Ð Y Y tmu
7) end;
8) return Y .

Sebastian Rudolph (TUD) Formal Concept Analysis 30 / 37



Titanic Algorithm: Example

Mushroom 1
Mushroom 2
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poisonous (p)cap shape: convex (c)

cap shape: flat (l)

cap surface: fibrous (i)

Mushroom 1

Mushroom 2 Mushroom 3
Mushroom 4Mushroom 5

Mushroom 6

Mushroom 7
Mushroom 8

Mushroom 9
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Titanic Algorithm: Example

k “ 0:

step 1 step 2
X X.s X P Kk?
H 1 yes

k “ 1:

steps 4+5 step 7 step 9
X X.p s X.s X P Kk?
teu 1 6{10 yes
tpu 1 4{10 yes
tcu 1 4{10 yes
tlu 1 6{10 yes
tiu 1 7{10 yes

Step 8 returns: H.closureÐH

Then the algorithm repeats the loop for k “ 2, 3, and 4:
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Titanic Algorithm: Example
k “ 2:

step 12 step 7 step 9

X X.p s X.s X P Kk?

te, pu 4{10 0 yes
te, cu 4{10 4{10 no
te, lu 6{10 2{10 yes
te, iu 6{10 4{10 yes
tp, cu 4{10 0 yes
tp, lu 4{10 4{10 no
tp, iu 4{10 3{10 yes
tc, lu 4{10 0 yes
tc, iu 4{10 2{10 yes
tl, iu 6{10 5{10 yes

Step 8 returns:
teu.closureÐ teu
tpu.closureÐ tp, lu
tcu.closureÐ tc, eu
tlu.closureÐ tlu
tiu.closureÐ tiu

k “ 3:

step 12 step 7 step 9

X X.p s X.s X P Kk?

te, l, iu 2{10 2{10 no
te, p, iu 0 0 no
tp, c, iu 0 0 no
tc, l, iu 0 0 no

Step 8 returns:
te, pu.closureÐ te, p, c, l, iu
te, lu.closureÐ te, l, iu
te, iu.closureÐ te, iu
tp, cu.closureÐ te, p, c, l, iu
tp, iu.closureÐ tp, l, iu
tc, lu.closureÐ te, p, c, l, iu
tc, iu.closureÐ te, c, iu
tl, iu.closureÐ tl, iu
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Titanic Algorithm: Example

Since Kk is empty the loop is exited in step 10.

Finally the algorithm collects all concept intents
(step 14):

H, teu, tp, lu, tc, eu, tlu, tiu, te, p, c, l, iu,te, l, iu,
te, iu, tp, l, iu, te, c, iu, tl, iu

(which are exactly the intents of the concepts of the
concept lattice on Slide 30). The algorithm
determined the support of 5` 10` 3 “ 18 attribute
sets in three passes of the database.
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Titanic Algorithm: Example

H, teu, tp, lu, tc, eu,
tlu, tiu, te, p, c, l, iu,
te, l, iu, te, iu,
tp, l, iu, te, c, iu, tl, iu

edible (e)

poisonous (p)cap shape: convex (c)

cap shape: flat (l)

cap surface: fibrous (i)

Mushroom 1

Mushroom 2 Mushroom 3
Mushroom 4Mushroom 5

Mushroom 6

Mushroom 7
Mushroom 8

Mushroom 9

Mushroom 10
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Titanic Algorithm: vs. Next Closure

Next Closure uses almost no memory.

Next Closure can explicitly employ symmetries between attributes.

Next Closure can be used for knowledge discovery.

Titanic is much more performant, in particular on large datasets.

Titanic allows us to incorporate and employ minimal support
constraints (next slide).

Sebastian Rudolph (TUD) Formal Concept Analysis 36 / 37



Titanic Algorithm: Computing Iceberg Concept Lattices

stop as soon as only non-frequent minimal generators are computed

return only the closures of frequent minimal generators

generate candidates only from the frequent minimal generators

all subsets of candidates with k ´ 1 elements must be frequent
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