Finite and Algorithmic Model Theory Lecture 2 (Dresden 19.10.22, Long version)

Lecturer: Bartosz "Bart" Bednarczyk

TECHNISCHE UNIVERSITÄT DRESDEN & UNIWERSYTET WROCŁAWSKI

European Research Council Established by the European Commission

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

1. Asymptotic probabilities with examples.

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

1. Asymptotic probabilities with examples.

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

1. Asymptotic probabilities with examples.

Different perspective: What percentage of graphs verify a given FO sentence?

2. Zero-One Law of FO

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

1. Asymptotic probabilities with examples.

Different perspective: What percentage of graphs verify a given FO sentence?

2. Zero-One Law of FO = Probability that a random structure satisfies φ is always 0 or 1.

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

1. Asymptotic probabilities with examples.

Different perspective: What percentage of graphs verify a given FO sentence?

2. Zero-One Law of FO = Probability that a random structure satisfies φ is always 0 or 1. **3.** Proof of the Zero-One Law for FO, based on Grädel's notes [HERE].

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

1. Asymptotic probabilities with examples.

- **2.** Zero-One Law of FO = Probability that a random structure satisfies φ is always 0 or 1.
- **3.** Proof of the Zero-One Law for FO, based on Grädel's notes [HERE].
- Atomic *k*-types and extensions axioms. Theory $\mathbb{E}\mathbb{A}$ of extension axioms.

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

1. Asymptotic probabilities with examples.

- **2.** Zero-One Law of FO = Probability that a random structure satisfies φ is always 0 or 1.
- 3. Proof of the Zero-One Law for FO, based on Grädel's notes [HERE].
- Atomic *k*-types and extensions axioms. Theory $\mathbb{E}\mathbb{A}$ of extension axioms.
- Each extension axiom is almost surely true.

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

1. Asymptotic probabilities with examples.

- **2.** Zero-One Law of FO = Probability that a random structure satisfies φ is always 0 or 1.
- 3. Proof of the Zero-One Law for FO, based on Grädel's notes [HERE].
- Atomic *k*-types and extensions axioms. Theory $\mathbb{E}\mathbb{A}$ of extension axioms.
- Each extension axiom is almost surely true.
- $\mathbb{E}\mathbb{A}$ is ω -categorical,

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

1. Asymptotic probabilities with examples.

Different perspective: What percentage of graphs verify a given FO sentence?

- **2.** Zero-One Law of FO = Probability that a random structure satisfies φ is always 0 or 1.
- 3. Proof of the Zero-One Law for FO, based on Grädel's notes [HERE].
- Atomic k-types and extensions axioms. Theory $\mathbb{E}\mathbb{A}$ of extension axioms.
- Each extension axiom is almost surely true.
- $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has exactly one countable model up to \cong , the Rado graph (the random graph).

1 / 8

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

1. Asymptotic probabilities with examples.

- **2.** Zero-One Law of FO = Probability that a random structure satisfies φ is always 0 or 1.
- 3. Proof of the Zero-One Law for FO, based on Grädel's notes [HERE].
- Atomic k-types and extensions axioms. Theory $\mathbb{E}\mathbb{A}$ of extension axioms.
- Each extension axiom is almost surely true.
- $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has exactly one countable model up to \cong , the Rado graph (the random graph).
- $\mathbb{E}\mathbb{A}$ is complete,

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

1. Asymptotic probabilities with examples.

Different perspective: What percentage of graphs verify a given FO sentence?

- **2.** Zero-One Law of FO = Probability that a random structure satisfies φ is always 0 or 1.
- 3. Proof of the Zero-One Law for FO, based on Grädel's notes [HERE].
- Atomic k-types and extensions axioms. Theory $\mathbb{E}\mathbb{A}$ of extension axioms.
- Each extension axiom is almost surely true.
- $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has exactly one countable model up to \cong , the Rado graph (the random graph).
- $\mathbb{E}\mathbb{A}$ is complete, i.e. for all $\varphi \in \mathsf{FO}$ we have $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$.

1 / 8

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

1. Asymptotic probabilities with examples.

Different perspective: What percentage of graphs verify a given FO sentence?

- **2.** Zero-One Law of FO = Probability that a random structure satisfies φ is always 0 or 1.
- 3. Proof of the Zero-One Law for FO, based on Grädel's notes [HERE].
- Atomic k-types and extensions axioms. Theory $\mathbb{E}\mathbb{A}$ of extension axioms.
- Each extension axiom is almost surely true.
- $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has exactly one countable model up to \cong , the Rado graph (the random graph).
- $\mathbb{E}\mathbb{A}$ is complete, i.e. for all $\varphi \in \mathsf{FO}$ we have $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$.

Feel free to ask questions and interrupt me!

Don't be shy! If needed send me an email (bartosz.bednarczyk@cs.uni.wroc.pl) or approach me after the lecture! Reminder: this is an advanced lecture. Target: people that had fun learning logic during BSc studies!

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

We consider random graphs,

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$.

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_n be the class of simple undirected graphs with *n* nodes.

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_n be the class of simple undirected graphs with *n* nodes. Of course $|\mathcal{G}_n| =$

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_n be the class of simple undirected graphs with *n* nodes. Of course $|\mathcal{G}_n| = 2^{\frac{n(n-1)}{2}}$.

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_n be the class of simple undirected graphs with *n* nodes. Of course $|\mathcal{G}_n| = 2^{\frac{n(n-1)}{2}}$.

Let \mathcal{P} be a property of graphs. Let $\mu_n(\mathcal{P}) =$ "probability that \mathcal{P} holds in a random graph with *n* nodes".

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_n be the class of simple undirected graphs with *n* nodes. Of course $|\mathcal{G}_n| = 2^{\frac{n(n-1)}{2}}$.

Let \mathcal{P} be a property of graphs. Let $\mu_n(\mathcal{P}) =$ "probability that \mathcal{P} holds in a random graph with *n* nodes".

 $\mu_n(\mathcal{P}) := \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{|\mathcal{G}_n|}$

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_n be the class of simple undirected graphs with *n* nodes. Of course $|\mathcal{G}_n| = 2^{\frac{n(n-1)}{2}}$.

Let \mathcal{P} be a property of graphs. Let $\mu_n(\mathcal{P}) =$ "probability that \mathcal{P} holds in a random graph with *n* nodes".

 $\mu_n(\mathcal{P}) := \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{|\mathcal{G}_n|}$

Asymptotic probability

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_n be the class of simple undirected graphs with *n* nodes. Of course $|\mathcal{G}_n| = 2^{\frac{n(n-1)}{2}}$.

Let \mathcal{P} be a property of graphs. Let $\mu_n(\mathcal{P}) =$ "probability that \mathcal{P} holds in a random graph with *n* nodes".

 $\mu_n(\mathcal{P}) := \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{|\mathcal{G}_n|}$

Asymptotic probability

 $\mu_\infty(\mathcal{P}) := \lim_{n o \infty} \mu_n(\mathcal{P})$

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_n be the class of simple undirected graphs with *n* nodes. Of course $|\mathcal{G}_n| = 2^{\frac{n(n-1)}{2}}$.

Let \mathcal{P} be a property of graphs. Let $\mu_n(\mathcal{P}) =$ "probability that \mathcal{P} holds in a random graph with *n* nodes".

 $\mu_n(\mathcal{P}) := \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{|\mathcal{G}_n|}$

Asymptotic probability

 $\mu_\infty(\mathcal{P}) := \lim_{n \to \infty} \mu_n(\mathcal{P})$

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_n be the class of simple undirected graphs with *n* nodes. Of course $|\mathcal{G}_n| = 2^{\frac{n(n-1)}{2}}$.

Let \mathcal{P} be a property of graphs. Let $\mu_n(\mathcal{P}) =$ "probability that \mathcal{P} holds in a random graph with *n* nodes".

Asymptotic probability

$$\mu_\infty(\mathcal{P}) := \lim_{n \to \infty} \mu_n(\mathcal{P})$$

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_n be the class of simple undirected graphs with *n* nodes. Of course $|\mathcal{G}_n| = 2^{\frac{n(n-1)}{2}}$.

Let \mathcal{P} be a property of graphs. Let $\mu_n(\mathcal{P}) =$ "probability that \mathcal{P} holds in a random graph with *n* nodes".

 $\mu_n(\mathcal{P}) := \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{|\mathcal{G}_n|}$

Asymptotic probability

$$\mu_\infty(\mathcal{P}) := \lim_{n \to \infty} \mu_n(\mathcal{P})$$

Examples

1. Take $\mathcal{P} :=$ "the graph is complete".

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_n be the class of simple undirected graphs with *n* nodes. Of course $|\mathcal{G}_n| = 2^{\frac{n(n-1)}{2}}$.

Let \mathcal{P} be a property of graphs. Let $\mu_n(\mathcal{P}) =$ "probability that \mathcal{P} holds in a random graph with *n* nodes".

 $\mu_n(\mathcal{P}) := \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{|\mathcal{G}_n|}$

Asymptotic probability

$$\mu_\infty(\mathcal{P}) := \lim_{n \to \infty} \mu_n(\mathcal{P})$$

Examples

1. Take $\mathcal{P} :=$ "the graph is complete". Then $\mu_{\infty}(\mathcal{P}) = \lim_{n \to \infty} \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{|\mathcal{G}_n|} =$

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_n be the class of simple undirected graphs with *n* nodes. Of course $|\mathcal{G}_n| = 2^{\frac{n(n-1)}{2}}$.

Let \mathcal{P} be a property of graphs. Let $\mu_n(\mathcal{P}) =$ "probability that \mathcal{P} holds in a random graph with *n* nodes".

 $\mu_n(\mathcal{P}) := \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{|\mathcal{G}_n|}$

Asymptotic probability

$$\mu_{\infty}(\mathcal{P}) := \lim_{n \to \infty} \mu_n(\mathcal{P})$$

Examples

1. Take $\mathcal{P} :=$ "the graph is complete". Then $\mu_{\infty}(\mathcal{P}) = \lim_{n \to \infty} \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{|\mathcal{G}_n|} = \lim_{n \to \infty} \frac{1}{2^{\frac{n(n-1)}{2}}} = 1$

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_n be the class of simple undirected graphs with *n* nodes. Of course $|\mathcal{G}_n| = 2^{\frac{n(n-1)}{2}}$.

Let \mathcal{P} be a property of graphs. Let $\mu_n(\mathcal{P}) =$ "probability that \mathcal{P} holds in a random graph with *n* nodes".

 $\mu_n(\mathcal{P}) := \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{|\mathcal{G}_n|}$

Asymptotic probability

$$\mu_{\infty}(\mathcal{P}) := \lim_{n \to \infty} \mu_n(\mathcal{P})$$

Examples

1. Take $\mathcal{P} :=$ "the graph is complete". Then $\mu_{\infty}(\mathcal{P}) = \lim_{n \to \infty} \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{|\mathcal{G}_n|} = \lim_{n \to \infty} \frac{1}{2^{\frac{n(n-1)}{2}}} = 0.$

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_n be the class of simple undirected graphs with *n* nodes. Of course $|\mathcal{G}_n| = 2^{\frac{n(n-1)}{2}}$.

Let \mathcal{P} be a property of graphs. Let $\mu_n(\mathcal{P}) =$ "probability that \mathcal{P} holds in a random graph with *n* nodes".

Asymptotic probability

$$\mu_\infty(\mathcal{P}) := \lim_{n o \infty} \mu_n(\mathcal{P})$$

- **1.** Take $\mathcal{P} :=$ "the graph is complete". Then $\mu_{\infty}(\mathcal{P}) = \lim_{n \to \infty} \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{|\mathcal{G}_n|} = \lim_{n \to \infty} \frac{1}{2^{\frac{n(n-1)}{2}}} = 0.$
- **2.** Take $\mathcal{P} :=$ "the graph has a triangle".

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_n be the class of simple undirected graphs with *n* nodes. Of course $|\mathcal{G}_n| = 2^{\frac{n(n-1)}{2}}$.

Let \mathcal{P} be a property of graphs. Let $\mu_n(\mathcal{P}) =$ "probability that \mathcal{P} holds in a random graph with *n* nodes".

Asymptotic probability

$$\mu_\infty(\mathcal{P}) := \lim_{n \to \infty} \mu_n(\mathcal{P})$$

- **1.** Take $\mathcal{P} :=$ "the graph is complete". Then $\mu_{\infty}(\mathcal{P}) = \lim_{n \to \infty} \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{|\mathcal{G}_n|} = \lim_{n \to \infty} \frac{1}{2^{\frac{n(n-1)}{2}}} = 0.$
- **2.** Take $\mathcal{P} :=$ "the graph has a triangle". $\mu_3(\mathcal{P}) = \frac{1}{8}$.

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_n be the class of simple undirected graphs with *n* nodes. Of course $|\mathcal{G}_n| = 2^{\frac{n(n-1)}{2}}$.

Let \mathcal{P} be a property of graphs. Let $\mu_n(\mathcal{P}) =$ "probability that \mathcal{P} holds in a random graph with *n* nodes".

$$\mu_n(\mathcal{P}) := \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{|\mathcal{G}_n|}$$

Asymptotic probability

$$\mu_{\infty}(\mathcal{P}) := \lim_{n \to \infty} \mu_n(\mathcal{P})$$

- **1.** Take $\mathcal{P} :=$ "the graph is complete". Then $\mu_{\infty}(\mathcal{P}) = \lim_{n \to \infty} \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{|\mathcal{G}_n|} = \lim_{n \to \infty} \frac{1}{2^{\frac{n(n-1)}{2}}} = 0.$
- **2.** Take $\mathcal{P} :=$ "the graph has a triangle". $\mu_3(\mathcal{P}) = \frac{1}{8}$. Since $\mu_{3n}(\mathcal{P}) \ge 1 (1 \frac{1}{8})^n$, we get

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_n be the class of simple undirected graphs with *n* nodes. Of course $|\mathcal{G}_n| = 2^{\frac{n(n-1)}{2}}$.

Let \mathcal{P} be a property of graphs. Let $\mu_n(\mathcal{P}) =$ "probability that \mathcal{P} holds in a random graph with *n* nodes".

$$\mu_n(\mathcal{P}) := \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{|\mathcal{G}_n|}$$

Asymptotic probability

$$\mu_{\infty}(\mathcal{P}) := \lim_{n \to \infty} \mu_n(\mathcal{P})$$

- **1.** Take $\mathcal{P} :=$ "the graph is complete". Then $\mu_{\infty}(\mathcal{P}) = \lim_{n \to \infty} \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{|\mathcal{G}_n|} = \lim_{n \to \infty} \frac{1}{2^{\frac{n(n-1)}{2}}} = 0.$
- **2.** Take $\mathcal{P} :=$ "the graph has a triangle". $\mu_3(\mathcal{P}) = \frac{1}{8}$. Since $\mu_{3n}(\mathcal{P}) \ge 1 (1 \frac{1}{8})^n$, we get $\mu_{\infty}(\mathcal{P}) = 1$.
Proviso: For simplicity we focus on finite, simple, undirected graphs today!

We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_n be the class of simple undirected graphs with *n* nodes. Of course $|\mathcal{G}_n| = 2^{\frac{n(n-1)}{2}}$.

Let \mathcal{P} be a property of graphs. Let $\mu_n(\mathcal{P}) =$ "probability that \mathcal{P} holds in a random graph with *n* nodes".

Asymptotic probability

$$\mu_{\infty}(\mathcal{P}) := \lim_{n \to \infty} \mu_n(\mathcal{P})$$

Examples

1. Take $\mathcal{P} :=$ "the graph is complete". Then $\mu_{\infty}(\mathcal{P}) = \lim_{n \to \infty} \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{|\mathcal{G}_n|} = \lim_{n \to \infty} \frac{1}{2^{\frac{n(n-1)}{2}}} = 0.$

2. Take $\mathcal{P} :=$ "the graph has a triangle". $\mu_3(\mathcal{P}) = \frac{1}{8}$. Since $\mu_{3n}(\mathcal{P}) \ge 1 - (1 - \frac{1}{8})^n$, we get $\mu_{\infty}(\mathcal{P}) = 1$.

3. Take $\mathcal{P} :=$ "the graph has even number of edges".

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_n be the class of simple undirected graphs with *n* nodes. Of course $|\mathcal{G}_n| = 2^{\frac{n(n-1)}{2}}$.

Let \mathcal{P} be a property of graphs. Let $\mu_n(\mathcal{P}) =$ "probability that \mathcal{P} holds in a random graph with *n* nodes".

 $\mu_n(\mathcal{P}) := \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{|\mathcal{G}_n|}$

Asymptotic probability

$$\mu_{\infty}(\mathcal{P}) := \lim_{n \to \infty} \mu_n(\mathcal{P})$$

Examples

1. Take $\mathcal{P} :=$ "the graph is complete". Then $\mu_{\infty}(\mathcal{P}) = \lim_{n \to \infty} \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{|\mathcal{G}_n|} = \lim_{n \to \infty} \frac{1}{2^{\frac{n(n-1)}{2}}} = 0.$

2. Take $\mathcal{P} :=$ "the graph has a triangle". $\mu_3(\mathcal{P}) = \frac{1}{8}$. Since $\mu_{3n}(\mathcal{P}) \ge 1 - (1 - \frac{1}{8})^n$, we get $\mu_{\infty}(\mathcal{P}) = 1$.

3. Take $\mathcal{P} :=$ "the graph has even number of edges". $\mu_{\infty}(\mathcal{P}) = \frac{1}{2}$. Why?

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_n be the class of simple undirected graphs with *n* nodes. Of course $|\mathcal{G}_n| = 2^{\frac{n(n-1)}{2}}$.

Let \mathcal{P} be a property of graphs. Let $\mu_n(\mathcal{P}) =$ "probability that \mathcal{P} holds in a random graph with *n* nodes".

Asymptotic probability

$$\mu_{\infty}(\mathcal{P}) := \lim_{n \to \infty} \mu_n(\mathcal{P})$$

Examples

1. Take $\mathcal{P} :=$ "the graph is complete". Then $\mu_{\infty}(\mathcal{P}) = \lim_{n \to \infty} \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{|\mathcal{G}_n|} = \lim_{n \to \infty} \frac{1}{2^{\frac{n(n-1)}{2}}} = 0.$

2. Take $\mathcal{P} :=$ "the graph has a triangle". $\mu_3(\mathcal{P}) = \frac{1}{8}$. Since $\mu_{3n}(\mathcal{P}) \ge 1 - (1 - \frac{1}{8})^n$, we get $\mu_{\infty}(\mathcal{P}) = 1$.

3. Take $\mathcal{P} :=$ "the graph has even number of edges". $\mu_{\infty}(\mathcal{P}) = \frac{1}{2}$. Why?

$$\mu_{\infty}(\mathcal{P}) = \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{2^{\frac{n(n-1)}{2}}} =$$

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_n be the class of simple undirected graphs with *n* nodes. Of course $|\mathcal{G}_n| = 2^{\frac{n(n-1)}{2}}$.

Let \mathcal{P} be a property of graphs. Let $\mu_n(\mathcal{P}) =$ "probability that \mathcal{P} holds in a random graph with *n* nodes".

Asymptotic probability

$$\mu_{\infty}(\mathcal{P}) := \lim_{n \to \infty} \mu_n(\mathcal{P})$$

Examples

1. Take $\mathcal{P} :=$ "the graph is complete". Then $\mu_{\infty}(\mathcal{P}) = \lim_{n \to \infty} \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{|\mathcal{G}_n|} = \lim_{n \to \infty} \frac{1}{2^{\frac{n(n-1)}{2}}} = 0.$

2. Take $\mathcal{P} :=$ "the graph has a triangle". $\mu_3(\mathcal{P}) = \frac{1}{8}$. Since $\mu_{3n}(\mathcal{P}) \ge 1 - (1 - \frac{1}{8})^n$, we get $\mu_{\infty}(\mathcal{P}) = 1$.

3. Take $\mathcal{P} :=$ "the graph has even number of edges". $\mu_{\infty}(\mathcal{P}) = \frac{1}{2}$. Why? $\mu_{\infty}(\mathcal{P}) = \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{2^{\frac{n(n-1)}{2}}} = \frac{\sum_{i \ge 0} \binom{n(n-1)/2}{2i}}{2^{\frac{n(n-1)}{2}}} =$

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_n be the class of simple undirected graphs with *n* nodes. Of course $|\mathcal{G}_n| = 2^{\frac{n(n-1)}{2}}$.

Let \mathcal{P} be a property of graphs. Let $\mu_n(\mathcal{P}) =$ "probability that \mathcal{P} holds in a random graph with *n* nodes".

Asymptotic probability

$$\mu_{\infty}(\mathcal{P}) := \lim_{n \to \infty} \mu_n(\mathcal{P})$$

Examples

1. Take $\mathcal{P} :=$ "the graph is complete". Then $\mu_{\infty}(\mathcal{P}) = \lim_{n \to \infty} \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{|\mathcal{G}_n|} = \lim_{n \to \infty} \frac{1}{2^{\frac{n(n-1)}{2}}} = 0.$

2. Take $\mathcal{P} :=$ "the graph has a triangle". $\mu_3(\mathcal{P}) = \frac{1}{8}$. Since $\mu_{3n}(\mathcal{P}) \ge 1 - (1 - \frac{1}{8})^n$, we get $\mu_{\infty}(\mathcal{P}) = 1$.

3. Take $\mathcal{P} :=$ "the graph has even number of edges". $\mu_{\infty}(\mathcal{P}) = \frac{1}{2}$. Why? $\mu_{\infty}(\mathcal{P}) = \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{2^{\frac{n(n-1)}{2}}} = \frac{\sum_{i \ge 0} \binom{n(n-1)/2}{2i}}{2^{\frac{n(n-1)}{2}}} = [\text{Sum of Even Index Binomial Coeff.}] =$

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_n be the class of simple undirected graphs with *n* nodes. Of course $|\mathcal{G}_n| = 2^{\frac{n(n-1)}{2}}$.

Let \mathcal{P} be a property of graphs. Let $\mu_n(\mathcal{P}) =$ "probability that \mathcal{P} holds in a random graph with *n* nodes".

$$\mu_n(\mathcal{P}) := \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{|\mathcal{G}_n|}$$

Asymptotic probability

$$\mu_{\infty}(\mathcal{P}) := \lim_{n \to \infty} \mu_n(\mathcal{P})$$

Examples

1. Take $\mathcal{P} :=$ "the graph is complete". Then $\mu_{\infty}(\mathcal{P}) = \lim_{n \to \infty} \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{|\mathcal{G}_n|} = \lim_{n \to \infty} \frac{1}{2^{\frac{n(n-1)}{2}}} = 0.$ **2.** Take $\mathcal{P} :=$ "the graph has a triangle". $\mu_3(\mathcal{P}) = \frac{1}{8}$. Since $\mu_{3n}(\mathcal{P}) \ge 1 - (1 - \frac{1}{8})^n$, we get $\mu_{\infty}(\mathcal{P}) = 1$.

3. Take $\mathcal{P} :=$ "the graph has even number of edges". $\mu_{\infty}(\mathcal{P}) = \frac{1}{2}$. Why? $\mu_{\infty}(\mathcal{P}) = \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{2^{\frac{n(n-1)}{2}}} = \frac{\sum_{i \ge 0} \binom{n(n-1)/2}{2i}}{2^{\frac{n(n-1)}{2}}} = [\text{Sum of Even Index Binomial Coeff.}] = \frac{2^{\frac{n(n-1)}{2}-1}}{2^{\frac{n(n-1)}{2}}} = [\frac{n(n-1)}{2} + \frac{n(n-1)}{2}]$

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_n be the class of simple undirected graphs with *n* nodes. Of course $|\mathcal{G}_n| = 2^{\frac{n(n-1)}{2}}$.

Let \mathcal{P} be a property of graphs. Let $\mu_n(\mathcal{P}) =$ "probability that \mathcal{P} holds in a random graph with *n* nodes".

$$\mu_n(\mathcal{P}) := \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{|\mathcal{G}_n|}$$

Asymptotic probability

$$\mu_\infty(\mathcal{P}) := \lim_{n \to \infty} \mu_n(\mathcal{P})$$

Examples

1. Take $\mathcal{P} :=$ "the graph is complete". Then $\mu_{\infty}(\mathcal{P}) = \lim_{n \to \infty} \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{|\mathcal{G}_n|} = \lim_{n \to \infty} \frac{1}{2^{\frac{n(n-1)}{2}}} = 0.$ 2. Take $\mathcal{P} :=$ "the graph has a triangle". $\mu_3(\mathcal{P}) = \frac{1}{8}$. Since $\mu_{3n}(\mathcal{P}) \ge 1 - (1 - \frac{1}{8})^n$, we get $\mu_{\infty}(\mathcal{P}) = 1$.

3. Take $\mathcal{P} :=$ "the graph has even number of edges". $\mu_{\infty}(\mathcal{P}) = \frac{1}{2}$. Why? $\mu_{\infty}(\mathcal{P}) = \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{2^{\frac{n(n-1)}{2}}} = \frac{\sum_{i \ge 0} \binom{n(n-1)/2}{2i}}{2^{\frac{n(n-1)}{2}}} = [\text{Sum of Even Index Binomial Coeff.}] = \frac{2^{\frac{n(n-1)}{2}-1}}{2^{\frac{n(n-1)}{2}}} = \frac{1}{2}$

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_n be the class of simple undirected graphs with *n* nodes. Of course $|\mathcal{G}_n| = 2^{\frac{n(n-1)}{2}}$.

Let \mathcal{P} be a property of graphs. Let $\mu_n(\mathcal{P}) =$ "probability that \mathcal{P} holds in a random graph with *n* nodes".

$\mu_n(\mathcal{P}) := \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{|\mathcal{G}_n|}$

Asymptotic probability

Examples

1. Take
$$\mathcal{P} :=$$
 "the graph is complete". Then $\mu_{\infty}(\mathcal{P}) = \lim_{n \to \infty} \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{|\mathcal{G}_n|} = \lim_{n \to \infty} \frac{1}{2^{\frac{n(n-1)}{2}}} = 0.$
2. Take $\mathcal{P} :=$ "the graph has a triangle". $\mu_3(\mathcal{P}) = \frac{1}{8}$. Since $\mu_{3n}(\mathcal{P}) \ge 1 - (1 - \frac{1}{8})^n$, we get $\mu_{\infty}(\mathcal{P}) = 1.$
3. Take $\mathcal{P} :=$ "the graph has even number of edges". $\mu_{\infty}(\mathcal{P}) = \frac{1}{2}$. Why?
 $\mu_{\infty}(\mathcal{P}) = \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{2^{\frac{n(n-1)}{2}}} = \frac{\sum_{i \ge 0} \binom{n(n-1)/2}{2^i}}{2^{\frac{n(n-1)}{2}}} = [$ Sum of Even Index Binomial Coeff. $] = \frac{2^{\frac{n(n-1)}{2}-1}}{2^{\frac{n(n-1)}{2}}} = \frac{1}{2}$

4. Take $\mathcal{P} :=$ "the graph has even number of nodes".

 $\mu_{\infty}(\mathcal{P}) := \lim_{n \to \infty} \mu_n(\mathcal{P})$

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_n be the class of simple undirected graphs with *n* nodes. Of course $|\mathcal{G}_n| = 2^{\frac{n(n-1)}{2}}$.

Let \mathcal{P} be a property of graphs. Let $\mu_n(\mathcal{P}) =$ "probability that \mathcal{P} holds in a random graph with *n* nodes".

$$u_n(\mathcal{P}) := \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{|\mathcal{G}_n|}$$

Asymptotic probability

$$\mu_\infty(\mathcal{P}) := \lim_{n \to \infty} \mu_n(\mathcal{P})$$

Examples

1. Take $\mathcal{P} :=$ "the graph is complete". Then $\mu_{\infty}(\mathcal{P}) = \lim_{n \to \infty} \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{|\mathcal{G}_n|} = \lim_{n \to \infty} \frac{1}{2^{\frac{n(n-1)}{2}}} = 0.$ 2. Take $\mathcal{P} :=$ "the graph has a triangle". $\mu_3(\mathcal{P}) = \frac{1}{8}$. Since $\mu_{3n}(\mathcal{P}) \ge 1 - (1 - \frac{1}{8})^n$, we get $\mu_{\infty}(\mathcal{P}) = 1.$ 3. Take $\mathcal{P} :=$ "the graph has even number of edges". $\mu_{\infty}(\mathcal{P}) = \frac{1}{2}$. Why? $\mu_{\infty}(\mathcal{P}) = \frac{|\{\mathfrak{G} \in \mathcal{G}_n : \mathfrak{G} \models \mathcal{P}\}|}{2^{\frac{n(n-1)}{2}}} = \sum_{i \ge 0} \frac{\binom{n(n-1)/2}{2i}}{2^{\frac{n(n-1)}{2}}} = [\text{Sum of Even Index Binomial Coeff.}] = \frac{2^{\frac{n(n-1)}{2}-1}}{2^{\frac{n(n-1)}{2}}} = \frac{1}{2}$ 4. Take $\mathcal{P} :=$ "the graph has even number of nodes". Then $\mu_{\infty}(\mathcal{P})$ does not exist. Bartosz "Bart" Bednarczyk Finite and Algorithmic Model Theory (Lecture 2 Dresden Long) 2/8

A *k*-type is a conjunction of formulae with variables x_1, \ldots, x_k such that for all $i \neq j$ we have

A *k*-type is a conjunction of formulae with variables x_1, \ldots, x_k such that for all $i \neq j$ we have $x_i \neq x_j$ and precisely one of $E(x_i, x_j)$ or $\neg E(x_i, x_j)$ as a conjunct.

A *k*-type is a conjunction of formulae with variables x_1, \ldots, x_k such that for all $i \neq j$ we have $x_i \neq x_j$ and precisely one of $E(x_i, x_j)$ or $\neg E(x_i, x_j)$ as a conjunct.

A *k*-type is a conjunction of formulae with variables x_1, \ldots, x_k such that for all $i \neq j$ we have $x_i \neq x_j$ and precisely one of $E(x_i, x_j)$ or $\neg E(x_i, x_j)$ as a conjunct.

A *k*-type is a conjunction of formulae with variables x_1, \ldots, x_k such that for all $i \neq j$ we have $x_i \neq x_j$ and precisely one of $E(x_i, x_j)$ or $\neg E(x_i, x_j)$ as a conjunct.

 $egin{aligned} s &:= x_1
eq x_2 \wedge x_1
eq x_3 \wedge x_2
eq x_3 \wedge \ & \mathrm{E}(x_1, x_2) \wedge
eg \mathrm{E}(x_2, x_3) \wedge \mathrm{E}(x_1, x_3) \end{aligned}$

A *k*-type is a conjunction of formulae with variables x_1, \ldots, x_k such that for all $i \neq j$ we have $x_i \neq x_j$ and precisely one of $E(x_i, x_j)$ or $\neg E(x_i, x_j)$ as a conjunct.

 $egin{aligned} s &:= x_1
eq x_2 \wedge x_1
eq x_3 \wedge x_2
eq x_3 \wedge \ & \mathrm{E}(x_1, x_2) \wedge \neg \mathrm{E}(x_2, x_3) \wedge \mathrm{E}(x_1, x_3) \end{aligned}$

 $t := x_1 \neq x_2 \land x_1 \neq x_3 \land x_2 \neq x_3 \land \operatorname{E}(x_1, x_2) \land \neg \operatorname{E}(x_2, x_3) \land \operatorname{E}(x_1, x_3)$ $\land x_1 \neq x_4 \land x_2 \neq x_4 \land x_3 \neq x_4 \land \operatorname{E}(x_1, x_4) \land \neg \operatorname{E}(x_2, x_4) \land \operatorname{E}(x_3, x_4)$

A *k*-type is a conjunction of formulae with variables x_1, \ldots, x_k such that for all $i \neq j$ we have $x_i \neq x_j$ and precisely one of $E(x_i, x_j)$ or $\neg E(x_i, x_j)$ as a conjunct.

 $egin{aligned} s &:= x_1
eq x_2 \land x_1
eq x_3 \land x_2
eq x_3 \land \ & \mathrm{E}(x_1, x_2) \land \neg \mathrm{E}(x_2, x_3) \land \mathrm{E}(x_1, x_3) \end{aligned}$

 $t := x_1 \neq x_2 \land x_1 \neq x_3 \land x_2 \neq x_3 \land \operatorname{E}(x_1, x_2) \land \neg \operatorname{E}(x_2, x_3) \land \operatorname{E}(x_1, x_3)$ $\land x_1 \neq x_4 \land x_2 \neq x_4 \land x_3 \neq x_4 \land \operatorname{E}(x_1, x_4) \land \neg \operatorname{E}(x_2, x_4) \land \operatorname{E}(x_3, x_4)$

A (k + 1)-type t extends a k-type s if conjuncts $(s) \subseteq \text{conjuncts}(t)$ (c.f. the above picture).

A *k*-type is a conjunction of formulae with variables x_1, \ldots, x_k such that for all $i \neq j$ we have $x_i \neq x_j$ and precisely one of $E(x_i, x_j)$ or $\neg E(x_i, x_j)$ as a conjunct.

 $egin{aligned} s &:= x_1
eq x_2 \wedge x_1
eq x_3 \wedge x_2
eq x_3 \wedge \ & \mathrm{E}(x_1, x_2) \wedge
eg \mathrm{E}(x_2, x_3) \wedge \mathrm{E}(x_1, x_3) \end{aligned}$

 $t := x_1 \neq x_2 \land x_1 \neq x_3 \land x_2 \neq x_3 \land \operatorname{E}(x_1, x_2) \land \neg \operatorname{E}(x_2, x_3) \land \operatorname{E}(x_1, x_3)$ $\land x_1 \neq x_4 \land x_2 \neq x_4 \land x_3 \neq x_4 \land \operatorname{E}(x_1, x_4) \land \neg \operatorname{E}(x_2, x_4) \land \operatorname{E}(x_3, x_4)$

A (k + 1)-type t extends a k-type s if conjuncts $(s) \subseteq \text{conjuncts}(t)$ (c.f. the above picture).

A *k*-type is a conjunction of formulae with variables x_1, \ldots, x_k such that for all $i \neq j$ we have $x_i \neq x_j$ and precisely one of $E(x_i, x_j)$ or $\neg E(x_i, x_j)$ as a conjunct.

 $egin{aligned} s &:= x_1
eq x_2 \wedge x_1
eq x_3 \wedge x_2
eq x_3 \wedge \ & \mathrm{E}(x_1, x_2) \wedge
eg \mathrm{E}(x_2, x_3) \wedge \mathrm{E}(x_1, x_3) \end{aligned}$

 $t := x_1 \neq x_2 \land x_1 \neq x_3 \land x_2 \neq x_3 \land \operatorname{E}(x_1, x_2) \land \neg \operatorname{E}(x_2, x_3) \land \operatorname{E}(x_1, x_3)$ $\land x_1 \neq x_4 \land x_2 \neq x_4 \land x_3 \neq x_4 \land \operatorname{E}(x_1, x_4) \land \neg \operatorname{E}(x_2, x_4) \land \operatorname{E}(x_3, x_4)$

A (k + 1)-type t extends a k-type s if conjuncts $(s) \subseteq$ conjuncts(t) (c.f. the above picture). An (s, t)-extension axiom $\sigma_{s,t}$ is $\forall x_1 \dots \forall x_k \ s(x_1, \dots, x_k) \rightarrow \exists x_{k+1}t(x_1, \dots, x_k, x_{k+1})$.

A *k*-type is a conjunction of formulae with variables x_1, \ldots, x_k such that for all $i \neq j$ we have $x_i \neq x_j$ and precisely one of $E(x_i, x_j)$ or $\neg E(x_i, x_j)$ as a conjunct.

 $egin{aligned} s &:= x_1
eq x_2 \land x_1
eq x_3 \land x_2
eq x_3 \land \ & \mathrm{E}(x_1, x_2) \land \neg \mathrm{E}(x_2, x_3) \land \mathrm{E}(x_1, x_3) \end{aligned}$

 $t := x_1 \neq x_2 \land x_1 \neq x_3 \land x_2 \neq x_3 \land \operatorname{E}(x_1, x_2) \land \neg \operatorname{E}(x_2, x_3) \land \operatorname{E}(x_1, x_3)$ $\land x_1 \neq x_4 \land x_2 \neq x_4 \land x_3 \neq x_4 \land \operatorname{E}(x_1, x_4) \land \neg \operatorname{E}(x_2, x_4) \land \operatorname{E}(x_3, x_4)$

A (k + 1)-type t extends a k-type s if conjuncts $(s) \subseteq$ conjuncts(t) (c.f. the above picture). An (s, t)-extension axiom $\sigma_{s,t}$ is $\forall x_1 \dots \forall x_k \ s(x_1, \dots, x_k) \rightarrow \exists x_{k+1} t(x_1, \dots, x_k, x_{k+1})$.

 $\mathbb{EA} := \left\{ \forall x \ \neg \mathrm{E}(x, x), \ \forall xy \ \mathrm{E}(x, y) \rightarrow \mathrm{E}(y, x), \ \sigma_{s,t} \mid s \text{ is } k\text{-type}, \ t \text{ is } (k+1)\text{-type}, \ t \text{ extends } s \right\}$

1. Every extension axiom $\sigma_{s,t}$ from $\mathbb{E}\mathbb{A}$ is almost surely true,

1. Every extension axiom $\sigma_{s,t}$ from $\mathbb{E}\mathbb{A}$ is almost surely true, i.e. $\mu_{\infty}(\sigma_{s,t}) = 1$ (Exercise).

1. Every extension axiom $\sigma_{s,t}$ from $\mathbb{E}\mathbb{A}$ is almost surely true, i.e. $\mu_{\infty}(\sigma_{s,t}) = 1$ (Exercise). 2. By Compactness, it follows that $\mathbb{E}\mathbb{A} \models \varphi$ implies $\mu_{\infty}(\varphi) = 1$ (TODO).

- **1.** Every extension axiom $\sigma_{s,t}$ from $\mathbb{E}\mathbb{A}$ is almost surely true, i.e. $\mu_{\infty}(\sigma_{s,t}) = 1$ (Exercise).
- **2.** By Compactness, it follows that $\mathbb{E}\mathbb{A} \models \varphi$ implies $\mu_{\infty}(\varphi) = 1$ (TODO).
- **3.** The theory $\mathbb{E}\mathbb{A}$ is ω -categorical,

- **1.** Every extension axiom $\sigma_{s,t}$ from $\mathbb{E}\mathbb{A}$ is almost surely true, i.e. $\mu_{\infty}(\sigma_{s,t}) = 1$ (Exercise).
- **2.** By Compactness, it follows that $\mathbb{E}\mathbb{A} \models \varphi$ implies $\mu_{\infty}(\varphi) = 1$ (TODO).
- **3.** The theory $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has exactly one countable model up to \cong (TODO).

- **1.** Every extension axiom $\sigma_{s,t}$ from $\mathbb{E}\mathbb{A}$ is almost surely true, i.e. $\mu_{\infty}(\sigma_{s,t}) = 1$ (Exercise).
- **2.** By Compactness, it follows that $\mathbb{E}\mathbb{A} \models \varphi$ implies $\mu_{\infty}(\varphi) = 1$ (TODO).
- **3.** The theory $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has exactly one countable model up to \cong (TODO).
- **4.** Thus $\mathbb{E}\mathbb{A}$ is complete,

1. Every extension axiom $\sigma_{s,t}$ from $\mathbb{E}\mathbb{A}$ is almost surely true, i.e. $\mu_{\infty}(\sigma_{s,t}) = 1$ (Exercise).

2. By Compactness, it follows that $\mathbb{E}\mathbb{A} \models \varphi$ implies $\mu_{\infty}(\varphi) = 1$ (TODO).

3. The theory $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has exactly one countable model up to \cong (TODO).

4. Thus $\mathbb{E}\mathbb{A}$ is complete, i.e. for all $\varphi \in \mathsf{FO}$ we have $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$ (TODO).

- **1.** Every extension axiom $\sigma_{s,t}$ from $\mathbb{E}\mathbb{A}$ is almost surely true, i.e. $\mu_{\infty}(\sigma_{s,t}) = 1$ (Exercise).
- **2.** By Compactness, it follows that $\mathbb{E}\mathbb{A} \models \varphi$ implies $\mu_{\infty}(\varphi) = 1$ (TODO).
- **3.** The theory $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has exactly one countable model up to \cong (TODO).
- **4.** Thus $\mathbb{E}\mathbb{A}$ is complete, i.e. for all $\varphi \in \mathsf{FO}$ we have $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$ (TODO).

Theorem (Glebskii et al. 1969, Fagin 1976)

For every formula $\varphi \in \mathsf{FO}[\{E\}]$ we have that $\mu_{\infty}(\varphi)$ is either 0 or 1.

- **1.** Every extension axiom $\sigma_{s,t}$ from $\mathbb{E}\mathbb{A}$ is almost surely true, i.e. $\mu_{\infty}(\sigma_{s,t}) = 1$ (Exercise).
- **2.** By Compactness, it follows that $\mathbb{E}\mathbb{A} \models \varphi$ implies $\mu_{\infty}(\varphi) = 1$ (TODO).
- **3.** The theory $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has exactly one countable model up to \cong (TODO).
- **4.** Thus $\mathbb{E}\mathbb{A}$ is complete, i.e. for all $\varphi \in \mathsf{FO}$ we have $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$ (TODO).

Theorem (Glebskii et al. 1969, Fagin 1976)

For every formula $\varphi \in \mathsf{FO}[\{E\}]$ we have that $\mu_{\infty}(\varphi)$ is either 0 or 1.

Proof

- **1.** Every extension axiom $\sigma_{s,t}$ from $\mathbb{E}\mathbb{A}$ is almost surely true, i.e. $\mu_{\infty}(\sigma_{s,t}) = 1$ (Exercise).
- **2.** By Compactness, it follows that $\mathbb{E}\mathbb{A} \models \varphi$ implies $\mu_{\infty}(\varphi) = 1$ (TODO).
- **3.** The theory $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has exactly one countable model up to \cong (TODO).
- **4.** Thus $\mathbb{E}\mathbb{A}$ is complete, i.e. for all $\varphi \in \mathsf{FO}$ we have $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$ (TODO).

```
Theorem (Glebskii et al. 1969, Fagin 1976)
```

```
For every formula \varphi \in \mathsf{FO}[\{E\}] we have that \mu_{\infty}(\varphi) is either 0 or 1.
```

Proof

Take any $\varphi \in \mathsf{FO}[\{E\}]$.

- **1.** Every extension axiom $\sigma_{s,t}$ from $\mathbb{E}\mathbb{A}$ is almost surely true, i.e. $\mu_{\infty}(\sigma_{s,t}) = 1$ (Exercise).
- **2.** By Compactness, it follows that $\mathbb{E}\mathbb{A} \models \varphi$ implies $\mu_{\infty}(\varphi) = 1$ (TODO).
- **3.** The theory $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has exactly one countable model up to \cong (TODO).
- **4.** Thus $\mathbb{E}\mathbb{A}$ is complete, i.e. for all $\varphi \in \mathsf{FO}$ we have $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$ (TODO).

```
Theorem (Glebskii et al. 1969, Fagin 1976)
```

```
For every formula \varphi \in \mathsf{FO}[\{E\}] we have that \mu_{\infty}(\varphi) is either 0 or 1.
```

Proof

Take any $\varphi \in \mathsf{FO}[\{E\}]$. By (4) either $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$.

- **1.** Every extension axiom $\sigma_{s,t}$ from $\mathbb{E}\mathbb{A}$ is almost surely true, i.e. $\mu_{\infty}(\sigma_{s,t}) = 1$ (Exercise).
- **2.** By Compactness, it follows that $\mathbb{E}\mathbb{A} \models \varphi$ implies $\mu_{\infty}(\varphi) = 1$ (TODO).
- **3.** The theory $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has exactly one countable model up to \cong (TODO).
- **4.** Thus $\mathbb{E}\mathbb{A}$ is complete, i.e. for all $\varphi \in \mathsf{FO}$ we have $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$ (TODO).

Theorem (Glebskii et al. 1969, Fagin 1976)

```
For every formula \varphi \in \mathsf{FO}[\{E\}] we have that \mu_{\infty}(\varphi) is either 0 or 1.
```

Proof

Take any $\varphi \in \mathsf{FO}[\{E\}]$. By (4) either $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$. If $\mathbb{E}\mathbb{A} \models \varphi$ then by (2) we have $\mu_{\infty}(\varphi) = 1$.

- **1.** Every extension axiom $\sigma_{s,t}$ from $\mathbb{E}\mathbb{A}$ is almost surely true, i.e. $\mu_{\infty}(\sigma_{s,t}) = 1$ (Exercise).
- **2.** By Compactness, it follows that $\mathbb{E}\mathbb{A} \models \varphi$ implies $\mu_{\infty}(\varphi) = 1$ (TODO).
- **3.** The theory $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has exactly one countable model up to \cong (TODO).
- **4.** Thus $\mathbb{E}\mathbb{A}$ is complete, i.e. for all $\varphi \in \mathsf{FO}$ we have $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$ (TODO).

```
Theorem (Glebskii et al. 1969, Fagin 1976)
```

```
For every formula \varphi \in \mathsf{FO}[\{E\}] we have that \mu_{\infty}(\varphi) is either 0 or 1.
```

Proof

Take any $\varphi \in FO[\{E\}]$. By (4) either $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$. If $\mathbb{E}\mathbb{A} \models \varphi$ then by (2) we have $\mu_{\infty}(\varphi) = 1$. Otherwise $\mathbb{E}\mathbb{A} \models \neg \varphi$, so by (2) we infer $\mu_{\infty}(\neg \varphi) = 1$,

- **1.** Every extension axiom $\sigma_{s,t}$ from $\mathbb{E}\mathbb{A}$ is almost surely true, i.e. $\mu_{\infty}(\sigma_{s,t}) = 1$ (Exercise).
- **2.** By Compactness, it follows that $\mathbb{E}\mathbb{A} \models \varphi$ implies $\mu_{\infty}(\varphi) = 1$ (TODO).
- **3.** The theory $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has exactly one countable model up to \cong (TODO).
- **4.** Thus $\mathbb{E}\mathbb{A}$ is complete, i.e. for all $\varphi \in \mathsf{FO}$ we have $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$ (TODO).

```
Theorem (Glebskii et al. 1969, Fagin 1976)
```

```
For every formula \varphi \in \mathsf{FO}[\{E\}] we have that \mu_{\infty}(\varphi) is either 0 or 1.
```

Proof

Take any $\varphi \in \text{FO}[\{E\}]$. By (4) either $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$. If $\mathbb{E}\mathbb{A} \models \varphi$ then by (2) we have $\mu_{\infty}(\varphi) = 1$. Otherwise $\mathbb{E}\mathbb{A} \models \neg \varphi$, so by (2) we infer $\mu_{\infty}(\neg \varphi) = 1$, which leads to $\mu_{\infty}(\varphi) = 1 - \mu_{\infty}(\neg \varphi) = 0$.

- **1.** Every extension axiom $\sigma_{s,t}$ from $\mathbb{E}\mathbb{A}$ is almost surely true, i.e. $\mu_{\infty}(\sigma_{s,t}) = 1$ (Exercise).
- **2.** By Compactness, it follows that $\mathbb{E}\mathbb{A} \models \varphi$ implies $\mu_{\infty}(\varphi) = 1$ (TODO).
- **3.** The theory $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has exactly one countable model up to \cong (TODO).
- **4.** Thus $\mathbb{E}\mathbb{A}$ is complete, i.e. for all $\varphi \in \mathsf{FO}$ we have $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$ (TODO).

```
Theorem (Glebskii et al. 1969, Fagin 1976)
```

```
For every formula \varphi \in \mathsf{FO}[\{E\}] we have that \mu_{\infty}(\varphi) is either 0 or 1.
```

Proof

Take any $\varphi \in \text{FO}[\{E\}]$. By (4) either $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$. If $\mathbb{E}\mathbb{A} \models \varphi$ then by (2) we have $\mu_{\infty}(\varphi) = 1$. Otherwise $\mathbb{E}\mathbb{A} \models \neg \varphi$, so by (2) we infer $\mu_{\infty}(\neg \varphi) = 1$, which leads to $\mu_{\infty}(\varphi) = 1 - \mu_{\infty}(\neg \varphi) = 0$.

Applications?
Why the theory $\mathbb{E}\mathbb{A}$ is important? Zero-One Law for $FO[\{E\}]$.

- **1.** Every extension axiom $\sigma_{s,t}$ from $\mathbb{E}\mathbb{A}$ is almost surely true, i.e. $\mu_{\infty}(\sigma_{s,t}) = 1$ (Exercise).
- **2.** By Compactness, it follows that $\mathbb{E}\mathbb{A} \models \varphi$ implies $\mu_{\infty}(\varphi) = 1$ (TODO).
- **3.** The theory $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has exactly one countable model up to \cong (TODO).
- **4.** Thus $\mathbb{E}\mathbb{A}$ is complete, i.e. for all $\varphi \in \mathsf{FO}$ we have $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$ (TODO).

```
Theorem (Glebskii et al. 1969, Fagin 1976)
```

```
For every formula \varphi \in \mathsf{FO}[\{E\}] we have that \mu_{\infty}(\varphi) is either 0 or 1.
```

Proof

Take any $\varphi \in \text{FO}[\{E\}]$. By (4) either $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$. If $\mathbb{E}\mathbb{A} \models \varphi$ then by (2) we have $\mu_{\infty}(\varphi) = 1$. Otherwise $\mathbb{E}\mathbb{A} \models \neg \varphi$, so by (2) we infer $\mu_{\infty}(\neg \varphi) = 1$, which leads to $\mu_{\infty}(\varphi) = 1 - \mu_{\infty}(\neg \varphi) = 0$.

Applications?

• Evenness of the number of nodes/edges not FO[{E}]-definable.

Why the theory $\mathbb{E}\mathbb{A}$ is important? Zero-One Law for $FO[\{E\}]$.

- **1.** Every extension axiom $\sigma_{s,t}$ from $\mathbb{E}\mathbb{A}$ is almost surely true, i.e. $\mu_{\infty}(\sigma_{s,t}) = 1$ (Exercise).
- **2.** By Compactness, it follows that $\mathbb{E}\mathbb{A} \models \varphi$ implies $\mu_{\infty}(\varphi) = 1$ (TODO).
- **3.** The theory $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has exactly one countable model up to \cong (TODO).
- **4.** Thus $\mathbb{E}\mathbb{A}$ is complete, i.e. for all $\varphi \in \mathsf{FO}$ we have $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$ (TODO).

```
Theorem (Glebskii et al. 1969, Fagin 1976)
```

```
For every formula \varphi \in \mathsf{FO}[\{E\}] we have that \mu_{\infty}(\varphi) is either 0 or 1.
```

Proof

Take any $\varphi \in \text{FO}[\{E\}]$. By (4) either $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$. If $\mathbb{E}\mathbb{A} \models \varphi$ then by (2) we have $\mu_{\infty}(\varphi) = 1$. Otherwise $\mathbb{E}\mathbb{A} \models \neg \varphi$, so by (2) we infer $\mu_{\infty}(\neg \varphi) = 1$, which leads to $\mu_{\infty}(\varphi) = 1 - \mu_{\infty}(\neg \varphi) = 0$.

Applications?

- \bullet Evenness of the number of nodes/edges not FO[{E}]-definable.
- No information about connectivity because $\mu_\infty(" ext{graph is connected"}) = 0.$

Proof of $\mathbb{E}\mathbb{A} \models \varphi$ implies $\mu_{\infty}(\varphi) = 1$ (assuming that $\forall \sigma \in \mathbb{E}\mathbb{A} \ \mu_{\infty}(\sigma) = 1$). Handy observations for all $\alpha, \beta, \gamma \in \mathsf{FO}[\{\mathbb{E}\}]$ and all $n \in \mathbb{N}$: **Proof of** $\mathbb{E}\mathbb{A} \models \varphi$ implies $\mu_{\infty}(\varphi) = 1$ (assuming that $\forall \sigma \in \mathbb{E}\mathbb{A} \ \mu_{\infty}(\sigma) = 1$). Handy observations for all $\alpha, \beta, \gamma \in \mathsf{FO}[\{\mathbb{E}\}]$ and all $n \in \mathbb{N}$:

Handy observations for all $\alpha, \beta, \gamma \in \mathsf{FO}[\{E\}]$ and all $n \in \mathbb{N}$:

Handy observations for all $\alpha, \beta, \gamma \in \mathsf{FO}[\{E\}]$ and all $n \in \mathbb{N}$:

Proof

Proof of $\mathbb{E}\mathbb{A} \models \varphi$ implies $\mu_{\infty}(\varphi) = 1$ (assuming that $\forall \sigma \in \mathbb{E}\mathbb{A} \ \mu_{\infty}(\sigma) = 1$). Handy observations for all $\alpha, \beta, \gamma \in \mathsf{FO}[\{\mathbb{E}\}]$ and all $n \in \mathbb{N}$: $\mu_n(\neg \alpha) = 1 - \mu_n(\alpha)$ $\mu_n(\beta \lor \gamma) \le \mu_n(\beta) + \mu_n(\gamma)$.

Proof

Goal: To show $\mu_{\infty}(\varphi) = 1$ it suffices to show that $\mu_n(\neg \varphi) \to 0$ when $n \to \infty$.

Proof of $\mathbb{E}\mathbb{A} \models \varphi$ implies $\mu_{\infty}(\varphi) = 1$ (assuming that $\forall \sigma \in \mathbb{E}\mathbb{A} \ \mu_{\infty}(\sigma) = 1$). Handy observations for all $\alpha, \beta, \gamma \in \text{FO}[\{\mathbb{E}\}]$ and all $n \in \mathbb{N}$: $\mu_n(\neg \alpha) = 1 - \mu_n(\alpha)$ $\mu_n(\beta \lor \gamma) \le \mu_n(\beta) + \mu_n(\gamma)$.

Proof

Goal: To show $\mu_{\infty}(\varphi) = 1$ it suffices to show that $\mu_n(\neg \varphi) \to 0$ when $n \to \infty$. Assume $\mathbb{E}\mathbb{A} \models \varphi$.

Handy observations for all $\alpha, \beta, \gamma \in \mathsf{FO}[\{E\}]$ and all $n \in \mathbb{N}$:

Compactness: $\mathbb{E}\mathbb{A} \models \varphi$ implies

there is $\mathbb{E}\mathbb{A}_0\subseteq_{\mathrm{fin}}\mathbb{E}\mathbb{A}$ implying φ

Proof

Goal: To show $\mu_{\infty}(\varphi) = 1$ it suffices to show that $\mu_n(\neg \varphi) \to 0$ when $n \to \infty$. Assume $\mathbb{E}\mathbb{A} \models \varphi$.

Handy observations for all $\alpha, \beta, \gamma \in \mathsf{FO}[\{E\}]$ and all $n \in \mathbb{N}$:

Compactness: $\mathbb{E}\mathbb{A} \models \varphi$ implies

there is $\mathbb{E}\mathbb{A}_0\subseteq_{\mathrm{fin}}\mathbb{E}\mathbb{A}$ implying φ

Proof

Goal: To show $\mu_{\infty}(\varphi) = 1$ it suffices to show that $\mu_n(\neg \varphi) \to 0$ when $n \to \infty$. Assume $\mathbb{E}\mathbb{A} \models \varphi$. By compactness, there is a finite $\mathbb{E}\mathbb{A}_0 \subseteq \mathbb{E}\mathbb{A}$ such that $\mathbb{E}\mathbb{A}_0 \models \varphi$.

Handy observations for all $\alpha, \beta, \gamma \in \mathsf{FO}[\{E\}]$ and all $n \in \mathbb{N}$:

Compactness: $\mathbb{E}\mathbb{A} \models \varphi$ implies

there is $\mathbb{E}\mathbb{A}_0\subseteq_{\mathrm{fin}}\mathbb{E}\mathbb{A}$ implying φ

Proof

Goal: To show $\mu_{\infty}(\varphi) = 1$ it suffices to show that $\mu_n(\neg \varphi) \to 0$ when $n \to \infty$. Assume $\mathbb{E}\mathbb{A} \models \varphi$. By compactness, there is a finite $\mathbb{E}\mathbb{A}_0 \subseteq \mathbb{E}\mathbb{A}$ such that $\mathbb{E}\mathbb{A}_0 \models \varphi$. So $\mu_n(\varphi) \ge \mu_n(\wedge \mathbb{E}\mathbb{A}_0)$,

Handy observations for all $\alpha, \beta, \gamma \in \mathsf{FO}[\{E\}]$ and all $n \in \mathbb{N}$:

Compactness: $\mathbb{E}\mathbb{A} \models \varphi$ implies

there is $\mathbb{E}\mathbb{A}_0\subseteq_{\mathrm{fin}}\mathbb{E}\mathbb{A}$ implying φ

Proof

Goal: To show $\mu_{\infty}(\varphi) = 1$ it suffices to show that $\mu_n(\neg \varphi) \to 0$ when $n \to \infty$. Assume $\mathbb{E}\mathbb{A} \models \varphi$. By compactness, there is a finite $\mathbb{E}\mathbb{A}_0 \subseteq \mathbb{E}\mathbb{A}$ such that $\mathbb{E}\mathbb{A}_0 \models \varphi$. So $\mu_n(\varphi) \ge \mu_n(\wedge \mathbb{E}\mathbb{A}_0)$, thus $\mu_n(\neg \wedge \mathbb{E}\mathbb{A}_0) \ge \mu_n(\neg \varphi)$.

Handy observations for all $\alpha, \beta, \gamma \in \mathsf{FO}[\{E\}]$ and all $n \in \mathbb{N}$:

Compactness: $\mathbb{E}\mathbb{A} \models \varphi$ implies

there is $\mathbb{E}\mathbb{A}_0\subseteq_{\mathrm{fin}}\mathbb{E}\mathbb{A}$ implying φ

Proof

Goal: To show $\mu_{\infty}(\varphi) = 1$ it suffices to show that $\mu_n(\neg \varphi) \to 0$ when $n \to \infty$. Assume $\mathbb{E}\mathbb{A} \models \varphi$. By compactness, there is a finite $\mathbb{E}\mathbb{A}_0 \subseteq \mathbb{E}\mathbb{A}$ such that $\mathbb{E}\mathbb{A}_0 \models \varphi$. So $\mu_n(\varphi) \ge \mu_n(\wedge \mathbb{E}\mathbb{A}_0)$, thus $\mu_n(\neg \wedge \mathbb{E}\mathbb{A}_0) \ge \mu_n(\neg \varphi)$. Moreover (by our assumption), $\mu_n(\neg \sigma) = 1 - \mu_n(\sigma)$ tends to 0 when $n \to \infty$.

Handy observations for all $\alpha, \beta, \gamma \in \mathsf{FO}[\{E\}]$ and all $n \in \mathbb{N}$:

Compactness: $\mathbb{E}\mathbb{A} \models \varphi$ implies

there is $\mathbb{E}\mathbb{A}_0\subseteq_{\mathrm{fin}}\mathbb{E}\mathbb{A}$ implying φ

Proof

Goal: To show $\mu_{\infty}(\varphi) = 1$ it suffices to show that $\mu_n(\neg \varphi) \to 0$ when $n \to \infty$. Assume $\mathbb{E}\mathbb{A} \models \varphi$. By compactness, there is a finite $\mathbb{E}\mathbb{A}_0 \subseteq \mathbb{E}\mathbb{A}$ such that $\mathbb{E}\mathbb{A}_0 \models \varphi$. So $\mu_n(\varphi) \ge \mu_n(\wedge \mathbb{E}\mathbb{A}_0)$, thus $\mu_n(\neg \wedge \mathbb{E}\mathbb{A}_0) \ge \mu_n(\neg \varphi)$. Moreover (by our assumption), $\mu_n(\neg \sigma) = 1 - \mu_n(\sigma)$ tends to 0 when $n \to \infty$. $\mu_n(\neg \varphi) \le \mu_n(\neg \wedge \mathbb{E}\mathbb{A}_0) = \mu_n(\bigvee_{\sigma \in \mathbb{E}\mathbb{A}_0} \neg \sigma) \le \sum_{\sigma \in \mathbb{E}\mathbb{A}_0} \mu_n(\neg \sigma)$

Handy observations for all $\alpha, \beta, \gamma \in \mathsf{FO}[\{E\}]$ and all $n \in \mathbb{N}$:

Compactness: $\mathbb{E}\mathbb{A} \models \varphi$ implies

there is $\mathbb{E}\mathbb{A}_0\subseteq_{\mathrm{fin}}\mathbb{E}\mathbb{A}$ implying φ

Proof

Goal: To show $\mu_{\infty}(\varphi) = 1$ it suffices to show that $\mu_n(\neg \varphi) \to 0$ when $n \to \infty$. Assume $\mathbb{E}\mathbb{A} \models \varphi$. By compactness, there is a finite $\mathbb{E}\mathbb{A}_0 \subseteq \mathbb{E}\mathbb{A}$ such that $\mathbb{E}\mathbb{A}_0 \models \varphi$. So $\mu_n(\varphi) \ge \mu_n(\wedge \mathbb{E}\mathbb{A}_0)$, thus $\mu_n(\neg \wedge \mathbb{E}\mathbb{A}_0) \ge \mu_n(\neg \varphi)$. Moreover (by our assumption), $\mu_n(\neg \sigma) = 1 - \mu_n(\sigma)$ tends to 0 when $n \to \infty$. $\mu_n(\neg \varphi) \le \mu_n(\neg \wedge \mathbb{E}\mathbb{A}_0) = \mu_n(\bigvee_{\sigma \in \mathbb{E}\mathbb{A}_0} \neg \sigma) \le \sum_{\sigma \in \mathbb{E}\mathbb{A}_0} \mu_n(\neg \sigma)$ The sum $\sum_{\sigma \in \mathbb{E}\mathbb{A}_0} \mu_n(\neg \sigma)$ converges to 0 for $n \to \infty$, concluding $\mu_\infty(\varphi) = 1$.

• Note that $\mathbb{E}\mathbb{A} \not\models \forall x \bot$

• Note that $\mathbb{E}\mathbb{A} \not\models \forall x \perp$ (due to $\mu_{\infty}(\forall x \perp) = 0$).

• Note that $\mathbb{E}\mathbb{A} \not\models \forall x \perp$ (due to $\mu_{\infty}(\forall x \perp) = 0$). So $\mathbb{E}\mathbb{A}$ have a model (UnSAT theory entails everything).

• Note that $\mathbb{E}\mathbb{A} \not\models \forall x \perp$ (due to $\mu_{\infty}(\forall x \perp) = 0$). So $\mathbb{E}\mathbb{A}$ have a model (UnSAT theory entails everything).

 $\mathbb{E}\mathbb{A}$ is complete (assuming ω -categoricity), i.e. for all φ we either have $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$.

• Note that $\mathbb{E}\mathbb{A} \not\models \forall x \perp$ (due to $\mu_{\infty}(\forall x \perp) = 0$). So $\mathbb{E}\mathbb{A}$ have a model (UnSAT theory entails everything).

 $\mathbb{E}\mathbb{A}$ is complete (assuming ω -categoricity), i.e. for all φ we either have $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$.

Proof

• Note that $\mathbb{E}\mathbb{A} \not\models \forall x \perp$ (due to $\mu_{\infty}(\forall x \perp) = 0$). So $\mathbb{E}\mathbb{A}$ have a model (UnSAT theory entails everything).

 $\mathbb{E}\mathbb{A}$ is complete (assuming ω -categoricity), i.e. for all φ we either have $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$.

Proof

• Note that $\mathbb{E}\mathbb{A} \not\models \forall x \perp$ (due to $\mu_{\infty}(\forall x \perp) = 0$). So $\mathbb{E}\mathbb{A}$ have a model (UnSAT theory entails everything).

 $\mathbb{E}\mathbb{A}$ is complete (assuming ω -categoricity), i.e. for all φ we either have $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$.

Proof

Assume that $\mathbb{E}\mathbb{A}$ is not complete.

• Note that $\mathbb{E}\mathbb{A} \not\models \forall x \perp$ (due to $\mu_{\infty}(\forall x \perp) = 0$). So $\mathbb{E}\mathbb{A}$ have a model (UnSAT theory entails everything).

 $\mathbb{E}\mathbb{A}$ is complete (assuming ω -categoricity), i.e. for all φ we either have $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$.

Proof

Assume that $\mathbb{E}\mathbb{A}$ is not complete. Thus we have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \models \neg \varphi$ that are both models of $\mathbb{E}\mathbb{A}$.

Ad absurdum

• Note that $\mathbb{E}\mathbb{A} \not\models \forall x \perp$ (due to $\mu_{\infty}(\forall x \perp) = 0$). So $\mathbb{E}\mathbb{A}$ have a model (UnSAT theory entails everything).

 $\mathbb{E}\mathbb{A}$ is complete (assuming ω -categoricity), i.e. for all φ we either have $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$.

Proof

Assume that $\mathbb{E}\mathbb{A}$ is not complete. Thus we have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \models \neg \varphi$ that are both models of $\mathbb{E}\mathbb{A}$.

• Note that $\mathbb{E}\mathbb{A} \not\models \forall x \perp$ (due to $\mu_{\infty}(\forall x \perp) = 0$). So $\mathbb{E}\mathbb{A}$ have a model (UnSAT theory entails everything).

 $\mathbb{E}\mathbb{A}$ is complete (assuming ω -categoricity), i.e. for all φ we either have $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$.

Proof

Assume that $\mathbb{E}\mathbb{A}$ is not complete. Thus we have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \models \neg \varphi$ that are both models of $\mathbb{E}\mathbb{A}$. Since $|\mathbb{E}\mathbb{A}| = \aleph_0$, by Löwenheim-Skolem we can assume w.l.o.g. that \mathfrak{A} and \mathfrak{B} are also countably-infinite.

• Note that $\mathbb{E}\mathbb{A} \not\models \forall x \perp$ (due to $\mu_{\infty}(\forall x \perp) = 0$). So $\mathbb{E}\mathbb{A}$ have a model (UnSAT theory entails everything).

 $\mathbb{E}\mathbb{A}$ is complete (assuming ω -categoricity), i.e. for all φ we either have $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$.

Proof

Assume that $\mathbb{E}\mathbb{A}$ is not complete. Thus we have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \models \neg \varphi$ that are both models of $\mathbb{E}\mathbb{A}$. Since $|\mathbb{E}\mathbb{A}| = \aleph_0$, by Löwenheim-Skolem we can assume w.l.o.g. that \mathfrak{A} and \mathfrak{B} are also countably-infinite.

• Note that $\mathbb{E}\mathbb{A} \not\models \forall x \perp$ (due to $\mu_{\infty}(\forall x \perp) = 0$). So $\mathbb{E}\mathbb{A}$ have a model (UnSAT theory entails everything).

 $\mathbb{E}\mathbb{A}$ is complete (assuming ω -categoricity), i.e. for all φ we either have $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$.

Proof

Assume that $\mathbb{E}\mathbb{A}$ is not complete. Thus we have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \models \neg \varphi$ that are both models of $\mathbb{E}\mathbb{A}$. Since $|\mathbb{E}\mathbb{A}| = \aleph_0$, by Löwenheim-Skolem we can assume w.l.o.g. that \mathfrak{A} and \mathfrak{B} are also countably-infinite. But then, by ω -categoricity of $\mathbb{E}\mathbb{A}$, we infer $\mathfrak{A} \cong \mathfrak{B}$.

• Note that $\mathbb{E}\mathbb{A} \not\models \forall x \perp$ (due to $\mu_{\infty}(\forall x \perp) = 0$). So $\mathbb{E}\mathbb{A}$ have a model (UnSAT theory entails everything).

 $\mathbb{E}\mathbb{A}$ is complete (assuming ω -categoricity), i.e. for all φ we either have $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$.

Proof

Assume that $\mathbb{E}\mathbb{A}$ is not complete. Thus we have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \models \neg \varphi$ that are both models of $\mathbb{E}\mathbb{A}$. Since $|\mathbb{E}\mathbb{A}| = \aleph_0$, by Löwenheim-Skolem we can assume w.l.o.g. that \mathfrak{A} and \mathfrak{B} are also countably-infinite. But then, by ω -categoricity of $\mathbb{E}\mathbb{A}$, we infer $\mathfrak{A} \cong \mathfrak{B}$.

• Note that $\mathbb{E}\mathbb{A} \not\models \forall x \perp$ (due to $\mu_{\infty}(\forall x \perp) = 0$). So $\mathbb{E}\mathbb{A}$ have a model (UnSAT theory entails everything).

 $\mathbb{E}\mathbb{A}$ is complete (assuming ω -categoricity), i.e. for all φ we either have $\mathbb{E}\mathbb{A} \models \varphi$ or $\mathbb{E}\mathbb{A} \models \neg \varphi$.

Proof

Assume that $\mathbb{E}\mathbb{A}$ is not complete. Thus we have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \models \neg \varphi$ that are both models of $\mathbb{E}\mathbb{A}$.

Since $|\mathbb{E}\mathbb{A}| = \aleph_0$, by Löwenheim-Skolem we can assume w.l.o.g. that \mathfrak{A} and \mathfrak{B} are also countably-infinite. But then, by ω -categoricity of $\mathbb{E}\mathbb{A}$, we infer $\mathfrak{A} \cong \mathfrak{B}$.

Thus $\mathfrak{A} \models \varphi$ and $\mathfrak{A} \models \neg \varphi$ (since $\mathfrak{B} \models \neg \varphi$). A contradiction!

Bartosz "Bart" Bednarczyk

Finite and Algorithmic Model Theory (Lecture 2 Dresden Long)

 $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has precisely one countably-infinite model.

 $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E}\mathbb{A}$ with the domains $A := \{a_1, a_2, \ldots\}$ and $B := \{b_1, b_2, \ldots\}$.

 $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E}\mathbb{A}$ with the domains $A := \{a_1, a_2, \ldots\}$ and $B := \{b_1, b_2, \ldots\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by

 $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E}\mathbb{A}$ with the domains $A := \{a_1, a_2, \ldots\}$ and $B := \{b_1, b_2, \ldots\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by

$\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E}\mathbb{A}$ with the domains $A := \{a_1, a_2, \ldots\}$ and $B := \{b_1, b_2, \ldots\}$.

Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_0, \mathfrak{p}_1, \ldots$

 $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E}\mathbb{A}$ with the domains $A := \{a_1, a_2, \ldots\}$ and $B := \{b_1, b_2, \ldots\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_0, \mathfrak{p}_1, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_i$ will be the desired isomorphism.

 $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E}\mathbb{A}$ with the domains $A := \{a_1, a_2, \ldots\}$ and $B := \{b_1, b_2, \ldots\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_0, \mathfrak{p}_1, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_i$ will be the desired isomorphism. Start from $\mathfrak{p}_0 := \emptyset$.

 $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E}\mathbb{A}$ with the domains $A := \{a_1, a_2, \ldots\}$ and $B := \{b_1, b_2, \ldots\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_0, \mathfrak{p}_1, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_i$ will be the desired isomorphism. Start from $\mathfrak{p}_0 := \emptyset$. Assume that a partial isomorphism $\mathfrak{p}_n = \{a_{i_1} \mapsto b_{i_1}, a_{i_2} \mapsto b_{i_2}, \ldots, a_{i_n} \mapsto b_{i_n}\}$ is given.

 $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E}\mathbb{A}$ with the domains $A := \{a_1, a_2, \ldots\}$ and $B := \{b_1, b_2, \ldots\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_0, \mathfrak{p}_1, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_i$ will be the desired isomorphism. Start from $\mathfrak{p}_0 := \emptyset$. Assume that a partial isomorphism $\mathfrak{p}_n = \{a_{i_1} \mapsto b_{i_1}, a_{i_2} \mapsto b_{i_2}, \ldots, a_{i_n} \mapsto b_{i_n}\}$ is given. Goal: define \mathfrak{p}_{n+1} .

induction

 $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E}\mathbb{A}$ with the domains $A := \{a_1, a_2, \ldots\}$ and $B := \{b_1, b_2, \ldots\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_0, \mathfrak{p}_1, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_i$ will be the desired isomorphism. Start from $\mathfrak{p}_0 := \emptyset$. Assume that a partial isomorphism $\mathfrak{p}_n = \{a_{i_1} \mapsto b_{i_1}, a_{i_2} \mapsto b_{i_2}, \ldots, a_{i_n} \mapsto b_{i_n}\}$ is given. Goal: define \mathfrak{p}_{n+1} .

 $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E}\mathbb{A}$ with the domains $A := \{a_1, a_2, \ldots\}$ and $B := \{b_1, b_2, \ldots\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_0, \mathfrak{p}_1, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_i$ will be the desired isomorphism. Start from $\mathfrak{p}_0 := \emptyset$. Assume that a partial isomorphism $\mathfrak{p}_n = \{a_{i_1} \mapsto b_{i_1}, a_{i_2} \mapsto b_{i_2}, \ldots, a_{i_n} \mapsto b_{i_n}\}$ is given. Goal: define \mathfrak{p}_{n+1} . If n+1 is even, we will select some element from \mathfrak{A}

 $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E}\mathbb{A}$ with the domains $A := \{a_1, a_2, \ldots\}$ and $B := \{b_1, b_2, \ldots\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_0, \mathfrak{p}_1, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_i$ will be the desired isomorphism. Start from $\mathfrak{p}_0 := \emptyset$. Assume that a partial isomorphism $\mathfrak{p}_n = \{a_{i_1} \mapsto b_{i_1}, a_{i_2} \mapsto b_{i_2}, \ldots, a_{i_n} \mapsto b_{i_n}\}$ is given. Goal: define \mathfrak{p}_{n+1} . If n+1 is even, we will select some element from \mathfrak{A} (otherwise proceed analogously in \mathfrak{B} , proof omitted).

 $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E}\mathbb{A}$ with the domains $A := \{a_1, a_2, \ldots\}$ and $B := \{b_1, b_2, \ldots\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_0, \mathfrak{p}_1, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_i$ will be the desired isomorphism. Start from $\mathfrak{p}_0 := \emptyset$. Assume that a partial isomorphism $\mathfrak{p}_n = \{a_{i_1} \mapsto b_{i_1}, a_{i_2} \mapsto b_{i_2}, \ldots, a_{i_n} \mapsto b_{i_n}\}$ is given. Goal: define \mathfrak{p}_{n+1} . If n+1 is even, we will select some element from \mathfrak{A} (otherwise proceed analogously in \mathfrak{B} , proof omitted).

 $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E}\mathbb{A}$ with the domains $A := \{a_1, a_2, \ldots\}$ and $B := \{b_1, b_2, \ldots\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_0, \mathfrak{p}_1, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_i$ will be the desired isomorphism. Start from $\mathfrak{p}_0 := \emptyset$. Assume that a partial isomorphism $\mathfrak{p}_n = \{a_{i_1} \mapsto b_{i_1}, a_{i_2} \mapsto b_{i_2}, \ldots, a_{i_n} \mapsto b_{i_n}\}$ is given. Goal: define \mathfrak{p}_{n+1} . If n+1 is even, we will select some element from \mathfrak{A} (otherwise proceed analogously in \mathfrak{B} , proof omitted). Take $a_k \in A$, for which k is the smallest index so that a_k does not appear in \mathfrak{p}_n .

 $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E}\mathbb{A}$ with the domains $A := \{a_1, a_2, \ldots\}$ and $B := \{b_1, b_2, \ldots\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_0, \mathfrak{p}_1, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_i$ will be the desired isomorphism. Start from $\mathfrak{p}_0 := \emptyset$. Assume that a partial isomorphism $\mathfrak{p}_n = \{a_{i_1} \mapsto b_{i_1}, a_{i_2} \mapsto b_{i_2}, \ldots, a_{i_n} \mapsto b_{i_n}\}$ is given. Goal: define \mathfrak{p}_{n+1} . If n+1 is even, we will select some element from \mathfrak{A} (otherwise proceed analogously in \mathfrak{B} , proof omitted). Take $a_k \in A$, for which k is the smallest index so that a_k does not appear in \mathfrak{p}_n . What do we know about \overline{a} ?

 $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E}\mathbb{A}$ with the domains $A := \{a_1, a_2, \ldots\}$ and $B := \{b_1, b_2, \ldots\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_0, \mathfrak{p}_1, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_i$ will be the desired isomorphism. Start from $\mathfrak{p}_0 := \emptyset$. Assume that a partial isomorphism $\mathfrak{p}_n = \{a_{i_1} \mapsto b_{i_1}, a_{i_2} \mapsto b_{i_2}, \ldots, a_{i_n} \mapsto b_{i_n}\}$ is given. Goal: define \mathfrak{p}_{n+1} . If n+1 is even, we will select some element from \mathfrak{A} (otherwise proceed analogously in \mathfrak{B} , proof omitted). Take $a_k \in A$, for which k is the smallest index so that a_k does not appear in \mathfrak{p}_n . What do we know about \overline{a} ?

 $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E}\mathbb{A}$ with the domains $A := \{a_1, a_2, \ldots\}$ and $B := \{b_1, b_2, \ldots\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_0, \mathfrak{p}_1, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_i$ will be the desired isomorphism. Start from $\mathfrak{p}_0 := \emptyset$. Assume that a partial isomorphism $\mathfrak{p}_n = \{a_{i_1} \mapsto b_{i_1}, a_{i_2} \mapsto b_{i_2}, \ldots, a_{i_n} \mapsto b_{i_n}\}$ is given. Goal: define \mathfrak{p}_{n+1} . If n+1 is even, we will select some element from \mathfrak{A} (otherwise proceed analogously in \mathfrak{B} , proof omitted). Take $a_k \in A$, for which k is the smallest index so that a_k does not appear in \mathfrak{p}_n . What do we know about \overline{a} ? There are unique n- and (n+1)-types s and t

 $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E}\mathbb{A}$ with the domains $A := \{a_1, a_2, \ldots\}$ and $B := \{b_1, b_2, \ldots\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_0, \mathfrak{p}_1, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_i$ will be the desired isomorphism. Start from $\mathfrak{p}_0 := \emptyset$. Assume that a partial isomorphism $\mathfrak{p}_n = \{a_{i_1} \mapsto b_{i_1}, a_{i_2} \mapsto b_{i_2}, \ldots, a_{i_n} \mapsto b_{i_n}\}$ is given. Goal: define \mathfrak{p}_{n+1} . If n+1 is even, we will select some element from \mathfrak{A} (otherwise proceed analogously in \mathfrak{B} , proof omitted). Take $a_k \in A$, for which k is the smallest index so that a_k does not appear in \mathfrak{p}_n . What do we know about \overline{a} ? There are unique n- and (n+1)-types s and t such that $s \subseteq t$, $\mathfrak{A} \models s(a_{i_1}, \ldots, a_{i_n})$, and $\mathfrak{A} \models t(a_{i_1}, \ldots, a_{i_n}, a_k)$.

 $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E}\mathbb{A}$ with the domains $A := \{a_1, a_2, \ldots\}$ and $B := \{b_1, b_2, \ldots\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_0, \mathfrak{p}_1, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_i$ will be the desired isomorphism. Start from $\mathfrak{p}_0 := \emptyset$. Assume that a partial isomorphism $\mathfrak{p}_n = \{a_{i_1} \mapsto b_{i_1}, a_{i_2} \mapsto b_{i_2}, \ldots, a_{i_n} \mapsto b_{i_n}\}$ is given. Goal: define \mathfrak{p}_{n+1} . If n+1 is even, we will select some element from \mathfrak{A} (otherwise proceed analogously in \mathfrak{B} , proof omitted). Take $a_k \in A$, for which k is the smallest index so that a_k does not appear in \mathfrak{p}_n . What do we know about \overline{a} ? There are unique n- and (n+1)-types s and t such that $s \subseteq t$, $\mathfrak{A} \models s(a_{i_1}, \ldots, a_{i_n})$, and $\mathfrak{A} \models t(a_{i_1}, \ldots, a_{i_n}, a_k)$.

 $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E}\mathbb{A}$ with the domains $A := \{a_1, a_2, \ldots\}$ and $B := \{b_1, b_2, \ldots\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_0, \mathfrak{p}_1, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_i$ will be the desired isomorphism. Start from $\mathfrak{p}_0 := \emptyset$. Assume that a partial isomorphism $\mathfrak{p}_n = \{a_{i_1} \mapsto b_{i_1}, a_{i_2} \mapsto b_{i_2}, \ldots, a_{i_n} \mapsto b_{i_n}\}$ is given. Goal: define \mathfrak{p}_{n+1} . If n+1 is even, we will select some element from \mathfrak{A} (otherwise proceed analogously in \mathfrak{B} , proof omitted). Take $a_k \in A$, for which k is the smallest index so that a_k does not appear in \mathfrak{p}_n . What do we know about \overline{a} ? There are unique n- and (n+1)-types s and t such that $s \subseteq t, \mathfrak{A} \models s(a_{i_1}, \ldots, a_{i_n})$, and $\mathfrak{A} \models t(a_{i_1}, \ldots, a_{i_n}, a_k)$. Since \mathfrak{p}_n is a partial isomorphism, we have $\mathfrak{B} \models s(b_{i_1}, \ldots, b_{i_n})$.

 $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E}\mathbb{A}$ with the domains $A := \{a_1, a_2, \ldots\}$ and $B := \{b_1, b_2, \ldots\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_0, \mathfrak{p}_1, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_i$ will be the desired isomorphism. Start from $\mathfrak{p}_0 := \emptyset$. Assume that a partial isomorphism $\mathfrak{p}_n = \{a_{i_1} \mapsto b_{i_1}, a_{i_2} \mapsto b_{i_2}, \ldots, a_{i_n} \mapsto b_{i_n}\}$ is given. Goal: define \mathfrak{p}_{n+1} . If n+1 is even, we will select some element from \mathfrak{A} (otherwise proceed analogously in \mathfrak{B} , proof omitted). Take $a_k \in A$, for which k is the smallest index so that a_k does not appear in \mathfrak{p}_n . What do we know about \overline{a} ? There are unique n- and (n+1)-types s and t such that $s \subseteq t, \mathfrak{A} \models s(a_{i_1}, \ldots, a_{i_n})$, and $\mathfrak{A} \models t(a_{i_1}, \ldots, a_{i_n}, a_k)$. Since \mathfrak{p}_n is a partial isomorphism, we have $\mathfrak{B} \models s(b_{i_1}, \ldots, b_{i_n})$.

 $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E}\mathbb{A}$ with the domains $A := \{a_1, a_2, \ldots\}$ and $B := \{b_1, b_2, \ldots\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_0, \mathfrak{p}_1, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_i$ will be the desired isomorphism. Start from $\mathfrak{p}_0 := \emptyset$. Assume that a partial isomorphism $\mathfrak{p}_n = \{a_{i_1} \mapsto b_{i_1}, a_{i_2} \mapsto b_{i_2}, \ldots, a_{i_n} \mapsto b_{i_n}\}$ is given. Goal: define \mathfrak{p}_{n+1} . If n+1 is even, we will select some element from \mathfrak{A} (otherwise proceed analogously in \mathfrak{B} , proof omitted). Take $a_k \in A$, for which k is the smallest index so that a_k does not appear in \mathfrak{p}_n . What do we know about \overline{a} ? There are unique n- and (n+1)-types s and t such that $s \subseteq t$, $\mathfrak{A} \models s(a_{i_1}, \ldots, a_{i_n})$, and $\mathfrak{A} \models t(a_{i_1}, \ldots, a_{i_n}, a_k)$. Since \mathfrak{p}_n is a partial isomorphism, we have $\mathfrak{B} \models s(b_{i_1}, \ldots, b_{i_n})$. But $\sigma_{s,t} \in \mathbb{E}\mathbb{A}$ and $\mathfrak{B} \models \mathbb{E}\mathbb{A}$!

7 / 8

 $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E}\mathbb{A}$ with the domains $A := \{a_1, a_2, \ldots\}$ and $B := \{b_1, b_2, \ldots\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_0, \mathfrak{p}_1, \ldots$ The union $\bigcup \mathfrak{p}_i$ will be the desired isomorphism. Start from $\mathfrak{p}_0 := \emptyset$. Assume that a partial isomorphism $\mathfrak{p}_n = \{a_{i_1} \mapsto b_{i_1}, a_{i_2} \mapsto b_{i_2}, \dots, a_{i_n} \mapsto b_{i_n}\}$ is given. Goal: define \mathfrak{p}_{n+1} . If n+1 is even, we will select some element from \mathfrak{A} (otherwise proceed analogously in \mathfrak{B} , proof omitted). Take $a_k \in A$, for which k is the smallest index so that a_k does not appear in p_n . What do we know about \overline{a} ? There are unique *n*- and (n+1)-types *s* and *t* such that $s \subseteq t$, $\mathfrak{A} \models s(a_{i_1}, \ldots, a_{i_n})$, and $\mathfrak{A} \models t(a_{i_1}, \ldots, a_{i_n}, a_k)$. Since \mathfrak{p}_n is a partial isomorphism, we have $\mathfrak{B} \models s(b_{i_1}, \ldots, b_{i_n})$. But $\sigma_{s,t} \in \mathbb{E}\mathbb{A}$ and $\mathfrak{B} \models \mathbb{E}\mathbb{A}$! Thus $\mathfrak{B} \models \sigma_{s,t} := \forall x_1 \dots \forall x_n \ s(x_1, \dots, x_n) \rightarrow \exists x_{n+1} \ t(x_1, \dots, x_n, x_{n+1}).$

 $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E}\mathbb{A}$ with the domains $A := \{a_1, a_2, \ldots\}$ and $B := \{b_1, b_2, \ldots\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_0, \mathfrak{p}_1, \ldots$ The union $\bigcup \mathfrak{p}_i$ will be the desired isomorphism. Start from $\mathfrak{p}_0 := \emptyset$. Assume that a partial isomorphism $\mathfrak{p}_n = \{a_{i_1} \mapsto b_{i_1}, a_{i_2} \mapsto b_{i_2}, \dots, a_{i_n} \mapsto b_{i_n}\}$ is given. Goal: define \mathfrak{p}_{n+1} . If n+1 is even, we will select some element from \mathfrak{A} (otherwise proceed analogously in \mathfrak{B} , proof omitted). Take $a_k \in A$, for which k is the smallest index so that a_k does not appear in p_n . What do we know about \overline{a} ? There are unique *n*- and (n+1)-types *s* and *t* such that $s \subseteq t$, $\mathfrak{A} \models s(a_{i_1}, \ldots, a_{i_n})$, and $\mathfrak{A} \models t(a_{i_1}, \ldots, a_{i_n}, a_k)$. Since \mathfrak{p}_n is a partial isomorphism, we have $\mathfrak{B} \models s(b_{i_1}, \ldots, b_{i_n})$. But $\sigma_{s,t} \in \mathbb{E}\mathbb{A}$ and $\mathfrak{B} \models \mathbb{E}\mathbb{A}$! Thus $\mathfrak{B} \models \sigma_{s,t} := \forall x_1 \dots \forall x_n \ s(x_1, \dots, x_n) \rightarrow \exists x_{n+1} \ t(x_1, \dots, x_n, x_{n+1}).$

 $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E}\mathbb{A}$ with the domains $A := \{a_1, a_2, \ldots\}$ and $B := \{b_1, b_2, \ldots\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_0, \mathfrak{p}_1, \ldots$ The union $\bigcup \mathfrak{p}_i$ will be the desired isomorphism. Start from $\mathfrak{p}_0 := \emptyset$. Assume that a partial isomorphism $\mathfrak{p}_n = \{a_{i_1} \mapsto b_{i_1}, a_{i_2} \mapsto b_{i_2}, \dots, a_{i_n} \mapsto b_{i_n}\}$ is given. Goal: define \mathfrak{p}_{n+1} . If n+1 is even, we will select some element from \mathfrak{A} (otherwise proceed analogously in \mathfrak{B} , proof omitted). Take $a_k \in A$, for which k is the smallest index so that a_k does not appear in p_n . What do we know about \overline{a} ? There are unique *n*- and (n+1)-types *s* and *t* such that $s \subseteq t$, $\mathfrak{A} \models s(a_{i_1}, \ldots, a_{i_n})$, and $\mathfrak{A} \models t(a_{i_1}, \ldots, a_{i_n}, a_k)$. Since \mathfrak{p}_n is a partial isomorphism, we have $\mathfrak{B} \models s(b_{i_1}, \ldots, b_{i_n})$. But $\sigma_{s,t} \in \mathbb{E}\mathbb{A}$ and $\mathfrak{B} \models \mathbb{E}\mathbb{A}$! Thus $\mathfrak{B} \models \sigma_{s,t} := \forall x_1 \dots \forall x_n \ s(x_1, \dots, x_n) \rightarrow \exists x_{n+1} \ t(x_1, \dots, x_n, x_{n+1}).$ So there is an $b \in B$ so that $\mathfrak{B} \models t(b_{i_1}, \ldots, b_{i_n}, b)$.

 $\mathbb{E}\mathbb{A}$ is ω -categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E}\mathbb{A}$ with the domains $A := \{a_1, a_2, \ldots\}$ and $B := \{b_1, b_2, \ldots\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_0, \mathfrak{p}_1, \ldots$ The union $\bigcup \mathfrak{p}_i$ will be the desired isomorphism. Start from $\mathfrak{p}_0 := \emptyset$. Assume that a partial isomorphism $\mathfrak{p}_n = \{a_{i_1} \mapsto b_{i_1}, a_{i_2} \mapsto b_{i_2}, \dots, a_{i_n} \mapsto b_{i_n}\}$ is given. Goal: define \mathfrak{p}_{n+1} . If n+1 is even, we will select some element from \mathfrak{A} (otherwise proceed analogously in \mathfrak{B} , proof omitted). Take $a_k \in A$, for which k is the smallest index so that a_k does not appear in \mathfrak{p}_n . What do we know about \overline{a} ? There are unique *n*- and (n+1)-types *s* and *t* such that $s \subseteq t$, $\mathfrak{A} \models s(a_{i_1}, \ldots, a_{i_n})$, and $\mathfrak{A} \models t(a_{i_1}, \ldots, a_{i_n}, a_k)$. Since \mathfrak{p}_n is a partial isomorphism, we have $\mathfrak{B} \models s(b_{i_1}, \ldots, b_{i_n})$. But $\sigma_{s,t} \in \mathbb{E}\mathbb{A}$ and $\mathfrak{B} \models \mathbb{E}\mathbb{A}$! Thus $\mathfrak{B} \models \sigma_{s,t} := \forall x_1 \dots \forall x_n \ s(x_1, \dots, x_n) \rightarrow \exists x_{n+1} \ t(x_1, \dots, x_n, x_{n+1}).$ So there is an $b \in B$ so that $\mathfrak{B} \models t(b_{i_1}, \ldots, b_{i_n}, b)$. Continue from $\mathfrak{p}_{n+1} := \mathfrak{p}_n \cup \{(a_k \mapsto b)\}$. back and forth first not yet covered exploit types realized by \overline{a} ind. ass. $\mathfrak{B} \models \mathbb{E}\mathbb{A}$ Choose a witness induction

Bartosz "Bart" Bednarczyk

Finite and Algorithmic Model Theory (Lecture 2 Dresden Long)

7 / 8

We proved that $\mathbb{E}\mathbb{A}$ has a model unconstructively.

We proved that $\mathbb{E}\mathbb{A}$ has a model unconstructively.

Can we describe the countable model of $\mathbb{E}\mathbb{A}$?

We proved that $\mathbb{E}\mathbb{A}$ has a model unconstructively.	Can we describe the countable model of $\mathbb{E}\mathbb{A}$?

Let $\mathfrak{G} = (V, \mathbb{E})$ be a graph such that

We proved that $\mathbb{E}\mathbb{A}$ has a model unconstructively.	Can we describe the countable model of $\mathbb{E}\mathbb{A}$?

Let $\mathfrak{G} = (V, \mathrm{E})$ be a graph such that $V = \mathbb{N}_+$ and

We proved that $\mathbb{E}\mathbb{A}$ has a model unconstructively.	Can we describe the countable model of $\mathbb{E}\mathbb{A}$?
Let $\mathfrak{G} = (V, \mathrm{E})$ be a graph such that $V = \mathbb{N}_+$ and $(i, j) \in \mathrm{E}^{\mathfrak{G}}$ iff $p_i \mid j$ or $p_j \mid i$	

We proved that $\mathbb{E}\mathbb{A}$ has a model unconstructively.	Can we describe the countable model of $\mathbb{E}\mathbb{A}$?

Let $\mathfrak{G} = (V, \mathbb{E})$ be a graph such that $V = \mathbb{N}_+$ and $(i, j) \in \mathbb{E}^{\mathfrak{G}}$ iff $p_i \mid j$ or $p_j \mid i$ (p_i is the *i*-th prime number)

We proved that $\mathbb{E}\mathbb{A}$ has a model unconstructively.	Can we describe the countable model of $\mathbb{E}\mathbb{A}$?
Let $\mathfrak{G}=(V,\mathrm{E})$ be a graph such that $V=\mathbb{N}_+$ and $(i,j)\in\mathrm{E}^{\mathfrak{C}}$	³ iff $p_i \mid j$ or $p_j \mid i \ (p_i \text{ is the } i\text{-th prime number})$

We proved that $\mathbb{E}\mathbb{A}$ has a model unconstructively. Can we describe the countable model of $\mathbb{E}\mathbb{A}$? Let $\mathfrak{G} = (V, \mathbb{E})$ be a graph such that $V = \mathbb{N}_+$ and $(i, j) \in \mathbb{E}^{\mathfrak{G}}$ iff $p_i \mid j$ or $p_j \mid i$ (p_i is the *i*-th prime number)

Lemma

$$\mathfrak{G}\models\sigma_{s,t}:=\forall x_1\ldots\forall x_n\ s(x_1,\ldots,x_n)\rightarrow\exists x_{n+1}\ t(x_1,\ldots,x_n,x_{n+1})$$

We proved that $\mathbb{E}\mathbb{A}$ has a model unconstructively. Can we describe the countable model of $\mathbb{E}\mathbb{A}$? Let $\mathfrak{G} = (V, \mathbb{E})$ be a graph such that $V = \mathbb{N}_+$ and $(i, j) \in \mathbb{E}^{\mathfrak{G}}$ iff $p_i \mid j$ or $p_j \mid i$ (p_i is the *i*-th prime number)

Lemma

$$\mathfrak{G} \models \sigma_{s,t} := \forall x_1 \dots \forall x_n \ s(x_1, \dots, x_n) \rightarrow \exists x_{n+1} \ t(x_1, \dots, x_n, x_{n+1})$$
Proof

We proved that $\mathbb{E}\mathbb{A}$ has a model unconstructively. Can we describe the countable model of $\mathbb{E}\mathbb{A}$? Let $\mathfrak{G} = (V, \mathbb{E})$ be a graph such that $V = \mathbb{N}_+$ and $(i, j) \in \mathbb{E}^{\mathfrak{G}}$ iff $p_i \mid j$ or $p_j \mid i$ (p_i is the *i*-th prime number)

Lemma

$$\mathfrak{G}\models\sigma_{s,t}:=\forall x_1\ldots\forall x_n\ s(x_1,\ldots,x_n)\rightarrow\exists x_{n+1}\ t(x_1,\ldots,x_n,x_{n+1})$$

Proof

Take any a_1, \ldots, a_k such that $\mathfrak{G} \models s(a_1, \ldots, a_k)$.

We proved that $\mathbb{E}\mathbb{A}$ has a model unconstructively. Can we describe the countable model of $\mathbb{E}\mathbb{A}$? Let $\mathfrak{G} = (V, \mathbb{E})$ be a graph such that $V = \mathbb{N}_+$ and $(i, j) \in \mathbb{E}^{\mathfrak{G}}$ iff $p_i \mid j$ or $p_j \mid i$ (p_i is the *i*-th prime number)

Lemma

$$\mathfrak{G}\models\sigma_{s,t}:=\forall x_1\ldots\forall x_n\ s(x_1,\ldots,x_n)\rightarrow\exists x_{n+1}\ t(x_1,\ldots,x_n,x_{n+1})$$

Proof

Take any a_1, \ldots, a_k such that $\mathfrak{G} \models s(a_1, \ldots, a_k)$. Goal: Find a_{k+1} such that $\mathfrak{G} \models t(a_1, \ldots, a_k, a_{k+1})$.

We proved that $\mathbb{E}\mathbb{A}$ has a model unconstructively. Can we describe the countable model of $\mathbb{E}\mathbb{A}$? Let $\mathfrak{G} = (V, \mathbb{E})$ be a graph such that $V = \mathbb{N}_+$ and $(i, j) \in \mathbb{E}^{\mathfrak{G}}$ iff $p_i \mid j$ or $p_j \mid i$ (p_i is the *i*-th prime number)

Lemma

$$\mathfrak{G}\models\sigma_{s,t}:=\forall x_1\ldots\forall x_n\ s(x_1,\ldots,x_n)\rightarrow\exists x_{n+1}\ t(x_1,\ldots,x_n,x_{n+1})$$

Proof

Take any a_1, \ldots, a_k such that $\mathfrak{G} \models s(a_1, \ldots, a_k)$. Goal: Find a_{k+1} such that $\mathfrak{G} \models t(a_1, \ldots, a_k, a_{k+1})$.

Divide x_1, x_2, \ldots, x_k biased on type connections with k+1

We proved that $\mathbb{E}\mathbb{A}$ has a model unconstructively. Can we describe the countable model of $\mathbb{E}\mathbb{A}$? Let $\mathfrak{G} = (V, \mathbb{E})$ be a graph such that $V = \mathbb{N}_+$ and $(i, j) \in \mathbb{E}^{\mathfrak{G}}$ iff $p_i \mid j$ or $p_j \mid i$ (p_i is the *i*-th prime number)

Lemma

$$\mathfrak{G}\models\sigma_{s,t}:=\forall x_1\ldots\forall x_n\ s(x_1,\ldots,x_n)\rightarrow\exists x_{n+1}\ t(x_1,\ldots,x_n,x_{n+1})$$

Proof

Take any a_1, \ldots, a_k such that $\mathfrak{G} \models s(a_1, \ldots, a_k)$. Goal: Find a_{k+1} such that $\mathfrak{G} \models t(a_1, \ldots, a_k, a_{k+1})$. We divide indices $1, 2, \ldots, k$ into

Divide x_1, x_2, \ldots, x_k biased on type connections with k+1

We proved that $\mathbb{E}\mathbb{A}$ has a model unconstructively. Can we describe the countable model of $\mathbb{E}\mathbb{A}$? Let $\mathfrak{G} = (V, \mathbb{E})$ be a graph such that $V = \mathbb{N}_+$ and $(i, j) \in \mathbb{E}^{\mathfrak{G}}$ iff $p_i \mid j$ or $p_j \mid i$ (p_i is the *i*-th prime number)

Lemma

$$\mathfrak{G} \models \sigma_{s,t} := \forall x_1 \ldots \forall x_n \ s(x_1, \ldots, x_n) \rightarrow \exists x_{n+1} \ t(x_1, \ldots, x_n, x_{n+1})$$

Proof

Take any a_1, \ldots, a_k such that $\mathfrak{G} \models s(a_1, \ldots, a_k)$. Goal: Find a_{k+1} such that $\mathfrak{G} \models t(a_1, \ldots, a_k, a_{k+1})$. We divide indices $1, 2, \ldots, k$ into Con := $\{i \mid E(x_i, x_{k+1}) \in t\}$ and

Divide x_1, x_2, \ldots, x_k biased on type connections with k+1

We proved that $\mathbb{E}\mathbb{A}$ has a model unconstructively. Can we describe the countable model of $\mathbb{E}\mathbb{A}$? Let $\mathfrak{G} = (V, \mathbb{E})$ be a graph such that $V = \mathbb{N}_+$ and $(i, j) \in \mathbb{E}^{\mathfrak{G}}$ iff $p_i \mid j$ or $p_j \mid i$ (p_i is the *i*-th prime number)

Lemma

$$\mathfrak{G} \models \sigma_{s,t} := \forall x_1 \ldots \forall x_n \ s(x_1, \ldots, x_n) \rightarrow \exists x_{n+1} \ t(x_1, \ldots, x_n, x_{n+1})$$

Proof

Take any a_1, \ldots, a_k such that $\mathfrak{G} \models s(a_1, \ldots, a_k)$. Goal: Find a_{k+1} such that $\mathfrak{G} \models t(a_1, \ldots, a_k, a_{k+1})$. We divide indices $1, 2, \ldots, k$ into $\mathsf{Con} := \{i \mid \mathsf{E}(x_i, x_{k+1}) \in t\}$ and $\mathsf{DisC} := \{i \mid \neg \mathsf{E}(x_i, x_{k+1}) \in t\}$.

Divide x_1, x_2, \ldots, x_k biased on type connections with k+1

We proved that $\mathbb{E}\mathbb{A}$ has a model unconstructively. Can we describe the countable model of $\mathbb{E}\mathbb{A}$? Let $\mathfrak{G} = (V, \mathbb{E})$ be a graph such that $V = \mathbb{N}_+$ and $(i, j) \in \mathbb{E}^{\mathfrak{G}}$ iff $p_i \mid j$ or $p_j \mid i$ (p_i is the *i*-th prime number)

Lemma

$$\mathfrak{G} \models \sigma_{s,t} := \forall x_1 \ldots \forall x_n \ s(x_1, \ldots, x_n) \rightarrow \exists x_{n+1} \ t(x_1, \ldots, x_n, x_{n+1})$$

Proof

Take any a_1, \ldots, a_k such that $\mathfrak{G} \models s(a_1, \ldots, a_k)$. Goal: Find a_{k+1} such that $\mathfrak{G} \models t(a_1, \ldots, a_k, a_{k+1})$. We divide indices $1, 2, \ldots, k$ into $Con := \{i \mid E(x_i, x_{k+1}) \in t\}$ and $DisC := \{i \mid \neg E(x_i, x_{k+1}) \in t\}$. Thus, our a_{k+1} must be connected to all a_i with $i \in Con$ and disconnected from all a_i with $i \in DisC$.

Divide x_1, x_2, \ldots, x_k biased on type connections with k+1

We proved that $\mathbb{E}\mathbb{A}$ has a model unconstructively. Can we describe the countable model of $\mathbb{E}\mathbb{A}$? Let $\mathfrak{G} = (V, \mathbb{E})$ be a graph such that $V = \mathbb{N}_+$ and $(i, j) \in \mathbb{E}^{\mathfrak{G}}$ iff $p_i \mid j$ or $p_j \mid i$ (p_i is the *i*-th prime number)

Lemma

$$\mathfrak{G} \models \sigma_{s,t} := \forall x_1 \ldots \forall x_n \ s(x_1, \ldots, x_n) \rightarrow \exists x_{n+1} \ t(x_1, \ldots, x_n, x_{n+1})$$

Proof

Take any a_1, \ldots, a_k such that $\mathfrak{G} \models s(a_1, \ldots, a_k)$. Goal: Find a_{k+1} such that $\mathfrak{G} \models t(a_1, \ldots, a_k, a_{k+1})$. We divide indices $1, 2, \ldots, k$ into $Con := \{i \mid E(x_i, x_{k+1}) \in t\}$ and $DisC := \{i \mid \neg E(x_i, x_{k+1}) \in t\}$. Thus, our a_{k+1} must be connected to all a_i with $i \in Con$ and disconnected from all a_i with $i \in DisC$.

Divide x_1, x_2, \ldots, x_k biased on type connections with k+1 (Dis)connected with $x \approx (non)dividable by the x-th prime number$

We proved that $\mathbb{E}\mathbb{A}$ has a model unconstructively. Can we describe the countable model of $\mathbb{E}\mathbb{A}$? Let $\mathfrak{G} = (V, \mathbb{E})$ be a graph such that $V = \mathbb{N}_+$ and $(i, j) \in \mathbb{E}^{\mathfrak{G}}$ iff $p_i \mid j$ or $p_j \mid i$ (p_i is the *i*-th prime number)

Lemma

$$\mathfrak{G} \models \sigma_{s,t} := \forall x_1 \ldots \forall x_n \ s(x_1, \ldots, x_n) \rightarrow \exists x_{n+1} \ t(x_1, \ldots, x_n, x_{n+1})$$

Proof

Take any a_1, \ldots, a_k such that $\mathfrak{G} \models s(a_1, \ldots, a_k)$. Goal: Find a_{k+1} such that $\mathfrak{G} \models t(a_1, \ldots, a_k, a_{k+1})$. We divide indices $1, 2, \ldots, k$ into $Con := \{i \mid E(x_i, x_{k+1}) \in t\}$ and $DisC := \{i \mid \neg E(x_i, x_{k+1}) \in t\}$. Thus, our a_{k+1} must be connected to all a_i with $i \in Con$ and disconnected from all a_i with $i \in DisC$.

 $a_{k+1} := \prod_{i \in \mathsf{Con}} p_{a_i} \cdot q$, where q is any prime number bigger than $\prod_{i=1}^k p_{a_i}$

Divide x_1, x_2, \ldots, x_k biased on type connections with k+1 (Dis)connected with $x \approx (non)dividable by the x-th prime number$

Finite and Algorithmic Model Theory (Lecture 2 Dresden Long)

8 / 8

Bartosz "Bart" Bednarczyk

We proved that $\mathbb{E}\mathbb{A}$ has a model unconstructively. Can we describe the countable model of $\mathbb{E}\mathbb{A}$? Let $\mathfrak{G} = (V, \mathbb{E})$ be a graph such that $V = \mathbb{N}_+$ and $(i, j) \in \mathbb{E}^{\mathfrak{G}}$ iff $p_i \mid j$ or $p_j \mid i$ (p_i is the *i*-th prime number)

Lemma

$$\mathfrak{G} \models \sigma_{s,t} := \forall x_1 \ldots \forall x_n \ s(x_1, \ldots, x_n) \rightarrow \exists x_{n+1} \ t(x_1, \ldots, x_n, x_{n+1})$$

Proof

Take any a_1, \ldots, a_k such that $\mathfrak{G} \models s(a_1, \ldots, a_k)$. Goal: Find a_{k+1} such that $\mathfrak{G} \models t(a_1, \ldots, a_k, a_{k+1})$. We divide indices $1, 2, \ldots, k$ into $Con := \{i \mid E(x_i, x_{k+1}) \in t\}$ and $DisC := \{i \mid \neg E(x_i, x_{k+1}) \in t\}$. Thus, our a_{k+1} must be connected to all a_i with $i \in Con$ and disconnected from all a_i with $i \in DisC$.

 $a_{k+1} := \prod_{i \in \mathsf{Con}} p_{a_i} \cdot q$, where q is any prime number bigger than $\prod_{i=1}^k p_{a_i}$

And now it is easy to check our choice of a_{k+1} is correct.

Divide x_1, x_2, \ldots, x_k biased on type connections with k+1 (Dis)connected with $x \approx (non)dividable by the x-th prime number$

Copyright of used icons and pictures

- **1.** Universities/DeciGUT/ERC logos downloaded from the corresponding institutional webpages.
- 2. Idea icon created by Vectors Market Flaticon flaticon.com/free-icons/idea.
- 3. Head icons created by Eucalyp Flaticon flaticon.com/free-icons/head
- 4. Dice icons created by Dimi Kazak Flaticon flaticon.com/free-icons/dice