Formal Concept Analysis II Closure Systems and Implications

Sebastian Rudolph

Computational Logic Group Technische Universität Dresden

slides based on a lecture by Prof. Gerd Stumme

通 ト イヨ ト イヨト

Agenda

- Concept Intents as Closed Sets
- $\bullet~\mathrm{NEXT}$ CLOSURE Algorithm
- Iceberg Concept Lattices
- TITANIC Algorithm

Closure Systems

Def.: A *closure system* on a set G is a set $\mathfrak{A} \subseteq 2^G$ of subsets of G if

• it contains G, i.e., $G \in \mathfrak{A}$ and

• it is closed under intersections, i.e., $\mathfrak{X} \subseteq \mathfrak{A}$ implies $\bigcap_{X \in \mathfrak{X}} X \in \mathfrak{A}$.

Def.: A closure operator on G is a map $\varphi : 2^G \to 2^G$ assigning to each subset $X \subseteq G$ its closure $\varphi(X) \subseteq G$ satisfying the following conditions:

 $\begin{array}{ll} \bullet \ X \subseteq Y \ \text{implies} \ \varphi(X) \subseteq \varphi(Y), & (\text{monotonicity}) \\ \bullet \ X \subseteq \varphi(X), \ \text{and} & (\text{extensivity}) \\ \bullet \ \varphi(\varphi(X)) = \varphi(X). & (\text{idempotency}) \end{array}$

Theorem (correspondence of closure systems and closure operators)

If \mathfrak{A} is a closure system on G then $\varphi_{\mathfrak{A}}(X) := \bigcap_{A \in \mathfrak{A}, X \subseteq A} A$ defines a closure operator on G. Conversely, for a closure operator φ on G, the set $\mathfrak{A}_{\varphi} = \{\varphi(A) \mid A \subseteq G\}$ of all closures forms a closure system on G. Moreover, $\varphi_{\mathfrak{A}_{\varphi}} = \varphi$ and $\mathfrak{A}_{\varphi_{\mathfrak{A}}} = \mathfrak{A}$.

3

・ロン ・四 と ・ 回 と ・ 日 と

Closure Systems

Theorem (closure systems and complete lattices)

If \mathfrak{A} is a closure system, then $(\mathfrak{A}, \subseteq)$ is a complete lattice with $\bigwedge \mathfrak{X} = \bigcap_{X \in \mathfrak{X}} X$ and $\bigvee \mathfrak{X} = \varphi_{\mathfrak{A}} (\bigcup_{X \in \mathfrak{X}} X)$. Conversely, every complete lattice is isomorphic to the lattice of all closures of a closure system.

In mathematics and computer science, we find a plethora of examples for closure systems (e.g., subtrees, subintervals, convex sets, equivalence relations).

For every formal context (G, M, I) holds:

- The extents form a closure system on G.
- The intents form a closure system on M.
- " is a closure operator.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Concept Intents as Closed Sets

- the line diagram of the powerset of $\{a, b, c, e\}$
- classes of attributes that describe the same set of objects
- unique representatives: concept intents (=closed sets)
- minimal generator

A B F A B F

$\operatorname{NEXT}\ \operatorname{CLOSURE}\ \operatorname{Algorithm}$

Developed 1984 by Bernhard Ganter.

Can be used

- to compute the concept lattice, or
- to compute the concept lattice together with the stem base, or
- for interactive knowledge exploration.

The algorithm computes the concept intents in the lectic order.

NEXT CLOSURE Algorithm: Lectic Order

Let $M = \{1, ..., n\}$. We say that $A \subseteq M$ is *lectically smaller* than $B \subseteq M$, if $B \neq A$ and the smallest element in which A and B differ belongs to B:

NEXT CLOSURE Algorithm: Theorem

Some definitions before we start:

$$A <_i B :\Leftrightarrow i \in B \setminus A \land A \cap \{1, 2, \dots, i-1\} = B \cap \{1, 2, \dots, i-1\}$$

$$A + i := (A \cap \{1, 2, \dots, i - 1\}) \cup \{i\}$$

Theorem

The smallest concept intent larger than a given set $A \subset M$ with respect to the lectic order is

$$A \oplus i := (A+i)'',$$

with *i* being the largest element of *M* with $A <_i A \oplus i$.

$NEXT \ CLOSURE \ Algorithm$

The NEXT CLOSURE algorithm to compute all concept intents:

- The lectically smallest concept intent is \emptyset'' .
- ② If A is a concept intent, we find the lectically next intent by checking all attributes i ∈ M\A (starting with the largest), continuing in descending order until for the first time A <_i A ⊕ i. Then A ⊕ i is the lectically next intent.
- § If $A \oplus i = M$, we stop. Otherwise we set $A := A \oplus i$ and go to step 2.

・ 同 ト ・ ヨ ト ・ ヨ ト

Next Closure Algorithm: Example

	mobile (1)	phone (2)	fax (3)	paper fax (4)
Sinus 44		×		
Nokia 6110	×	×		
T-Fax 301			×	×
T-Fax 360 PC				×

A	i	A+i	$A \oplus i := (A+i)''$	A < A	$_i A \oplus i?$	new intent	
				< □	· ► < @ ►	 (E) < E) = E 	৩৫৫
Se	bas	tian Rudolph (TUD)	Formal Concept Analysis	1		1	10 / 37

NEXT CLOSURE Algorithm: Lectic Order

< 3 > < 3 >

The seven most general concepts (for minsupp = 85%) of the 32086 concepts of the mushroom database (http://kdd.ics.uci.edu/).

(日) (周) (三) (三)

Sebastian Rudolph (TUD)

Sebastian Rudolph (TUD)

Formal Concept Analysis

Iceberg Concept Lattices: Support

Def.: The *support* of a set $X \subseteq M$ of attributes is defined as

$$\operatorname{supp}(X) := \frac{|X'|}{|G|}$$

Def.: The *iceberg concept lattice* of a formal context (G, M, I) for a given minimal support value minsupp is the set

$$\{(A,B)\in \underline{\mathfrak{B}}(G,M,I)\mid \mathrm{supp}(B) \geqslant minsupp\}$$

The iceberg concept lattice can be computed using the TITANIC algorithm. (Stumme et al., 2001)

通 ト イヨ ト イヨト

TITANIC computes the closure system of all (*frequent*) concept intents using the *support* function $\operatorname{supp}(X) := \frac{|X'|}{|G|}$ (for a set $X \subseteq M$ of attributes).

frequent: only concept intents above a threshold $minsupp \in [0, 1]$

- 4 同 ト 4 ヨ ト - 4 ヨ ト - -

TITANIC employs some simple properties of the support function: Lemma 4. Let $X, Y \subseteq M$.

3

- 4 週 ト - 4 三 ト - 4 三 ト

Lemma 4. Let $X, Y \subseteq M$.

 $\begin{array}{l} \bullet X \subseteq Y \implies \operatorname{supp}(X) \geqslant \operatorname{supp}(Y) \\ \bullet X'' = Y'' \implies \operatorname{supp}(X) = \operatorname{supp}(Y) \\ \bullet X \subseteq Y \land \operatorname{supp}(X) = \operatorname{supp}(Y) \implies X'' = Y'' \end{array}$

 $\operatorname{TITANIC}$ tries to optimize the following three questions:

- How can we compute the closure of an attribute set using only the support values?
- Output the closure system such that we need to compute as few closures as possible?
- Output the second se

A B F A B F

How can we compute the closure of an attribute set using only the support values?

$$X'' = X \cup \{m \in M \setminus X \mid \operatorname{supp}(X) = \operatorname{supp}(X \cup \{m\})\}$$

Example:

$$\{b, c\}'' = \{b, c, e\}, \text{ since}$$

 $\supp(\{b, c\}) = \frac{1}{3}$
and
 $\supp(\{a, b, c\}) = \frac{0}{3}$
 $\supp(\{b, c, e\}) = \frac{1}{3}$

	а	b	с	е
1	×		×	
2		×		Х
3		×	×	×

- How can we compute the closure system such that we need to compute as few closures as possible?
- We compute only the closures of the minimal generators.

- How can we compute the closure system such that we need to compute as few closures as possible?
- We compute only the closures of the minimal generators.
- A set is a *minimal generator*, iff its support is unequal to the support of its lower covers.
- The minimal generators form an order ideal (i.e., if a set is *not* a minimal generator, then none of its supersets is either)
- \rightarrow approach similar to Apriori

$\operatorname{TITANIC}$ tries to optimize the following three questions:

I How can we compute the closure of an attribute set using only the support values?

 $\rightarrow X'' = X \cup \{m \in M \setminus X \mid \operatorname{supp}(X) = \operatorname{supp}(X \cup \{m\})\}$

e How can we compute the closure system such that we need to compute as few closures as possible?

→ approach similar to Apriori

Output the second se

How can we derive as many support values as possible from already known support values?

Theorem: If X is *not* a minimal generator, then

 $supp(X) = \min\{supp(K) \mid K \text{ is minimal} \\ generator, K \subseteq X\}$

Example:

 $\sup(\{a,b,c\})=\min\{\frac{0}{3},\frac{1}{3},\frac{1}{3},\frac{2}{3},\frac{2}{3}\}=0$ since the set is not a minimal generator and

$$\begin{split} \supp(\{a,b\}) &= \frac{0}{3}, & \supp(\{b,c\}) = \frac{1}{3}, \\ \supp(\{a\}) &= \frac{1}{3}, & \supp(\{b\}) = \frac{2}{3}, \\ \supp(\{c\}) &= \frac{2}{3} \end{split}$$

Remark: It is sufficient, to check the largest minimal generators K with $K \subseteq X$, i.e., in this example $\{a, b\}$ and $\{b, c\}$.

(日) (同) (日) (日) (日)

 $\operatorname{TITANIC}$ tries to optimize the following three questions:

How can we compute the closure of an attribute set using only the support values?

 $\rightarrow X'' = X \cup \{m \in M \setminus X \mid \operatorname{supp}(X) = \operatorname{supp}(X \cup \{m\})\}$

e How can we compute the closure system such that we need to compute as few closures as possible?

→ approach similar to Apriori

How can we derive as many support values as possible from already known support values?

→ If X is no minimal generator, then $supp(X) = min\{supp(K) \mid K \text{ is minimal generator}, K \subseteq X\}$

< 由 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

TITANIC Algorithm: Compared to Apriori

- 1) SUPPORT($\{\emptyset\}$); 2) $\mathcal{K}_0 \leftarrow \{\emptyset\}$: 3) $k \leftarrow 1$; 4) forall $m \in M$ do $\{m\}.p_s \leftarrow \emptyset.s$; 5) $\mathcal{C} \leftarrow \{\{m\} \mid m \in M\};\$ 6) loop begin 7) SUPPORT(\mathcal{C}); 8) forall $X \in \mathcal{K}_{k-1}$ do X.closure \leftarrow CLOSURE(X); 9) $\mathcal{K}_k \leftarrow \{X \in \mathcal{C} \mid X.s \neq X.p_s\};$ 10) if $\mathcal{K}_k = \emptyset$ then exit loop : 11) k + +: 12) $\mathcal{C} \leftarrow \text{TITANIC-GEN}(\mathcal{K}_{k-1})$: 13) end loop ; 14) return $\bigcup_{i=0}^{k-1} \{ X. \text{closure} \mid X \in \mathcal{K}_i \}.$
 - k is the counter which indicates the current iteration. In the kth iteration, all key k-sets are determined.
 - \mathcal{K}_k contains after the *k*th iteration all key *k*-sets *K* together with their support *K*.*s* and their closure *K*.closure.
 - C stores the candidate k-sets C together with a counter $C.p_s$ which stores the minimum of the supports of all (k-1)-subsets of C. The counter is used in step 9 to prune all non-key sets.

TITANIC Algorithm: TITANIC-GEN

Input: \mathcal{K}_{k-1} , the set of key (k-1)-sets K with their support K.s.

Output: C, the set of candidate k-sets C with the values $C.p_s := \min\{\sup(C \setminus \{m\}) \mid m \in C\}.$

The variables p_{-s} assigned to the sets $\{m_1, \ldots, m_k\}$ which are generated in step 1 are initialized by $\{m_1, \ldots, m_k\}$. $p_{-s} \leftarrow s_{\max}$.

1) $C \leftarrow \{\{m_1 < m_2 < \cdots < m_k\} \mid \{m_1, \dots, m_{k-2}, m_{k-1}\}, \{m_1, \dots, m_{k-2}, m_k\} \in \mathcal{K}_{k-1}\}$ 2) forall $X \in C$ do begin 3) forall (k - 1)-subsets S of X do begin 4) if $S \notin \mathcal{K}_{k-1}$ then begin $C \leftarrow C \setminus \{X\}$; exit forall ; end; 5) $X.p_{-S} \leftarrow \min(X.p_{-S}, S.s);$ 6) end; 7) end; 9) end;

イロト 不得 トイヨト イヨト 二日

TITANIC Algorithm: CLOSURE(X) for $X \in \mathcal{K}_{k-1}$

1)
$$Y \leftarrow X$$
;
2) forall $m \in X$ do $Y \leftarrow Y \cup (X \setminus \{m\})$.closure;
3) forall $m \in M \setminus Y$ do begin
4) if $X \cup \{m\} \in C$ then $s \leftarrow (X \cup \{m\})$.s
5) else $s \leftarrow \min\{K.s \mid K \in \mathcal{K}, K \subseteq X \cup \{m\}\};$
6) if $s = X.s$ then $Y \leftarrow Y \cup \{m\}$
7) end;
8) return Y .

3

イロト イ理ト イヨト イヨト

TITANIC Algorithm: Example

3

ヘロト 人間ト 人間ト 人間ト

$\operatorname{TITANIC}$ Algorithm: Example

 $\underline{k=0}$:

ste	ep 1	step 2
X	X.s	$X \in \mathcal{K}_k$?
Ø	1	yes

k = 1:

step	os 4+5	step 7	step 9
X	$X.p_s$	X.s	$X \in \mathcal{K}_k$?
$\{e\}$	1	6/10	yes
$\{p\}$	1	4/10	yes
$\{c\}$	1	4/10	yes
$\{l\}$	1	6/10	yes
$\{i\}$	1	7/10	yes

Step 8 returns: \emptyset .closure $\leftarrow \emptyset$ Then the algorithm repeats the loop for k = 2, 3, and 4:

	edible (e)	poisonous (p)	cap shape: convex (c)	cap shape: flat (I)	cap surface: fibrous (i)
Mushroom 1	$ \times$		Х		
Mushroom 2	\times		Х		\times
Mushroom 3	\times			Х	\times
Mushroom 4	\times			Х	\times
Mushroom 5	\times		Х		\times
Mushroom 6	\times		Х		
Mushroom 7		Х		Х	\times
Mushroom 8		Х		Х	\times
Mushroom 9		Х		Х	\times
Mushroom 10		Х		Х	

イロト イヨト イヨト

$\operatorname{TITANIC}$ Algorithm: Example

 $\underline{k=2:}$

	10	. 7	
step) 12	step /	step 9
X	$X.p_s$	X.s	$X \in \mathcal{K}_k$?
$\{e, p\}$	4/10	0	yes
$\{e,c\}$	4/10	4/10	no
$\{e,l\}$	6/10	2/10	yes
$\{e,i\}$	6/10	4/10	yes
$\{p,c\}$	4/10	0	yes
$\{p,l\}$	4/10	4/10	no
$\{p,i\}$	4/10	3/10	yes
$\{c,l\}$	4/10	0	yes
$\{c,i\}$	4/10	2/10	yes
$\{l,i\}$	6/10	5/10	yes
k = 3:			

step	12	step 7	step 9
X	$X.p_s$	X.s	$X \in \mathcal{K}_k$?
$\{e,l,i\}$	2/10	2/10	no
$\{e, p, i\}$	0	0	no
$\{p,c,i\}$	0	0	no
$\{c,l,i\}$	0	0	no

Step 8 returns:

Step 8 returns:

$\{e, p\}$.closure $\leftarrow \{e, p, c, l, i\}$
$\{e, l\}$.closure $\leftarrow \{e, l, i\}$
$\{e, i\}$.closure $\leftarrow \{e, i\}$
$\{p, c\}.$ closure $\leftarrow \{e, p, c, l, i\}$
$\{p, i\}$.closure $\leftarrow \{p, l, i\}$
$\{c, l\}$.closure $\leftarrow \{e, p, c, l, i\}$
$\{c, i\}$.closure $\leftarrow \{e, c, i\}$
$\{l, i\}.$ closure $\leftarrow \{l, i\}$

	edible (e)	poisonous (p)	cap shape: convex (c)	cap shape: flat (I)	cap surface: fibrous (i)
Mushroom 1	Х		X		
Mushroom 2	\times		X		\times
Mushroom 3	X			\times	Х
Mushroom 4	\mathbf{X}			\mathbf{X}	\times
Mushroom 5	\mathbf{X}		X		Х
Mushroom 6	X		Х		
Mushroom 7		Х		X	Х
Mushroom 8		X		X	Х
Mushroom 9		Х		X	Х
Mushroom 10		Х		Х	

∃ >

TITANIC Algorithm: Example

Since \mathcal{K}_k is empty the loop is exited in step 10.

Finally the algorithm collects all concept intents (step 14):

(which are exactly the intents of the concepts of the concept lattice on Slide 30). The algorithm determined the support of 5 + 10 + 3 = 18 attribute sets in three passes of the database.

	edible (e)	poisonous (p)	cap shape: convex (c)	cap shape: flat (I)	cap surface: fibrous (i)
Mushroom 1	\times		Х		
Mushroom 2	\times		Х		\times
Mushroom 3	\times			Х	\times
Mushroom 4	\times			Х	\times
Mushroom 5	\times		Х		\times
Mushroom 6	\times		Х		
Mushroom 7		Х		Х	Х
Mushroom 8		Х		Х	\times
Mushroom 9		Х		Х	Х
Mushroom 10		Х		Х	

TITANIC Algorithm: Example

3

(日) (同) (日) (日) (日)

TITANIC Algorithm: vs. NEXT CLOSURE

- $\bullet~\mathrm{NEXT}~\mathrm{CLOSURE}$ uses almost no memory.
- NEXT CLOSURE can explicitly employ symmetries between attributes.
- NEXT CLOSURE can be used for knowledge discovery.
- TITANIC is much more performant, in particular on large datasets.
- TITANIC allows us to incorporate and employ minimal support constraints (next slide).

$\operatorname{TITANIC}$ Algorithm: Computing Iceberg Concept Lattices

- stop as soon as only non-frequent minimal generators are computed
- return only the closures of *frequent* minimal generators
- generate candidates only from the *frequent* minimal generators
- all subsets of candidates with k-1 elements must be *frequent*