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Abstract

Unification was originally introduced in automated deduction and term
rewriting, but has recently also found applications in other fields. In this
article, we give a survey of the results on unification obtained in two closely
related, yet different, application areas of unification: description logics and
modal logics.

1 Introduction

Unification, i.e., the problem of making given terms syntactically equal by replac-
ing their variables by terms, was independently introduced in automated deduc-
tion by Robinson [57] and in term rewriting by Knuth [48]. In both areas it later
turned out that certain equational axioms (such as associativity and commuta-
tivity of a binary function symbol) are hard to deal with by theorem provers and
term rewriting systems. For this reason, it was proposed in both areas [55, 54]
to build in such troublesome axioms into the proof process (resolution or Knuth-
Bendix completion) by using special unification procedures. Instead of making
terms syntactically equal, these procedures try to make them equivalent modulo
a given equational theory E. We call this type of unification E-unification or
equational unification. More formally, an E-unification problem is a system of
term equations of the form {s1 =?

E t1, . . . , sn =?
E tn}, and an E-unifier of this sys-

tem is a substitution σ such that s1σ =E t1σ, . . . , snσ =E tnσ, where =E denotes
equality modulo E.
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Unification theory tries to investigate the unification properties of equational
theories in a systematic way [71, 46, 16, 17]. On the one hand, one can consider
the decision problem, i.e., the question whether a given E-unification problem has
an E-unifier or not. For the decision problem one is interested in whether it is
decidable or not. For decidable problems one can then research their complexity
(see [16, 17] for an overview of such results). Instead of just deciding unifiability,
one often also wants to compute E-unifiers in case they exist (i.e., if the problem is
E-unifiable). This is, for example, the case in the applications of E-unification in
automated deduction and term rewriting mentioned above. In these applications,
one is interested in computing a minimal complete set of E-unifiers, i.e., a set of
E-unifiers of the given problem such that (i) every E-unifier of the problem is an
instance of a unifier in this set (completeness); and (ii) two different unifiers in
the set are incomparable w.r.t. instantiation (minimality). The unification type
of an equational theory says how large such sets can maximally get. The theory
E is unitary (finitary, infinitary) if the cardinality of a minimal complete set of
E-unifiers is at most 1 (always finite; sometimes infinite). In the worst possible
case (type 0), a minimal complete set does not always exist, which in particular
implies that there cannot be a finite complete set. Natural examples of equational
theories of unification type 0 can, for example, be found in [67, 3, 4].

In addition to the “classical” applications of unification modulo equational
theories in automated deduction and term rewriting mentioned above, unification
has also turned out to be of interest in other areas. For example, it can be used in
the context of verification of crytographic protocols [23, 24, 47, 27, 25, 1], where
the equational theory models algebraic properties of crytographic functions. In
this article, we consider two closely related, yet different application areas for
unification: modal logics [19] and description logics [8]. These areas are closely
related since many description logics are just syntactic variants of certain modal
logics. The most prominent example is the description logic ALC, which is a
syntactic variant of the basic multi-modal logic Km [64]. Consequently, technical
results obtained in one area (such as decidability and complexity of the satisfiabil-
ity problem; finite model property; etc.) can be transfered to the other, and this
is, of course, also true for results regarding unification. The difference between the
areas is due to the fact that they have different underlying intuitions and applica-
tions, and thus different aspects are considered to be important. For example, in
modal logics, axiomatizations have always been of great importance. Many modal
logics were first introduced through their axiomatizations, and the corresponding
Kripke semantics only came later. Also, the axiomatizations are often closer to
the intuitions underlying the use of the modal logics (e.g., as a formalization of
knowledge and belief of rational agents) than their Kripke semantics. In contrast,
in description logics, axiomatization are only of minor relevance, whereas the set-
theoretic semantics (which corresponds to the Kripke semantics in modal logics) is
the main approach for defining a description logic. This semantics directly reflects
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the intended use of the description logic as a formalism for defining concepts, i.e.,
sets of objects that share some common properties.

These differences are also reflected in the different motivations for considering
unification in the two areas. In modal logics, unification has been introduced as
a special case of recognizability of admissible inference rules [61]. Intuitively, this
problem asks, for a given modal logic L, whether a certain inference rule can be
added to its axiomatization without changing the logic. This may, for example, be
interesting if one wants to make the axiom system more efficient by adding rules
that can derive consequences faster, or if one wants to check whether two axioma-
tizations that use different rules are equivalent. Since unification is a special case
of the recognizability problem, solving it can be seen as a warm-up excercise for
solving the more general problem. In addition, undecidability results for unifi-
cation immediately yield undecidability of the recognizability problem. However,
as we will see below, unification is not only a special case of the recognizability
problem. In some cases, unification algorithms that compute finite minimal com-
plete sets of unifiers can actually be used to solve this problem. Thus, as in the
applications of equational unification in theorem proving and term rewriting, it is
desirable for modal logics to have unification type unitary or finitary.

In description logics, unification was introduced as a tool for recognizing re-
dundant concept descriptions [12, 13]. Basically, the idea is the following. Assume
that you have two concept descriptions C and D that you suspect to be different
formalizations of the same intuitive concept. One might think that it is enough
to test whether C and D are equivalent, i.e., describe the same set of objects
in every interpretation. However, this disregards that the two descriptions may
employ different names for primitive concepts or be modeled on different levels
of granularity, where a concept name in one description actually corresponds to
a complex sub-description in the other one. This problem is overcome by test-
ing the descriptions for unifiability modulo equivalence rather than equivalence
itself. In this application, the existence of a finite minimal complete set of unifiers
actually does not appear to be relevant. Instead, one is interested in computing
ground unifiers, i.e., unfiers that replace all variables by concept descriptions not
containing variables. In fact, the description logics whose unification properties
have been investigated until now are all of unification type zero, but unifiability
is decidable and the decision procedures can be used to compute a ground unifier
in case the input problem is unifiable. If σ is a ground substitution, then the
fact that it unifies the concept descriptions C,D basically says the following. If
we were to add concept definitions X ≡ Xσ for all the concept names X that
were viewed as variables in the unification problem, then we would make the two
descriptions equivalent w.r.t. these definitions. Of course, the knowledge engineer
needs to check whether these definitions really make sense within the application
domain that is modeled with these concepts.

In most cases, unification problems in modal logics and in description logics
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Name Syntax Semantics
concept name A AI ⊆ ∆I

role name r rI ⊆ ∆I ×∆I

top concept > ∆I

bottom concept ⊥ ∅
negation ¬C ∆I \ CI

conjunction C uD CI ∩DI

disjunction C tD CI ∪DI

value restriction ∀r.C {d ∈ ∆I | ∀e.(d, e) ∈ rI → e ∈ CI}
existential restriction ∃r.C {d ∈ ∆I | ∃e.(d, e) ∈ rI ∧ e ∈ CI}

Figure 1: Syntax and semantics of ALC concept descriptions

can actually be viewed as unification problems modulo the equational theory that
axiomatizes equivalence in the respective logic. Thus, from the point of view of
unification theory, the investigation of unification in modal and description logics
increases our knowledge about equational unification since it provides us with new
results about the unification properties of certain equational theories.

Equational unification also plays a rôle in the context of modal logics in a quite
different setting. In the so-called (optimized) functional translation of modal logics
into first-order logic, frame properties are translated into equational axioms, which
can be dealt with by equational unification [51, 26, 37, 52, 2, 53, 66]. This kind of
unification for modal logics is very different from the one mentioned before, and
will not be treated in the present paper. We refer the interested reader to the
cited literature.

2 Preliminaries definitions and remarks

In this section, we first explain the connection between description and modal
logics on the example of the modal logic Km and the description logic ALC. Then,
we show how unification problems in description and modal logics can be viewed
as equational unification problems. We assume that the reader is familiar with
the basic notions from unification theory mentioned in the introduction (exact
definitions can, e.g., be found in [17]). More information about description logic,
modal logic, and their connection can be found in [8, 19].

2.1 ALC and Km

Let us start with defining the description logic ALC. Assume that a countably
infinite supply of concept names, usually denoted A and B, and of role names,
usually denoted r and s, are available. Concept descriptions in ALC are formed
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Name Syntax Semantics
variable x V (x) ⊆W , M |=w x iff w ∈ V (x)
modal parameter p Rp ⊆W ×W

truth > M |=w >
falsity ⊥ M 6|=w ⊥
negation ¬A M |=w ¬A iff M 6|=w A
conjunction A ∧B M |=w A ∧B iff M |=w A and M |=w B
disjunction C ∨D M |=w A ∨B iff M |=w A or M |=w B
box 2pA M |=w 2pA iff for all w′, Rp(w, w′) implies M |=w′ A
diamond 3pA M |=w 3pA iff there is w′ with Rp(w, w′) and M |=w′ A

Figure 2: Syntax and semantics of Km formulae

according to the following syntax rule:

C,D −→ A | > | ⊥ | ¬C | C uD | C tD | ∀r.C | ∃r.C

where A ranges over concept names and r ranges over role names.
The semantics ofALC is based on interpretations, i.e., pairs I = (∆I , ·I) where

∆I is a non-empty set (the domain of I), and ·I is the interpretation function,
assigning to each concept name A a set AI ⊆ ∆I and to each role name r a binary
relation rI ⊆ ∆I × ∆I . The interpretation function is inductively extended to
concept descriptions as shown in Figure 1, which also lists the names that are
usually empoyed for the ALC constructors. Two ALC concept descriptions C,D
are equivalent (C ≡ D) iff they are always interpreted by the same set, i.e.,
CI = DI holds for all interpretations I. TheALC concept descriptionD subsumes
the ALC concept description C (C v D) iff C uD ≡ C, i.e., CI ⊆ DI holds for
all interpretations I. It is well-known that subsumption and equivalence of ALC
concept descriptions are PSpace-complete problems [69].
ALC is only one member of a large family of description logics. These logics

can be obtained from ALC by disallowing certain constructors (thus obtaining
sub-Boolean description logics, like EL and FL0, for which we consider unifica-
tion in Section 4) and/or adding various combinations of additional constructors.
Such additional constructors can be concept constructors, or they can be role
constructors allowing to construct compound role descriptions to be used in place
of role names. A special case of such a (nullary) role constructor is the universal
role u, which is interpreted as uI = ∆I ×∆I .

To define the basic multi-modal logic Km for m ≥ 1, we assume that there
is a countably infinite supply of propositional variables, usually denoted x, y, z,
and m modal parameter p1, . . . , pm. Formulae of Km are then defined using the
following syntax rule:

A,B −→ x | > | ⊥ | ¬A | A ∧B | A ∨B | 2pA | 3pA

where x ranges over propositional variables and p ranges over modal parameters.
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The semantics of Km is based on Kripke frames and Kripke models. A Kripke
frame is a pair F = (W, (Rp1 , . . . , Rpm)) where W is a non-empty set (of states
or possible worlds), and (Rp1 , . . . , Rpm) is an m-tuple of binary relations on W
(transition relations or accessibility relations). A Kripke model M consists of
such a frame F together with a valuation V , which maps each variable to a subset
of W (the worlds/states in which this variable is true). In this case, we say that
M is based on the frame F. The validity of a formula A in the world w of the
Kripke model M (M |=w A) is defined inductively, as shown in the semantics
column of Figure 2. The formula A is valid in the Kripke model M (M |= A)
iff it is valid in every world of this model, and it is valid in the Kripke frame F
(F |= A) iff it is valid in every Kripke model based on F. Finally, A is valid in the
class of Kripke frames K iff it is valid in every frame belonging to this class. The
set of formulae valid in the class of frames K is denoted by L(K). Usually, one
calls L(K) the modal logic induced by the class of frames K. The valid formulae
of Km are the ones that are valid in the class of all Kripke frames. Other modal
logics can be obtained by imposing restrictions on the transition relations (like
transitivity, symmetry, etc.) and then taking as class of frames the ones where the
transition relations satisfy these restrictions. An axiomatization of the modal logic
L(K) consists of axioms and inference rules, which can be used to derive exactly
the formulae that are valid in K, i.e., the elements of L(K). It should be noted,
however, that there are also modal logics (defined directly via an axiomatization)
that are not induced by Kripke frames.

In modal logics, one usually considers uni-modal logics rather than multi-
modal logics, i.e., the case where m = 1. The reason why we have introduced
the multi-modal case is that such logics are closer to description logics. As first
observed by Schild [64], ALC is a notational variant of Km, i.e. there is a bijective
translations C 7→ AC from ALC concept descriptions to Km formulae and a
bijective translation I 7→ MI from ALC interpretations to Kripke models such
that CI = {w | MI |=w AC}. Syntactically, concept names can simply be viewed
as propositional variables and role names can be viewed as modal parameters.
Then, the ALC interpretations I can obviously be translated into the Kripke
model that has ∆I as set of worlds and where ·I provides both the transition
relations and the valuation of the propositional variables. With this reading, the
value restriction ∀r.C becomes a box operator 2rC referring to the accessibility
relation for the modal parameter r, ∃r.C becomes a diamond operator 3rC, and
of course the Boolean operations in ALC are translated into the corresponding
Boolean operations on the modal side.

This close connection between ALC and Km also implies that inference prob-
lems in these two logics can be reduced to each other. For example, for all ALC
concept descriptions C,D, we have C ≡ D iff AC ↔ AD is valid in Km,1 and AC

1where ↔ can be expressed in the usual way using the Boolean operations ∧,∨,¬.
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is valid in Km iff C ≡ >.

2.2 Unification problems

Unification in modal and description logics will be introduced in more detail in the
next two sections. Here, we only want to mention some differences and similarities
between the kinds of unification problems considered in these areas, and point out
the connection to equational unification.

In description logics, one considers pairs of concept descriptions C,D that one
wants to make equivalent by replacing some of the concept names occurring in
them by concept descriptions. Thus, some of the concept names are declared to
be concept variables (which can be replaced by a substitution), whereas the others
are viewed to be constants (which cannot be replaced by a substitution). A unifier
of C,D is then a substitution σ such that Cσ ≡ Dσ. This is actually an equational
unification problem since we may view concept descriptions as terms and ≡ as an
equational theory on these terms. For many interesting description logics, ≡ can
actually be axiomatized using finitely many equational axioms (if we restrict the
attention to a finite set of role names). For example, equivalence in ALC can be
axiomatized by extending the theory of Boolean algebras (for u,t,¬,>,⊥) with
the following two axioms (for every role name r):

∀r.(X u Y ) ≡ ∀r.X u ∀r.Y and ∀r.> ≡ >.

In Section 4, we consider unification in the sub-Boolean fragments FL0 and EL of
ALC. The description logic FL0 has the constructors top concept, conjunction,
and value restriction, whereas in EL value restriction is replaced by existential
restriction. Equivalence in these two logics can be axiomatized by the following
equational theories [13, 11, 72]. For FL0 one takes the equational axioms stating
associativity, commutativity, and idempotency of u, the fact that > is a unit for
u, and the additional axioms

∀r.(X u Y ) ≡ ∀r.X u ∀r.Y and ∀r.> ≡ >.

For EL, these two axioms must be replaced by

∃r.(X u Y ) u ∃r.X ≡ ∃r.(X u Y ).

Unification in modal logics is often introduced as follows: given a formula A,
one wants to make this formula valid by replacing its propositional variables with
appropriate formulae. Thus, for a modal logic L (which we identify with the set
of formulae valid in it) and a formula A, an L-unifier of A is a substitution σ
such that Aσ ∈ L. At first sight, this does not match our definition of unification
in description logics. In fact, a direct transfer of this definition would yield the
following definition of unification in modal logic: given formulae A,B, find a
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substitution σ such that Aσ and Bσ are equivalent, i.e., such that Aσ ↔ Bσ is
valid. However, since Aσ ↔ Bσ is valid iff (A ↔ B)σ is valid, this is actually
a special case of our first definition of unification in modal logics. Conversely,
we have that Aσ is valid iff Aσ ↔ >σ is valid, and thus the two definitions of
unification in modal logics introduced above are actually equivalent.2

There is, however, another subtle difference between our definitions of unifi-
cation in description logics and unification in modal logics. Given concept de-
scriptions C,D, we assume that some (but not necessarily all) of the concepts
names occurring in these descriptions are variables that can be replaced by sub-
stitutions. The remaining concept names are constants in the sense that they
cannot be replaced by substitutions.3 Thus, in the terminology of unification the-
ory [17], such a unification problem is a unification problem with constants. In
contrast, for a given modal formula A that we want to make valid by unification,
we have assumed that all its propositional variables are variables that can be re-
placed by substitutions. Thus, the only available constants are > and ⊥, which
are, however, theory constants (in the sense that they occur in the equations that
axiomatize equivalence). Thus, the unification problems for modal logics intro-
duced above are so-called elementary unification problems. As pointed out in
[17], Section 3.2.2, the unification properties (unification type, decidability and
complexity of unification problems) of a given equational theory may differ, de-
pending on whether one considers elementary unification problems or unification
problems with constants. Most of the work on unification in modal logics con-
siders only elementary unification problems. In fact, unification in modal logics
is usually investigated in the context of admissible inference rules, and in these
rules, the presence of constants (called parameters in [61]) does not appear to be
very important for the intended applications.

As also pointed out in [17] (Section 3.2.3), the unification properties of a given
equational theory may differ, depending on whether one considers single equations
or systems of equations. In this terminology, what we have introduced until now
as unification problems are single equations: in description logics, our unification
problems consist of one pair of concept descriptions C,D, and in modal logics
of one formula A. In Section 4, we will actually allow unification problems in
description logics to be systems of equations of the form {C1 ≡? D1, . . . , Cn ≡?

Dn}, which must be solved simultaneously by a unifier, i.e., a unifier σ must satisfy
C1σ ≡ D1σ, . . . , Cnσ ≡ Dnσ. However, for the description logics ALC, EL, and
FL0, this is not really a generalization since systems of equations can be encoded
into a single equation. For example, in FL0 the above system can be encoded

2Note, however, that this depends on the expressibility of ↔ in the logic, i.e., it is no neces-
sarily true for sub-Boolean modal logics.

3Turning all concept names into variables would often create too many false positives, i.e.,
pairs of concept descriptions that unify, but are not meant to define the same intuitive concept.
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into the single equation

∀r1.C1 u . . . u ∀rn.Cn ≡? ∀r1.D1 u . . . u ∀rn.Dn,

where r1, . . . , rn are n distinct role names [13]. In the uni-modal logics consid-
ered in Section 3, this approach for encoding a system of equations into a single
equation is not possible. However, there we can use the fact that an “equation”
is without loss of generality just a formula that we want to make valid. In fact,
given formulae A1, . . . , A1, we have that σ is a unifier of each of them iff it is a
unifier of their conjunction.

3 Unification in modal logic

In this section, we introduce unification from a strictly modal perspective: after
summarizing relevant modal systems (just to fix the terminology), we introduce
and motivate unification problems; then we start investigating Boolean unification
with the aim of extending basic ideas and techniques from Boolean to modal
unification. When making such extensions, we shall encounter undecidability
limits as well as remarkable positive results and open problems. The connection
to admissibility of inference rules will be exploited and considered a relevant source
of applications for unification from the symbolic logic point of view.

3.1 Basic modal systems

Recall from Subsection 2.1 that modal propositional formulae are built from ⊥,>
and the propositional variables

x1, x2, . . . , y1, y2, . . . , z1, z2, . . .

by using the connectives ∧,∨,¬,2,3.

Syntax

An axiom system L is a set of formulae closed under substitution, containing all
classical tautologies and all the instances of the Aristotle axiom 2(x → y) →
(2x → 2y). We say that a formula A is derivable from the axiom system L
(written `L A) iff there is an L-derivation ending in A, where an L-derivation is
a list of formulae whose members are either taken from L, or come from previous
members of the list by applying an instance of the modus ponens (x, x → y�y)
or of the necessitation (x�2x) rules. The (global) L-entailment relation A 
L B
means that there is an L ∪ {A}-derivation of B.4

4That is, B is derived with the help of formulae from L and A by using modus ponens and
necessitation (no substitution instance of A can be used).
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A (normal, modal) logic is the set of formulae which are derivable from an
axiom system (in the following, we will often not distinguish between an axiom
system and the resulting logic). The minimum modal logic is called K; the logics
K4, GL, S4, Grz are obtained from an axiom system for K by adding to it
the corresponding axiom schema, i.e., all substitution instances of the respective
axioms listed below:

K4 : 2x→ 22x GL : K4 ∧ (2(2x→ x)→ 2x)

S4 : K4 ∧ (2x→ x) Grz : S4 ∧ (2(2(x→ 2x)→ x)→ x)

We shall also consider modal logics endowed with a universal modality [36],
which corresponds to the universal relation in Kripke semantics (see below). The
language of these logics contains an additional unary connective ∀ (the formula
∃A is defined as ¬∀¬A). Axiom systems with universal modality must contain
the following additional schemata:

∀x→ x; ∀x→ ∀∀x; x→ ∀∃x; ∀x→ 2x.

Derivations in systems with the universal modality allow the further inference
rule x�∀x; the definitions of entailment and of a logic are the same as in the
case without universal modality. The logics K∀, K4∀, GL∀, . . . are the universal
modality counterparts of K,K4, . . . (they are obtained from the minimum axiom
system with universal modality K∀ by adding it the axiom schemata K4, GL, . . . ).

Semantics

The notions of a frame and of a model have been introduced in Subsection 2.1.
Recall also that, for a class K of frames, the set L(K) of formulae A such that
F |= A holds for all F ∈ K is a modal logic; modal logics of the kind L(K) for some
K are said to be Kripke complete. For instance, K is complete for the class of all
frames, K4 for the class of all transitive frames, S4 for the class of all reflexive and
transitive frames; the logics GL and Grz are also Kripke complete, namely with
respect to all finite transitive irreflexive frames and all finite posets, respectively.

For the universal modality case, we need the further truth-condition (besides
those listed in Figure 2)

M |=w ∀A iff for all v, M |=v A,

saying that the relation interpreting the connective ∀ is the universal (i.e., the
total) relation W ×W . Our semantic definitions can be extended in a straight-
forward way to languages and logics with the universal modality; the above men-
tioned completeness results also continue to hold.
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Unification problems

Fix a logic L (with or without universal modality); following the reasons explained
in Subsection 2.2, we define a unification problem in L as a formula A and a
solution of it as a substitution σ (also called a unifier for A) such that `L Aσ.
The set of unifiers of A in the logic L is denoted by UL(A).

A substitution σ is more general than a substitution τ with respect to a set of
variables X and to a logic L (written σ ≤XL τ) iff there exists a further substitution
θ such that for all x ∈ X we have that `L xτ ↔ xσθ. Similarly, a unifier σ for A is
less general than another unifier τ for A iff it holds that σ ≤V ar(A)

L τ (where V ar(A)
is the set of variables occurring in A). The unification type of a logic L is now

defined in the usual way [17], by referring to the preordered sets (UL(A),≤V ar(A)
L ),

varying the unification problem (formula) A.

3.2 Motivating unification from the modal logician point
of view

The interesting application of unification theory to traditional modal logic con-
cerns recognizability of admissible rules. An inference rule

A

B
(1)

is admissible in a logic L iff for every substitution σ,

`L Aσ ⇒ `L Bσ.

For instance, the Löb rule
2x→ x

x
(2)

is admissible in the system GL; another example is the rule

2x

x
(3)

which is admissible in all the systems introduced in Subsection 3.1; a more com-
plicated example is the Lemmon-Scott rule

2(2(232x→ x)→ (2x ∨2¬2x))

232x ∨2¬2x
(4)

which is admissible in S4 and Grz. Notice that, if A 
L B, then the rule (1) is
certainly admissible, but the point is that in non-trivial examples (like the last
one) the implication in the opposite direction is not true.

The problem of recognizing admissible rules effectively is a standard problem in
mathematical logic (already appearing in a classical problems list by Friedman [29]
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in the Seventies). Admissible rules can be useful to improve concrete deduction,
but can also shed light on logical axiomatizations. Take for instance the case of the
system GL: it can be shown that the Löb rule can equivalently replace the axiom
2(2x → x) → 2x we introduced in Subsection 3.1 and it is important to have
at hand both the original axiom system and the new system. In fact, the original
axiom system shows that GL has an equational class of modal algebras as an
algebraic counterpart, whereas the Löb rule supports an intuitive understanding
of the logic (interpreting the Löb rule in Kripke semantics terms, one gets a modal
formulation of noetherian induction; moreover the Löb rule gives easily Gödel’s
second incompleteness theorem from completeness of arithmetical interpretation).

Recognizing admissible inferences is a hard task: the problem was solved pos-
itively for intuitionistic logic and for basic transitive modal systems by V.V. Ry-
bakov (see [58, 60, 61]). Unification theory can provide an alternative and ele-
gant solution to the recognazability of inference rules. Suppose, in fact, that we
have proved that a system L has finitary unification type and that we have a
type-conformant unification algorithm, i.e., an algorithm that computes a finite
complete set of unifiers UL(A) for the unification problem A. Then it is evident
that the rule (1) is admissible iff we have `L Bσ for every σ ∈ UL(A). Clearly,
if L is decidable, this is an algorithm for recognizing admissible rules. Thus, uni-
fication type finitarity turns out to be the key feature here (together, of course,
with decidability of L).

There is a second (more subtle) point along which unification theory intersects
the mathematics of modal logics and which is related to algebraic aspects: people
working in algebra know the importance of projective algebras and of finitely
presented algebras and it has turned out that finitely presented projective algebras
are a key ingredient for modal unification. Since we prefer not to introduce here
explicitly the algebraic apparatus,5 we translate below all the needed definitions
into symbolic terminology (see also [34]).

3.3 Boolean unification and the universal modality

An interesting feature of modal unification is that it is surprisingly close to Boolean
unification: in fact, we shall see that most general and minimal modal unifiers are
obtained by Boolean unifiers and their iterations.

First, let us introduce the promised projectivity notion: a formula A is pro-
jective (in a logic L) iff there is a unifier σ for A such that

A 
L x↔ xσ (5)

for all variables x occurring in A. Any unifier σ satisfying (5) is called a projective
unifier. The definition of a projective formula translates into symbolic logic the

5this apparatus is, e.g., employed in [30].
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statement “the free algebra over V ar(A) divided by the congruence generated
by the equation A = > is projective”: in fact, since projective algebras can be
equivalently defined as retract of free algebras, being a retract means precisely that
there is a projective unifier. On the other hand, projective unifiers corresponds
to the so-called “reproductive solutions” known from the research on Boolean
unification [50] and are quite close to the “transparent unifiers” introduced by
Wronski [74].

Projective unifiers are most general unifiers: if τ unifies A, then we obtain

`L xτ ↔ xστ

just by applying τ to (5). This shows that any unifier τ for A is less general than
any projective unifier.

Existence of projective unifiers for every unifiable formula is responsible for
the fact that unification is unitary in Boolean algebras and in many interesting
(fragments of) non-classical propositional logics (see [30, 74, 34]). To construct
projective unifiers in classical logic one can proceed as follows. Suppose that L is
classical propositional logic, that A is unifiable in L and that γ is a ground unifier
for it (notice that, up to Boolean equivalence, the range of γ is {>,⊥}, hence
γ can be seen as a propositional valuation). Let λγA be the substitution whose
domain is V ar(A) and which is defined as

x 7−→ (A ∧ x) ∨ (¬A ∧ xγ). (6)

for all x ∈ V ar(A). The following lemma can be shown by a simple induction on
the structure of the formula B:

Lemma 1. Let V be a Boolean evaluation; for every formula B, we have that

(i) if V (A) = ⊥, then V (BλγA) = V (Bγ);

(ii) if V (A) = >, then V (BλγA) = V (B).

From this lemma, it follows immediately that, if A is unifiable, then A is projective
with projective unifier λγA (thus, Boolean unification is unitary). In fact, by (ii),
we have that A 
L x ↔ xλγA holds for all x ∈ V ar(A) and by (i) and (ii) we get
that AλγA is a tautology (it is true under V both in case V (A) = ⊥ and in case
V (A) = >).

The formula (6) is due to Löwenheim: it is precisely the Löwenheim formula
taken from [50] (we slightly modified it because we do not use Boolean ring no-
tation and because the standard meaning of our unification problems is A ↔? >
rather than A↔? ⊥).

The surprising point is that the simple argument of Lemma 1 lifts trivially
to the universal modality case. Let in fact L be a logic with universal modality
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which is Kripke complete. Without loss of generality, we can now limit ourselves
to unification problems of the kind ∀B (this is because for all σ we have that
`L Bσ iff `L (∀B)σ). Thus let A be a formula whose top-level connective is the
universal modality, let γ be a ground unifier of it, and let λγA be defined as in (6).
Then Lemma 1 can be reformulates to

Lemma 2. Let M be a Kripke model and let w be a state in it; for every formula
B, we have that

(i) if M |=w A, then (M |=w Bλ
γ
A iff M |=w Bγ);

(ii) if M 6|=w A, then (M |=w Bλ
γ
A iff M |=w B).

Notice that the proof carries over smoothly because (i) and (ii) do not require mu-
tual induction (the modality is ‘universal’ hence A is true everywhere or nowhere
in M). As a consequence, the equation ‘unifiable = projective’ (leading to uni-
tarity of unification) can be established for universal modality systems too:

Theorem 3. Let L be a Kripke complete logic with universal modality; a formula
A is unifiable in L iff it is projective in L. As a consequence, unification is unitary
in L.

It should be noticed that the Kripke completeness hypothesis is superfluous,
because there is a direct algebraic argument proving Theorem 3 in the general
context of discriminator varieties [21].

Can we conclude that we have a method for recognizing admissible rules in
any modal logic L with universal modality? Not quite ... we have only reduced
admissibility to unifiability,6 but unifiability itself needs to be investigated. Un-
fortunately, we are quite far from the goal, as the following negative result shows:

Theorem 4 ([73]). Unifiability of a formula A is undecidable in any logic L with
universal modality between K∀ and K4∀.

Notice however that, if ¬2⊥ ∈ L (this is the case, for instance, if L ⊇ S4∀),
then there are only finitely many non-equivalent ground formulae in L: in this
case, if L is decidable, unifiability can be tested and consequently the Löwenheim
formula (6) supplies most general unifiers like in the plain Boolean case.

6This reduction was stated and proved in [63], by an argument not too far from the one
given above. Notice that the inverse reduction (of unifiability to admissibility) is trivial, because
unifiability of A is the same as non-admissibility of the rule A/⊥.
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3.4 Positive results

In this subsection we consider modal systems L without universal modality. The
case L = K is open, it is the most important open problem in the area. Notice that
K cannot have unitary unification, because it is a system enjoying the disjunction
property. Let us explain this in more detail. A modal system L has the disjunction
property iff for all A,B it holds that

`L 2A ∨2B ⇒ `L A or `L B.

If we read this condition from the unification viewpoint, this means in particular
that the formula 2x ∨ 2¬x has just two (clearly incomparable) unifiers, namely
x 7→ > and x 7→ ⊥.

Positive results for unification have been obtained for transitive logics, by
a technique that iterates Löwenheim substitutions. To better understand this
technique, let us have a closer look at the formula (6) for Boolean most general
unifiers: modulo trivial Boolean manipulations, this formula gives either

x 7−→ A ∧ x (in case xγ = ⊥) (7)

or

x 7−→ A→ x (in case xγ = >). (8)

Let us call a substitution a simplified Löwenheim substitutions for A if it has
domain V ar(A) and maps each x ∈ V ar(A) either to A ∧ x or to A→ x.7

If L contains the transitivity axiom 2x → 22x, we can assume without loss
of generality that the formulae to be unified have the form 2+B, where 2+B is
defined as 2B∧B: in fact, we have that `L Bσ iff `L Bσ∧ (2B)σ iff `L (2+B)σ
(use the necessitation rule, modus ponens and tautologies). Let A be a master for-
mula, i.e. a formula of the kind 2+B. It is easy to see that substitutions satisfying
condition (5) are closed under composition and that simplified Löwenheim sub-
stitutions for A satisfy condition (5); the idea is then to characterize projectivity
of A by using iterations of simplified Löwenheim substitutions:

Proposition 5 ([32]). Let L be any of the systems K4, GL, S4, Grz; a master
formula A is projective in L iff a suitable composition of simplified Löwenheim
substitutions for A is a unifier for A. There is a primitive recursive bound in the
modal degree of A for the required number of such compositions.

7Clearly, if the cardinality of V ar(A) is n, then there are 2n simplified Löwenheim substitu-
tions for A.
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We recall that the modal degree d(C) of a formula C counts the number
of nested 2 operators in C (formally: d(x) = x for atomic x, d(¬C) = d(C),
d(C ∧D) = d(C ∨D) = max(d(C), d(D)), d(2C) = d(3C) = d(C) + 1).

Since the systems K4, GL, S4, Grz are all decidable, Proposition 5 gives a
decision procedure for recognizing projectivity and computing projective unifiers.
We still need a fact connecting arbitrary unifiers with projective ones:

Theorem 6 ([32]). Let L be any of the systems K4, GL, S4, Grz; any unifier σ of
a master formula B is less general than a projective unifier of a projective formula
A that L-entails B and has at most the same modal degree as B.

Notice that, if A 
L B, then any unifier for A is also a unifier for B. Thus
we have the following algorithm for computing a minimal complete set of unifiers
for a given master formula B: (a) list the (finitely many up to L-equivalence)
master formulae A having at most the same modal degree as B; (b) discard those
A for which A 
L B does not hold; (c) determine which of the remaining A are
projective by applying the method of Proposition 5. The (
L-maximal) formulae
surviving after step (c) are said to form a projective approximation Π(B) of B.
If Π(B) is empty, the formula B is not unifiable; in case it is not empty, the
projective unifiers of the formulae in Π(B) are a finite complete (minimal) set of
unifiers for B. Summing up, we have:

Corollary 7 ([32]). Let L be any of the systems K4, GL, S4, Grz; unification in
L is finitary and finite complete sets of unifiers can effectively be computed.

Note that Proposition 5, Theorem 6, and Corollary 7 can be extended to transi-
tive logics L having finite model property and satisfying a suitable “extensibility”
semantic condition [32, 42].

The algorithm sketched above (which is based on Proposition 5 and Theo-
rem 6) has a non-elementary complexity, but it can be greatly simplified: in fact,
for most applications, there is no need for computing a finite minimal complete
set of unifiers, projective approximations can be computed instead. For instance,
in order to recognize that a rule A�B is admissible in a logic L, it is sufficient
to check that C 
L B holds for every C ∈ Π(A).8 Thus, for instance, the admis-
sibility of the Lemmon-Scott rule (4) (in S4 and Grz) comes from the fact that
{232x, 2¬2x} is a projective approximation of the premise. Further examples,
illustrating in detail various phenomena, can be found in the last section of [32].

The computation of projective approximations and the check of projectiv-
ity of a given formula can be performed by semantic methods, without building
non-elementarily complex substitutions. To this aim, one uses the following char-
acterization of projectivity in finite Kripke models [32]:

8This comes from the general (easy) fact that, for projective C, the condition C 
L B is
equivalent to the fact that a projective unifier of C unifies B.
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A master formula A is projective in L iff it is possible, in any finite
Kripke model for L, to make A everywhere true by modifying the
evaluation of the atomic formulae only in the part of the model in
which A is not true.

Replacing ‘master formula’ simply by ‘formula’, it can be shown that the above
observation, as well as Proposition 5 and Theorem 6, hold for intuitionistic propo-
sitional logic too (see [31]). Based on this observation, a calculus combining
tableau- and resolution-steps has been built in [33] for the intuitionistic case: this
calculus checks whether a formula is projective in exponential time and builds
projective approximations in double exponential time. Many examples (ranging
from small to medium size) are worked out in full details in [33]. The extension
of this calculus to the modal systems K4 and S4 has been presented in [75].

For further research along this line, connecting unification and projectivity,
see [35], where a natural family of transitive systems enjoying unitary unification
is identified. Finally, [28] connects unification types and splittings in the lattice
of logics.

3.5 Further recent work on admissible rules

Recent research on admissible inference rules is mostly concerned with the follow-
ing problems: (i) to find admissibility bases; (ii) to determine the complexity of
the recognizability problem; (iii) to build specific sequent-like calculi for admissi-
bility. These research lines often make crucial use of the results and techniques
concerning unification and projectivity sketched above. Nevertheless, they con-
stitute a subject of their own, which would require a separated survey. Here, we
only give a few pointers to the literature.

There are two basic approaches to the analysis of admissible rules that have
been followed in the literature: one is the strategy of [61], which relies on the
combinatorics of universal frames of finite rank; the other uses projectivity and
extension properties of classes of finite frames (i.e., the kind of apparatus we
introduced in Subsection 3.4 above).9 The latter approach has been used in [39, 42]
to investigate admissibility bases for intuitionistic logic, K4, S4, GL,Grz (bases
for S4 were built also in [62] following the former approach). By definition, an
admissibility basis for a logic L is a set S of admissible rules such that any other
admissible rule r is derivable from S (in the sense that the conclusion of r is
L-entailed from the assumption, if L-deduction is enlarged so that it can apply
also substitution instances of rules in S, besides axioms from L and standard
rules like modus ponens and necessitation); an independent admissibility basis
is an admissibility basis which is minimal. For the logics K4, S4, GL,Grz, for

9For the sake of completeness, we mention a third very recent approach [45], making use of
canonical rules coming from frame descriptions.
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which we have shown positive results regarding unification in Subsection 3.4, finite
admissibility bases actually do not exist [59], but independent infinite bases are
exhibited in [44], by refining previous work from [42].

Concerning point (ii), [43] correctly notices that the algorithm for admissibility
given in [33, 75] is in ExpSpace: in fact, to show that the rule (1) is not admissi-
ble, one finds a formula C ∈ Π(A) such that C 
L B does not hold. For systems
like intuitionistic logic, K4, S4, etc., the entailment test is in PSpace and the
algorithm computes each of the candidates C (which are all at most exponentially
long) in exponential time, so the overall complexity bound is in ExpSpace. In
the light of the results from [43] this is sub-optimal:10 recognizing admissibility
in intuitionistic logic and in logics like K4, S4, etc. is coNExpTime-complete.
However, the optimal algorithm, as it often happens, looks less viable than the
algorithm of [33, 75] because it is based not on a calculus but on guessing an
exponential-size model. This is the reason why the investigations concerning point
(iii) play an important role.

The algorithms for admissibility from [33, 75] mix tableaux and resolution;
from a proof-theoretic point of view, it would be cleaner to have a pure tableau or
a pure sequent-style calculus. This has been achieved in [41] (improving a previous
attempt from [40]), where proof systems for admissibility are presented: in such
proof systems, the basic objects are sequent rules, not just ordinary sequents.
Another approach is developed in [18]: here methods for synthetizing tableau
calculi from [65] are applied to a first-order specification of the class of models
used in [61] in order to test rule admissibility.

3.6 Unification in classical modal logics

For the sake of completeness, we report here relevant results from the literature
on general Boolean unification, by rephrasing them as results concerning classical
(possibly non-normal) modal logics. We follow here the definition of a classical
modal logic given by Segerberg [70] (strictly speaking, Segerberg considered only
modal signatures consisting of a single unary modal operator, but nowadays n-
ary multi-modal systems are so common that this restriction does not seem to be
justified anymore).

We call a modal signature ΣM a set of function symbols (called modal op-
erators) endowed with corresponding arities; modal formulae are now built up
from propositional letters by applying to them the Boolean connectives as well as
modal operators from ΣM . An axiom system L (based on the modal signature
ΣM , which is fixed from now on in this subsection) is now just a set of formulae
closed under substitution and containing all classical tautologies; an L-derivation

10The algorithm from [61] (based on an ad hoc inspection of an exponential number of Kripke
models) is in ΠE

2 , hence slightly better from the theoretical complexity viewpoint, but it is
sub-optimal too.
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can apply (besides axioms from L and modus ponens) also the replacement rules

A1 ↔ B1, . . . , An ↔ Bn

f(A1, . . . , An)↔ f(B1, . . . , Bn)

(we have one such rule for every f ∈ ΣM of arity n).
A (classical modal) logic is the set of formulae which are derivable from an

axiom system. The minimum classical modal logic is called E. Unification prob-
lems, unifiers, the instantiation preorder, and the unification types of a logic can
be defined for classical modal logics exactly as in the case of normal modal logics.

It is easy to see [9] that equivalence in the minimum classical modal logic
E is axiomatized by the equational axioms defining Boolean algebras, where the
signature of Boolean algebras (>,⊥,∧,∨,¬) is, however, extended by the modal
parameters from ΣM . Since the modal parameters do not occur in the axioms
defining Boolean algebras, the symbols from ΣM are so-called free function sym-
bols. In unification theory, unification problems that may contain additional free
function symbols are called general unification problems [17]. Thus, unification in
the minimum classical modal logic E is the same as general Boolean unification.
Whereas elementary Boolean unification and Boolean unification with constants
are unitary [50], general Boolean unification is finitary [68]. Algorithms that com-
pute finite complete sets of unifiers for general Boolean unification problems are
described in [68, 20]. They are based on aproaches for combining unification al-
gorithms for equational theories over disjoint signatures, where one theory is the
theory of Boolean algebras with signature >,⊥,∧,∨,¬ and the other is the free
theory (consisting of the trivial equations f(x1, . . . , xn) = f(x1, . . . , xn) for every
f ∈ ΣM) with signature ΣM . Of course, algorithms that compute finite complete
sets of unifiers can also be used to decide unifiability, but the complexity of the
decision procedure obtained this way need not be optimal. The exact complexity
of deciding the solvability of a general Boolean unification problem was deter-
mined in [5]: it is PSpace-complete.11 This complexity result is based on results
from [15] obtained in the context of combining decision procedures for unification
in the union of equational theories over disjoint signatures.

4 Unification in description logic

The main motivation for introducing unification in description logics was to avoid
redundancies in knowledge bases that are built by several knowledge engineers
over a long time period. In this setting, it frequently happens that the same
(intuitive) concept is introduced several times, often with slightly differing de-
scriptions. Testing for equivalence of concepts is not always sufficient to find out

11In contrast, this problem is NP-complete for elementary Boolean unification problems and
Πp

2-complete for Boolean unification problems with constants.
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whether, for a given concept description, there already exists another concept
description in the knowledge base describing the same notion. As an example,
lets us ask whether the following two ALC concept descriptions might denote the
same (intuitive) concept:

∀child.∀child.Rich u ∀child.Rmr and Acr u ∀child.Acr u ∀child.∀spouse.Rich.

The answer is yes, since replacing the concept name Rmr by the description Richu
∀spouse.Rich and Acr by ∀child.Rich yields the descriptions

∀child.∀child.Rich u ∀child.(Rich u ∀spouse.Rich),
∀child.Rich u ∀child.∀child.Rich u ∀child.∀spouse.Rich,

which are obviously equivalent. Thus, under the assumption that Rmr stands for
“Rich and married rich” and Acr for “All children are rich”, we can conclude that
both descriptions are meant to express the concept “All grandchildren are rich
and all children are rich and married rich”. This connection between the two
descriptions can be found by a unification algorithm if we declare Rmr and Acr to
be variables.

Assume that L is some description logic. In order to define unification of
concept descriptions, we first introduce the notion of a substitution. To this
purpose, we partition the set of concepts names into a set Nv of concept variables
(which may be replaced by substitutions) and a set Nc of concept constants (which
must not be replaced by substitutions). Intuitively, Nv are the concept names that
have possibly been given another name or been specified in more detail in another
concept description describing the same notion. The elements of Nc are the ones
of which it is assumed that the same name is used by all knowledge engineers
(e.g., standardised names in a certain domain).

A substitution σ is a mapping from Nv into the set of all L concept descriptions.
Given a concept variable X ∈ Nv, we denote its image under σ by Xσ. This
mapping is extended to concept descriptions in the obvious way. For example, in
the case of ALC we have

• Aσ := A for all A ∈ Nc,

• >σ := > and ⊥σ = ⊥,

• (C uD)σ := Cσ uDσ, (C tD)σ := Cσ tDσ, and

• (∃r.C)σ := ∃r.(Cσ) and (∀r.C)σ := ∀r.(Cσ).

An L-unification problem is of the form Γ = {C1 ≡? D1, . . . , Cn ≡? Dn}, where
C1, D1, . . . Cn, Dn are L concept descriptions. The substitution σ is a unifier (or
solution) of Γ iff Ciσ ≡ Diσ for i = 1, . . . , n. In this case, Γ is called solv-
able or unifiable. When we say that L-unification is decidable (NP-complete,
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ExpTime-complete), then we mean that the following decision problem is decid-
able (NP-complete, ExpTime-complete): given an EL-unification problem Γ, de-
cide whether Γ is solvable or not.

In the following, we consider the complexity of this decision problem for the
description logics FL0 and EL.

4.1 Unification in FL0

Concept descriptions in FL0 are formed according to the following syntax rule:

C,D −→ A | > | C uD | ∀r.C

where A ranges over concept names and r ranges over role names. The semantics
of the concept constructors used in FL0 is the one given in Figure 1 for the ALC
constructors.

First, we sketch a structural algorithm that can be used to decide equiva-
lence of FL0 concept descriptions in polynomial time. This algorithm normalizes
the descriptions to be tested for equivalence, and then compares the syntactic
structure of the normal forms.

By using the equivalence ∀r.(C u D) ≡ ∀r.C u ∀r.D as a rewrite rule from
left to right, any FL0 concept description can be transformed into an equivalent
description that is a conjunction12 of descriptions of the form ∀r1. · · · ∀rm.A for
m ≥ 0 (not necessarily distinct) role names r1, . . . , rm and a concept name A.
We abbreviate ∀r1. · · · ∀rm.A by ∀r1 . . . rm.A, where r1 . . . rm is viewed as a word
over the alphabet of all role names. In addition, instead of ∀w1.A u . . . u ∀w`.A
we write ∀L.A where L := {w1, . . . , w`} is a finite set of words over the alphabet
of all role names. The expression ∀∅.A is considered to be equivalent to the top
concept >, which means that it can be added to a conjunction without changing
the meaning of the concept. Using these abbreviations, any pair of FL0 concept
descriptions C,D containing the concept names A1, . . . , Ak can be rewritten as

C ≡ ∀U1.A1 u . . . u ∀Uk.Ak and D ≡ ∀V1.A1 u . . . u ∀Vk.Ak,

where Ui, Vi are finite sets of words over the alphabet of all role names. This
normal form provides us with the following characterization of equivalence of
FL0 concept descriptions [13]:

C ≡ D iff Ui = Vi for all i, 1 ≤ i ≤ k.

Since the size of the normal forms is polynomial in the size of the original descrip-
tions, and since the equality tests Ui = Vi can also be realized in polynomial time,
this yields a polynomial-time decision procedure for equivalence in FL0.

12The empty conjunction is >.
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The unification procedure for FL0 developed in [12, 13] crucially depends on
the characterization of equivalence introduced above. As mentioned in Section 2,
we can without loss of generality restrict the attention to unification problems
consisting of a single equation C ≡? D. Using the normal form of FL0 concept
descriptions introduced above, we can write the descriptions C,D in the form

C ≡ ∀S0,1.A1 u . . . u ∀S0,k.Ak u ∀S1.X1 u . . . u ∀Sn.Xn,
D ≡ ∀T0,1.A1 u . . . u ∀T0,k.Ak u ∀T1.X1 u . . . u ∀Tn.Xn,

where A1, . . . , Ak are the concept constants and X1, . . . , Xn the concept variables
occurring in C,D, and S0,i, Sj, T0,i, Tj (i = 1, . . . , k, j = 1, . . . , n) are finite sets of
words over the alphabet of all role names. In [13], it is shown that C ≡? D has a
unifier iff for all i = 1, . . . , k, the linear language equation

S0,i ∪ S1X1,i ∪ · · · ∪ SnXn,i = T0,i ∪ T1X1,i ∪ · · · ∪ TnXn,i

has a solution, i.e., we can substitute the variables Xj,i by finite languages such
that the equation holds. Note that this is not a system of k equations that must be
solved simultaneously: since they do not share variables, each of these equations
can be solved separately.

Let us illustrate the connection between FL0 unification problems and lin-
ear language equations by a simple example. The normal forms of the concept
descriptions

C := ∀r.(A1u∀r.A2)u∀r.∀s.X1 and D := ∀r.∀s.(∀s.A1u∀r.A2)u∀r.X1u∀r.∀r.A2

are

C ≡ ∀{r}.A1u∀{rr}.A2u∀{rs}.X1 and D ≡ ∀{rss}.A1u∀{rsr, rr}.A2u∀{r}.X1.

Thus, the unification problem C ≡? D leads to the two linear language equations

{r} ∪ {rs}X1,1 = {rss} ∪ {r}X1,1,
{rr} ∪ {rs}X1,2 = {rsr, rr} ∪ {r}X1,2.

The first equation (the one for A1) has X1,1 = {ε, s} as a solution, and the second
(the one for A2) has X1,2 = {r} as a solution. These two solutions yield the
following unifier of C ≡? D:

{X1 7→ A1 u ∀s.A1 u ∀r.A2}.

By an exponential time reduction to the emptiness problem of top-down automata
on finite trees it is shown in [13] that solvability of linear language equations of the
form introduced above can be decided in exponential time. ExpTime-hardness is
shown by a reduction from the intersection emptiness problem for deterministic
top-down tree automata.

Theorem 8 ([13]). Unification in FL0 is ExpTime-complete.
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In [10], it is shown that unification in FLreg, which extends FL0 by the role
constructors union, composition, and reflexive-transitive closure, is also ExpTime-
complete. Basically, instead of linear language equations over finite sets of words,
one obtains linear language equations over regular sets of words, and uses au-
tomata working on infinite trees to solve them.

4.2 Unification in EL
Concept descriptions in EL are formed according to the following syntax rule:

C,D −→ A | > | C uD | ∃r.C

where A ranges over concept names and r ranges over role names. The semantics
of the concept constructors used in EL is the one given in Figure 1 for the ALC
constructors.

In order to characterize equivalence of EL concept descriptions, the notion
of a reduced EL concept description is introduced in [49]. A given EL concept
description can be transformed into an equivalent reduced description by applying
the following rules modulo associativity and commutativity of conjunction:

C u > → C for all EL concept descriptions C

A u A→ A for all concept names A

∃r.C u ∃r.D → ∃r.C for all EL concept descriptions C,D with C v D

Obviously, these rules are equivalence preserving. We say that the EL concept
description C is reduced if none of the above rules is applicable to it (modulo
associativity and commutativity of u). The EL concept description D is a reduced
form of C if D is reduced and can be obtained from C by applying the above rules
(modulo associativity and commutativity of u).

Theorem 9. Let C,D be EL concept decriptions, and Ĉ, D̂ reduced forms of
C,D, respectively. Then C ≡ D iff Ĉ is identical to D̂ up to associativity and
commutativity of u.

Since subsumption in EL can be decided in polynomial time [6, 7], equivalence
of EL concept decriptions can also be decided in polynomial time, and the reduced
form of a given EL concept decription can be computed in polynomial time.

The proof that unification in EL is an NP-complete problem [11] proceeds in
several steps:

1. a normal form for EL unification problems (the so-called flat form) as well
as the notion of an atom occurring in such a flat unification problem are
introduced;
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2. a well-founded ordering on ground substitutions is introduced, and it is
shown that every solvable EL unification problem has a ground unifier that
is minimal w.r.t. this ordering;

3. it is shown that minimal ground unifiers are local in the sense that they
introduce only atoms occurring in the input EL unification problems in flat
form;

4. to decide unifiability, one thus guesses a ground substitution that is local in
this sense, and then tests whether it is a unifier;

5. since the substitutions generated in the previous step may be of exponential
size, one actually needs to employ structure sharing to obtain an algorithm
that runs in non-deterministic polynomial time.

Let us now look at these steps in a bit more detail. An EL concept description
is called an atom iff it is a concept name (i.e., concept constant or concept vari-
able) or an existential restriction ∃r.D. Obviously, any EL concept description is
(equivalent to) a conjunction of atoms, where the empty conjunction is >. The set
At(C) of atoms of an EL concept description C is defined inductively: if C = >,
then At(C) := ∅; if C is a concept name, then At(C) := {C}; if C = ∃r.D then
At(C) := {C}∪At(D); if C = C1uC2, then At(C) := At(C1)∪At(C2). Concept
names and existential restrictions ∃r.D where D is a concept name or > are called
flat atoms. The EL-unification problem Γ is flat iff it only contains equations of
the following form:

• X ≡? C where X is a variable and C is a non-variable flat atom;

• X1 u . . . uXm ≡? Y1 u . . . u Yn where X1, . . . , Xm, Y1, . . . , Yn are variables.

By introducing new concept variables and eliminating >, any EL-unification prob-
lem Γ can be transformed in polynomial time into a flat EL-unification problem Γ′

such that Γ is solvable iff Γ′ is solvable. Thus, we may assume without loss of gen-
erality that our input EL-unification problems are flat. Given a flat EL-unification
problem Γ = {C1 ≡? D1, . . . , Cn ≡? Dn}, we call the atoms of C1, D1, . . . , Cn, Dn

the atoms of Γ.
The unifier σ of Γ is called reduced (ground) iff, for all concept variables

X occurring in Γ, the EL-concept description Xσ is reduced (does not contain
variables). Obviously, Γ is solvable iff it has a reduced ground unifier.

Next, we define a well-founded ordering on ground unifiers by comparing the
concept description in their ranges w.r.t. the inverse subsumption order : given EL-
concept descriptions C,D, we define C >is D iff C < D. In [11] it is shown that
the strict order >is defined this way is well-founded. Consequently, its multiset
extension >m is also well-founded [14]. Given a ground unifier σ of Γ, we consider
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the multiset S(σ) of all EL-concept descriptions Xσ, where X ranges over all
concept variables occurring in Γ. For two ground unifiers σ, θ of Γ, we define
σ � θ iff S(σ) >m S(θ). The ground unifier σ of Γ is minimal iff there is no
ground unifier θ of Γ such that σ � θ.

As an easy consequence of the fact that � is well-founded we obtain that an
EL-unification problem Γ is solvable iff it has a minimal reduced ground unifier.
The following proposition shows that minimal reduced ground unifiers of flat EL-
unification problems satisfy a locality property that makes it easy to check (with
an NP-algorithm) whether such a unifier exists or not.

Proposition 10. Let Γ be a flat EL-unification problem and γ a minimal reduced
ground unifier of Γ. If X is a concept variable occurring in Γ, then γ(X) ≡ > or
there are non-variable atoms D1, . . . , Dn (n ≥ 1) of Γ such that γ(X) ≡ γ(D1) u
. . . u γ(Dn).

This proposition suggests the following non-deterministic algorithm for decid-
ing solvability of a given flat EL-unification problem Γ:

1. For every variable X occurring in Γ, guess a finite, possibly empty, set SX
of non-variable atoms of Γ.

2. We say that the variable X directly depends on the variable Y if Y occurs
in an atom of SX . Let depends on be the transitive closure of directly
depends on. If there is a variable that depends on itself, then the algorithm
returns “fail.” Otherwise, there exists a strict linear order > on the variables
occurring in Γ such that X > Y if X depends on Y .

3. We define the substitution σ along the linear order >:

• If X is the least variable w.r.t. >, then SX does not contain any vari-
ables. We define Xσ to be the conjunction of the elements of SX , where
the empty conjunction is >.

• Assume that Y σ is defined for all variables Y < X. Then SX contains
only variables Y for which Y σ is already defined. If SX is empty, then
we define Xσ := >. Otherwise, let SX = {D1, . . . , Dn}. We define
Xσ := D1σ u . . . uDnσ.

4. Test whether the substitution σ computed in the previous step is a unifier
of Γ. If this is the case, then return σ; otherwise, return “fail.”

This algorithm is trivially sound since it only returns substitutions that are unifiers
of Γ. In addition, it obviously always terminates. In [11], completeness is shown
by proving that, for every solvable flat EL unification problem Γ, there is a way of
guessing in Step 1 subsets SX of the non-variable atoms of Γ such that the depends
on relation determined in Step 2 is acyclic and the substitution σ computed in
Step 3 is a unifier of Γ.
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Theorem 11. EL-unification is NP-complete.

NP-hardness follows from the fact that already EL-matching (where only one
side of the equation contains variables) is NP-complete [49]. To show that the
problem can be decided by a non-deterministic polynomial-time algorithm, we
analyse the complexity of the algorithm sketched above. Obviously, guessing the
sets SX (Step 1) can be done within NP. Computing the depends on relation and
checking it for acyclicity (Step 2) is clearly polynomial.

Steps 3 and 4 are more problematic. In fact, since a variable may occur in
different atoms of Γ, the substitution σ computed in Step 3 may be of exponential
size. This is actually the same reason that makes a näıve algorithm for syntactic
unification compute an exponentially large most general unifier [17]. As in the
case of syntactic unification, the solution to this problem is basically structure
sharing, i.e., in (a representation of) the substitution σ, identical subdescriptions
are shared. The fact that equivalences Cσ ≡ Dσ can be checked in time polyno-
mial in the size of such a compact representation of σ is an easy consequence of
the results in [6], where it is shown that subsumption (and thus equivalence) in
EL w.r.t. so-called acyclic TBoxes can be decided in polynomial time (see [11] for
more details).

5 Conclusion

Unification in modal logic is a well-established research area that already produced
interesting deep results. Still, besides solving the big open problem concerning
unification in K (where basically nothing is known), further work is needed es-
pecially at the syntactic level, where satisfactory calculi for unification and for
admissibility must be designed and implemented, following the most recent re-
search trends mentioned in Subsection 3.5. In the end, it would be desirable to
embed such calculi into decision procedures and reasoning tools for modal logics,
in order for unification to gain a rôle similar to the one it already plays in classical
automated reasoning.

Compared to the host of results on unification in modal logics, the investiga-
tion of unification in description logics is only at its beginning. Currently, the only
positive results are the ones for the two inexpressive DLs EL and FL0. Whereas
FL0 does not appear to be relevant for applications since there are almost no
terminologies (nowadays usually called ontologies) formulated in FL0, the sit-
uation is quite different for EL. For example, both the large medical ontology
Snomed ct13 and the Gene Ontology14 can be expressed in EL, and the same is
true for large parts of the medical ontology Galen [56]. The importance of EL can

13http://www.ihtsdo.org/snomed-ct/
14http://www.geneontology.org/
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also be seen from the fact that the new OWL 2 standard15 contains a sub-profile
OWL 2 EL, which is based on (an extension of) EL. In the context of medical
ontologies, the redundancy problem that we have mentioned as a motivation for
considering unification in description logics actually occurs. For example, in [22],
two different extensions of Snomed ct by so-called post-coordinated concepts
were considered. The authors used an (incomplete) equivalence test to find out
how large the overlap between the two extensions is (i.e., how many of the new
concepts belonged to both extensions). As pointed out in the introduction, the
equivalence test cannot deal with situations where different knowledge engineers
use different names for concepts, or model on different levels of granularity. It
is thus interesting to find out whether using unifiability rather than equivalence
yields a larger overlap.

Of course, any result for unification in modal logics can be viewed as a re-
sult for unification in a corresponding description logic. However, the description
logics that correspond to the modal logics for which there are positive results for
unification, like K4, GL, S4, Grz, do not appear to be of great relevance in appli-
cations of description logics. In contrast, the undecidability result for unification
in modal logics with universal modality between K∀ and K4∀ [73] also implies un-
decidability of unification in some expressive and application-relevant DLs (e.g.,
the DL SHIQ [38]). As mentioned above, the big open problem for unification in
modal logics is decidability of unification in the modal logic K. Since the multi-
modal variant of K corresponds to the application-relevant description logic ALC,
a positive result for K would also have a big impact on unification in description
logics and its applications.

References

[1] S. Anantharaman, P. Narendran, and M. Rusinowitch. Intruders with caps.
In F. Baader, editor, Proceedings of the 18th International Conference on
Rewriting Techniques and Applications (RTA 2007), volume 4533 of Lecture
Notes in Computer Science, pages 20–35. Springer-Verlag, 2007.

[2] Y. Auffray and P. Enjalbert. Modal theorem proving: An equational view-
point. J. Logic and Computation, 2(3):247–295, 1992.

[3] F. Baader. Unification in idempotent semigroups is of type zero. J. Automated
Reasoning, 2(3):283–286, 1986.

[4] F. Baader. Unification in commutative theories. J. Symbolic Computation,
8(5):479–497, 1989.

15See http://www.w3.org/TR/owl2-profiles/

27



[5] F. Baader. On the complexity of Boolean unification. Information Processing
Letters, 67(4):215–220, 1998.

[6] F. Baader. Terminological cycles in a description logic with existential restric-
tions. In G. Gottlob and T. Walsh, editors, Proc. of the 18th Int. Joint Conf.
on Artificial Intelligence (IJCAI 2003), pages 325–330, Acapulco, Mexico,
2003. Morgan Kaufmann, Los Altos.

[7] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In L. P.
Kaelbling and A. Saffiotti, editors, Proc. of the 19th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2005), pages 364–369, Edinburgh (UK), 2005.
Morgan Kaufmann, Los Altos.

[8] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implemen-
tation, and Applications. Cambridge University Press, 2003.

[9] F. Baader, S. Ghilardi, and C. Tinelli. A new combination procedure for
the word problem that generalizes fusion decidability results in modal logics.
Information and Computation, 204(10):1413–1452, 2006.
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