
3. Algebraic Properties of Bisimilarity

Lecture on Models of Concurrent Systems
(Summer 2022)

Stephan Mennicke

Apr 20-27, 2022

Calculi of Communicating Systems

Let N be a set names with τ /∈ N . Define N = {a | a ∈ N}.

Definition 3.1: CCS is the process language defined over the set of actions Act = N ∪
N ∪ {τ} and Pr defined by the following grammar:

P ::= 0 α.P P + P P ‖ P (νa) (P) K

where α ∈ Act , a ∈ N , and K is a constant from the set of constants C.

Constants (C) are accompanied with a constant transition relation TC ⊆ C×Act × Pr .
Denote by CCS(Act ,C, TC) the CCS over set of actions Act and constants C with constant
transition relation TC.

Definition 3.2: The semantics of CCS(Act ,C, TC) is the labeled transition system
(Pr ,Act ,−→) where −→ is the smallest transition relation satisfying (1) TC ⊆−→ and (2)
the rules (?).

Stephan Mennicke Concurrency Theory 38/49

CCS Transition Rules (?)

P ::= 0 α.P P + P P ‖ P (νa) (P) K

(Pref)
α.P

α−→ P
(SumL)

P
α−→ P ′

P +Q
α−→ P ′

(SumR)
Q

α−→ Q′

P +Q
α−→ Q′

(ParL)
P

α−→ P ′

P ‖Q α−→ P ′ ‖Q
(ParR)

Q
α−→ Q′

P ‖Q α−→ P ‖Q′
(Com)

P
α−→ P ′ Q

α−→ Q′

P ‖Q τ−→ P ′ ‖Q′

(Res)
P

α−→ P ′

νa.P
α−→ νa.P ′

if a /∈ {α, α}

In what follows, we always assume equality of processes up to bisimilarity (-) if not stated
otherwise.

Stephan Mennicke Concurrency Theory 39/49

Some (Algebraic) Properties

Theorem 3.3: For each finite process P ∈ CCS(Act ,C, TC), there is a process P ′ ∈
CCS(Act , ∅, ∅) with P ∼= P ′. We call CCS(Act , ∅, ∅) finCCS.

Theorem 3.4: Parallel composition and choice are commutative and associative and have
0 as neutral element. Furthermore, choice is idempotent.

Hence, we may write for indexed processes P1, P2, . . . , Pn:
n∑
i=1

Pi = P1 + P2 + . . .+ Pn

n∏
i=1

Pi = P1 ‖ P2 ‖ . . . ‖ Pn

Theorem 3.5: Let Ωα ∈ C with Ωα
α−→ Ωα. For all n ≥ 1,

∏n
i=1 Ωα - Ωα.

Stephan Mennicke Concurrency Theory 40/49

Expressivity of CCS

Theorem 3.6: There are Act , C, and TC, so that CCS(Act ,C, TC) is Turing-complete.

 bisimilarity of CCS processes is undecidable.

Proof Plan:

1. Pick a Turing-complete model Minsky machines

2. Encode computations by means of CCS using only finitely many actions, constants, and a
finite constant transition relation per Minsky machine

Stephan Mennicke Concurrency Theory 41/49

1. Minsky Machine (or Counter Machine)

Definition 3.7: A Minsky machine is a pairM = (R,P), where R = {c1, c2, . . . , cn}
is a finite set of counters (or registers) and P = {l0, l1, . . . , lm} is a finite set of in-
structions li (i = 0, 1, . . . ,m) overM, such that li = 〈Xi, inc k : j〉, li =

〈Xi, dec k : j : j′〉, and lm = halt, where i, j, j′ ∈ {0, 1, . . . ,m} are line indizes and
k ∈ {1, . . . , n} are counter indizes.

Definition 3.8: For Minsky machineM = (R,P) we call a pair 〈i, β〉 a configuration
ofM if li ∈ P and β : R → N. A configuration 〈0, β〉 is called an initial configuration.
Define a step ofM by 〈i, β〉 . 〈j, β′〉 if, and only if, (1) li = 〈Xi, inc k : j〉 and β′ =

β[ck 7→ β(ck) + 1], (2) li = 〈Xi, dec k : j : j′〉, β(ck) > 0 and β′ = β[ck 7→ β(ck)− 1],
and (3) li = 〈Xj , dec k : j′ : j〉 and β(ck) = 0.

Stephan Mennicke Concurrency Theory 42/49

1. Minsky and Turing

The Halting Problem for Minsky Machines is the language

LHALT := {〈M, β〉 | ∃n ∈ N : 〈0, β〉 .∗ 〈n, halt〉}.

LHALT is undecidable, even if only two counters are used.

Proof idea: Simulate a Turing machine (wlog, binary tape alphabet) as follows: Cut the tape
at the TM head in two halfs, resulting in two tapes that are bounded at one of their sides.
Read the binary string from left (or right) end of the tape and encode it as a natural number
assigned to counters c1 and c2. Manipulation of the tape is deferred to manipulation of the
numbers stored in the counters. Furthermore, left- or right-head movement is implemented by
shifting bits between the registers.

Minsky Machines are Turing-complete.

Stephan Mennicke Concurrency Theory 43/49

2. Implementing Minsky Machines in CCS

Construction: in two steps.

1. Implementing unbounded counters using finitely many actions and constants;

2. Implementing the program instructions

We do the second step first. As an interface to the counters c1 and c2, we assume action
names u1, d1, z1 to control the first counter and u2, d1, z2 for the second. For each li ∈ P ,
Xi ∈ C, which we translate using the following theme (assuming k ∈ {1, 2}):

1. 〈Xi, inc k : j〉 7→ Xi with Xi
uk

−→ Xj ;

2. 〈Xi, dec k : j : j′〉 7→ Xi with Xi
dk−→ Xj and Xi

zk−→ Xj′ ;

3. 〈Xi, halt〉 7→ Xi with Xi
h−→ 0.

Stephan Mennicke Concurrency Theory 44/49

2.1 Implementing Counters

A single counter may be realized using constants C,C1, C2 ∈ C and actions u, d, z ∈ Act .

1. Define C z−→ C and C u−→ (νa) (C1 ‖ a.C);

2. Define C1
d−→ a.0 and C1

u−→ (νb) (C2 ‖ b.C1);

3. Define C2
d−→ b.0 and C2

u−→ (νa) (C1 ‖ a.C2).

For any process P , reachable from C, define val(P) inductively:

Base: val(P) = 0 if P = C.

Step: For process Q with val(Q) = n (n > 0), val(Q′) = n+ 1 if Q u−→ Q′ and
val(Q′) = n− 1 if Q d−→ · τ−→ Q′.

For two processes P and Q, reachable from C, we get val(P) = val(Q) iff P - Q.

Stephan Mennicke Concurrency Theory 45/49

Putting Everything Together

LetM = (R,P) be a Minsky machine with R = {c1, c2} and P = {l0, l1, . . . , ln}.

Our construction uses Act = {u1, d1, z1, u2, d2, z2, τ, u1, d1, z1, u2, d2, z2} and
C = {C1

1 , C
1
2 , C

1, C2
1 , C

2
2 , C

2, X0, X1, . . . , Xn}, where n is the maximal line index of P . TC
defined as before.

For β0 = {c1 7→ 0, c2 7→ 0}, 〈0, β0〉 .∗ 〈i, β〉 with β(c1) = n1 and β(c2) = n2, we get
(νu1, u2, d1, d2, z1, z2) (X0 ‖C1 ‖C2)

τ−→
∗

(νu1, u2, d1, d2, z1, z2) (Xi ‖C1 ‖C2) such that
val(C1) = n1 and val(C2) = n2.

 halting problem for CCS is undecidable.

Stephan Mennicke Concurrency Theory 46/49

Bisimilarity is a Congruence for CCS

In a previous version I explained the whole subject of this slide using the notion of
sub-processes. In retrospect, this is misleading overhead. So, I got rid of it.

A CCS context is
a CCS process C using single special process constant • ∈ C (called a hole), also denoted as C[•].

Theorem 3.9: For all processes P,Q of CCS with P - Q and all CCS contexts C[•],
C[P] - C[Q].

 Bisimilarity is a congruence for CCS.

What happens if • occurs more than once? What happens if we use finitely many holes (i. e.,
•1, . . . , •n ∈ C)?

Stephan Mennicke Concurrency Theory 47/49

