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Abstract. In a previous ICFCA paper we have shown that, in the De-
scription Logics EL and ELgfp, the set of general concept inclusions hold-
ing in a finite model always has a finite basis. In this paper, we address
the problem of how to compute this basis efficiently, by adapting methods
from formal concept analysis.

1 Introduction

Description Logics (DLs) [3] are a well-investigated family of logic-based
knowledge representation formalisms, which are employed in various applica-
tion domains, such as natural language processing, configuration, databases, and
bio-medical ontologies, but their most notable success so far is the adoption of
the DL-based language OWL [11] as standard ontology language for the seman-
tic web. From the Description Logic point of view, an ontology is a finite set of
general concept inclusion axioms (GCIs) of the form C � D, where C, D are con-
cepts defined using an appropriate concept description language. Such a concept
description language allows one to construct complex concepts out of concept
names (unary predicates, interpreted as sets) and roles (binary predicates, inter-
preted as binary relations) using certain concept constructors. Complex concepts
are again interpreted as sets. To be more precise, given an interpretation of the
concept and role names, the semantics of the concept constructors determines,
for every complex concept, a unique set as the extension of this concept. The
GCI C � D states that, in a model of the ontology, the extension of the concept
C must be a subset of the extension of the concept D.

When defining a DL-based ontology, one must first decide on which vocabulary
(i.e., concept and role names) to use, and then define appropriate constraints on
the interpretation of this vocabulary using GCIs. The work described in this
paper is motivated by the fact that coming up with the right GCIs by hand is
usually not an easy task. Instead, we propose an approach where the knowledge
engineer is required to provide us with a finite model, which should be seen as
an abstraction or approximation of the application domain to be modeled. We
then automatically generate a finite basis of the GCIs holding in the model, i.e.,
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a finite set of GCIs that hold in this model and from which all GCIs holding in
the model and expressible in the employed concept description language follow.
The knowledge engineer can use the computed basis as a starting point for the
definition of the ontology. She may want to weaken or even remove some of the
GCIs if the chosen model was too restricted, and thus satisfies GCIs that actually
do not hold in all intended models. As an example, assume that we want to
define a family ontology, using the concept names Male, Father, Female, Mother,
and the role name child. Consider a finite model with two families. The first
family consists of John, Michelle, and Mackenzie, where John is male and a
father (i.e., John belongs to the interpretation of the concept names Male and
Father), Michelle is female and a mother, and Mackenzie is female and a child of
both John and Michelle. The second family consists of Paul, Linda, and James,
where Paul is male and a father, Linda is female and a mother, and James is
male and a child of both Paul and Linda. In this model, the GCIs

Father � Male � ∃child.� and Mother � Female � ∃child.�

hold. The first one says that every father is male and has a child, and the second
one says that every mother is female and has a child. If we had used a model
consisting of only the first family, then we would have obtained the too specific
GCIs Father � Male�∃child.Female and Mother � Female�∃child.Female, where
mothers and fathers always have female children.

For the approach sketched above to work, the set of GCIs holding in a finite
model and expressible in the employed concept description language must have
a finite basis. Using methods from formal concept analysis (FCA), we have
shown in [5] that this is the case for the language EL, which allows for the
concept constructors � (top concept), C�D (conjunction), and ∃r.C (existential
restriction). Though being quite inexpressive, EL has turned out to be very
useful for representing biomedical ontologies such as SNOMED [14] and the Gene
Ontology [16]. A major advantage of using an inexpressive DL like EL is that
it allows for efficient reasoning procedures [2,7]. Because of the nice algorithmic
properties of EL, the new OWL standard will contain a profile, called OWL 2 EL,
that is based on EL.

In [5], the existence of a finite basis is actually first shown for ELgfp, which
extends EL with cyclic concept definitions interpreted with greatest fixpoint
semantics. The advantage of using ELgfp rather than EL is that, in ELgfp, every
set of objects (i.e., elements of the domain of a given finite model) always has
a most specific concept describing these objects. Going from a set of objects
to its most specific concept corresponds to the ·′ operator in FCA, which goes
from a set of objects in a formal context to the set of all attributes that these
objects have in common. The existence of most specific concepts in ELgfp thus
allowed us to employ methods from FCA. In a second step, we have shown in [5]
that the ELgfp-basis can be turned into an EL-basis by unraveling cyclic concept
definitions up to a level determined by the cardinality of the given finite model.

In [5], we concentrated on showing the existence of a finite basis for ELgfp

and EL. Of course, if the approach for automatically generating GCIs sketched
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above is to be used in practice, we also need to find efficient algorithms for
computing such bases. This is the topic of the present paper. First, we show
that the algorithm for computing an implication basis of a given formal context
known from classical FCA can be adapted to our purposes. In contrast to the
classical case, we cannot assume that all attributes of the context are known
from the beginning. Instead, the set of attribute can be extended during the run
of the algorithm. This is vital for obtaining an efficient algorithm. In a second
step, we then extend this algorithm to an exploration algorithm. The advantage
of this second algorithm is that it no longer requires the finite model to be
completely represented in the computer from the beginning. As in the case of
classical attribute exploration [9], the model is assumed to be “known” by an
expert, who during the exploration process extends the represented part of the
model in order to provide counterexamples to implication questions.

We concentrate on computing a finite ELgfp-basis since this basis can be
turned into an EL-basis as described in [5]. Due to the space limitation, we
cannot give complete proofs of our results. They can be found in [4]. We also
assume that the reader is familiar with the basic notion and results of formal
concept analysis (FCA).

2 A Finite Implication Basis for ELgfp

We start by defining EL, and show how it can be extended to ELgfp. Then we
define most specific concepts in ELgfp, and show how they can be used to obtain
a finite basis of the ELgfp-GCIs holding in a finite model.

The DLs EL and ELgfp

Because of the space restriction, we can only give a very compact introduction
into these DLs (see [1] for more details). Concept descriptions of EL are built
from a set Nc of concept names and a set Nr of role names, using the constructors
top concept, conjunction, and existential restriction:

– concept names and the top concept � are EL-concept descriptions;
– if C, D are EL-concept descriptions and r is a role name, then C � D and

∃r.C are EL-concept descriptions.

In the following, we assume that the sets Nc and Nr are finite. This assumption
is reasonable since a finite ontology can contain only finitely many concept and
role names.

Models of EL are pairs (Δi, ·i), where Δi is a non-empty set, and ·i maps role
names r to binary relations ri ⊆ Δi×Δi and EL-concept descriptions C to their
extensions Ci ⊆ Δi such that

�i = Δi, (C1 � C2)i = Ci
1 ∩ Ci

2, and

(∃r.D)i = {d ∈ Δi | ∃e ∈ Di such that (d, e) ∈ ri}.
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Subsumption and equivalence between EL-concept descriptions is defined in the
usual way, i.e., C is subsumed by D (written C � D) iff Ci ⊆ Di for all models
i, and C is equivalent to D (written C ≡ D) iff C � D and D � C.

ELgfp is the extension of EL by cyclic concept definitions interpreted with
greatest fixpoint (gfp) semantics. In ELgfp, we assume that the set of concept
names is partitioned into the set Nprim of primitive concepts and the set Ndef of
defined concepts. A concept definition is of the form

B0 ≡ P1 � . . . � Pm � ∃r1.B1 � . . . � ∃rn.Bn

where B0, B1, . . . , Bn ∈ Ndef , P1, . . . , Pm ∈ Nprim, and r1, . . . , rn ∈ Nr. The
empty conjunction (i.e., m = 0 = n) stands for �. A TBox is a finite set of
concept definitions such that every defined concept occurs at most once as a
left-hand side of a concept definition.

Definition 1 (ELgfp-concept description). An ELgfp-concept description is
a tuple (A, T ) where T is a TBox and A is a defined concept occurring on the
left-hand side of a definition in T .

Models of ELgfp are of the form i = (Δi, ·i) where Δi is a non-empty set, and ·i
maps role names r to binary relations ri ⊆ Δi × Δi and primitive concepts to
subsets of Δi. The mapping ·i is extended to ELgfp-concept descriptions (A, T )
by interpreting the TBox T with gfp-semantics: consider all extensions of i to
the defined concepts that satisfy the concept definitions in T , i.e., assign the
same extension to the left-hand side and the right-hand side of each definition.
Among these extensions of i, the gfp-model of T based on i is the one that assigns
the largest sets to the defined concepts (see [1] for a more detailed definition of
gfp-semantics). The extension (A, T )i of (A, T ) in i is the set assigned to A by
the gfp-model of T based on i.

Subsumption and equivalence between ELgfp-concept descriptions is defined
as in the case of EL-concept descriptions. It is easy to see that acyclic ELgfp-
concept descriptions (i.e., ones where the TBox component is acyclic) correspond
exactly to EL-concept descriptions. This shows that EL can indeed be seen as a
sublanguage of ELgfp. In the following, we will not distinguish an acyclic ELgfp-
concept description from its equivalent EL-concept description.

Most Specific Concepts in ELgfp

In FCA, the prime operators ·′ play an important rôle. Given a set of attributes
B, the set B′ consists of the objects of the given context satisfying all these
attributes. In DL, the operator ·i plays a similar rôle: given a concept description
C, the set Ci consists of all objects in the model i (i.e., elements of Δi) satisfying
C, i.e., belonging to the extension of C. In FCA, the prime operator can also
be applied in the other direction: given a set of objects A, it yields the set A′ of
attributes common to the objects in A. This is equivalent to defining A′ = Bmax,
where Bmax is the greatest subset of M such that A ⊆ B′

max. In DL, the most
specific concept plays the rôle of this ·′ operator.



150 F. Baader and F. Distel

Definition 2 (Most specific concept). Let i be a finite ELgfp-model and X ⊆
Δi. The ELgfp-concept description C is the most specific ELgfp-concept of X
in i if it is the least ELgfp-concept description such that X ⊆ Ci. By least
ELgfp-concept description we mean that every other ELgfp-concept description
C̄ satisfying X ⊆ C̄i also satisfies C � C̄.

Calling an ELgfp-concept description satisfying the above definition the most
specific ELgfp-concept of X in i is justified by the fact that most specific concepts
are obviously unique up to equivalence. In [5] it is shown that, for ELgfp, the
most specific concept always exists.1

Theorem 1. For any finite ELgfp-model i and any set X ⊆ Δi, the most specific
ELgfp-concept of X in i exists and can be computed effectively.

In the following, we denote the most specific ELgfp-concept of X in i by X i. This
overloading of the notation ·i corresponds to the one employed in FCA for ·′.
The following lemma (taken from [5]) shows that the operators ·i indeed behave
similarly to the ·′ operators.

Lemma 1. Let L be a language for which X i exists for every X ⊆ Δi and
every i ∈ I. Let i ∈ I be an interpretation, X, Y ∈ Δi sets of objects and C, D
be concept descriptions. Then the following statements hold

1. X ⊆ Y ⇒ X i � Y i

2. C � D ⇒ Ci ⊆ Di

3. X ⊆ X ii

4. Cii � C
5. X i ≡ X iii

6. Ci = Ciii

7. X ⊆ Ci ⇔ X i � C.

The Set of GCIs Holding in a Finite Model and a Basis for this Set

An expression of the form C → D, where C, D are ELgfp-concept descriptions,
is called an ELgfp-GCI (or simply GCI).2 We say that an GCI C → D holds in
the model i iff Ci ⊆ Di. Given a set of GCIs B, we say that the GCI C → D
follows from B iff C → D holds in all models in which all implications from B
hold.

Definition 3 (Basis). For a given finite model i we say that a set of ELgfp-
GCIs B is a basis for the ELgfp-GCIs holding in i if B is

– sound for i, i.e., it contains only ELgfp-GCIs holding in i, and
– complete for i, i.e., any ELgfp-GCI that holds in i follows from B.

The following lemma, taken from [5], shows that GCIs of the form C → Cii play
a special rôle.
1 Note that this is not true if we use EL instead of ELgfp (see [5] for an example).
2 GCI is an abbreviation for “general concept inclusion.” In DL, GCIs are usually writ-

ten as C � D. Here, we prefer to use the arrow notation to emphasize the connection
to implications in FCA and to avoid confusion with subsumption statements.
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Lemma 2. Let C, D be ELgfp-concept descriptions and i a finite ELgfp-model.
Then

– C → Cii holds in i, and
– if C → D holds in i, then C → D follows from {C → Cii}.

This lemma reinforces the similarity between the ·′ operators from FCA and
our ·i operators. In fact, in FCA a basis of all implications holding in a finite
context can be obtained by taking all implications P → P ′′ where P is a so-
called pseudo-intent of the context (see Section 3 below). Following the lead of
FCA, we thus need to determine which ELgfp-concept descriptions can play the
rôle of pseudo-intents, i.e., we want to find a finite set Λi of left-hand sides for
GCI such that the set of GCIs C → Cii for C ∈ Λi is a basis for the ELgfp-GCIs
holding in i.

Before we can define such a set, we need to introduce one more notation.
Given a finite set U of ELgfp-concept descriptions,

�
U :=

�
C∈U C denotes

their conjunction. The set Λi will be obtained as the set of all such conjunctions
for subsets of a basic set Mi.

Definition 4. Let i be a finite ELgfp-model. The sets Mi, Λi are defined as

Mi := Nprim ∪ {∃r.X i | r ∈ Nr and X ⊆ Δi} and Λi := {
�

U | U ⊆ Mi}.

Since Nprim, Nr, and Δi are finite, Mi and Λi are finite as well. Thus, the basis
introduced in the next theorem is finite as well.

Theorem 2. The set of GCIs Bi := {C → Cii | C ∈ Λi} is a finite basis for
the ELgfp-GCIs holding in i.

This basis actually differs from the one defined in [5]. However, the proof that
this is indeed a basis for the ELgfp-GCIs holding in i is very similar to the one
given in [5] for the basis introduced there.

The definition of Bi also provides us with a brute-force method for computing
this basis. To compute Mi, all we have to do is consider the (finitely many)
subsets X of Δi, and compute their most specific concepts. The set Λi is then
obtained by considering all subsets of Mi, and Bi is obtained from the elements
C of Λi by first computing their extensions in i, and then building the most
specific concepts of these extensions.

This brute-force approach has two disadvantages. First, up to equivalence of
ELgfp-concept descriptions, the set {X i | X ⊆ Δi} may be considerably smaller
than the powerset of Δi. In fact, not every subset of Δi needs to be an extension
of an ELgfp-concept description, and thus different subsets of Δi may have the
same most specific concept. Second, we also want to be able to deal with a
situation where the model i is not explicitly given, but rather “known” to an
expert. Similar to the case of attribute exploration in FCA, we then want to elicit
enough information about i from the expert to be able to compute a basis, but
without having to ask too many questions. In this situation, neither all subsets
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of Δi nor their most specific concepts can be assumed to be known/computable
at the beginning of the exploration process.

In order to obtain a more practical algorithm for computing a basis, we will
view the set Mi as the set of attributes in a classical formal context induced
by the model i. In the next section, we define this induced context and state
some interesting connections between the ·′ operations in this context and the
·i operations defined in the present section. Basically, we want to apply to the
induced context the classical FCA algorithm for computing an implication basis.
However, there are two differences compared to the classical case. First, we can-
not assume that all the attributes (i.e., all the elements of Mi) are known from
the beginning. Second, since our attributes are ELgfp-concept descriptions, we
can use the known subsumption algorithm for this DL [1] to obtain background
knowledge about relationships between these attributes. Thus, we use an algo-
rithm for computing an implication basis that can handle background knowledge
[15], and extend it such that it can deal with a growing set of attributes.

3 Formal Concept Analysis

Because of space constraints, we cannot give an introduction into FCA here.
We thus assume that the reader is familiar with basic notions such as formal
contexts; attributes and objects; the ·′ operators; intents, extents, and pseudo-
intents; and implications and implication bases (see, e.g., [10]). At several points
in this paper we use the so-called Next-Closure Algorithm, which can also be
found in [10]. Recall that a total order on a finite set of attributes M induces
the so-called lectic order, which is a total order on the powerset of M . Given
a set of attributes U and a set of implications B, the Next-Closure Algorithm
computes the lectically smallest set of attributes V that is closed with respect
to B (i.e., respects all implications in B) and lectically greater than U .

Background Knowledge and Growing Sets of Attributes

We adopt Stumme’s approach for handling background knowledge [15], where
the background knowledge is given by a set of implications holding in the context
under consideration. We say that a set of implications B is an implication basis
for the context K w.r.t. the set of background implications S if B∪S is a sound and
complete set of implications for K. As in the case without background knowledge,
pseudo-intents provide us with the left-hand sides of such a basis. Given a set S
of background implications, the notion of a pseudo-intent is extended as follows.

Definition 5. Let (G, M, I) be a formal context and S a set of implications
holding in (G, M, I). The set P ⊆ M is called S-pseudo-intent if P respects all
implications in S and Q′′ ⊆ P holds for every S-pseudo-intent Q � P .

Stumme shows that this notion of pseudo-intents yields a minimal implication
basis w.r.t. the background knowledge. To be more precise, he proves that the
following holds for the set of implications

BS := {P → P ′′ | P is S-pseudo-intent in K}
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Algorithm 1. Construction of an implication basis w.r.t. background knowledge
for the case of a growing set of attributes
1: Input: K0 = (G, M0, I0), S0

2: Π0 := ∅, P0 := ∅, k := 0
3: while Pk �= null do
4: Πk+1 := Πk ∪ {Pk}
5: k := k + 1
6: Input: Kk = (G, Mk, Ik), Sk

7: if Mk = Mk−1 = Pk then
8: Pk := null
9: else

10: Pk := lectically smallest set of attributes that is
– closed with respect to {Pj → P ′′k

j | Pj ∈ Πk} and Sk, and
– lectically larger than Pk−1.

11: end if
12: end while

– BS is an implication basis for K w.r.t. S, and
– BS has minimal cardinality among all implication bases for K w.r.t. S.

Algorithm 1 looks at a setting where the set of objects is fixed, while the
set of attributes as well as the background knowledge can grow. It starts with
a context K0 = (G, M0, I0) and a set of background implications S0 that hold
in K0. In each step, new attributes and new background implications may be
added by the user, thus yielding a new context Kk = (G, Mk, Ik) and an new
implication set Sk. We require for all k ≥ 1 that (i) Mk−1 ⊆ Mk; (ii) Ik agrees
with Ik−1 on Mk−1, i.e., for all g ∈ G and for all m ∈ Mk−1 we have (g, m) ∈ Ik

iff (g, m) ∈ Ik−1; (iii) Sk−1 ⊆ Sk; (iv) the implications of Sk hold in Kk. The
Next-Closure Algorithm used in line 10 of the algorithm requires a total order
on the set of attributes. We assume that the total order on Mk extends the one
on Mk−1 such that a < b for all a ∈ Mk−1 and b ∈ Mk \ Mk−1. To make clear
which context we are referring to when using the prime operators, we add the
index of the context; e.g., A′′k is used to denote the set obtained from A by
applying the prime operator of the context Kk twice.

It is easy to see that Algorithm 1 terminates if, and only if, from some point
on the set of attributes is no longer extended. Now, assume that the algorithm
has terminated after the n-th step. We want to show that the set of implications

B(n)
Sn

:= {Pj → P ′′n
j | Pj ∈ Πn}

is an implication basis for the final context Kn w.r.t. the final set of background
implications Sn. To prove this, we first need to show that the set of left-hand
sides Πn “covers” all the quasi-closed sets of attributes for Kn. A set of attributes
U is called quasi-closed for a context K iff, for all subsets V ⊆ U , it holds that
either V ′′ ⊆ U or V ′′ = U ′′.



154 F. Baader and F. Distel

Lemma 3. If Q is a set of attributes that is quasi-closed for Kn and respects all
the background implications in Sn, then there is some P ∈ Πn such that P ⊆ Q
and P ′′n = Q′′n .

It is a well-known fact that all pseudo-intents are quasi-closed [8]. Likewise, we
can show that all Sn-pseudo-intents are quasi-closed for Kn [4]. In addition,
Sn-pseudo-intents by definition respect all implications of Sn. Thus, Stumme’s
result implies completeness of {Q → Q′′n | Q is quasi-closed in Kn

and respects all implications of S} ∪ S. Obviously, if P ⊆ Q and P ′′n = Q′′n ,
then the implication P → P ′′n has the implication Q → Q′′n as a consequence.
Thus, Lemma 3 yields completeness of {P → P ′′n | P ∈ Πn} ∪ S.3

Theorem 3. Assume that Algorithm 1 has terminated after the n-th step. Then
B(n)
Sn

is an implication basis for Kn w.r.t. Sn.

Note that, in contrast to the case of fixed set of attributes, in step k we must
add Pk to the set of left-hand sides even if Pk is an intent of Kk, i.e., Pk = P ′′k

k .
This is so because it might happen that Pk = P ′′k

k , but Pk �= P ′′n
k because the

attributes in P ′′n
k \ P ′′k

k have only been added at a later point.

The Induced Context

What we call induced contexts in this work are formal contexts whose attributes
are concept descriptions and whose set of objects is the domain of a finite model
i. In such a context, an object x has an attribute C if x is in the extension of
the concept C in the model i. Similar contexts have been introduced in [12,13].
In the following, we examine the connection between the ·′-operators in the
induced context and the ·i-operators in the model i. Induced contexts establish
the connection between the DL world and the FCA world which we need for the
algorithms introduced in the next section. But let us first give a more formal
definition of the induced context for the cases of ELgfp.4

Definition 6 (induced context). Let i be a finite ELgfp-model and M a finite
set of ELgfp-concept descriptions. The context induced by M and i is the formal
context K = (G, M, I), where G = Δi and I = {(x, C) | C ∈ M and x ∈ Ci}.

In FCA, an object is in the extension of a set of attributes U iff it has all the
attributes from U . In DL terms, this means that x is in the extension of the con-
junction over all elements of U . Thus, the set of attributes U ⊆ M corresponds
to the concept

�
C∈U C. In the other direction, we can approximate an arbitrary

concept description C by the set of all attributes D ∈ M that subsume C. Since
M in general contains only a small number of concept descriptions, this is really
3 Note that soundness is trivial since it is well-known that implications P → P ′′ hold

in the context that defines the prime operators used.
4 Note, however, that the definitions and results given here do not really depend on
ELgfp. They hold for any concept description language in which the most specific
concept exists.
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just an approximation, i.e., the conjunction of these concepts D may strictly
subsume C.

Definition 7. Let K be the context induced by M and i, C an ELgfp-concept
description and U ⊆ M . We define pr

K
(C) := {D ∈ M | C � D}, and call this

the projection of C to K. Conversely, we define
�

U :=
�

D∈U D, and call this
the concept defined by U . We say that C can be expressed in terms of M iff
there is some V ⊆ M such that C ≡

�
V.

As an immediate consequence of this definition we obtain that the mappings
C �→ pr

K
(C) and U �→

�
U are antitonic:

– C � D implies pr
K

(D) ⊆ pr
K

(C),
– U ⊆ V implies

�
V �

�
U .

In general, not all ELgfp-concept descriptions can be expressed in terms of
M . Therefore, it is quite obvious that information is lost when we make the
transformation from a concept description to the corresponding attribute set and
back. This is the reason why, in the following lemma, we only have subsumption
and subset relationships rather than equivalence and equality relationships.

Lemma 4. Let K be the context induced by M and i, C an ELgfp-concept de-
scription, and U ⊆ M . Then the following statements hold:

1. C �
�

pr
K

(C)
2. pr

K
(C)′′ ⊆ pr

K

(
Cii

) 3. U ⊆ pr
K

(
�

U)
4. (

�
U)ii �

�
U ′′

If a concept description is expressible in terms of M , then no information is
lost by the conversion to the corresponding attribute set. This is the reason
why, under additional expressibility conditions, the subsumption and subset re-
lationships of the above lemma can be turned into equivalence and equality
relationships.

Lemma 5. Let C be an ELgfp-concept description and U ⊆ M a set of attributes
such that both C and (

�
U)ii can be expressed in terms of M . Then the following

statements hold:

1. C ≡
�

pr
K

(C) 2. pr
K

(
Cii

)
= pr

K
(C)′′ 3.

�
U ′′ ≡ (

�
U)ii

4 Computing a Basis for the ELgfp-GCIs Holding in a
Finite ELgfp-Model

First, we consider the case where the finite model i is given right from the
beginning. In this case, we basically apply Algorithm 1 to the context induced
by Mi (see Definition 4) and i. In a second step, we extend the algorithm obtained
this way to a model exploration algorithm, which can deal with the case where
the model i is not explicitly given, but rather “known” to an expert.
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Algorithm 2. Computing a basis for an a priori given model i

1: Input: finite model i = (Δi, ·i)
2: M0 := Nprim, K0 := the context induced by M0 and i, S0 := ∅
3: Π0 := ∅, P0 := ∅, k := 0
4: while Pk �= null do
5: Πk+1 := Πk ∪ {Pk}
6: Mk+1 := Mk ∪ {∃r.(

�
Pk)ii | r ∈ Nr}

7: Sk+1 := {{C} → {D} | C, D ∈ Mk, C � D}
8: k := k + 1
9: if Mk = Mk−1 = Pk then

10: Pk := null
11: else
12: Pk := lectically next set of attributes that respects all implications in

{Pj → P ′′k
j | 1 ≤ j < k} and Sk

13: end if
14: end while

The Case of an A Priori Given Model

Let i be a finite ELgfp-model. Recall that the basis Bi introduced in Section 2 is
the set of all implications C → Cii where the left-hand sides C are of the form
C =

�
U for some subset U of

Mi = Nprim ∪ {∃r.X i | r ∈ Nr and X ⊆ Δi}.

Therefore, it is natural to look at the induced context for the attribute set
Mi. The elements of Mi are ELgfp-concept descriptions, and thus there may
be subsumption relationships between them, which can be computed using the
known polynomial-time subsumption algorithm for ELgfp [1]. We will use these
subsumption relationships as background knowledge. Obviously, if C � D for
ELgfp-concept descriptions C, D ∈ Mi, then the GCI C → D holds in i, and
thus the implication {C} → {D} holds in the context induced by Mi and i.

Since Algorithm 1 allows for a growing set of attributes, we do not start with
the whole set Mi. Instead, we start with the set Nprim of primitive concepts, and
then extend the current set of attributes by adding ELgfp-concept descriptions
of the form ∃r.X i whenever a new set of objects X is obtained as the extension
of a concept

�
P for an already computed left-hand side P . Algorithm 2 shows

the instance of Algorithm 1 obtained this way.
Algorithm 2 always terminates since there are only finitely many attributes

that can be added. In fact, every attribute that is added is an element of Mi,
and we have already shown in Section 2 that Mi is finite. Now, assume that
Algorithm 2 has terminated after the nth step. Then the algorithm has generated
a set Πn of subsets of Mn ⊆ Mi. This set Πn gives rise to the following set of
GCIs:

Bn := {
�

Pk → (
�

Pk)ii | Pk ∈ Πn}.

Theorem 4. Assume that Algorithm 2 terminates after the n-th step. Then Bn

is a finite basis for the ELgfp-GCIs holding in i.



Exploring Finite Models in the Description Logic ELgfp 157

Outline of the proof: Obviously, Bn is finite. In addition, since Bn is a subset
of Bi, we know that it is sound. Thus, to show that Bn is a finite basis for the
ELgfp-GCIs holding in i, it is enough to show completeness, i.e., any ELgfp-GCI
that holds in i follows from Bn. Completeness can be proved in two steps. The
first step is to show that, up to equivalence, Mn contains all attributes of the
form ∃r.X i for X ⊆ Δi. The second step then uses this fact to actually prove
completeness of Bn. Step 1 is again divided into two parts.

(a) For a set of attributes U ⊆ Mn, we consider its closure U ′′n under the
double-prime operator ·′′n of the context Kn. As an intent of Kn, U ′′n is closed
under ·′′n , and it respects any implication that holds in Kn. Hence it is quasi-
closed and respects all the implications of Sn. Therefore, Lemma 3 ensures that
there is some Pk ∈ Πn such that Pk ⊆ U ′′n and P ′′n

k = U ′′n . After the k-th step
of the algorithm, all attributes of the form ∃r.(

�
Pl)ii, where 0 ≤ l ≤ k, have

been added to the set of attributes. Using Lemma 4 and 5, it is possible to prove
that (

�
Pk)ii ≡ (

�
U)ii (see [4] for details). This shows that, up to equivalence,

for every set U ⊆ Mn the descriptions ∃r.(
�

U)ii must be in Mn.
(b) The fact that Mn contains all attributes of the form ∃r.X i for X ⊆ Δi can

now be proved by induction on the depth of X i, where we say that X i has depth
d iff d is the least role depth of EL-concept descriptions D such that X i = Dii.
In [5] it is shown that this notion of a depth is indeed well-defined. The base
case is easy. In fact, if X i has depth 0, then it can be written as conjunction of
primitive concepts, i.e., X i = (

�
U)ii for U ⊆ M0 ⊆ Mn. But then it follows

from (a) that Mn contains an attribute that is equivalent to ∃r.(
�

U)ii = ∃r.X i.
The step case is very similar, except that one has to show that every X i of
role depth d can be written as the conjunction of primitive concept names and
concept descriptions of the form ∃r.Y i where Y i has depth less than d (details
can be found in [4]).

Step 2. By Theorem 3, we know that the set S ∪ {P → P ′′n | P ∈ Πn} is a
basis for the implications in Kn. Let L ∈ Λi be a premise of some implication
from the basis Bi that is not an intent w.r.t. i, i.e., L �≡ Lii. We can show that
not only L, but also Lii belongs to Λi, and thus both can be expressed in terms of
Mn, as shown in Step 1. Lemma 4 can be used to derive pr

Kn
(L) �= pr

Kn

(
Lii

)
=

pr
Kn

(L)′′n . Consequently, pr
Kn

(L) is not an intent of Kn, and hence there must
be an implication Pk → P ′′n

k for Pk ∈ Πn that pr
Kn

(L) does not respect, i.e.,
Pk ⊆ pr

Kn
(L), but P ′′n

k �⊆ pr
Kn

(L). But then Lemma 4 implies that L �
�

Pk,
but L �� (

�
Pk)ii.

Thus, for every concept description L ∈ Λi that is not an intent w.r.t. i, there
is some Pk ∈ Πn such that L �

�
Pk, but L �� (

�
Pk)ii. Since

�
Pk → (

�
Pk)ii

belongs to Bn, the GCI L → L � (
�

Pk)ii follows from Bn. Since L �� (
�

Pk)ii,
the concept description L � (

�
Pk)ii is strictly subsumed by L, and it can be

shown that L�(
�

Pk)ii ∈ Λi. If L�(
�

Pk)ii is not an intent, then we can use the
same argument, and find Pl ∈ Πn such that L�(

�
Pk)ii → L�(

�
Pk)ii�(

�
Pl)ii

follows from Bn and L�(
�

Pk)ii�(
�

Pl)ii belongs to Λi and is strictly subsumed
by L � (

�
Pk)ii, etc. Since Λi is finite, this cannot go on forever, and thus we

must reach an intent, which can actually be shown to be equal to Lii (see [4] for
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more details). The whole chain of implications thus implies the single implication
L → Lii. This proves that all implications from Bi follow from Bn. Because Bi

is complete, Bn is also complete. ��

The Exploration Algorithm

Now, we extend Algorithm 2 to a model exploration algorithm, which can deal
with the case where the finite model i (called background model in the following)
is not explicitly given, but rather “known” to an expert. We assume that, at the
beginning of the exploration process, only some “parts” of the model i are given
to the exploration algorithm as working model i0. In the following, we assume
that the model i0 as well as its extensions ij generated during the exploration
process are connected submodels of i, i.e., we have Δi0 ⊆ Δi, x ∈ Ai0 iff x ∈ Ai

for all A ∈ Nprim and all x ∈ Δi0 , and Δi0 is closed under i-role successors: if
x ∈ Δi0 and (x, y) ∈ ri for a role r, then y ∈ Δi0 and (x, y) ∈ ri0 . It is easy to
see that this implies x ∈ Ci0 iff x ∈ Ci for all ELgfp-concept descriptions C and
all x ∈ Δi0 .

Algorithm 3 describes our model exploration algorithm. The modification with
respect to Algorithm 2 merely consists of adding a second while-loop to the algo-
rithm. Intuitively, this loop is used to determine the proper conclusion (

�
Pk)ii

for a given premise
�

Pk. Since i is not explicitly given, (
�

Pk)ii cannot be
computed directly, but only by interacting with the expert. This is done in the
following way. The implication

�
Pk → (

�
Pk)ij ij is presented to the expert. If

the expert refutes the implication (i.e., says that it does not hold) then she is
required to provide a counter-example, i.e., a connected submodel ij+1 of i that
extends ij (i.e., satisfies Δij ⊆ Δij+1 ). This is repeated until the expert states
that

�
Pk → (

�
Pk)ij ij holds in i.

Since the set Mi is finite, only finitely many attributes can be added by
Algorithm 3. Therefore, the outer while-loop can only be entered a finite number
of times. With every pass of the inner while-loop, the working model is extended.
Since the working models are submodels of the finite background model, this can
only happen a finite number of times. This shows that Algorithm 3 terminates
after a finite number of steps. Soundness and completeness of Algorithm 3 are
easy consequences of soundness and completeness of Algorithm 2.

Theorem 5. Assume that Algorithm 3 terminates after the n-th iteration of
the outer while loop and that i� is the actual working model. Then {

�
Pk →

(
�

Pk)i�i� | Pk ∈ Πn} is a finite basis for the ELgfp-GCIs holding in i.

An Example

We illustrate Algorithm 2 using the example from the introduction. The domain
of the background model thus consists of six persons: John, Michelle and their
daughter Mackenzie, as well as Paul, Linda and their son James.5 As primitive
5 Since this is a very simple model, it satisfies GCIs not holding in the “real world.”
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Algorithm 3. The model exploration algorithm
1: Input: working model i0 (connected submodel of the finite background model i)
2: M0 := Nprim, K0 := the context induced by M0 and i0, S0 := ∅
3: Π0 := ∅, P0 := ∅, k := 0, j := 0
4: while Pk �= null do
5: while expert refutes

�
Pk → (

�
Pk)ijij do

6: j := j + 1
7: Ask the expert for a new working model ij that extends ij−1, is a connected

submodel of i, and contains a counterexample for
�

Pk → (
�

Pk)ij−1ij−1

8: end while
9: Πk+1 := Πk ∪ {Pk}

10: Mk+1 := Mk ∪ {∃r.(
�

Pk)ijij | r ∈ Nr}
11: Sk+1 := {{C} → {D} | C, D ∈ Mk, C � D}
12: k := k + 1
13: if Mk = Mk−1 = Pk then
14: Pk := null
15: else
16: Pk := lectically next set of attributes that respects all implications in

{Pl → P
′′k
l | 1 ≤ l < k} and Sk

17: end if
18: end while

concepts we use Male (M), Female (F ), Father (Ft) and Mother (Mt), and as
role child (c). Let us assume that the initial working model i0 contains only the
first family, i.e., Δi0 consists of John, Michelle, and Mackenzie, and we have

M i0 = Fti0 = {John}, Mti0 = {Michelle},
F i0 ={Michelle, Mackenzie}, ci0 ={(Michelle, Mackenzie), (John, Mackenzie)}.

1st Iteration: The algorithm starts with P0 = ∅. We have
�

P0 = � and
�i0i0 = �, and thus the expert is asked whether the GCI � → � holds in i.
Obviously, the answer must be “yes,” and we continue by computing the new
set of attributes M1 by adding ∃c.� to M0 = Nprim. The induced context K1

obtained this way is
Ft M Mt F ∃c.�

John X X X
Michelle X X X
Mackenzie X

where we assume that the elements of M1 are ordered as listed in the table.
2nd Iteration: The lectically next set that is closed with respect to {∅ → ∅′′1} =

{∅ → ∅} is {Ft}. We have Fti0i0 = {John}i0 = Ft�M �∃c.F , which gives rise to
the GCI Ft → Ft�M �∃c.F . Thus, the expert is presented with the question: “Is
it true that every father is male and has a child that is female?”. This is not true in
the background model i since Paul is a father without daughter. The expert refutes
the GCI by adding Paul as a counterexample. Note that she must also add James,
because the new working model i1 must be a connected submodel of i. Based on
this model, the algorithm computes a new right-hand-side for the GCI: Fti1i1 =
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Ft�M �∃c.�. The new GCI Ft → Ft�M �∃c.� is presented to the expert, who
accepts it. Consequently, the new attribute ∃c.(Ft � M � ∃c.�) is added.

We do not look at the next iterations in as much detail as for the first two.
The following GCIs are found:

1. Mt → Mt � F � ∃c.F (Refuted, Linda added as counterexample)
2. Mt → Mt � F � ∃c.� (Accepted)
3. F � M → Aa (Accepted)
4. ∃c.� � M → Ft � M � ∃c.� (Accepted)
5. ∃c.� � F → Mt � F � ∃c.� (Accepted)
6. ∃c.M � ∃c.F → Aa (Accepted)
7. ∃c.∃c.� → Aa (Accepted)

Here Aa (“all attributes”) stands for the cyclic ELgfp-concept description (T , A)
where T = {A ≡ M � F � Mt � Ft � ∃c.A}. Note that Aa is subsumed by any
ELgfp-concept description that can be formulated using the primitive concepts
M , F , Ft, Mt and the role c. As such, it is the best approximation of the bottom
concept that ELgfp can come up with.

Interestingly, all the GCIs accepted during the exploration process, except for
the last two (6. and 7.), hold in the “real world.” The GCIs 6. and 7. are artefacts
of the simple model i used for the exploration. They are due to the fact that, in
i, there are no grandparents, and no one has both a son and a daughter.

5 Related and Future Work

The context induced by a finite model and a finite set of concept descriptions
as attributes has been considered before (e.g., in [12,13]). However, since this
previous work did not make use of the most specific concept, the authors could
not show and utilize the connections between the ·i operators in the model and
the ·′ operators in the induced context. The work whose objectives is closest to
ours is [13],6 where Rudolph considers attributes defined in the DL FLE , which
is more expressive than EL. Given a finite FLE-model, he considers an infinite
family of induced contexts Kn, where the finite attribute sets are obtained by
considering all FLE-concept descriptions (modulo equivalence) up to role depth
n. He then applies classical attribute exploration to these induced contexts,
in each step increasing the role depths until a certain termination condition
applies. Rudolph shows that the implication bases of the contexts considered up
to the last step contain enough information to decide, for any GCI between FLE-
concept descriptions, whether this GCI holds in the given model or not. However,
these implication bases do not appear to yield a basis for all the GCIs holding in
the given finite model, though it might be possible to modify Rudolph’s approach
such that it produces a basis in our sense. The main problem with this approach
is, however, that the number of attributes grows very fast when the role depth
grows (this number increases at least by one exponential in each step). In contrast

6 see http://relexo.ontoware.org/ for a tool that realizes this approach.

http://relexo.ontoware.org/
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to considering all concept descriptions up to a certain role depth, our approach
only adds an attribute of the form ∃r.(

�
P )ii if P has been generated as the

left-hand side of a GCI in our basis.
The main topic for future research is to show that the approach for using

attribute exploration to complete DL knowledge bases introduced in [6] can be
extended to the model exploration algorithm introduced in this paper.
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