Finite and Algorithmic Model Theory

Lecture 2 (Dresden 19.10.22, Long version)

Lecturer: Bartosz "Bart" Bednarczyk

Technische Universität Dresden \& Uniwersytet Wroceawski

TECHNISCHE
 UNIVERSITÄT DRESDEN

European Research Council
Established by the European Commission

Today's agenda

Today's agenda

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

Today's agenda

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

1. Asymptotic probabilities with examples.

Today's agenda

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

1. Asymptotic probabilities with examples.

Different perspective: What percentage of graphs verify a given FO sentence?

Today's agenda

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

1. Asymptotic probabilities with examples.

Different perspective: What percentage of graphs verify a given FO sentence?
2. Zero-One Law of FO

Today's agenda

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

1. Asymptotic probabilities with examples.

Different perspective: What percentage of graphs verify a given FO sentence?
2. Zero-One Law of FO $=$ Probability that a random structure satisfies φ is always 0 or 1 .

Today's agenda

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

1. Asymptotic probabilities with examples.

Different perspective: What percentage of graphs verify a given FO sentence?
2. Zero-One Law of FO = Probability that a random structure satisfies φ is always 0 or 1 .
3. Proof of the Zero-One Law for FO, based on Grädel's notes [HERE].

Today's agenda

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

1. Asymptotic probabilities with examples.

Different perspective: What percentage of graphs verify a given FO sentence?
2. Zero-One Law of FO $=$ Probability that a random structure satisfies φ is always 0 or 1 .
3. Proof of the Zero-One Law for FO, based on Grädel's notes [HERE].

- Atomic k-types and extensions axioms. Theory $\mathbb{E} \mathbb{A}$ of extension axioms.

Today's agenda

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

1. Asymptotic probabilities with examples.

Different perspective: What percentage of graphs verify a given FO sentence?
2. Zero-One Law of FO $=$ Probability that a random structure satisfies φ is always 0 or 1 .
3. Proof of the Zero-One Law for FO, based on Grädel's notes [HERE].

- Atomic k-types and extensions axioms. Theory $\mathbb{E} \mathbb{A}$ of extension axioms.
- Each extension axiom is almost surely true.

Today's agenda

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

1. Asymptotic probabilities with examples.

Different perspective: What percentage of graphs verify a given FO sentence?
2. Zero-One Law of FO $=$ Probability that a random structure satisfies φ is always 0 or 1 .
3. Proof of the Zero-One Law for FO, based on Grädel's notes [HERE].

- Atomic k-types and extensions axioms. Theory $\mathbb{E} \mathbb{A}$ of extension axioms.
- Each extension axiom is almost surely true.
- $\mathbb{E} \mathbb{A}$ is ω-categorical,

Today's agenda

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

1. Asymptotic probabilities with examples.

Different perspective: What percentage of graphs verify a given FO sentence?
2. Zero-One Law of FO $=$ Probability that a random structure satisfies φ is always 0 or 1 .
3. Proof of the Zero-One Law for FO, based on Grädel's notes [HERE].

- Atomic k-types and extensions axioms. Theory $\mathbb{E} \mathbb{A}$ of extension axioms.
- Each extension axiom is almost surely true.
- $\mathbb{E} \mathbb{A}$ is ω-categorical, i.e. has exactly one countable model up to \cong, the Rado graph (the random graph).

Today's agenda

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

1. Asymptotic probabilities with examples.

Different perspective: What percentage of graphs verify a given FO sentence?
2. Zero-One Law of FO $=$ Probability that a random structure satisfies φ is always 0 or 1 .
3. Proof of the Zero-One Law for FO, based on Grädel's notes [HERE].

- Atomic k-types and extensions axioms. Theory $\mathbb{E} \mathbb{A}$ of extension axioms.
- Each extension axiom is almost surely true.
- $\mathbb{E} \mathbb{A}$ is ω-categorical, i.e. has exactly one countable model up to \cong, the Rado graph (the random graph).
- $\mathbb{E} \mathbb{A}$ is complete,

Today's agenda

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

1. Asymptotic probabilities with examples.

Different perspective: What percentage of graphs verify a given FO sentence?
2. Zero-One Law of FO $=$ Probability that a random structure satisfies φ is always 0 or 1 .
3. Proof of the Zero-One Law for FO, based on Grädel's notes [HERE].

- Atomic k-types and extensions axioms. Theory $\mathbb{E} \mathbb{A}$ of extension axioms.
- Each extension axiom is almost surely true.
- $\mathbb{E} \mathbb{A}$ is ω-categorical, i.e. has exactly one countable model up to \cong, the Rado graph (the random graph).
- $\mathbb{E A}$ is complete, i.e. for all $\varphi \in \mathrm{FO}$ we have $\mathbb{E} \mathbb{A} \models \varphi$ or $\mathbb{E} \mathbb{A} \models \neg \varphi$.

Today's agenda

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

1. Asymptotic probabilities with examples.

Different perspective: What percentage of graphs verify a given FO sentence?
2. Zero-One Law of FO = Probability that a random structure satisfies φ is always 0 or 1 .
3. Proof of the Zero-One Law for FO, based on Grädel's notes [HERE].

- Atomic k-types and extensions axioms. Theory $\mathbb{E} \mathbb{A}$ of extension axioms.
- Each extension axiom is almost surely true.
- $\mathbb{E} \mathbb{A}$ is ω-categorical, i.e. has exactly one countable model up to \cong, the Rado graph (the random graph).
- $\mathbb{E} \mathbb{A}$ is complete, i.e. for all $\varphi \in \mathrm{FO}$ we have $\mathbb{E} \mathbb{A} \models \varphi$ or $\mathbb{E} \mathbb{A} \models \neg \varphi$.

Asymptotic Probabilities

Asymptotic Probabilities

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

Asymptotic Probabilities

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

We consider random graphs,

Asymptotic Probabilities

Proviso: For simplicity we focus on finite, simple, undirected graphs today!
We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$.

Asymptotic Probabilities

Proviso: For simplicity we focus on finite, simple, undirected graphs today!
We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_{n} be the class of simple undirected graphs with n nodes.

Asymptotic Probabilities

Proviso: For simplicity we focus on finite, simple, undirected graphs today!
We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_{n} be the class of simple undirected graphs with n nodes. Of course $\left|\mathcal{G}_{n}\right|=$

Asymptotic Probabilities

Proviso: For simplicity we focus on finite, simple, undirected graphs today!
We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_{n} be the class of simple undirected graphs with n nodes. Of course $\left|\mathcal{G}_{n}\right|=2^{\frac{n(n-1)}{2}}$.

Asymptotic Probabilities

Proviso: For simplicity we focus on finite, simple, undirected graphs today!
We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_{n} be the class of simple undirected graphs with n nodes. Of course $\left|\mathcal{G}_{n}\right|=2^{\frac{n(n-1)}{2}}$.
Let \mathcal{P} be a property of graphs. Let $\mu_{n}(\mathcal{P})=$ "probability that \mathcal{P} holds in a random graph with n nodes".

Asymptotic Probabilities

Proviso: For simplicity we focus on finite, simple, undirected graphs today!
We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_{n} be the class of simple undirected graphs with n nodes. Of course $\left|\mathcal{G}_{n}\right|=2 \frac{n(n-1)}{2}$.
Let \mathcal{P} be a property of graphs. Let $\mu_{n}(\mathcal{P})=$ "probability that \mathcal{P} holds in a random graph with n nodes".
$\mu_{n}(\mathcal{P}):=\frac{\left|\left\{\mathfrak{G} \in \mathcal{G}_{n}: \mathfrak{G} \models \mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|}$

Asymptotic Probabilities

Proviso: For simplicity we focus on finite, simple, undirected graphs today!
We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_{n} be the class of simple undirected graphs with n nodes. Of course $\left|\mathcal{G}_{n}\right|=2 \frac{n(n-1)}{2}$.
Let \mathcal{P} be a property of graphs. Let $\mu_{n}(\mathcal{P})=$ "probability that \mathcal{P} holds in a random graph with n nodes".
$\mu_{n}(\mathcal{P}):=\frac{\left|\left\{\mathfrak{G} \in \mathcal{G}_{n}: \mathfrak{G} \models \mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|} \quad$ Asymptotic probability

Asymptotic Probabilities

Proviso: For simplicity we focus on finite, simple, undirected graphs today!
We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_{n} be the class of simple undirected graphs with n nodes. Of course $\left|\mathcal{G}_{n}\right|=2^{\frac{n(n-1)}{2}}$.
Let \mathcal{P} be a property of graphs. Let $\mu_{n}(\mathcal{P})=$ "probability that \mathcal{P} holds in a random graph with n nodes".
$\mu_{n}(\mathcal{P}):=\frac{\left|\left\{\mathfrak{G} \in \mathcal{G}_{n}: \mathfrak{G} \models \mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|} \quad$ Asymptotic probability

$$
\mu_{\infty}(\mathcal{P}):=\lim _{n \rightarrow \infty} \mu_{n}(\mathcal{P})
$$

Asymptotic Probabilities

Proviso: For simplicity we focus on finite, simple, undirected graphs today!
We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_{n} be the class of simple undirected graphs with n nodes. Of course $\left|\mathcal{G}_{n}\right|=2^{\frac{n(n-1)}{2}}$.
Let \mathcal{P} be a property of graphs. Let $\mu_{n}(\mathcal{P})=$ "probability that \mathcal{P} holds in a random graph with n nodes".
$\mu_{n}(\mathcal{P}):=\frac{\left|\left\{\mathfrak{G} \in \mathcal{G}_{n}: \mathfrak{G} \models \mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|} \quad$ Asymptotic probability

$$
\mu_{\infty}(\mathcal{P}):=\lim _{n \rightarrow \infty} \mu_{n}(\mathcal{P})
$$

Asymptotic Probabilities

Proviso: For simplicity we focus on finite, simple, undirected graphs today!
We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_{n} be the class of simple undirected graphs with n nodes. Of course $\left|\mathcal{G}_{n}\right|=2^{\frac{n(n-1)}{2}}$.
Let \mathcal{P} be a property of graphs. Let $\mu_{n}(\mathcal{P})=$ "probability that \mathcal{P} holds in a random graph with n nodes".
$\mu_{n}(\mathcal{P}):=\frac{\left|\left\{\mathfrak{G} \in \mathcal{G}_{n}: \mathfrak{G} \models \mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|} \quad$ Asymptotic probability

$$
\mu_{\infty}(\mathcal{P}):=\lim _{n \rightarrow \infty} \mu_{n}(\mathcal{P})
$$

Examples

Asymptotic Probabilities

Proviso: For simplicity we focus on finite, simple, undirected graphs today!
We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_{n} be the class of simple undirected graphs with n nodes. Of course $\left|\mathcal{G}_{n}\right|=2^{\frac{n(n-1)}{2}}$.
Let \mathcal{P} be a property of graphs. Let $\mu_{n}(\mathcal{P})=$ "probability that \mathcal{P} holds in a random graph with n nodes".
$\mu_{n}(\mathcal{P}):=\frac{\left|\left\{\mathfrak{G} \in \mathcal{G}_{n}: \mathfrak{G} \models \mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|} \quad$ Asymptotic probability

$$
\mu_{\infty}(\mathcal{P}):=\lim _{n \rightarrow \infty} \mu_{n}(\mathcal{P})
$$

Examples

1. Take $\mathcal{P}:=$ "the graph is complete".

Asymptotic Probabilities

Proviso: For simplicity we focus on finite, simple, undirected graphs today!
We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_{n} be the class of simple undirected graphs with n nodes. Of course $\left|\mathcal{G}_{n}\right|=2^{\frac{n(n-1)}{2}}$.
Let \mathcal{P} be a property of graphs. Let $\mu_{n}(\mathcal{P})=$ "probability that \mathcal{P} holds in a random graph with n nodes".
$\mu_{n}(\mathcal{P}):=\frac{\left|\left\{\mathfrak{G} \in \mathcal{G}_{n}: \mathfrak{G} \models \mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|} \quad$ Asymptotic probability

$$
\mu_{\infty}(\mathcal{P}):=\lim _{n \rightarrow \infty} \mu_{n}(\mathcal{P})
$$

Examples

1. Take $\mathcal{P}:=$ "the graph is complete". Then $\mu_{\infty}(\mathcal{P})=\lim _{n \rightarrow \infty} \frac{\left|\left\{\mathfrak{C} \in \mathcal{G}_{n}: \mathfrak{C} \mid=\mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|}=$

Asymptotic Probabilities

Proviso: For simplicity we focus on finite, simple, undirected graphs today!
We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_{n} be the class of simple undirected graphs with n nodes. Of course $\left|\mathcal{G}_{n}\right|=2^{\frac{n(n-1)}{2}}$.
Let \mathcal{P} be a property of graphs. Let $\mu_{n}(\mathcal{P})=$ "probability that \mathcal{P} holds in a random graph with n nodes".
$\mu_{n}(\mathcal{P}):=\frac{\left|\left\{\mathfrak{G} \in \mathcal{G}_{n}: \mathfrak{G} \models \mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|} \quad$ Asymptotic probability

$$
\mu_{\infty}(\mathcal{P}):=\lim _{n \rightarrow \infty} \mu_{n}(\mathcal{P})
$$

Examples

1. Take $\mathcal{P}:=$ "the graph is complete". Then $\mu_{\infty}(\mathcal{P})=\lim _{n \rightarrow \infty} \frac{\left|\left\{\mathfrak{G} \in \mathcal{G}_{n}: \mathfrak{C} \models \mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|}=\lim _{n \rightarrow \infty} \frac{1}{2 \frac{n(n-1)}{2}}=$

Asymptotic Probabilities

Proviso: For simplicity we focus on finite, simple, undirected graphs today!
We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_{n} be the class of simple undirected graphs with n nodes. Of course $\left|\mathcal{G}_{n}\right|=2^{\frac{n(n-1)}{2}}$.
Let \mathcal{P} be a property of graphs. Let $\mu_{n}(\mathcal{P})=$ "probability that \mathcal{P} holds in a random graph with n nodes".
$\mu_{n}(\mathcal{P}):=\frac{\left|\left\{\mathfrak{G} \in \mathcal{G}_{n}: \mathfrak{G} \models \mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|} \quad$ Asymptotic probability

$$
\mu_{\infty}(\mathcal{P}):=\lim _{n \rightarrow \infty} \mu_{n}(\mathcal{P})
$$

Examples

1. Take $\mathcal{P}:=$ "the graph is complete". Then $\mu_{\infty}(\mathcal{P})=\lim _{n \rightarrow \infty} \frac{\left|\left\{\mathfrak{G} \in \mathcal{G}_{n}: \mathfrak{C} \mid=\mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|}=\lim _{n \rightarrow \infty} \frac{1}{2^{\frac{n(n-1)}{2}}}=0$.

Asymptotic Probabilities

Proviso: For simplicity we focus on finite, simple, undirected graphs today!
We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_{n} be the class of simple undirected graphs with n nodes. Of course $\left|\mathcal{G}_{n}\right|=2^{\frac{n(n-1)}{2}}$.
Let \mathcal{P} be a property of graphs. Let $\mu_{n}(\mathcal{P})=$ "probability that \mathcal{P} holds in a random graph with n nodes".
$\mu_{n}(\mathcal{P}):=\frac{\left|\left\{\mathfrak{G} \in \mathcal{G}_{n}: \mathfrak{G} \models \mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|} \quad$ Asymptotic probability

$$
\mu_{\infty}(\mathcal{P}):=\lim _{n \rightarrow \infty} \mu_{n}(\mathcal{P})
$$

Examples

1. Take $\mathcal{P}:=$ "the graph is complete". Then $\mu_{\infty}(\mathcal{P})=\lim _{n \rightarrow \infty} \frac{\left|\left\{\mathfrak{C} \in \mathcal{G}_{n}: \mathfrak{C} \mid \mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|}=\lim _{n \rightarrow \infty} \frac{1}{2^{\frac{n(n-1)}{2}}}=0$.
2. Take $\mathcal{P}:=$ "the graph has a triangle".

Asymptotic Probabilities

Proviso: For simplicity we focus on finite, simple, undirected graphs today!
We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_{n} be the class of simple undirected graphs with n nodes. Of course $\left|\mathcal{G}_{n}\right|=2^{\frac{n(n-1)}{2}}$.
Let \mathcal{P} be a property of graphs. Let $\mu_{n}(\mathcal{P})=$ "probability that \mathcal{P} holds in a random graph with n nodes".
$\mu_{n}(\mathcal{P}):=\frac{\left|\left\{\mathfrak{G} \in \mathcal{G}_{n}: \mathfrak{G} \models \mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|} \quad$ Asymptotic probability

$$
\mu_{\infty}(\mathcal{P}):=\lim _{n \rightarrow \infty} \mu_{n}(\mathcal{P})
$$

Examples

1. Take $\mathcal{P}:=$ "the graph is complete". Then $\mu_{\infty}(\mathcal{P})=\lim _{n \rightarrow \infty} \frac{\left|\left\{\mathfrak{C} \in \mathcal{G}_{n}: \mathfrak{C} \mid \mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|}=\lim _{n \rightarrow \infty} \frac{1}{2^{\frac{n(n-1)}{2}}}=0$.
2. Take $\mathcal{P}:=$ "the graph has a triangle". $\mu_{3}(\mathcal{P})=\frac{1}{8}$.

Asymptotic Probabilities

Proviso: For simplicity we focus on finite, simple, undirected graphs today!
We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_{n} be the class of simple undirected graphs with n nodes. Of course $\left|\mathcal{G}_{n}\right|=2^{\frac{n(n-1)}{2}}$.

Let \mathcal{P} be a property of graphs. Let $\mu_{n}(\mathcal{P})=$ "probability that \mathcal{P} holds in a random graph with n nodes".
$\mu_{n}(\mathcal{P}):=\frac{\left|\left\{\mathfrak{G} \in \mathcal{G}_{n}: \mathfrak{G} \models \mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|} \quad$ Asymptotic probability

$$
\mu_{\infty}(\mathcal{P}):=\lim _{n \rightarrow \infty} \mu_{n}(\mathcal{P})
$$

Examples

1. Take $\mathcal{P}:=$ "the graph is complete". Then $\mu_{\infty}(\mathcal{P})=\lim _{n \rightarrow \infty} \frac{\left|\left\{\mathfrak{C} \in \mathcal{G}_{n}: \mathfrak{C} \mid \mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|}=\lim _{n \rightarrow \infty} \frac{1}{2^{\frac{n(n-1)}{2}}}=0$.
2. Take $\mathcal{P}:=$ "the graph has a triangle". $\mu_{3}(\mathcal{P})=\frac{1}{8}$. Since $\mu_{3 n}(\mathcal{P}) \geq 1-\left(1-\frac{1}{8}\right)^{n}$, we get

Asymptotic Probabilities

Proviso: For simplicity we focus on finite, simple, undirected graphs today!
We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_{n} be the class of simple undirected graphs with n nodes. Of course $\left|\mathcal{G}_{n}\right|=2^{\frac{n(n-1)}{2}}$.

Let \mathcal{P} be a property of graphs. Let $\mu_{n}(\mathcal{P})=$ "probability that \mathcal{P} holds in a random graph with n nodes".
$\mu_{n}(\mathcal{P}):=\frac{\left|\left\{\mathfrak{G} \in \mathcal{G}_{n}: \mathfrak{G} \models \mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|} \quad$ Asymptotic probability

$$
\mu_{\infty}(\mathcal{P}):=\lim _{n \rightarrow \infty} \mu_{n}(\mathcal{P})
$$

Examples

1. Take $\mathcal{P}:=$ "the graph is complete". Then $\mu_{\infty}(\mathcal{P})=\lim _{n \rightarrow \infty} \frac{\left|\left\{\mathfrak{C} \in \mathcal{G}_{n}: \mathfrak{C} \mid \mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|}=\lim _{n \rightarrow \infty} \frac{1}{2^{\frac{n(n-1)}{2}}}=0$.
2. Take $\mathcal{P}:=$ "the graph has a triangle". $\mu_{3}(\mathcal{P})=\frac{1}{8}$. Since $\mu_{3 n}(\mathcal{P}) \geq 1-\left(1-\frac{1}{8}\right)^{n}$, we get $\mu_{\infty}(\mathcal{P})=1$.

Asymptotic Probabilities

Proviso: For simplicity we focus on finite, simple, undirected graphs today!
We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_{n} be the class of simple undirected graphs with n nodes. Of course $\left|\mathcal{G}_{n}\right|=2 \frac{n(n-1)}{2}$.

Let \mathcal{P} be a property of graphs. Let $\mu_{n}(\mathcal{P})=$ "probability that \mathcal{P} holds in a random graph with n nodes".
$\mu_{n}(\mathcal{P}):=\frac{\left|\left\{\mathfrak{G} \in \mathcal{G}_{n}: \mathfrak{G} \models \mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|} \quad$ Asymptotic probability

$$
\mu_{\infty}(\mathcal{P}):=\lim _{n \rightarrow \infty} \mu_{n}(\mathcal{P})
$$

Examples

1. Take $\mathcal{P}:=$ "the graph is complete". Then $\mu_{\infty}(\mathcal{P})=\lim _{n \rightarrow \infty} \frac{\left|\left\{\mathfrak{C} \in \mathcal{G}_{n}: \mathfrak{C} \mid \mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|}=\lim _{n \rightarrow \infty} \frac{1}{2^{\frac{n(n-1)}{2}}}=0$.
2. Take $\mathcal{P}:=$ "the graph has a triangle". $\mu_{3}(\mathcal{P})=\frac{1}{8}$. Since $\mu_{3 n}(\mathcal{P}) \geq 1-\left(1-\frac{1}{8}\right)^{n}$, we get $\mu_{\infty}(\mathcal{P})=1$.
3. Take $\mathcal{P}:=$ "the graph has even number of edges".

Asymptotic Probabilities

Proviso: For simplicity we focus on finite, simple, undirected graphs today!
We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_{n} be the class of simple undirected graphs with n nodes. Of course $\left|\mathcal{G}_{n}\right|=2 \frac{n(n-1)}{2}$.

Let \mathcal{P} be a property of graphs. Let $\mu_{n}(\mathcal{P})=$ "probability that \mathcal{P} holds in a random graph with n nodes".
$\mu_{n}(\mathcal{P}):=\frac{\left|\left\{\mathfrak{G} \in \mathcal{G}_{n}: \mathfrak{G} \models \mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|} \quad$ Asymptotic probability

$$
\mu_{\infty}(\mathcal{P}):=\lim _{n \rightarrow \infty} \mu_{n}(\mathcal{P})
$$

Examples

1. Take $\mathcal{P}:=$ "the graph is complete". Then $\mu_{\infty}(\mathcal{P})=\lim _{n \rightarrow \infty} \frac{\left|\left\{\mathfrak{C} \in \mathcal{G}_{n}: \mathfrak{C} \mid \mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|}=\lim _{n \rightarrow \infty} \frac{1}{2^{\frac{n(n-1)}{2}}}=0$.
2. Take $\mathcal{P}:=$ "the graph has a triangle". $\mu_{3}(\mathcal{P})=\frac{1}{8}$. Since $\mu_{3 n}(\mathcal{P}) \geq 1-\left(1-\frac{1}{8}\right)^{n}$, we get $\mu_{\infty}(\mathcal{P})=1$.
3. Take $\mathcal{P}:=$ "the graph has even number of edges". $\mu_{\infty}(\mathcal{P})=\frac{1}{2}$. Why?

Asymptotic Probabilities

Proviso: For simplicity we focus on finite, simple, undirected graphs today!
We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_{n} be the class of simple undirected graphs with n nodes. Of course $\left|\mathcal{G}_{n}\right|=2 \frac{n(n-1)}{2}$.

Let \mathcal{P} be a property of graphs. Let $\mu_{n}(\mathcal{P})=$ "probability that \mathcal{P} holds in a random graph with n nodes".
$\mu_{n}(\mathcal{P}):=\frac{\left|\left\{\mathfrak{G} \in \mathcal{G}_{n}: \mathfrak{G} \models \mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|}$
Asymptotic probability

$$
\mu_{\infty}(\mathcal{P}):=\lim _{n \rightarrow \infty} \mu_{n}(\mathcal{P})
$$

Examples

1. Take $\mathcal{P}:=$ "the graph is complete". Then $\mu_{\infty}(\mathcal{P})=\lim _{n \rightarrow \infty} \frac{\left|\left\{\mathcal{G} \in \mathcal{G}_{n} ; \mathfrak{C} \mid \mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|}=\lim _{n \rightarrow \infty} \frac{1}{2 \frac{n(n-1)}{2}}=0$.
2. Take $\mathcal{P}:=$ "the graph has a triangle". $\mu_{3}(\mathcal{P})=\frac{1}{8}$. Since $\mu_{3 n}(\mathcal{P}) \geq 1-\left(1-\frac{1}{8}\right)^{n}$, we get $\mu_{\infty}(\mathcal{P})=1$.
3. Take $\mathcal{P}:=$ "the graph has even number of edges". $\mu_{\infty}(\mathcal{P})=\frac{1}{2}$. Why?
$\mu_{\infty}(\mathcal{P})=\frac{\left|\left\{\mathfrak{G} \in \mathcal{G}_{n}: \mathfrak{G} \models \mathcal{P}\right\}\right|}{2^{\frac{n(n-1)}{2}}}=$

Asymptotic Probabilities

Proviso: For simplicity we focus on finite, simple, undirected graphs today!
We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_{n} be the class of simple undirected graphs with n nodes. Of course $\left|\mathcal{G}_{n}\right|=2 \frac{n(n-1)}{2}$.

Let \mathcal{P} be a property of graphs. Let $\mu_{n}(\mathcal{P})=$ "probability that \mathcal{P} holds in a random graph with n nodes".
$\mu_{n}(\mathcal{P}):=\frac{\left|\left\{\mathfrak{G} \in \mathcal{G}_{n}: \mathfrak{G} \models \mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|}$
Asymptotic probability

$$
\mu_{\infty}(\mathcal{P}):=\lim _{n \rightarrow \infty} \mu_{n}(\mathcal{P})
$$

Examples

1. Take $\mathcal{P}:=$ "the graph is complete". Then $\mu_{\infty}(\mathcal{P})=\lim _{n \rightarrow \infty} \frac{\left|\left\{\mathfrak{C} \in \mathcal{G}_{n}: \mathfrak{C} \mid \mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|}=\lim _{n \rightarrow \infty} \frac{1}{2^{\frac{n(n-1)}{2}}}=0$.
2. Take $\mathcal{P}:=$ "the graph has a triangle". $\mu_{3}(\mathcal{P})=\frac{1}{8}$. Since $\mu_{3 n}(\mathcal{P}) \geq 1-\left(1-\frac{1}{8}\right)^{n}$, we get $\mu_{\infty}(\mathcal{P})=1$.
3. Take $\mathcal{P}:=$ "the graph has even number of edges". $\mu_{\infty}(\mathcal{P})=\frac{1}{2}$. Why?
$\mu_{\infty}(\mathcal{P})=\frac{\left|\left\{\mathfrak{G} \in \mathcal{G}_{n}: \mathfrak{G} \models \mathcal{P}\right\}\right|}{2^{\frac{n(n-1)}{2}}}=\frac{\sum_{i \geq 0}\binom{n(n-1) / 2}{2 i}}{2^{\frac{n(n-1)}{2}}}=$

Asymptotic Probabilities

Proviso: For simplicity we focus on finite, simple, undirected graphs today!
We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_{n} be the class of simple undirected graphs with n nodes. Of course $\left|\mathcal{G}_{n}\right|=2 \frac{n(n-1)}{2}$.

Let \mathcal{P} be a property of graphs. Let $\mu_{n}(\mathcal{P})=$ "probability that \mathcal{P} holds in a random graph with n nodes".
$\mu_{n}(\mathcal{P}):=\frac{\left|\left\{\mathfrak{G} \in \mathcal{G}_{n}: \mathfrak{G} \models \mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|}$
Asymptotic probability

$$
\mu_{\infty}(\mathcal{P}):=\lim _{n \rightarrow \infty} \mu_{n}(\mathcal{P})
$$

Examples

1. Take $\mathcal{P}:=$ "the graph is complete". Then $\mu_{\infty}(\mathcal{P})=\lim _{n \rightarrow \infty} \frac{\left|\left\{\mathfrak{C} \in \mathcal{G}_{n}: \mathfrak{C} \mid \mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|}=\lim _{n \rightarrow \infty} \frac{1}{2^{\frac{n(n-1)}{2}}}=0$.
2. Take $\mathcal{P}:=$ "the graph has a triangle". $\mu_{3}(\mathcal{P})=\frac{1}{8}$. Since $\mu_{3 n}(\mathcal{P}) \geq 1-\left(1-\frac{1}{8}\right)^{n}$, we get $\mu_{\infty}(\mathcal{P})=1$.
3. Take $\mathcal{P}:=$ "the graph has even number of edges". $\mu_{\infty}(\mathcal{P})=\frac{1}{2}$. Why?
$\mu_{\infty}(\mathcal{P})=\frac{\left|\left\{\mathfrak{G} \in \mathcal{G}_{n}: \mathfrak{G} \models \mathcal{P}\right\}\right|}{2^{\frac{n(n-1)}{2}}}=\frac{\sum_{i \geq 0}\binom{n(n-1) / 2}{2 i}}{2^{\frac{n(n-1)}{2}}}=[$ Sum of Even Index Binomial Coeff. $]=$

Asymptotic Probabilities

Proviso: For simplicity we focus on finite, simple, undirected graphs today!
We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_{n} be the class of simple undirected graphs with n nodes. Of course $\left|\mathcal{G}_{n}\right|=2^{\frac{n(n-1)}{2}}$.
Let \mathcal{P} be a property of graphs. Let $\mu_{n}(\mathcal{P})=$ "probability that \mathcal{P} holds in a random graph with n nodes".
$\mu_{n}(\mathcal{P}):=\frac{\left|\left\{\mathfrak{G} \in \mathcal{G}_{n}: \mathfrak{G} \models \mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|}$
Asymptotic probability

$$
\mu_{\infty}(\mathcal{P}):=\lim _{n \rightarrow \infty} \mu_{n}(\mathcal{P})
$$

Examples

1. Take $\mathcal{P}:=$ "the graph is complete". Then $\mu_{\infty}(\mathcal{P})=\lim _{n \rightarrow \infty} \frac{\left|\left\{\mathfrak{C} \in \mathcal{G}_{n}: \mathfrak{C} \mid \mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|}=\lim _{n \rightarrow \infty} \frac{1}{2^{\frac{n(n-1)}{2}}}=0$.
2. Take $\mathcal{P}:=$ "the graph has a triangle". $\mu_{3}(\mathcal{P})=\frac{1}{8}$. Since $\mu_{3 n}(\mathcal{P}) \geq 1-\left(1-\frac{1}{8}\right)^{n}$, we get $\mu_{\infty}(\mathcal{P})=1$.
3. Take $\mathcal{P}:=$ "the graph has even number of edges". $\mu_{\infty}(\mathcal{P})=\frac{1}{2}$. Why?
$\mu_{\infty}(\mathcal{P})=\frac{\left|\left\{\mathfrak{G} \in \mathcal{G}_{n}: \mathfrak{G} \models \mathcal{P}\right\}\right|}{2^{\frac{n(n-1)}{2}}}=\frac{\sum_{i \geq 0}\binom{n(n-1) / 2}{2 i}}{2^{\frac{n(n-1)}{2}}}=[$ Sum of Even Index Binomial Coeff. $]=\frac{2^{\frac{n(n-1)}{2}}-1}{2^{\frac{n(n-1)}{2}}}=$

Asymptotic Probabilities

Proviso: For simplicity we focus on finite, simple, undirected graphs today!
We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_{n} be the class of simple undirected graphs with n nodes. Of course $\left|\mathcal{G}_{n}\right|=2^{\frac{n(n-1)}{2}}$.
Let \mathcal{P} be a property of graphs. Let $\mu_{n}(\mathcal{P})=$ "probability that \mathcal{P} holds in a random graph with n nodes".
$\mu_{n}(\mathcal{P}):=\frac{\left|\left\{\mathfrak{G} \in \mathcal{G}_{n}: \mathfrak{G} \models \mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|}$
Asymptotic probability

$$
\mu_{\infty}(\mathcal{P}):=\lim _{n \rightarrow \infty} \mu_{n}(\mathcal{P})
$$

Examples

1. Take $\mathcal{P}:=$ "the graph is complete". Then $\mu_{\infty}(\mathcal{P})=\lim _{n \rightarrow \infty} \frac{\left|\left\{\mathfrak{C} \in \mathcal{G}_{n}: \mathfrak{C} \mid \mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|}=\lim _{n \rightarrow \infty} \frac{1}{2^{\frac{n(n-1)}{2}}}=0$.
2. Take $\mathcal{P}:=$ "the graph has a triangle". $\mu_{3}(\mathcal{P})=\frac{1}{8}$. Since $\mu_{3 n}(\mathcal{P}) \geq 1-\left(1-\frac{1}{8}\right)^{n}$, we get $\mu_{\infty}(\mathcal{P})=1$.
3. Take $\mathcal{P}:=$ "the graph has even number of edges". $\mu_{\infty}(\mathcal{P})=\frac{1}{2}$. Why?
$\mu_{\infty}(\mathcal{P})=\frac{\left|\left\{\mathfrak{G} \in \mathcal{G}_{n}: \mathfrak{G} \models \mathcal{P}\right\}\right|}{2^{\frac{n(n-1)}{2}}}=\frac{\sum_{i \geq 0}\left(^{n(n-1) / 2} 2 i\right.}{2^{\frac{n(n-1)}{2}}}=[$ Sum of Even Index Binomial Coeff.$]=\frac{2^{\frac{n(n-1)}{2}-1}}{2^{\frac{n(n-1)}{2}}}=\frac{1}{2}$

Asymptotic Probabilities

Proviso: For simplicity we focus on finite, simple, undirected graphs today!
We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_{n} be the class of simple undirected graphs with n nodes. Of course $\left|\mathcal{G}_{n}\right|=2^{\frac{n(n-1)}{2}}$.
Let \mathcal{P} be a property of graphs. Let $\mu_{n}(\mathcal{P})=$ "probability that \mathcal{P} holds in a random graph with n nodes".
$\mu_{n}(\mathcal{P}):=\frac{\left|\left\{\mathfrak{G} \in \mathcal{G}_{n}: \mathfrak{G} \models \mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|}$
Asymptotic probability

$$
\mu_{\infty}(\mathcal{P}):=\lim _{n \rightarrow \infty} \mu_{n}(\mathcal{P})
$$

Examples

1. Take $\mathcal{P}:=$ "the graph is complete". Then $\mu_{\infty}(\mathcal{P})=\lim _{n \rightarrow \infty} \frac{\left|\left\{\mathfrak{C} \in \mathcal{G}_{n}: \mathfrak{C} \mid=\mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|}=\lim _{n \rightarrow \infty} \frac{1}{2^{\frac{n(n-1)}{2}}}=0$.
2. Take $\mathcal{P}:=$ "the graph has a triangle". $\mu_{3}(\mathcal{P})=\frac{1}{8}$. Since $\mu_{3 n}(\mathcal{P}) \geq 1-\left(1-\frac{1}{8}\right)^{n}$, we get $\mu_{\infty}(\mathcal{P})=1$.
3. Take $\mathcal{P}:=$ "the graph has even number of edges". $\mu_{\infty}(\mathcal{P})=\frac{1}{2}$. Why?
$\mu_{\infty}(\mathcal{P})=\frac{\left|\left\{\mathfrak{G} \in \mathcal{G}_{n}: \mathfrak{G} \models \mathcal{P}\right\}\right|}{2^{\frac{n(n-1)}{2}}}=\frac{\sum_{i \geq 0}\left(^{n(n-1) / 2} 2 i\right.}{2^{\frac{n(n-1)}{2}}}=\left[\right.$ Sum of Even Index Binomial Coeff.] $=\frac{2^{\frac{n(n-1)}{2}-1}}{2^{\frac{n(n-1)}{2}}}=\frac{1}{2}$
4. Take $\mathcal{P}:=$ "the graph has even number of nodes".

Asymptotic Probabilities

Proviso: For simplicity we focus on finite, simple, undirected graphs today!
We consider random graphs, according to the uniform distribution, i.e. every edge has probability $\frac{1}{2}$. Let \mathcal{G}_{n} be the class of simple undirected graphs with n nodes. Of course $\left|\mathcal{G}_{n}\right|=2 \frac{n(n-1)}{2}$.

Let \mathcal{P} be a property of graphs. Let $\mu_{n}(\mathcal{P})=$ "probability that \mathcal{P} holds in a random graph with n nodes".
$\mu_{n}(\mathcal{P}):=\frac{\left|\left\{\mathfrak{G} \in \mathcal{G}_{n}: \mathfrak{G} \models \mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|}$
Asymptotic probability

$$
\mu_{\infty}(\mathcal{P}):=\lim _{n \rightarrow \infty} \mu_{n}(\mathcal{P})
$$

Examples

1. Take $\mathcal{P}:=$ "the graph is complete". Then $\mu_{\infty}(\mathcal{P})=\lim _{n \rightarrow \infty} \frac{\left|\left\{\mathfrak{C} \in \mathcal{G}_{n}: \mathfrak{C} \mid=\mathcal{P}\right\}\right|}{\left|\mathcal{G}_{n}\right|}=\lim _{n \rightarrow \infty} \frac{1}{2^{\frac{n(n-1)}{2}}}=0$.
2. Take $\mathcal{P}:=$ "the graph has a triangle". $\mu_{3}(\mathcal{P})=\frac{1}{8}$. Since $\mu_{3 n}(\mathcal{P}) \geq 1-\left(1-\frac{1}{8}\right)^{n}$, we get $\mu_{\infty}(\mathcal{P})=1$.
3. Take $\mathcal{P}:=$ "the graph has even number of edges". $\mu_{\infty}(\mathcal{P})=\frac{1}{2}$. Why?
$\mu_{\infty}(\mathcal{P})=\frac{\left|\left\{\mathfrak{G} \in \mathcal{G}_{n}: \mathfrak{G} \models \mathcal{P}\right\}\right|}{2^{\frac{n(n-1)}{2}}}=\frac{\sum_{i \geq 0}\left(^{n(n-1) / 2} 2 i\right.}{2^{\frac{n(n-1)}{2}}}=\left[\right.$ Sum of Even Index Binomial Coeff.] $=\frac{2^{\frac{n(n-1)}{2}-1}}{2^{\frac{n(n-1)}{2}}}=\frac{1}{2}$
4. Take $\mathcal{P}:=$ "the graph has even number of nodes". Then $\mu_{\infty}(\mathcal{P})$ does not exist.
k-Types and Extension Axioms

k-Types and Extension Axioms

A k-type is a conjunction of formulae with variables x_{1}, \ldots, x_{k} such that for all $i \neq j$ we have

k-Types and Extension Axioms

A k-type is a conjunction of formulae with variables x_{1}, \ldots, x_{k} such that for all $i \neq j$ we have

$$
x_{i} \neq x_{j} \text { and precisely one of } \mathrm{E}\left(x_{i}, x_{j}\right) \text { or } \neg \mathrm{E}\left(x_{i}, x_{j}\right) \text { as a conjunct. }
$$

k-Types and Extension Axioms

A k-type is a conjunction of formulae with variables x_{1}, \ldots, x_{k} such that for all $i \neq j$ we have

$$
x_{i} \neq x_{j} \text { and precisely one of } \mathrm{E}\left(x_{i}, x_{j}\right) \text { or } \neg \mathrm{E}\left(x_{i}, x_{j}\right) \text { as a conjunct. }
$$

k-Types and Extension Axioms

A k-type is a conjunction of formulae with variables x_{1}, \ldots, x_{k} such that for all $i \neq j$ we have

$$
x_{i} \neq x_{j} \text { and precisely one of } \mathrm{E}\left(x_{i}, x_{j}\right) \text { or } \neg \mathrm{E}\left(x_{i}, x_{j}\right) \text { as a conjunct. }
$$

k-Types and Extension Axioms

A k-type is a conjunction of formulae with variables x_{1}, \ldots, x_{k} such that for all $i \neq j$ we have

$$
x_{i} \neq x_{j} \text { and precisely one of } \mathrm{E}\left(x_{i}, x_{j}\right) \text { or } \neg \mathrm{E}\left(x_{i}, x_{j}\right) \text { as a conjunct. }
$$

k-Types and Extension Axioms

A k-type is a conjunction of formulae with variables x_{1}, \ldots, x_{k} such that for all $i \neq j$ we have

$$
x_{i} \neq x_{j} \text { and precisely one of } \mathrm{E}\left(x_{i}, x_{j}\right) \text { or } \neg \mathrm{E}\left(x_{i}, x_{j}\right) \text { as a conjunct. }
$$

$$
\begin{aligned}
t: & x_{1} \neq x_{2} \wedge x_{1} \neq x_{3} \wedge x_{2} \neq x_{3} \wedge \mathrm{E}\left(x_{1}, x_{2}\right) \wedge \neg \mathrm{E}\left(x_{2}, x_{3}\right) \wedge \mathrm{E}\left(x_{1}, x_{3}\right) \\
& \wedge x_{1} \neq x_{4} \wedge x_{2} \neq x_{4} \wedge x_{3} \neq x_{4} \wedge \mathrm{E}\left(x_{1}, x_{4}\right) \wedge \neg \mathrm{E}\left(x_{2}, x_{4}\right) \wedge \mathrm{E}\left(x_{3}, x_{4}\right)
\end{aligned}
$$

k-Types and Extension Axioms

A k-type is a conjunction of formulae with variables x_{1}, \ldots, x_{k} such that for all $i \neq j$ we have

$$
x_{i} \neq x_{j} \text { and precisely one of } \mathrm{E}\left(x_{i}, x_{j}\right) \text { or } \neg \mathrm{E}\left(x_{i}, x_{j}\right) \text { as a conjunct. }
$$

$$
\begin{aligned}
t: & x_{1} \neq x_{2} \wedge x_{1} \neq x_{3} \wedge x_{2} \neq x_{3} \wedge \mathrm{E}\left(x_{1}, x_{2}\right) \wedge \neg \mathrm{E}\left(x_{2}, x_{3}\right) \wedge \mathrm{E}\left(x_{1}, x_{3}\right) \\
& \wedge x_{1} \neq x_{4} \wedge x_{2} \neq x_{4} \wedge x_{3} \neq x_{4} \wedge \mathrm{E}\left(x_{1}, x_{4}\right) \wedge \neg \mathrm{E}\left(x_{2}, x_{4}\right) \wedge \mathrm{E}\left(x_{3}, x_{4}\right)
\end{aligned}
$$

A $(k+1)$-type t extends a k-type s if conjuncts $(s) \subseteq$ conjuncts (t) (c.f. the above picture).

k-Types and Extension Axioms

A k-type is a conjunction of formulae with variables x_{1}, \ldots, x_{k} such that for all $i \neq j$ we have

$$
x_{i} \neq x_{j} \text { and precisely one of } \mathrm{E}\left(x_{i}, x_{j}\right) \text { or } \neg \mathrm{E}\left(x_{i}, x_{j}\right) \text { as a conjunct. }
$$

$$
\begin{aligned}
t: & x_{1} \neq x_{2} \wedge x_{1} \neq x_{3} \wedge x_{2} \neq x_{3} \wedge \mathrm{E}\left(x_{1}, x_{2}\right) \wedge \neg \mathrm{E}\left(x_{2}, x_{3}\right) \wedge \mathrm{E}\left(x_{1}, x_{3}\right) \\
& \wedge x_{1} \neq x_{4} \wedge x_{2} \neq x_{4} \wedge x_{3} \neq x_{4} \wedge \mathrm{E}\left(x_{1}, x_{4}\right) \wedge \neg \mathrm{E}\left(x_{2}, x_{4}\right) \wedge \mathrm{E}\left(x_{3}, x_{4}\right)
\end{aligned}
$$

A $(k+1)$-type t extends a k-type s if conjuncts $(s) \subseteq$ conjuncts (t) (c.f. the above picture).

k-Types and Extension Axioms

A k-type is a conjunction of formulae with variables x_{1}, \ldots, x_{k} such that for all $i \neq j$ we have

$$
x_{i} \neq x_{j} \text { and precisely one of } \mathrm{E}\left(x_{i}, x_{j}\right) \text { or } \neg \mathrm{E}\left(x_{i}, x_{j}\right) \text { as a conjunct. }
$$

$$
\begin{aligned}
t: & x_{1} \neq x_{2} \wedge x_{1} \neq x_{3} \wedge x_{2} \neq x_{3} \wedge \mathrm{E}\left(x_{1}, x_{2}\right) \wedge \neg \mathrm{E}\left(x_{2}, x_{3}\right) \wedge \mathrm{E}\left(x_{1}, x_{3}\right) \\
& \wedge x_{1} \neq x_{4} \wedge x_{2} \neq x_{4} \wedge x_{3} \neq x_{4} \wedge \mathrm{E}\left(x_{1}, x_{4}\right) \wedge \neg \mathrm{E}\left(x_{2}, x_{4}\right) \wedge \mathrm{E}\left(x_{3}, x_{4}\right)
\end{aligned}
$$

A $(k+1)$-type t extends a k-type s if conjuncts $(s) \subseteq \operatorname{conjuncts}(t)$ (c.f. the above picture).
An (s, t)-extension axiom $\sigma_{s, t}$ is $\forall x_{1} \ldots \forall x_{k} s\left(x_{1}, \ldots, x_{k}\right) \rightarrow \exists x_{k+1} t\left(x_{1}, \ldots, x_{k}, x_{k+1}\right)$.

k-Types and Extension Axioms

A k-type is a conjunction of formulae with variables x_{1}, \ldots, x_{k} such that for all $i \neq j$ we have

$$
x_{i} \neq x_{j} \text { and precisely one of } \mathrm{E}\left(x_{i}, x_{j}\right) \text { or } \neg \mathrm{E}\left(x_{i}, x_{j}\right) \text { as a conjunct. }
$$

$$
\begin{aligned}
t: & x_{1} \neq x_{2} \wedge x_{1} \neq x_{3} \wedge x_{2} \neq x_{3} \wedge \mathrm{E}\left(x_{1}, x_{2}\right) \wedge \neg \mathrm{E}\left(x_{2}, x_{3}\right) \wedge \mathrm{E}\left(x_{1}, x_{3}\right) \\
& \wedge x_{1} \neq x_{4} \wedge x_{2} \neq x_{4} \wedge x_{3} \neq x_{4} \wedge \mathrm{E}\left(x_{1}, x_{4}\right) \wedge \neg \mathrm{E}\left(x_{2}, x_{4}\right) \wedge \mathrm{E}\left(x_{3}, x_{4}\right)
\end{aligned}
$$

A $(k+1)$-type t extends a k-type s if conjuncts $(s) \subseteq \operatorname{conjuncts}(t)$ (c.f. the above picture).
An (s, t)-extension axiom $\sigma_{s, t}$ is $\forall x_{1} \ldots \forall x_{k} s\left(x_{1}, \ldots, x_{k}\right) \rightarrow \exists x_{k+1} t\left(x_{1}, \ldots, x_{k}, x_{k+1}\right)$.

$$
\mathbb{E A}:=\left\{\forall x \neg \mathrm{E}(x, x), \forall x y \mathrm{E}(x, y) \rightarrow \mathrm{E}(y, x), \sigma_{s, t} \mid s \text { is } k \text {-type, } t \text { is }(k+1) \text {-type, } t \text { extends } s\right\}
$$

Why the theory $\mathbb{E A}$ is important? Zero-One Law for $\operatorname{FO}[\{E\}]$.

Why the theory $\mathbb{E} \mathbb{A}$ is important? Zero-One Law for $\operatorname{FO}[\{E\}]$.

1. Every extension axiom $\sigma_{s, t}$ from $\mathbb{E A}$ is almost surely true,

Why the theory $\mathbb{E} \mathbb{A}$ is important? Zero-One Law for $\operatorname{FO}[\{E\}]$.

1. Every extension axiom $\sigma_{s, t}$ from $\mathbb{E} \mathbb{A}$ is almost surely true, i.e. $\mu_{\infty}\left(\sigma_{s, t}\right)=1$ (Exercise).

Why the theory $\mathbb{E A}$ is important? Zero-One Law for $\operatorname{FO}[\{E\}]$.

1. Every extension axiom $\sigma_{s, t}$ from $\mathbb{E A}$ is almost surely true, i.e. $\mu_{\infty}\left(\sigma_{s, t}\right)=1$ (Exercise).
2. By Compactness, it follows that $\mathbb{E} \mathbb{A} \models \varphi$ implies $\mu_{\infty}(\varphi)=1$ (TODO).

Why the theory $\mathbb{E A}$ is important? Zero-One Law for $\operatorname{FO}[\{E\}]$.

1. Every extension axiom $\sigma_{s, t}$ from $\mathbb{E A}$ is almost surely true, i.e. $\mu_{\infty}\left(\sigma_{s, t}\right)=1$ (Exercise).
2. By Compactness, it follows that $\mathbb{E A}=\varphi$ implies $\mu_{\infty}(\varphi)=1$ (TODO).
3. The theory $\mathbb{E} \mathbb{A}$ is ω-categorical,

Why the theory $\mathbb{E} \mathbb{A}$ is important? Zero-One Law for $\operatorname{FO}[\{\mathrm{E}\}]$.

1. Every extension axiom $\sigma_{s, t}$ from $\mathbb{E A}$ is almost surely true, i.e. $\mu_{\infty}\left(\sigma_{s, t}\right)=1$ (Exercise).
2. By Compactness, it follows that $\mathbb{E A} \models \varphi$ implies $\mu_{\infty}(\varphi)=1$ (TODO).
3. The theory $\mathbb{E A}$ is ω-categorical, i.e. has exactly one countable model up to \cong (TODO).

Why the theory $\mathbb{E} \mathbb{A}$ is important? Zero-One Law for $\operatorname{FO}[\{\mathrm{E}\}]$.

1. Every extension axiom $\sigma_{s, t}$ from $\mathbb{E A}$ is almost surely true, i.e. $\mu_{\infty}\left(\sigma_{s, t}\right)=1$ (Exercise).
2. By Compactness, it follows that $\mathbb{E A} \models \varphi$ implies $\mu_{\infty}(\varphi)=1$ (TODO).
3. The theory $\mathbb{E A}$ is ω-categorical, i.e. has exactly one countable model up to \cong (TODO).
4. Thus $\mathbb{E} \mathbb{A}$ is complete,

Why the theory $\mathbb{E} \mathbb{A}$ is important? Zero-One Law for $\operatorname{FO}[\{\mathrm{E}\}]$.

1. Every extension axiom $\sigma_{s, t}$ from $\mathbb{E A}$ is almost surely true, i.e. $\mu_{\infty}\left(\sigma_{s, t}\right)=1$ (Exercise).
2. By Compactness, it follows that $\mathbb{E A}=\varphi$ implies $\mu_{\infty}(\varphi)=1$ (TODO).
3. The theory $\mathbb{E A}$ is ω-categorical, i.e. has exactly one countable model up to \cong (TODO).
4. Thus $\mathbb{E} \mathbb{A}$ is complete, i.e. for all $\varphi \in \mathrm{FO}$ we have $\mathbb{E A} \models \varphi$ or $\mathbb{E} \mathbb{A} \models \neg \varphi$ (TODO).

Why the theory $\mathbb{E A}$ is important? Zero-One Law for $\operatorname{FO}[\{E\}]$.

1. Every extension axiom $\sigma_{s, t}$ from $\mathbb{E A}$ is almost surely true, i.e. $\mu_{\infty}\left(\sigma_{s, t}\right)=1$ (Exercise).
2. By Compactness, it follows that $\mathbb{E A} \models \varphi$ implies $\mu_{\infty}(\varphi)=1$ (TODO).
3. The theory $\mathbb{E} \mathbb{A}$ is ω-categorical, i.e. has exactly one countable model up to $\cong(T O D O)$.
4. Thus $\mathbb{E} \mathbb{A}$ is complete, i.e. for all $\varphi \in \mathrm{FO}$ we have $\mathbb{E} \mathbb{A} \models \varphi$ or $\mathbb{E} \mathbb{A} \models \neg \varphi$ (TODO).

Theorem (Glebskii et al. 1969, Fagin 1976)
For every formula $\varphi \in \mathrm{FO}[\{\mathrm{E}\}]$ we have that $\mu_{\infty}(\varphi)$ is either 0 or 1 .

Why the theory $\mathbb{E A}$ is important? Zero-One Law for $\operatorname{FO}[\{E\}]$.

1. Every extension axiom $\sigma_{s, t}$ from $\mathbb{E} \mathbb{A}$ is almost surely true, i.e. $\mu_{\infty}\left(\sigma_{s, t}\right)=1$ (Exercise).
2. By Compactness, it follows that $\mathbb{E A} \models \varphi$ implies $\mu_{\infty}(\varphi)=1$ (TODO).
3. The theory $\mathbb{E} \mathbb{A}$ is ω-categorical, i.e. has exactly one countable model up to $\cong(T O D O)$.
4. Thus $\mathbb{E} \mathbb{A}$ is complete, i.e. for all $\varphi \in \mathrm{FO}$ we have $\mathbb{E} \mathbb{A} \models \varphi$ or $\mathbb{E} \mathbb{A} \models \neg \varphi$ (TODO).

Theorem (Glebskii et al. 1969, Fagin 1976)
For every formula $\varphi \in \mathrm{FO}[\{\mathrm{E}\}]$ we have that $\mu_{\infty}(\varphi)$ is either 0 or 1 .

Proof

Why the theory $\mathbb{E A}$ is important? Zero-One Law for $\operatorname{FO}[\{E\}]$.

1. Every extension axiom $\sigma_{s, t}$ from $\mathbb{E A}$ is almost surely true, i.e. $\mu_{\infty}\left(\sigma_{s, t}\right)=1$ (Exercise).
2. By Compactness, it follows that $\mathbb{E A} \models \varphi$ implies $\mu_{\infty}(\varphi)=1$ (TODO).
3. The theory $\mathbb{E A}$ is ω-categorical, i.e. has exactly one countable model up to \cong (TODO).
4. Thus $\mathbb{E} \mathbb{A}$ is complete, i.e. for all $\varphi \in \mathrm{FO}$ we have $\mathbb{E A} \models \varphi$ or $\mathbb{E} \mathbb{A} \models \neg \varphi$ (TODO).

Theorem (Glebskii et al. 1969, Fagin 1976)
For every formula $\varphi \in \mathrm{FO}[\{\mathrm{E}\}]$ we have that $\mu_{\infty}(\varphi)$ is either 0 or 1 .

Proof

Take any $\varphi \in \operatorname{FO}[\{E\}]$.

Why the theory $\mathbb{E A}$ is important? Zero-One Law for $\operatorname{FO}[\{E\}]$.

1. Every extension axiom $\sigma_{s, t}$ from $\mathbb{E A}$ is almost surely true, i.e. $\mu_{\infty}\left(\sigma_{s, t}\right)=1$ (Exercise).
2. By Compactness, it follows that $\mathbb{E A} \models \varphi$ implies $\mu_{\infty}(\varphi)=1$ (TODO).
3. The theory $\mathbb{E A}$ is ω-categorical, i.e. has exactly one countable model up to \cong (TODO).
4. Thus $\mathbb{E} \mathbb{A}$ is complete, i.e. for all $\varphi \in \mathrm{FO}$ we have $\mathbb{E A} \models \varphi$ or $\mathbb{E} \mathbb{A} \models \neg \varphi$ (TODO).

Theorem (Glebskii et al. 1969, Fagin 1976)
For every formula $\varphi \in \mathrm{FO}[\{\mathrm{E}\}]$ we have that $\mu_{\infty}(\varphi)$ is either 0 or 1 .

Proof

Take any $\varphi \in \operatorname{FO}[\{\mathrm{E}\}]$. By (4) either $\mathbb{E} \mathbb{A} \models \varphi$ or $\mathbb{E} \mathbb{A} \models \neg \varphi$.

Why the theory $\mathbb{E A}$ is important? Zero-One Law for $\operatorname{FO}[\{E\}]$.

1. Every extension axiom $\sigma_{s, t}$ from $\mathbb{E A}$ is almost surely true, i.e. $\mu_{\infty}\left(\sigma_{s, t}\right)=1$ (Exercise).
2. By Compactness, it follows that $\mathbb{E A} \models \varphi$ implies $\mu_{\infty}(\varphi)=1$ (TODO).
3. The theory $\mathbb{E A}$ is ω-categorical, i.e. has exactly one countable model up to \cong (TODO).
4. Thus $\mathbb{E A}$ is complete, i.e. for all $\varphi \in \mathrm{FO}$ we have $\mathbb{E} \mathbb{A} \models \varphi$ or $\mathbb{E} \mathbb{A} \models \neg \varphi$ (TODO).

Theorem (Glebskii et al. 1969, Fagin 1976)
For every formula $\varphi \in \mathrm{FO}[\{\mathrm{E}\}]$ we have that $\mu_{\infty}(\varphi)$ is either 0 or 1 .

Proof

Take any $\varphi \in \operatorname{FO}[\{\mathbb{E}\}]$. By (4) either $\mathbb{E A} \vDash \varphi$ or $\mathbb{E A} \models \neg \varphi$. If $\mathbb{E A} \models \varphi$ then by (2) we have $\mu_{\infty}(\varphi)=1$.

Why the theory $\mathbb{E A}$ is important? Zero-One Law for $\operatorname{FO}[\{E\}]$.

1. Every extension axiom $\sigma_{s, t}$ from $\mathbb{E A}$ is almost surely true, i.e. $\mu_{\infty}\left(\sigma_{s, t}\right)=1$ (Exercise).
2. By Compactness, it follows that $\mathbb{E A} \models \varphi$ implies $\mu_{\infty}(\varphi)=1$ (TODO).
3. The theory $\mathbb{E A}$ is ω-categorical, i.e. has exactly one countable model up to \cong (TODO).
4. Thus $\mathbb{E A}$ is complete, i.e. for all $\varphi \in \mathrm{FO}$ we have $\mathbb{E} \mathbb{A} \models \varphi$ or $\mathbb{E} \mathbb{A} \models \neg \varphi$ (TODO).

Theorem (Glebskii et al. 1969, Fagin 1976)
For every formula $\varphi \in \mathrm{FO}[\{\mathrm{E}\}]$ we have that $\mu_{\infty}(\varphi)$ is either 0 or 1 .

Proof

Take any $\varphi \in \operatorname{FO}[\{\mathbb{E}\}]$. By (4) either $\mathbb{E A} \vDash \varphi$ or $\mathbb{E A} \models \neg \varphi$. If $\mathbb{E A} \models \varphi$ then by (2) we have $\mu_{\infty}(\varphi)=1$. Otherwise $\mathbb{E A} \models \neg \varphi$, so by (2) we infer $\mu_{\infty}(\neg \varphi)=1$,

Why the theory $\mathbb{E A}$ is important? Zero-One Law for $\operatorname{FO}[\{E\}]$.

1. Every extension axiom $\sigma_{s, t}$ from $\mathbb{E A}$ is almost surely true, i.e. $\mu_{\infty}\left(\sigma_{s, t}\right)=1$ (Exercise).
2. By Compactness, it follows that $\mathbb{E A} \models \varphi$ implies $\mu_{\infty}(\varphi)=1$ (TODO).
3. The theory $\mathbb{E A}$ is ω-categorical, i.e. has exactly one countable model up to \cong (TODO).
4. Thus $\mathbb{E A}$ is complete, i.e. for all $\varphi \in \mathrm{FO}$ we have $\mathbb{E} \mathbb{A} \models \varphi$ or $\mathbb{E} \mathbb{A} \models \neg \varphi$ (TODO).

Theorem (Glebskii et al. 1969, Fagin 1976)
For every formula $\varphi \in \mathrm{FO}[\{\mathrm{E}\}]$ we have that $\mu_{\infty}(\varphi)$ is either 0 or 1 .

Proof

Take any $\varphi \in \operatorname{FO}[\{E\}]$. By (4) either $\mathbb{E} \mathbb{A} \models \varphi$ or $\mathbb{E A} \models \neg \varphi$. If $\mathbb{E A} \models \varphi$ then by (2) we have $\mu_{\infty}(\varphi)=1$. Otherwise $\mathbb{E} \mathbb{A} \models \neg \varphi$, so by (2) we infer $\mu_{\infty}(\neg \varphi)=1$, which leads to $\mu_{\infty}(\varphi)=1-\mu_{\infty}(\neg \varphi)=0$.

Why the theory $\mathbb{E A}$ is important? Zero-One Law for $\operatorname{FO}[\{E\}]$.

1. Every extension axiom $\sigma_{s, t}$ from $\mathbb{E A}$ is almost surely true, i.e. $\mu_{\infty}\left(\sigma_{s, t}\right)=1$ (Exercise).
2. By Compactness, it follows that $\mathbb{E A} \models \varphi$ implies $\mu_{\infty}(\varphi)=1$ (TODO).
3. The theory $\mathbb{E A}$ is ω-categorical, i.e. has exactly one countable model up to \cong (TODO).
4. Thus $\mathbb{E} \mathbb{A}$ is complete, i.e. for all $\varphi \in \mathrm{FO}$ we have $\mathbb{E A} \models \varphi$ or $\mathbb{E} \mathbb{A} \models \neg \varphi$ (TODO).

Theorem (Glebskii et al. 1969, Fagin 1976)
For every formula $\varphi \in \mathrm{FO}[\{\mathrm{E}\}]$ we have that $\mu_{\infty}(\varphi)$ is either 0 or 1 .

Proof

Take any $\varphi \in \operatorname{FO}[\{\mathrm{E}\}]$. By (4) either $\mathbb{E A} \vDash \varphi$ or $\mathbb{E A} \models \neg \varphi$. If $\mathbb{E A} \models \varphi$ then by (2) we have $\mu_{\infty}(\varphi)=1$. Otherwise $\mathbb{E} \mathbb{A} \models \neg \varphi$, so by (2) we infer $\mu_{\infty}(\neg \varphi)=1$, which leads to $\mu_{\infty}(\varphi)=1-\mu_{\infty}(\neg \varphi)=0$.

Applications?

Why the theory $\mathbb{E A}$ is important? Zero-One Law for $\operatorname{FO}[\{E\}]$.

1. Every extension axiom $\sigma_{s, t}$ from $\mathbb{E A}$ is almost surely true, i.e. $\mu_{\infty}\left(\sigma_{s, t}\right)=1$ (Exercise).
2. By Compactness, it follows that $\mathbb{E A} \models \varphi$ implies $\mu_{\infty}(\varphi)=1$ (TODO).
3. The theory $\mathbb{E A}$ is ω-categorical, i.e. has exactly one countable model up to \cong (TODO).
4. Thus $\mathbb{E} \mathbb{A}$ is complete, i.e. for all $\varphi \in \mathrm{FO}$ we have $\mathbb{E} \mathbb{A} \models \varphi$ or $\mathbb{E} \mathbb{A} \models \neg \varphi$ (TODO).

Theorem (Glebskii et al. 1969, Fagin 1976)
For every formula $\varphi \in \mathrm{FO}[\{\mathrm{E}\}]$ we have that $\mu_{\infty}(\varphi)$ is either 0 or 1 .

Proof

Take any $\varphi \in \operatorname{FO}[\{E\}]$. By (4) either $\mathbb{E A} \vDash \varphi$ or $\mathbb{E A} \models \neg \varphi$. If $\mathbb{E A} \models \varphi$ then by (2) we have $\mu_{\infty}(\varphi)=1$. Otherwise $\mathbb{E} \mathbb{A} \models \neg \varphi$, so by (2) we infer $\mu_{\infty}(\neg \varphi)=1$, which leads to $\mu_{\infty}(\varphi)=1-\mu_{\infty}(\neg \varphi)=0$.

Applications?

- Evenness of the number of nodes/edges not FO[\{E\}]-definable.

Why the theory $\mathbb{E A}$ is important? Zero-One Law for $\operatorname{FO}[\{E\}]$.

1. Every extension axiom $\sigma_{s, t}$ from $\mathbb{E A}$ is almost surely true, i.e. $\mu_{\infty}\left(\sigma_{s, t}\right)=1$ (Exercise).
2. By Compactness, it follows that $\mathbb{E A} \models \varphi$ implies $\mu_{\infty}(\varphi)=1$ (TODO).
3. The theory $\mathbb{E A}$ is ω-categorical, i.e. has exactly one countable model up to \cong (TODO).
4. Thus $\mathbb{E A}$ is complete, i.e. for all $\varphi \in \mathrm{FO}$ we have $\mathbb{E A} \models \varphi$ or $\mathbb{E} \mathbb{A} \models \neg \varphi$ (TODO).

Theorem (Glebskii et al. 1969, Fagin 1976)
For every formula $\varphi \in \mathrm{FO}[\{\mathrm{E}\}]$ we have that $\mu_{\infty}(\varphi)$ is either 0 or 1 .

Proof

Take any $\varphi \in \operatorname{FO}[\{E\}]$. By (4) either $\mathbb{E A} \vDash \varphi$ or $\mathbb{E A} \models \neg \varphi$. If $\mathbb{E A} \models \varphi$ then by (2) we have $\mu_{\infty}(\varphi)=1$. Otherwise $\mathbb{E} \mathbb{A} \models \neg \varphi$, so by (2) we infer $\mu_{\infty}(\neg \varphi)=1$, which leads to $\mu_{\infty}(\varphi)=1-\mu_{\infty}(\neg \varphi)=0$.

Applications?

- Evenness of the number of nodes/edges not FO[\{E\}]-definable.
- No information about connectivity because $\mu_{\infty}($ "graph is connected" $)=0$.

Proof of $\mathbb{E A} \vDash \varphi$ implies $\mu_{\infty}(\varphi)=1$ (assuming that $\forall \sigma \in \mathbb{E} \mathbb{A} \mu_{\infty}(\sigma)=1$).

Proof of $\mathbb{E A} \models \varphi$ implies $\mu_{\infty}(\varphi)=1$ (assuming that $\forall \sigma \in \mathbb{E} \mathbb{A} \mu_{\infty}(\sigma)=1$). Handy observations for all $\alpha, \beta, \gamma \in \mathrm{FO}[\{\mathrm{E}\}]$ and all $n \in \mathbb{N}$:

Proof of $\mathbb{E} \mathbb{A} \models \varphi$ implies $\mu_{\infty}(\varphi)=1$ (assuming that $\forall \sigma \in \mathbb{E} \mathbb{A} \mu_{\infty}(\sigma)=1$). Handy observations for all $\alpha, \beta, \gamma \in \mathrm{FO}[\{\mathrm{E}\}]$ and all $n \in \mathbb{N}$:

$$
\mu_{n}(\neg \alpha)=1-\mu_{n}(\alpha)
$$

Proof of $\mathbb{E} \mathbb{A} \models \varphi$ implies $\mu_{\infty}(\varphi)=1$ (assuming that $\forall \sigma \in \mathbb{E} \mathbb{A} \mu_{\infty}(\sigma)=1$). Handy observations for all $\alpha, \beta, \gamma \in \mathrm{FO}[\{\mathrm{E}\}]$ and all $n \in \mathbb{N}$:

$$
\mu_{n}(\neg \alpha)=1-\mu_{n}(\alpha)
$$

$$
\mu_{n}(\beta \vee \gamma) \leq \mu_{n}(\beta)+\mu_{n}(\gamma) .
$$

Proof of $\mathbb{E} \mathbb{A} \models \varphi$ implies $\mu_{\infty}(\varphi)=1$ (assuming that $\forall \sigma \in \mathbb{E} \mathbb{A} \mu_{\infty}(\sigma)=1$). Handy observations for all $\alpha, \beta, \gamma \in \mathrm{FO}[\{\mathrm{E}\}]$ and all $n \in \mathbb{N}$:

$$
\mu_{n}(\neg \alpha)=1-\mu_{n}(\alpha)
$$

$$
\mu_{n}(\beta \vee \gamma) \leq \mu_{n}(\beta)+\mu_{n}(\gamma) .
$$

Proof

Proof of $\mathbb{E} \mathbb{A} \models \varphi$ implies $\mu_{\infty}(\varphi)=1$ (assuming that $\forall \sigma \in \mathbb{E} \mathbb{A} \mu_{\infty}(\sigma)=1$). Handy observations for all $\alpha, \beta, \gamma \in \mathrm{FO}[\{\mathrm{E}\}]$ and all $n \in \mathbb{N}$:

$$
\mu_{n}(\neg \alpha)=1-\mu_{n}(\alpha)
$$

$$
\mu_{n}(\beta \vee \gamma) \leq \mu_{n}(\beta)+\mu_{n}(\gamma) .
$$

Proof

Goal: To show $\mu_{\infty}(\varphi)=1$ it suffices to show that $\mu_{n}(\neg \varphi) \rightarrow 0$ when $n \rightarrow \infty$.

Proof of $\mathbb{E} \mathbb{A} \models \varphi$ implies $\mu_{\infty}(\varphi)=1$ (assuming that $\forall \sigma \in \mathbb{E} \mathbb{A} \mu_{\infty}(\sigma)=1$). Handy observations for all $\alpha, \beta, \gamma \in \mathrm{FO}[\{\mathrm{E}\}]$ and all $n \in \mathbb{N}$:

$$
\mu_{n}(\neg \alpha)=1-\mu_{n}(\alpha)
$$

$$
\mu_{n}(\beta \vee \gamma) \leq \mu_{n}(\beta)+\mu_{n}(\gamma) .
$$

Proof

Goal: To show $\mu_{\infty}(\varphi)=1$ it suffices to show that $\mu_{n}(\neg \varphi) \rightarrow 0$ when $n \rightarrow \infty$. Assume $\mathbb{E} \mathbb{A} \models \varphi$.

Proof of $\mathbb{E} \mathbb{A} \models \varphi$ implies $\mu_{\infty}(\varphi)=1$ (assuming that $\forall \sigma \in \mathbb{E} \mathbb{A} \mu_{\infty}(\sigma)=1$). Handy observations for all $\alpha, \beta, \gamma \in \mathrm{FO}[\{\mathrm{E}\}]$ and all $n \in \mathbb{N}$:
$\mu_{n}(\neg \alpha)=1-\mu_{n}(\alpha)$

Compactness: $\mathbb{E} \mathbb{A} \models \varphi$ implies

$$
\mu_{n}(\beta \vee \gamma) \leq \mu_{n}(\beta)+\mu_{n}(\gamma) .
$$

there is $\mathbb{E} \mathbb{A}_{0} \subseteq_{\text {fin }} \mathbb{E A}$ implying φ

Proof

Goal: To show $\mu_{\infty}(\varphi)=1$ it suffices to show that $\mu_{n}(\neg \varphi) \rightarrow 0$ when $n \rightarrow \infty$. Assume $\mathbb{E} \mathbb{A} \models \varphi$.

Proof of $\mathbb{E} \mathbb{A} \models \varphi$ implies $\mu_{\infty}(\varphi)=1$ (assuming that $\forall \sigma \in \mathbb{E} \mathbb{A} \mu_{\infty}(\sigma)=1$). Handy observations for all $\alpha, \beta, \gamma \in \mathrm{FO}[\{\mathrm{E}\}]$ and all $n \in \mathbb{N}$:
$\mu_{n}(\neg \alpha)=1-\mu_{n}(\alpha)$

Compactness: $\mathbb{E A} \models \varphi$ implies

$$
\mu_{n}(\beta \vee \gamma) \leq \mu_{n}(\beta)+\mu_{n}(\gamma) .
$$

there is $\mathbb{E} \mathbb{A}_{0} \subseteq_{\text {fin }} \mathbb{E} \mathbb{A}$ implying φ

Proof

Goal: To show $\mu_{\infty}(\varphi)=1$ it suffices to show that $\mu_{n}(\neg \varphi) \rightarrow 0$ when $n \rightarrow \infty$.
Assume $\mathbb{E} \mathbb{A} \models \varphi$. By compactness, there is a finite $\mathbb{E} \mathbb{A}_{0} \subseteq \mathbb{E} \mathbb{A}$ such that $\mathbb{E A}_{0} \models \varphi$.

Proof of $\mathbb{E} \mathbb{A} \models \varphi$ implies $\mu_{\infty}(\varphi)=1$ (assuming that $\forall \sigma \in \mathbb{E} \mathbb{A} \mu_{\infty}(\sigma)=1$). Handy observations for all $\alpha, \beta, \gamma \in \mathrm{FO}[\{\mathrm{E}\}]$ and all $n \in \mathbb{N}$:
$\mu_{n}(\neg \alpha)=1-\mu_{n}(\alpha)$

Compactness: $\mathbb{E A} \models \varphi$ implies

$$
\mu_{n}(\beta \vee \gamma) \leq \mu_{n}(\beta)+\mu_{n}(\gamma) .
$$

there is $\mathbb{E} \mathbb{A}_{0} \subseteq_{\text {fin }} \mathbb{E} \mathbb{A}$ implying φ

Proof

Goal: To show $\mu_{\infty}(\varphi)=1$ it suffices to show that $\mu_{n}(\neg \varphi) \rightarrow 0$ when $n \rightarrow \infty$.
Assume $\mathbb{E} \mathbb{A} \models \varphi$. By compactness, there is a finite $\mathbb{E} \mathbb{A}_{0} \subseteq \mathbb{E} \mathbb{A}$ such that $\mathbb{E A}_{0} \models \varphi$.
So $\mu_{n}(\varphi) \geq \mu_{n}\left(\wedge \mathbb{E A}_{0}\right)$,

Proof of $\mathbb{E} \mathbb{A} \models \varphi$ implies $\mu_{\infty}(\varphi)=1$ (assuming that $\forall \sigma \in \mathbb{E} \mathbb{A} \mu_{\infty}(\sigma)=1$). Handy observations for all $\alpha, \beta, \gamma \in \mathrm{FO}[\{\mathrm{E}\}]$ and all $n \in \mathbb{N}$:
$\mu_{n}(\neg \alpha)=1-\mu_{n}(\alpha)$

Compactness: $\mathbb{E A} \models \varphi$ implies

$$
\mu_{n}(\beta \vee \gamma) \leq \mu_{n}(\beta)+\mu_{n}(\gamma) .
$$

there is $\mathbb{E} \mathbb{A}_{0} \subseteq_{\text {fin }} \mathbb{E} \mathbb{A}$ implying φ

Proof

Goal: To show $\mu_{\infty}(\varphi)=1$ it suffices to show that $\mu_{n}(\neg \varphi) \rightarrow 0$ when $n \rightarrow \infty$.
Assume $\mathbb{E} \mathbb{A} \models \varphi$. By compactness, there is a finite $\mathbb{E} \mathbb{A}_{0} \subseteq \mathbb{E} \mathbb{A}$ such that $\mathbb{E A}_{0} \models \varphi$.
So $\mu_{n}(\varphi) \geq \mu_{n}\left(\wedge \mathbb{E} \mathbb{A}_{0}\right)$, thus $\mu_{n}\left(\neg \wedge \mathbb{E} \mathbb{A}_{0}\right) \geq \mu_{n}(\neg \varphi)$.

Proof of $\mathbb{E} \mathbb{A} \models \varphi$ implies $\mu_{\infty}(\varphi)=1$ (assuming that $\forall \sigma \in \mathbb{E} \mathbb{A} \mu_{\infty}(\sigma)=1$). Handy observations for all $\alpha, \beta, \gamma \in \mathrm{FO}[\{\mathrm{E}\}]$ and all $n \in \mathbb{N}$:
$\mu_{n}(\neg \alpha)=1-\mu_{n}(\alpha)$

Compactness: $\mathbb{E A} \models \varphi$ implies

$$
\mu_{n}(\beta \vee \gamma) \leq \mu_{n}(\beta)+\mu_{n}(\gamma) .
$$

there is $\mathbb{E} \mathbb{A}_{0} \subseteq_{\text {fin }} \mathbb{E} \mathbb{A}$ implying φ

Proof

Goal: To show $\mu_{\infty}(\varphi)=1$ it suffices to show that $\mu_{n}(\neg \varphi) \rightarrow 0$ when $n \rightarrow \infty$.
Assume $\mathbb{E} \mathbb{A} \models \varphi$. By compactness, there is a finite $\mathbb{E} \mathbb{A}_{0} \subseteq \mathbb{E} \mathbb{A}$ such that $\mathbb{E A}_{0} \models \varphi$.
So $\mu_{n}(\varphi) \geq \mu_{n}\left(\wedge \mathbb{E} \mathbb{A}_{0}\right)$, thus $\mu_{n}\left(\neg \wedge \mathbb{E} \mathbb{A}_{0}\right) \geq \mu_{n}(\neg \varphi)$.
Moreover (by our assumption), $\mu_{n}(\neg \sigma)=1-\mu_{n}(\sigma)$ tends to 0 when $n \rightarrow \infty$.

Proof of $\mathbb{E} \mathbb{A} \models \varphi$ implies $\mu_{\infty}(\varphi)=1$ (assuming that $\forall \sigma \in \mathbb{E} \mathbb{A} \mu_{\infty}(\sigma)=1$). Handy observations for all $\alpha, \beta, \gamma \in \mathrm{FO}[\{\mathrm{E}\}]$ and all $n \in \mathbb{N}$:
$\mu_{n}(\neg \alpha)=1-\mu_{n}(\alpha)$

Compactness: $\mathbb{E A} \models \varphi$ implies

$$
\mu_{n}(\beta \vee \gamma) \leq \mu_{n}(\beta)+\mu_{n}(\gamma) .
$$

there is $\mathbb{E} \mathbb{A}_{0} \subseteq_{\text {fin }} \mathbb{E} \mathbb{A}$ implying φ

Proof

Goal: To show $\mu_{\infty}(\varphi)=1$ it suffices to show that $\mu_{n}(\neg \varphi) \rightarrow 0$ when $n \rightarrow \infty$.
Assume $\mathbb{E A} \models \varphi$. By compactness, there is a finite $\mathbb{E} \mathbb{A}_{0} \subseteq \mathbb{E} \mathbb{A}$ such that $\mathbb{E} \mathbb{A}_{0} \models \varphi$.
So $\mu_{n}(\varphi) \geq \mu_{n}\left(\wedge \mathbb{E} \mathbb{A}_{0}\right)$, thus $\mu_{n}\left(\neg \wedge \mathbb{E} \mathbb{A}_{0}\right) \geq \mu_{n}(\neg \varphi)$.
Moreover (by our assumption), $\mu_{n}(\neg \sigma)=1-\mu_{n}(\sigma)$ tends to 0 when $n \rightarrow \infty$.

$$
\mu_{n}(\neg \varphi) \leq \mu_{n}\left(\neg \wedge \mathbb{E} \mathbb{A}_{0}\right)=\mu_{n}\left(\underset{\sigma \in \mathbb{E} \mathbb{A}_{0}}{\bigvee} \neg \sigma\right) \leq \sum_{\sigma \in \mathbb{E} \mathbb{A}_{0}} \mu_{n}(\neg \sigma)
$$

Proof of $\mathbb{E} \mathbb{A} \models \varphi$ implies $\mu_{\infty}(\varphi)=1$ (assuming that $\forall \sigma \in \mathbb{E} \mathbb{A} \mu_{\infty}(\sigma)=1$). Handy observations for all $\alpha, \beta, \gamma \in \mathrm{FO}[\{\mathrm{E}\}]$ and all $n \in \mathbb{N}$:
$\mu_{n}(\neg \alpha)=1-\mu_{n}(\alpha)$

Compactness: $\mathbb{E} \mathbb{A} \models \varphi$ implies

$$
\mu_{n}(\beta \vee \gamma) \leq \mu_{n}(\beta)+\mu_{n}(\gamma) .
$$

there is $\mathbb{E} \mathbb{A}_{0} \subseteq_{\text {fin }} \mathbb{E A}$ implying φ

Proof

Goal: To show $\mu_{\infty}(\varphi)=1$ it suffices to show that $\mu_{n}(\neg \varphi) \rightarrow 0$ when $n \rightarrow \infty$.
Assume $\mathbb{E} \mathbb{A} \models \varphi$. By compactness, there is a finite $\mathbb{E} \mathbb{A}_{0} \subseteq \mathbb{E} \mathbb{A}$ such that $\mathbb{E A}_{0} \models \varphi$.
So $\mu_{n}(\varphi) \geq \mu_{n}\left(\wedge \mathbb{E} \mathbb{A}_{0}\right)$, thus $\mu_{n}\left(\neg \wedge \mathbb{E} \mathbb{A}_{0}\right) \geq \mu_{n}(\neg \varphi)$.
Moreover (by our assumption), $\mu_{n}(\neg \sigma)=1-\mu_{n}(\sigma)$ tends to 0 when $n \rightarrow \infty$.

$$
\mu_{n}(\neg \varphi) \leq \mu_{n}\left(\neg \wedge \mathbb{E} \mathbb{A}_{0}\right)=\mu_{n}\left(\underset{\sigma \in \mathbb{E A}_{0}}{\vee} \neg \sigma\right) \leq \sum_{\sigma \in \mathbb{E} \mathbb{A}_{0}} \mu_{n}(\neg \sigma)
$$

The sum $\sum_{\sigma \in \mathbb{E} \mathbb{A}_{0}} \mu_{n}(\neg \sigma)$ converges to 0 for $n \rightarrow \infty$, concluding $\mu_{\infty}(\varphi)=1$.

$\mathbb{E} \mathbb{A}$ is satisfiable and complete (assuming ω-categoricity)

$\mathbb{E} \mathbb{A}$ is satisfiable and complete (assuming ω-categoricity)

- Note that $\mathbb{E} \mathbb{A} \not \models \forall x \perp$

$\mathbb{E} \mathbb{A}$ is satisfiable and complete (assuming ω-categoricity)

- Note that $\mathbb{E} \mathbb{A} \forall \forall \forall x \perp$ (due to $\mu_{\infty}(\forall x \perp)=0$).

$\mathbb{E} \mathbb{A}$ is satisfiable and complete (assuming ω-categoricity)

- Note that $\mathbb{E} \mathbb{A} \not \models \forall x \perp$ (due to $\mu_{\infty}(\forall x \perp)=0$). So $\mathbb{E} \mathbb{A}$ have a model (UnSAT theory entails everything).

$\mathbb{E} \mathbb{A}$ is satisfiable and complete (assuming ω-categoricity)

- Note that $\mathbb{E A} \not \models \forall x \perp$ (due to $\mu_{\infty}(\forall x \perp)=0$). So $\mathbb{E} \mathbb{A}$ have a model (UnSAT theory entails everything).
$\mathbb{E} \mathbb{A}$ is complete (assuming ω-categoricity), i.e. for all φ we either have $\mathbb{E} \mathbb{A} \models \varphi$ or $\mathbb{E} \mathbb{A} \models \neg \varphi$.

$\mathbb{E} \mathbb{A}$ is satisfiable and complete (assuming ω-categoricity)

- Note that $\mathbb{E} \mathbb{A} \not \models \forall x \perp$ (due to $\mu_{\infty}(\forall x \perp)=0$). So $\mathbb{E} \mathbb{A}$ have a model (UnSAT theory entails everything).
$\mathbb{E} \mathbb{A}$ is complete (assuming ω-categoricity), i.e. for all φ we either have $\mathbb{E} \mathbb{A} \models \varphi$ or $\mathbb{E} \mathbb{A} \models \neg \varphi$.

Proof

$\mathbb{E} \mathbb{A}$ is satisfiable and complete (assuming ω-categoricity)

- Note that $\mathbb{E} \mathbb{A} \not \models \forall x \perp$ (due to $\mu_{\infty}(\forall x \perp)=0$). So $\mathbb{E} \mathbb{A}$ have a model (UnSAT theory entails everything).
$\mathbb{E} \mathbb{A}$ is complete (assuming ω-categoricity), i.e. for all φ we either have $\mathbb{E} \mathbb{A} \models \varphi$ or $\mathbb{E} \mathbb{A} \models \neg \varphi$.

Proof

Ad absurdum

$\mathbb{E} \mathbb{A}$ is satisfiable and complete (assuming ω-categoricity)

- Note that $\mathbb{E} \mathbb{A} \not \models \forall x \perp$ (due to $\mu_{\infty}(\forall x \perp)=0$). So $\mathbb{E} \mathbb{A}$ have a model (UnSAT theory entails everything).
$\mathbb{E} \mathbb{A}$ is complete (assuming ω-categoricity), i.e. for all φ we either have $\mathbb{E} \mathbb{A} \models \varphi$ or $\mathbb{E} \mathbb{A} \models \neg \varphi$.

Proof

Assume that $\mathbb{E} \mathbb{A}$ is not complete.

Ad absurdum

$\mathbb{E} \mathbb{A}$ is satisfiable and complete (assuming ω-categoricity)

- Note that $\mathbb{E} \mathbb{A} \not \models \forall x \perp$ (due to $\mu_{\infty}(\forall x \perp)=0$). So $\mathbb{E} \mathbb{A}$ have a model (UnSAT theory entails everything).
$\mathbb{E} \mathbb{A}$ is complete (assuming ω-categoricity), i.e. for all φ we either have $\mathbb{E} \mathbb{A} \models \varphi$ or $\mathbb{E} \mathbb{A} \models \neg \varphi$.

Proof

Assume that $\mathbb{E A}$ is not complete. Thus we have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \models \neg \varphi$ that are both models of $\mathbb{E} \mathbb{A}$.

Ad absurdum

$\mathbb{E} \mathbb{A}$ is satisfiable and complete (assuming ω-categoricity)

- Note that $\mathbb{E} \mathbb{A} \not \models \forall x \perp$ (due to $\mu_{\infty}(\forall x \perp)=0$). So $\mathbb{E} \mathbb{A}$ have a model (UnSAT theory entails everything).
$\mathbb{E} \mathbb{A}$ is complete (assuming ω-categoricity), i.e. for all φ we either have $\mathbb{E} \mathbb{A} \models \varphi$ or $\mathbb{E} \mathbb{A} \models \neg \varphi$.

Proof

Assume that $\mathbb{E A}$ is not complete. Thus we have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \models \neg \varphi$ that are both models of $\mathbb{E A}$.

$\mathbb{E} \mathbb{A}$ is satisfiable and complete (assuming ω-categoricity)

- Note that $\mathbb{E} \mathbb{A} \not \models \forall x \perp$ (due to $\mu_{\infty}(\forall x \perp)=0$). So $\mathbb{E} \mathbb{A}$ have a model (UnSAT theory entails everything).
$\mathbb{E} \mathbb{A}$ is complete (assuming ω-categoricity), i.e. for all φ we either have $\mathbb{E} \mathbb{A} \models \varphi$ or $\mathbb{E} \mathbb{A} \models \neg \varphi$.

Proof

Assume that $\mathbb{E A}$ is not complete. Thus we have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \models \neg \varphi$ that are both models of $\mathbb{E} \mathbb{A}$. Since $|\mathbb{E} \mathbb{A}|=\aleph_{0}$, by Löwenheim-Skolem we can assume w.l.o.g. that \mathfrak{A} and \mathfrak{B} are also countably-infinite.

$\mathbb{E} \mathbb{A}$ is satisfiable and complete (assuming ω-categoricity)

- Note that $\mathbb{E} \mathbb{A} \not \models \forall x \perp$ (due to $\mu_{\infty}(\forall x \perp)=0$). So $\mathbb{E} \mathbb{A}$ have a model (UnSAT theory entails everything).
$\mathbb{E} \mathbb{A}$ is complete (assuming ω-categoricity), i.e. for all φ we either have $\mathbb{E} \mathbb{A} \models \varphi$ or $\mathbb{E} \mathbb{A} \models \neg \varphi$.

Proof

Assume that $\mathbb{E A}$ is not complete. Thus we have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \models \neg \varphi$ that are both models of $\mathbb{E} \mathbb{A}$. Since $|\mathbb{E} \mathbb{A}|=\aleph_{0}$, by Löwenheim-Skolem we can assume w.l.o.g. that \mathfrak{A} and \mathfrak{B} are also countably-infinite.

ω-categoricity

$\mathbb{E} \mathbb{A}$ is satisfiable and complete (assuming ω-categoricity)

- Note that $\mathbb{E} \mathbb{A} \not \models \forall x \perp$ (due to $\mu_{\infty}(\forall x \perp)=0$). So $\mathbb{E} \mathbb{A}$ have a model (UnSAT theory entails everything).

$$
\mathbb{E} \mathbb{A} \text { is complete (assuming } \omega \text {-categoricity), i.e. for all } \varphi \text { we either have } \mathbb{E} \mathbb{A} \models \varphi \text { or } \mathbb{E} \mathbb{A} \models \neg \varphi \text {. }
$$

Proof

Assume that $\mathbb{E A}$ is not complete. Thus we have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \models \neg \varphi$ that are both models of $\mathbb{E A}$. Since $|\mathbb{E} \mathbb{A}|=\aleph_{0}$, by Löwenheim-Skolem we can assume w.l.o.g. that \mathfrak{A} and \mathfrak{B} are also countably-infinite. But then, by ω-categoricity of $\mathbb{E} \mathbb{A}$, we infer $\mathfrak{A} \cong \mathfrak{B}$.

ω-categoricity

$\mathbb{E} \mathbb{A}$ is satisfiable and complete (assuming ω-categoricity)

- Note that $\mathbb{E} \mathbb{A} \not \models \forall x \perp$ (due to $\mu_{\infty}(\forall x \perp)=0$). So $\mathbb{E} \mathbb{A}$ have a model (UnSAT theory entails everything).

$$
\mathbb{E} \mathbb{A} \text { is complete (assuming } \omega \text {-categoricity), i.e. for all } \varphi \text { we either have } \mathbb{E} \mathbb{A} \models \varphi \text { or } \mathbb{E} \mathbb{A} \models \neg \varphi \text {. }
$$

Proof

Assume that $\mathbb{E A}$ is not complete. Thus we have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \models \neg \varphi$ that are both models of $\mathbb{E A}$. Since $|\mathbb{E} \mathbb{A}|=\aleph_{0}$, by Löwenheim-Skolem we can assume w.l.o.g. that \mathfrak{A} and \mathfrak{B} are also countably-infinite. But then, by ω-categoricity of $\mathbb{E} \mathbb{A}$, we infer $\mathfrak{A} \cong \mathfrak{B}$.

$\mathbb{E} \mathbb{A}$ is satisfiable and complete (assuming ω-categoricity)

- Note that $\mathbb{E} \mathbb{A} \not \models \forall x \perp$ (due to $\mu_{\infty}(\forall x \perp)=0$). So $\mathbb{E} \mathbb{A}$ have a model (UnSAT theory entails everything).
$\mathbb{E} \mathbb{A}$ is complete (assuming ω-categoricity), i.e. for all φ we either have $\mathbb{E} \mathbb{A} \models \varphi$ or $\mathbb{E} \mathbb{A} \models \neg \varphi$.

Proof

Assume that $\mathbb{E A}$ is not complete. Thus we have $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \models \neg \varphi$ that are both models of $\mathbb{E} \mathbb{A}$. Since $|\mathbb{E} \mathbb{A}|=\aleph_{0}$, by Löwenheim-Skolem we can assume w.l.o.g. that \mathfrak{A} and \mathfrak{B} are also countably-infinite. But then, by ω-categoricity of $\mathbb{E} \mathbb{A}$, we infer $\mathfrak{A} \cong \mathfrak{B}$.
Thus $\mathfrak{A} \models \varphi$ and $\mathfrak{A} \models \neg \varphi$ (since $\mathfrak{B} \models \neg \varphi$). A contradiction!

Today's final boss: $\mathbb{E} \mathbb{A}$ is ω-categorical

Today's final boss: $\mathbb{E} \mathbb{A}$ is ω-categorical
$\mathbb{E} \mathbb{A}$ is ω-categorical, i.e. has precisely one countably-infinite model.

Today's final boss: $\mathbb{E} \mathbb{A}$ is ω-categorical

$\mathbb{E} \mathbb{A}$ is ω-categorical, i.e. has precisely one countably-infinite model.
Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E} \mathbb{A}$ with the domains $A:=\left\{a_{1}, a_{2}, \ldots\right\}$ and $B:=\left\{b_{1}, b_{2}, \ldots\right\}$.

Today's final boss: $\mathbb{E} \mathbb{A}$ is ω-categorical

$\mathbb{E} \mathbb{A}$ is ω-categorical, i.e. has precisely one countably-infinite model.
Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E} \mathbb{A}$ with the domains $A:=\left\{a_{1}, a_{2}, \ldots\right\}$ and $B:=\left\{b_{1}, b_{2}, \ldots\right\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by

Today's final boss: $\mathbb{E} \mathbb{A}$ is ω-categorical

$\mathbb{E} \mathbb{A}$ is ω-categorical, i.e. has precisely one countably-infinite model.
Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E} \mathbb{A}$ with the domains $A:=\left\{a_{1}, a_{2}, \ldots\right\}$ and $B:=\left\{b_{1}, b_{2}, \ldots\right\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by

Today's final boss: $\mathbb{E} \mathbb{A}$ is ω-categorical

$\mathbb{E} \mathbb{A}$ is ω-categorical, i.e. has precisely one countably-infinite model.
Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E} \mathbb{A}$ with the domains $A:=\left\{a_{1}, a_{2}, \ldots\right\}$ and $B:=\left\{b_{1}, b_{2}, \ldots\right\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_{0}, \mathfrak{p}_{1}, \ldots$

Today's final boss: $\mathbb{E} \mathbb{A}$ is ω-categorical

$\mathbb{E} \mathbb{A}$ is ω-categorical, i.e. has precisely one countably-infinite model.
Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E} \mathbb{A}$ with the domains $A:=\left\{a_{1}, a_{2}, \ldots\right\}$ and $B:=\left\{b_{1}, b_{2}, \ldots\right\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_{0}, \mathfrak{p}_{1}, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_{i}$ will be the desired isomorphism.

Today's final boss: $\mathbb{E} \mathbb{A}$ is ω-categorical

$\mathbb{E} \mathbb{A}$ is ω-categorical, i.e. has precisely one countably-infinite model.
Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E} \mathbb{A}$ with the domains $A:=\left\{a_{1}, a_{2}, \ldots\right\}$ and $B:=\left\{b_{1}, b_{2}, \ldots\right\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_{0}, \mathfrak{p}_{1}, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_{i}$ will be the desired isomorphism. Start from $\mathfrak{p}_{0}:=\emptyset$.

Today's final boss: $\mathbb{E} \mathbb{A}$ is ω-categorical

$\mathbb{E} \mathbb{A}$ is ω-categorical, i.e. has precisely one countably-infinite model.
Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E A}$ with the domains $A:=\left\{a_{1}, a_{2}, \ldots\right\}$ and $B:=\left\{b_{1}, b_{2}, \ldots\right\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_{0}, \mathfrak{p}_{1}, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_{i}$ will be the desired isomorphism. Start from $\mathfrak{p}_{0}:=\emptyset$.
Assume that a partial isomorphism $\mathfrak{p}_{n}=\left\{a_{i_{1}} \mapsto b_{i_{1}}, a_{i_{2}} \mapsto b_{i_{2}}, \ldots, a_{i_{n}} \mapsto b_{i_{n}}\right\}$ is given.
induction

Today's final boss: $\mathbb{E} \mathbb{A}$ is ω-categorical

$\mathbb{E} \mathbb{A}$ is ω-categorical, i.e. has precisely one countably-infinite model.
Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E} \mathbb{A}$ with the domains $A:=\left\{a_{1}, a_{2}, \ldots\right\}$ and $B:=\left\{b_{1}, b_{2}, \ldots\right\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_{0}, \mathfrak{p}_{1}, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_{i}$ will be the desired isomorphism. Start from $\mathfrak{p}_{0}:=\emptyset$.
Assume that a partial isomorphism $\mathfrak{p}_{n}=\left\{a_{i_{1}} \mapsto b_{i_{1}}, a_{i_{2}} \mapsto b_{i_{2}}, \ldots, a_{i_{n}} \mapsto b_{i_{n}}\right\}$ is given. Goal: define \mathfrak{p}_{n+1}.

Today's final boss: $\mathbb{E} \mathbb{A}$ is ω-categorical

$\mathbb{E} \mathbb{A}$ is ω-categorical, i.e. has precisely one countably-infinite model.
Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E A}$ with the domains $A:=\left\{a_{1}, a_{2}, \ldots\right\}$ and $B:=\left\{b_{1}, b_{2}, \ldots\right\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_{0}, \mathfrak{p}_{1}, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_{i}$ will be the desired isomorphism. Start from $\mathfrak{p}_{0}:=\emptyset$.
Assume that a partial isomorphism $\mathfrak{p}_{n}=\left\{a_{i_{1}} \mapsto b_{i_{1}}, a_{i_{2}} \mapsto b_{i_{2}}, \ldots, a_{i_{n}} \mapsto b_{i_{n}}\right\}$ is given. Goal: define \mathfrak{p}_{n+1}.
induction $-$
back and forth

Today's final boss: $\mathbb{E} \mathbb{A}$ is ω-categorical

$\mathbb{E} \mathbb{A}$ is ω-categorical, i.e. has precisely one countably-infinite model.
Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E} \mathbb{A}$ with the domains $A:=\left\{a_{1}, a_{2}, \ldots\right\}$ and $B:=\left\{b_{1}, b_{2}, \ldots\right\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_{0}, \mathfrak{p}_{1}, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_{i}$ will be the desired isomorphism. Start from $\mathfrak{p}_{0}:=\emptyset$.
Assume that a partial isomorphism $\mathfrak{p}_{n}=\left\{a_{i_{1}} \mapsto b_{i_{1}}, a_{i_{2}} \mapsto b_{i_{2}}, \ldots, a_{i_{n}} \mapsto b_{i_{n}}\right\}$ is given. Goal: define \mathfrak{p}_{n+1}. If $n+1$ is even, we will select some element from \mathfrak{A}
induction $-$
back and forth

Today's final boss: $\mathbb{E} \mathbb{A}$ is ω-categorical

$\mathbb{E} \mathbb{A}$ is ω-categorical, i.e. has precisely one countably-infinite model.
Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E} \mathbb{A}$ with the domains $A:=\left\{a_{1}, a_{2}, \ldots\right\}$ and $B:=\left\{b_{1}, b_{2}, \ldots\right\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_{0}, \mathfrak{p}_{1}, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_{i}$ will be the desired isomorphism. Start from $\mathfrak{p}_{0}:=\emptyset$.
Assume that a partial isomorphism $\mathfrak{p}_{n}=\left\{a_{i_{1}} \mapsto b_{i_{1}}, a_{i_{2}} \mapsto b_{i_{2}}, \ldots, a_{i_{n}} \mapsto b_{i_{n}}\right\}$ is given. Goal: define \mathfrak{p}_{n+1}. If $n+1$ is even, we will select some element from \mathfrak{A} (otherwise proceed analogously in \mathfrak{B}, proof omitted).
induction $-$
back and forth

Today's final boss: $\mathbb{E} \mathbb{A}$ is ω-categorical

$\mathbb{E} \mathbb{A}$ is ω-categorical, i.e. has precisely one countably-infinite model.
Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E} \mathbb{A}$ with the domains $A:=\left\{a_{1}, a_{2}, \ldots\right\}$ and $B:=\left\{b_{1}, b_{2}, \ldots\right\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_{0}, \mathfrak{p}_{1}, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_{i}$ will be the desired isomorphism. Start from $\mathfrak{p}_{0}:=\emptyset$.
Assume that a partial isomorphism $\mathfrak{p}_{n}=\left\{a_{i_{1}} \mapsto b_{i_{1}}, a_{i_{2}} \mapsto b_{i_{2}}, \ldots, a_{i_{n}} \mapsto b_{i_{n}}\right\}$ is given. Goal: define \mathfrak{p}_{n+1}. If $n+1$ is even, we will select some element from \mathfrak{A} (otherwise proceed analogously in \mathfrak{B}, proof omitted).
induction

back and forth first not yet covered

Today's final boss: $\mathbb{E} \mathbb{A}$ is ω-categorical

$\mathbb{E} \mathbb{A}$ is ω-categorical, i.e. has precisely one countably-infinite model.
Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E} \mathbb{A}$ with the domains $A:=\left\{a_{1}, a_{2}, \ldots\right\}$ and $B:=\left\{b_{1}, b_{2}, \ldots\right\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_{0}, \mathfrak{p}_{1}, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_{i}$ will be the desired isomorphism. Start from $\mathfrak{p}_{0}:=\emptyset$.
Assume that a partial isomorphism $\mathfrak{p}_{n}=\left\{a_{i_{1}} \mapsto b_{i_{1}}, a_{i_{2}} \mapsto b_{i_{2}}, \ldots, a_{i_{n}} \mapsto b_{i_{n}}\right\}$ is given. Goal: define \mathfrak{p}_{n+1}. If $n+1$ is even, we will select some element from \mathfrak{A} (otherwise proceed analogously in \mathfrak{B}, proof omitted). Take $a_{k} \in A$, for which k is the smallest index so that a_{k} does not appear in \mathfrak{p}_{n}.
induction

back and forth first not yet covered

Today's final boss: $\mathbb{E} \mathbb{A}$ is ω-categorical

$\mathbb{E} \mathbb{A}$ is ω-categorical, i.e. has precisely one countably-infinite model.
Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E} \mathbb{A}$ with the domains $A:=\left\{a_{1}, a_{2}, \ldots\right\}$ and $B:=\left\{b_{1}, b_{2}, \ldots\right\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_{0}, \mathfrak{p}_{1}, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_{i}$ will be the desired isomorphism. Start from $\mathfrak{p}_{0}:=\emptyset$.
Assume that a partial isomorphism $\mathfrak{p}_{n}=\left\{a_{i_{1}} \mapsto b_{i_{1}}, a_{i_{2}} \mapsto b_{i_{2}}, \ldots, a_{i_{n}} \mapsto b_{i_{n}}\right\}$ is given. Goal: define \mathfrak{p}_{n+1}. If $n+1$ is even, we will select some element from \mathfrak{A} (otherwise proceed analogously in \mathfrak{B}, proof omitted). Take $a_{k} \in A$, for which k is the smallest index so that a_{k} does not appear in \mathfrak{p}_{n}. What do we know about \bar{a} ?

Today's final boss: $\mathbb{E} \mathbb{A}$ is ω-categorical

$\mathbb{E} \mathbb{A}$ is ω-categorical, i.e. has precisely one countably-infinite model.
Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E} \mathbb{A}$ with the domains $A:=\left\{a_{1}, a_{2}, \ldots\right\}$ and $B:=\left\{b_{1}, b_{2}, \ldots\right\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_{0}, \mathfrak{p}_{1}, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_{i}$ will be the desired isomorphism. Start from $\mathfrak{p}_{0}:=\emptyset$.
Assume that a partial isomorphism $\mathfrak{p}_{n}=\left\{a_{i_{1}} \mapsto b_{i_{1}}, a_{i_{2}} \mapsto b_{i_{2}}, \ldots, a_{i_{n}} \mapsto b_{i_{n}}\right\}$ is given. Goal: define \mathfrak{p}_{n+1}. If $n+1$ is even, we will select some element from \mathfrak{A} (otherwise proceed analogously in \mathfrak{B}, proof omitted). Take $a_{k} \in A$, for which k is the smallest index so that a_{k} does not appear in \mathfrak{p}_{n}. What do we know about \bar{a} ?
induction

back and forth first not yet covered

Today's final boss: $\mathbb{E} \mathbb{A}$ is ω-categorical

$\mathbb{E} \mathbb{A}$ is ω-categorical, i.e. has precisely one countably-infinite model.
Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E} \mathbb{A}$ with the domains $A:=\left\{a_{1}, a_{2}, \ldots\right\}$ and $B:=\left\{b_{1}, b_{2}, \ldots\right\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_{0}, \mathfrak{p}_{1}, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_{i}$ will be the desired isomorphism. Start from $\mathfrak{p}_{0}:=\emptyset$.
Assume that a partial isomorphism $\mathfrak{p}_{n}=\left\{a_{i_{1}} \mapsto b_{i_{1}}, a_{i_{2}} \mapsto b_{i_{2}}, \ldots, a_{i_{n}} \mapsto b_{i_{n}}\right\}$ is given. Goal: define \mathfrak{p}_{n+1}. If $n+1$ is even, we will select some element from \mathfrak{A} (otherwise proceed analogously in \mathfrak{B}, proof omitted). Take $a_{k} \in A$, for which k is the smallest index so that a_{k} does not appear in \mathfrak{p}_{n}. What do we know about \bar{a} ? There are unique n - and $(n+1)$-types s and t
induction

back and forth first not yet covered

Today's final boss: $\mathbb{E} \mathbb{A}$ is ω-categorical

$\mathbb{E} \mathbb{A}$ is ω-categorical, i.e. has precisely one countably-infinite model.
Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E A}$ with the domains $A:=\left\{a_{1}, a_{2}, \ldots\right\}$ and $B:=\left\{b_{1}, b_{2}, \ldots\right\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_{0}, \mathfrak{p}_{1}, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_{i}$ will be the desired isomorphism. Start from $\mathfrak{p}_{0}:=\emptyset$.
Assume that a partial isomorphism $\mathfrak{p}_{n}=\left\{a_{i_{1}} \mapsto b_{i_{1}}, a_{i_{2}} \mapsto b_{i_{2}}, \ldots, a_{i_{n}} \mapsto b_{i_{n}}\right\}$ is given. Goal: define \mathfrak{p}_{n+1}. If $n+1$ is even, we will select some element from \mathfrak{A} (otherwise proceed analogously in \mathfrak{B}, proof omitted). Take $a_{k} \in A$, for which k is the smallest index so that a_{k} does not appear in \mathfrak{p}_{n}. What do we know about \bar{a} ? There are unique n - and $(n+1)$-types s and t such that $s \subseteq t, \mathfrak{A} \models s\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)$, and $\mathfrak{A} \models t\left(a_{i_{1}}, \ldots, a_{i_{n}}, a_{k}\right)$.
induction

back and forth first not yet covered

Today's final boss: $\mathbb{E} \mathbb{A}$ is ω-categorical

$\mathbb{E} \mathbb{A}$ is ω-categorical, i.e. has precisely one countably-infinite model.
Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E A}$ with the domains $A:=\left\{a_{1}, a_{2}, \ldots\right\}$ and $B:=\left\{b_{1}, b_{2}, \ldots\right\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_{0}, \mathfrak{p}_{1}, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_{i}$ will be the desired isomorphism. Start from $\mathfrak{p}_{0}:=\emptyset$.
Assume that a partial isomorphism $\mathfrak{p}_{n}=\left\{a_{i_{1}} \mapsto b_{i_{1}}, a_{i_{2}} \mapsto b_{i_{2}}, \ldots, a_{i_{n}} \mapsto b_{i_{n}}\right\}$ is given. Goal: define \mathfrak{p}_{n+1}. If $n+1$ is even, we will select some element from \mathfrak{A} (otherwise proceed analogously in \mathfrak{B}, proof omitted). Take $a_{k} \in A$, for which k is the smallest index so that a_{k} does not appear in \mathfrak{p}_{n}. What do we know about \bar{a} ? There are unique n - and $(n+1)$-types s and t such that $s \subseteq t, \mathfrak{A} \models s\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)$, and $\mathfrak{A} \models t\left(a_{i_{1}}, \ldots, a_{i_{n}}, a_{k}\right)$.
induction

back and forth first not yet covered

Today's final boss: $\mathbb{E} \mathbb{A}$ is ω-categorical

$\mathbb{E} \mathbb{A}$ is ω-categorical, i.e. has precisely one countably-infinite model.
Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E A}$ with the domains $A:=\left\{a_{1}, a_{2}, \ldots\right\}$ and $B:=\left\{b_{1}, b_{2}, \ldots\right\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_{0}, \mathfrak{p}_{1}, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_{i}$ will be the desired isomorphism. Start from $\mathfrak{p}_{0}:=\emptyset$.
Assume that a partial isomorphism $\mathfrak{p}_{n}=\left\{a_{i_{1}} \mapsto b_{i_{1}}, a_{i_{2}} \mapsto b_{i_{2}}, \ldots, a_{i_{n}} \mapsto b_{i_{n}}\right\}$ is given. Goal: define \mathfrak{p}_{n+1}. If $n+1$ is even, we will select some element from \mathfrak{A} (otherwise proceed analogously in \mathfrak{B}, proof omitted).
Take $a_{k} \in A$, for which k is the smallest index so that a_{k} does not appear in \mathfrak{p}_{n}. What do we know about \bar{a} ? There are unique n - and $(n+1)$-types s and t such that $s \subseteq t, \mathfrak{A} \models s\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)$, and $\mathfrak{A} \models t\left(a_{i_{1}}, \ldots, a_{i_{n}}, a_{k}\right)$. Since \mathfrak{p}_{n} is a partial isomorphism, we have $\mathfrak{B} \models s\left(b_{i_{1}}, \ldots, b_{i_{n}}\right)$.
induction

exploit types realized by \bar{a} ind. ass.

Today's final boss: $\mathbb{E} \mathbb{A}$ is ω-categorical

$\mathbb{E} \mathbb{A}$ is ω-categorical, i.e. has precisely one countably-infinite model.
Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E A}$ with the domains $A:=\left\{a_{1}, a_{2}, \ldots\right\}$ and $B:=\left\{b_{1}, b_{2}, \ldots\right\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_{0}, \mathfrak{p}_{1}, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_{i}$ will be the desired isomorphism. Start from $\mathfrak{p}_{0}:=\emptyset$.
Assume that a partial isomorphism $\mathfrak{p}_{n}=\left\{a_{i_{1}} \mapsto b_{i_{1}}, a_{i_{2}} \mapsto b_{i_{2}}, \ldots, a_{i_{n}} \mapsto b_{i_{n}}\right\}$ is given. Goal: define \mathfrak{p}_{n+1}. If $n+1$ is even, we will select some element from \mathfrak{A} (otherwise proceed analogously in \mathfrak{B}, proof omitted).
Take $a_{k} \in A$, for which k is the smallest index so that a_{k} does not appear in \mathfrak{p}_{n}. What do we know about \bar{a} ? There are unique n - and $(n+1)$-types s and t such that $s \subseteq t, \mathfrak{A} \models s\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)$, and $\mathfrak{A} \models t\left(a_{i_{1}}, \ldots, a_{i_{n}}, a_{k}\right)$. Since \mathfrak{p}_{n} is a partial isomorphism, we have $\mathfrak{B} \models s\left(b_{i_{1}}, \ldots, b_{i_{n}}\right)$.
induction

back and forth first not yet covered

exploit types realized by \bar{a} ind. ass.

Today's final boss: $\mathbb{E} \mathbb{A}$ is ω-categorical

$\mathbb{E} \mathbb{A}$ is ω-categorical, i.e. has precisely one countably-infinite model.
Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E A}$ with the domains $A:=\left\{a_{1}, a_{2}, \ldots\right\}$ and $B:=\left\{b_{1}, b_{2}, \ldots\right\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_{0}, \mathfrak{p}_{1}, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_{i}$ will be the desired isomorphism. Start from $\mathfrak{p}_{0}:=\emptyset$.
Assume that a partial isomorphism $\mathfrak{p}_{n}=\left\{a_{i_{1}} \mapsto b_{i_{1}}, a_{i_{2}} \mapsto b_{i_{2}}, \ldots, a_{i_{n}} \mapsto b_{i_{n}}\right\}$ is given. Goal: define \mathfrak{p}_{n+1}. If $n+1$ is even, we will select some element from \mathfrak{A} (otherwise proceed analogously in \mathfrak{B}, proof omitted).
Take $a_{k} \in A$, for which k is the smallest index so that a_{k} does not appear in \mathfrak{p}_{n}. What do we know about \bar{a} ? There are unique n - and ($n+1$)-types s and t such that $s \subseteq t, \mathfrak{A} \models s\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)$, and $\mathfrak{A} \models t\left(a_{i_{1}}, \ldots, a_{i_{n}}, a_{k}\right)$. Since \mathfrak{p}_{n} is a partial isomorphism, we have $\mathfrak{B} \models s\left(b_{i_{1}}, \ldots, b_{i_{n}}\right)$. But $\sigma_{s, t} \in \mathbb{E} \mathbb{A}$ and $\mathfrak{B} \models \mathbb{E} \mathbb{A}$!
induction

back and forth first not yet covered

exploit types realized by \bar{a} ind. ass.

Today's final boss: $\mathbb{E} \mathbb{A}$ is ω-categorical

$\mathbb{E} \mathbb{A}$ is ω-categorical, i.e. has precisely one countably-infinite model.
Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E A}$ with the domains $A:=\left\{a_{1}, a_{2}, \ldots\right\}$ and $B:=\left\{b_{1}, b_{2}, \ldots\right\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_{0}, \mathfrak{p}_{1}, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_{i}$ will be the desired isomorphism. Start from $\mathfrak{p}_{0}:=\emptyset$.
Assume that a partial isomorphism $\mathfrak{p}_{n}=\left\{a_{i_{1}} \mapsto b_{i_{1}}, a_{i_{2}} \mapsto b_{i_{2}}, \ldots, a_{i_{n}} \mapsto b_{i_{n}}\right\}$ is given. Goal: define \mathfrak{p}_{n+1}. If $n+1$ is even, we will select some element from \mathfrak{A} (otherwise proceed analogously in \mathfrak{B}, proof omitted).
Take $a_{k} \in A$, for which k is the smallest index so that a_{k} does not appear in \mathfrak{p}_{n}. What do we know about \bar{a} ? There are unique n - and ($n+1$)-types s and t such that $s \subseteq t, \mathfrak{A} \models s\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)$, and $\mathfrak{A} \models t\left(a_{i_{1}}, \ldots, a_{i_{n}}, a_{k}\right)$. Since \mathfrak{p}_{n} is a partial isomorphism, we have $\mathfrak{B} \models s\left(b_{i_{1}}, \ldots, b_{i_{n}}\right)$. But $\sigma_{s, t} \in \mathbb{E} \mathbb{A}$ and $\mathfrak{B} \models \mathbb{E} \mathbb{A}$! Thus $\mathfrak{B} \models \sigma_{s, t}:=\forall x_{1} \ldots \forall x_{n} s\left(x_{1}, \ldots, x_{n}\right) \rightarrow \exists x_{n+1} t\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)$.
induction

back and forth first not yet covered

exploit types realized by \bar{a} ind. ass.

Today's final boss: $\mathbb{E} \mathbb{A}$ is ω-categorical

$\mathbb{E} \mathbb{A}$ is ω-categorical, i.e. has precisely one countably-infinite model.
Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E A}$ with the domains $A:=\left\{a_{1}, a_{2}, \ldots\right\}$ and $B:=\left\{b_{1}, b_{2}, \ldots\right\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_{0}, \mathfrak{p}_{1}, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_{i}$ will be the desired isomorphism. Start from $\mathfrak{p}_{0}:=\emptyset$.
Assume that a partial isomorphism $\mathfrak{p}_{n}=\left\{a_{i_{1}} \mapsto b_{i_{1}}, a_{i_{2}} \mapsto b_{i_{2}}, \ldots, a_{i_{n}} \mapsto b_{i_{n}}\right\}$ is given. Goal: define \mathfrak{p}_{n+1}. If $n+1$ is even, we will select some element from \mathfrak{A} (otherwise proceed analogously in \mathfrak{B}, proof omitted).
Take $a_{k} \in A$, for which k is the smallest index so that a_{k} does not appear in \mathfrak{p}_{n}. What do we know about \bar{a} ? There are unique n - and $(n+1)$-types s and t such that $s \subseteq t, \mathfrak{A} \models s\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)$, and $\mathfrak{A} \models t\left(a_{i_{1}}, \ldots, a_{i_{n}}, a_{k}\right)$. Since \mathfrak{p}_{n} is a partial isomorphism, we have $\mathfrak{B} \models s\left(b_{i_{1}}, \ldots, b_{i_{n}}\right)$. But $\sigma_{s, t} \in \mathbb{E} \mathbb{A}$ and $\mathfrak{B} \models \mathbb{E} \mathbb{A}$! Thus $\mathfrak{B} \models \sigma_{s, t}:=\forall x_{1} \ldots \forall x_{n} s\left(x_{1}, \ldots, x_{n}\right) \rightarrow \exists x_{n+1} t\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)$.
induction

back and forth first not yet covered

exploit types realized by $\overline{\bar{a}}$ ind. ass.

$\mathfrak{B} \models \mathbb{E} \mathbb{A}$
Choose a witness

Today's final boss: $\mathbb{E} \mathbb{A}$ is ω-categorical

$\mathbb{E} \mathbb{A}$ is ω-categorical, i.e. has precisely one countably-infinite model.
Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E A}$ with the domains $A:=\left\{a_{1}, a_{2}, \ldots\right\}$ and $B:=\left\{b_{1}, b_{2}, \ldots\right\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_{0}, \mathfrak{p}_{1}, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_{i}$ will be the desired isomorphism. Start from $\mathfrak{p}_{0}:=\emptyset$.
Assume that a partial isomorphism $\mathfrak{p}_{n}=\left\{a_{i_{1}} \mapsto b_{i_{1}}, a_{i_{2}} \mapsto b_{i_{2}}, \ldots, a_{i_{n}} \mapsto b_{i_{n}}\right\}$ is given. Goal: define \mathfrak{p}_{n+1}. If $n+1$ is even, we will select some element from \mathfrak{A} (otherwise proceed analogously in \mathfrak{B}, proof omitted).
Take $a_{k} \in A$, for which k is the smallest index so that a_{k} does not appear in \mathfrak{p}_{n}. What do we know about \bar{a} ? There are unique n - and $(n+1)$-types s and t such that $s \subseteq t, \mathfrak{A} \models s\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)$, and $\mathfrak{A} \models t\left(a_{i_{1}}, \ldots, a_{i_{n}}, a_{k}\right)$. Since \mathfrak{p}_{n} is a partial isomorphism, we have $\mathfrak{B} \models s\left(b_{i_{1}}, \ldots, b_{i_{n}}\right)$. But $\sigma_{s, t} \in \mathbb{E} \mathbb{A}$ and $\mathfrak{B} \models \mathbb{E} \mathbb{A}$!
Thus $\mathfrak{B} \models \sigma_{s, t}:=\forall x_{1} \ldots \forall x_{n} s\left(x_{1}, \ldots, x_{n}\right) \rightarrow \exists x_{n+1} t\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)$.
So there is an $b \in B$ so that $\mathfrak{B} \models t\left(b_{i_{1}}, \ldots, b_{i_{n}}, b\right)$.

Today's final boss: $\mathbb{E} \mathbb{A}$ is ω-categorical

$\mathbb{E} \mathbb{A}$ is ω-categorical, i.e. has precisely one countably-infinite model.
Take any two countably-inf models $\mathfrak{A}, \mathfrak{B}$ of $\mathbb{E} \mathbb{A}$ with the domains $A:=\left\{a_{1}, a_{2}, \ldots\right\}$ and $B:=\left\{b_{1}, b_{2}, \ldots\right\}$. Goal: We will show that $\mathfrak{A} \cong \mathfrak{B}$ by producing an infinite growing sequence of partial isomorphisms $\mathfrak{p}_{0}, \mathfrak{p}_{1}, \ldots$ The union $\bigcup_{i=0}^{\infty} \mathfrak{p}_{i}$ will be the desired isomorphism. Start from $\mathfrak{p}_{0}:=\emptyset$.
Assume that a partial isomorphism $\mathfrak{p}_{n}=\left\{a_{i_{1}} \mapsto b_{i_{1}}, a_{i_{2}} \mapsto b_{i_{2}}, \ldots, a_{i_{n}} \mapsto b_{i_{n}}\right\}$ is given. Goal: define \mathfrak{p}_{n+1}. If $n+1$ is even, we will select some element from \mathfrak{A} (otherwise proceed analogously in \mathfrak{B}, proof omitted).
Take $a_{k} \in A$, for which k is the smallest index so that a_{k} does not appear in \mathfrak{p}_{n}. What do we know about \bar{a} ? There are unique n - and $(n+1)$-types s and t such that $s \subseteq t, \mathfrak{A} \models s\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)$, and $\mathfrak{A} \models t\left(a_{i_{1}}, \ldots, a_{i_{n}}, a_{k}\right)$. Since \mathfrak{p}_{n} is a partial isomorphism, we have $\mathfrak{B} \models s\left(b_{i_{1}}, \ldots, b_{i_{n}}\right)$. But $\sigma_{s, t} \in \mathbb{E} \mathbb{A}$ and $\mathfrak{B} \models \mathbb{E} \mathbb{A}$!

Thus $\mathfrak{B} \models \sigma_{s, t}:=\forall x_{1} \ldots \forall x_{n} s\left(x_{1}, \ldots, x_{n}\right) \rightarrow \exists x_{n+1} t\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)$.
So there is an $b \in B$ so that $\mathfrak{B} \models t\left(b_{i_{1}}, \ldots, b_{i_{n}}, b\right)$. Continue from $\mathfrak{p}_{n+1}:=\mathfrak{p}_{n} \cup\left\{\left(a_{k} \mapsto b\right)\right\}$. induction back and forth first not yet covered exploit types realized by \bar{a} ind. ass. $\mathfrak{B} \models \mathbb{E} \mathbb{A}$ Choose a witness -

Extra: The Random Graph

Extra: The Random Graph

We proved that $\mathbb{E} \mathbb{A}$ has a model unconstructively.

Extra: The Random Graph

We proved that $\mathbb{E A}$ has a model unconstructively.
Can we describe the countable model of $\mathbb{E A}$?

Extra: The Random Graph

We proved that $\mathbb{E A}$ has a model unconstructively.
Can we describe the countable model of $\mathbb{E A}$?
Let $\mathfrak{G}=(V, E)$ be a graph such that

Extra: The Random Graph

We proved that $\mathbb{E A}$ has a model unconstructively.
Can we describe the countable model of $\mathbb{E A}$?
Let $\mathfrak{G}=(V, \mathrm{E})$ be a graph such that $V=\mathbb{N}_{+}$and

Extra: The Random Graph

We proved that $\mathbb{E A}$ has a model unconstructively. Can we describe the countable model of $\mathbb{E A}$?
Let $\mathfrak{G}=(V, \mathrm{E})$ be a graph such that $V=\mathbb{N}_{+}$and $(i, j) \in \mathrm{E}^{\mathfrak{C}}$ iff $p_{i} \mid j$ or $p_{j} \mid i$

Extra: The Random Graph

We proved that $\mathbb{E A}$ has a model unconstructively. Can we describe the countable model of $\mathbb{E A}$?
Let $\mathfrak{G}=(V, \mathrm{E})$ be a graph such that $V=\mathbb{N}_{+}$and $(i, j) \in \mathbb{E}^{\mathfrak{C}}$ iff $p_{i} \mid j$ or $p_{j} \mid i$ (p_{i} is the i-th prime number)

Extra: The Random Graph

We proved that $\mathbb{E A}$ has a model unconstructively. Can we describe the countable model of $\mathbb{E A}$?
Let $\mathfrak{G}=(V, \mathrm{E})$ be a graph such that $V=\mathbb{N}_{+}$and $(i, j) \in \mathrm{E}^{\mathfrak{G}}$ iff $p_{i} \mid j$ or $p_{j} \mid i$ (p_{i} is the i-th prime number)

Extra: The Random Graph

We proved that $\mathbb{E A}$ has a model unconstructively. Can we describe the countable model of $\mathbb{E A}$?
Let $\mathfrak{G}=(V, \mathrm{E})$ be a graph such that $V=\mathbb{N}_{+}$and $(i, j) \in \mathrm{E}^{\mathfrak{G}}$ iff $p_{i} \mid j$ or $p_{j} \mid i$ (p_{i} is the i-th prime number)

Lemma

$$
\mathfrak{G} \models \sigma_{s, t}:=\forall x_{1} \ldots \forall x_{n} s\left(x_{1}, \ldots, x_{n}\right) \rightarrow \exists x_{n+1} t\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)
$$

Extra: The Random Graph

We proved that $\mathbb{E A}$ has a model unconstructively. Can we describe the countable model of $\mathbb{E A}$?
Let $\mathfrak{G}=(V, \mathrm{E})$ be a graph such that $V=\mathbb{N}_{+}$and $(i, j) \in \mathrm{E}^{\mathfrak{G}}$ iff $p_{i} \mid j$ or $p_{j} \mid i$ (p_{i} is the i-th prime number)

Lemma

$$
\mathfrak{G} \models \sigma_{s, t}:=\forall x_{1} \ldots \forall x_{n} s\left(x_{1}, \ldots, x_{n}\right) \rightarrow \exists x_{n+1} t\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)
$$

Proof

Extra: The Random Graph

We proved that $\mathbb{E A}$ has a model unconstructively.
Can we describe the countable model of $\mathbb{E A}$?
Let $\mathfrak{G}=(V, \mathrm{E})$ be a graph such that $V=\mathbb{N}_{+}$and $(i, j) \in \mathrm{E}^{\mathfrak{G}}$ iff $p_{i} \mid j$ or $p_{j} \mid i$ (p_{i} is the i-th prime number)

Lemma

$$
\mathfrak{G} \models \sigma_{s, t}:=\forall x_{1} \ldots \forall x_{n} s\left(x_{1}, \ldots, x_{n}\right) \rightarrow \exists x_{n+1} t\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)
$$

Proof

Take any a_{1}, \ldots, a_{k} such that $\mathfrak{G} \models s\left(a_{1}, \ldots, a_{k}\right)$.

Extra: The Random Graph

We proved that $\mathbb{E A}$ has a model unconstructively.
Can we describe the countable model of $\mathbb{E A}$?
Let $\mathfrak{G}=(V, \mathrm{E})$ be a graph such that $V=\mathbb{N}_{+}$and $(i, j) \in \mathrm{E}^{\mathfrak{G}}$ iff $p_{i} \mid j$ or $p_{j} \mid i$ (p_{i} is the i-th prime number)

Lemma

$$
\mathfrak{G} \models \sigma_{s, t}:=\forall x_{1} \ldots \forall x_{n} s\left(x_{1}, \ldots, x_{n}\right) \rightarrow \exists x_{n+1} t\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)
$$

Proof

Take any a_{1}, \ldots, a_{k} such that $\mathfrak{G} \models s\left(a_{1}, \ldots, a_{k}\right)$. Goal: Find a_{k+1} such that $\mathfrak{G} \models t\left(a_{1}, \ldots, a_{k}, a_{k+1}\right)$.

Extra: The Random Graph

We proved that $\mathbb{E A}$ has a model unconstructively.
Can we describe the countable model of $\mathbb{E A}$?
Let $\mathfrak{G}=(V, \mathrm{E})$ be a graph such that $V=\mathbb{N}_{+}$and $(i, j) \in \mathbb{E}^{\mathfrak{B}}$ iff $p_{i} \mid j$ or $p_{j} \mid i$ (p_{i} is the i-th prime number)

Lemma

$$
\mathfrak{G} \models \sigma_{s, t}:=\forall x_{1} \ldots \forall x_{n} s\left(x_{1}, \ldots, x_{n}\right) \rightarrow \exists x_{n+1} t\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)
$$

Proof

Take any a_{1}, \ldots, a_{k} such that $\mathfrak{G} \models s\left(a_{1}, \ldots, a_{k}\right)$. Goal: Find a_{k+1} such that $\mathfrak{G} \models t\left(a_{1}, \ldots, a_{k}, a_{k+1}\right)$.

Extra: The Random Graph

We proved that $\mathbb{E A}$ has a model unconstructively.
Can we describe the countable model of $\mathbb{E A}$?
Let $\mathfrak{G}=(V, \mathrm{E})$ be a graph such that $V=\mathbb{N}_{+}$and $(i, j) \in \mathbb{E}^{\mathscr{B}}$ iff $p_{i} \mid j$ or $p_{j} \mid i$ (p_{i} is the i-th prime number)

Lemma

$$
\mathfrak{G} \models \sigma_{s, t}:=\forall x_{1} \ldots \forall x_{n} s\left(x_{1}, \ldots, x_{n}\right) \rightarrow \exists x_{n+1} t\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)
$$

Proof

Take any a_{1}, \ldots, a_{k} such that $\mathfrak{G} \models s\left(a_{1}, \ldots, a_{k}\right)$. Goal: Find a_{k+1} such that $\mathfrak{G} \models t\left(a_{1}, \ldots, a_{k}, a_{k+1}\right)$. We divide indices $1,2, \ldots, k$ into

Extra: The Random Graph

We proved that $\mathbb{E A}$ has a model unconstructively.
Can we describe the countable model of $\mathbb{E A}$?
Let $\mathfrak{G}=(V, \mathrm{E})$ be a graph such that $V=\mathbb{N}_{+}$and $(i, j) \in \mathrm{E}^{\mathfrak{G}}$ iff $p_{i} \mid j$ or $p_{j} \mid i$ (p_{i} is the i-th prime number)

Lemma

$$
\mathfrak{G} \models \sigma_{s, t}:=\forall x_{1} \ldots \forall x_{n} s\left(x_{1}, \ldots, x_{n}\right) \rightarrow \exists x_{n+1} t\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)
$$

Proof

Take any a_{1}, \ldots, a_{k} such that $\mathfrak{G} \models s\left(a_{1}, \ldots, a_{k}\right)$. Goal: Find a_{k+1} such that $\mathfrak{G} \models t\left(a_{1}, \ldots, a_{k}, a_{k+1}\right)$.
We divide indices $1,2, \ldots, k$ into $\mathrm{Con}:=\left\{i \mid \mathrm{E}\left(x_{i}, x_{k+1}\right) \in t\right\}$ and

Extra: The Random Graph

We proved that $\mathbb{E A}$ has a model unconstructively.
Can we describe the countable model of $\mathbb{E A}$?
Let $\mathfrak{G}=(V, \mathrm{E})$ be a graph such that $V=\mathbb{N}_{+}$and $(i, j) \in \mathrm{E}^{\mathfrak{G}}$ iff $p_{i} \mid j$ or $p_{j} \mid i$ (p_{i} is the i-th prime number)

Lemma

$$
\mathfrak{G} \models \sigma_{s, t}:=\forall x_{1} \ldots \forall x_{n} s\left(x_{1}, \ldots, x_{n}\right) \rightarrow \exists x_{n+1} t\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)
$$

Proof

Take any a_{1}, \ldots, a_{k} such that $\mathfrak{G} \models s\left(a_{1}, \ldots, a_{k}\right)$. Goal: Find a_{k+1} such that $\mathfrak{G} \models t\left(a_{1}, \ldots, a_{k}, a_{k+1}\right)$.
We divide indices $1,2, \ldots, k$ into Con $:=\left\{i \mid \mathrm{E}\left(x_{i}, x_{k+1}\right) \in t\right\}$ and $\operatorname{DisC}:=\left\{i \mid \neg \mathrm{E}\left(x_{i}, x_{k+1}\right) \in t\right\}$.

Extra: The Random Graph

We proved that $\mathbb{E} \mathbb{A}$ has a model unconstructively.
Can we describe the countable model of $\mathbb{E} \mathbb{A}$?
Let $\mathfrak{G}=(V, \mathrm{E})$ be a graph such that $V=\mathbb{N}_{+}$and $(i, j) \in \mathrm{E}^{\mathfrak{G}}$ iff $p_{i} \mid j$ or $p_{j} \mid i$ (p_{i} is the i-th prime number)

Lemma

$$
\mathfrak{G} \models \sigma_{s, t}:=\forall x_{1} \ldots \forall x_{n} s\left(x_{1}, \ldots, x_{n}\right) \rightarrow \exists x_{n+1} t\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)
$$

Proof

Take any a_{1}, \ldots, a_{k} such that $\mathfrak{G} \models s\left(a_{1}, \ldots, a_{k}\right)$. Goal: Find a_{k+1} such that $\mathfrak{G} \models t\left(a_{1}, \ldots, a_{k}, a_{k+1}\right)$.
We divide indices $1,2, \ldots, k$ into Con $:=\left\{i \mid \mathrm{E}\left(x_{i}, x_{k+1}\right) \in t\right\}$ and $\operatorname{DisC}:=\left\{i \mid \neg \mathrm{E}\left(x_{i}, x_{k+1}\right) \in t\right\}$.
Thus, our a_{k+1} must be connected to all a_{i} with $i \in$ Con and disconnected from all a_{i} with $i \in \operatorname{DisC}$.

Extra: The Random Graph

We proved that $\mathbb{E} \mathbb{A}$ has a model unconstructively.
Can we describe the countable model of $\mathbb{E} \mathbb{A}$?
Let $\mathfrak{G}=(V, \mathrm{E})$ be a graph such that $V=\mathbb{N}_{+}$and $(i, j) \in \mathrm{E}^{\mathfrak{G}}$ iff $p_{i} \mid j$ or $p_{j} \mid i$ (p_{i} is the i-th prime number)

Lemma

$$
\mathfrak{G} \models \sigma_{s, t}:=\forall x_{1} \ldots \forall x_{n} s\left(x_{1}, \ldots, x_{n}\right) \rightarrow \exists x_{n+1} t\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)
$$

Proof

Take any a_{1}, \ldots, a_{k} such that $\mathfrak{G} \models s\left(a_{1}, \ldots, a_{k}\right)$. Goal: Find a_{k+1} such that $\mathfrak{G} \models t\left(a_{1}, \ldots, a_{k}, a_{k+1}\right)$.
We divide indices $1,2, \ldots, k$ into Con $:=\left\{i \mid \mathrm{E}\left(x_{i}, x_{k+1}\right) \in t\right\}$ and $\operatorname{DisC}:=\left\{i \mid \neg \mathrm{E}\left(x_{i}, x_{k+1}\right) \in t\right\}$.
Thus, our a_{k+1} must be connected to all a_{i} with $i \in$ Con and disconnected from all a_{i} with $i \in \operatorname{DisC}$.

Divide $x_{1}, x_{2}, \ldots, x_{k}$ biased on type connections with $k+1$

(Dis)connected with $x \approx$ (non)dividable by the x-th prime number

Extra: The Random Graph

We proved that $\mathbb{E} \mathbb{A}$ has a model unconstructively.

Can we describe the countable model of $\mathbb{E} \mathbb{A}$?
Let $\mathfrak{G}=(V, \mathrm{E})$ be a graph such that $V=\mathbb{N}_{+}$and $(i, j) \in \mathrm{E}^{\mathfrak{G}}$ iff $p_{i} \mid j$ or $p_{j} \mid i$ (p_{i} is the i-th prime number)

Lemma

$$
\mathfrak{G} \models \sigma_{s, t}:=\forall x_{1} \ldots \forall x_{n} s\left(x_{1}, \ldots, x_{n}\right) \rightarrow \exists x_{n+1} t\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)
$$

Proof

Take any a_{1}, \ldots, a_{k} such that $\mathfrak{G} \models s\left(a_{1}, \ldots, a_{k}\right)$. Goal: Find a_{k+1} such that $\mathfrak{G} \models t\left(a_{1}, \ldots, a_{k}, a_{k+1}\right)$.
We divide indices $1,2, \ldots, k$ into Con $:=\left\{i \mid \mathrm{E}\left(x_{i}, x_{k+1}\right) \in t\right\}$ and $\operatorname{DisC}:=\left\{i \mid \neg \mathrm{E}\left(x_{i}, x_{k+1}\right) \in t\right\}$.
Thus, our a_{k+1} must be connected to all a_{i} with $i \in$ Con and disconnected from all a_{i} with $i \in \operatorname{DisC}$.

$$
a_{k+1}:=\Pi_{i \in C o n} p_{a_{i}} \cdot q, \text { where } q \text { is any prime number bigger than } \Pi_{i=1}^{k} p_{a_{i}}
$$

Divide $x_{1}, x_{2}, \ldots, x_{k}$ biased on type connections with $k+1$

(Dis)connected with $x \approx$ (non)dividable by the x-th prime number

Extra: The Random Graph

We proved that $\mathbb{E} \mathbb{A}$ has a model unconstructively.

Can we describe the countable model of $\mathbb{E} \mathbb{A}$?
Let $\mathfrak{G}=(V, \mathrm{E})$ be a graph such that $V=\mathbb{N}_{+}$and $(i, j) \in \mathrm{E}^{\mathfrak{G}}$ iff $p_{i} \mid j$ or $p_{j} \mid i$ (p_{i} is the i-th prime number)

Lemma

$$
\mathfrak{G} \models \sigma_{s, t}:=\forall x_{1} \ldots \forall x_{n} s\left(x_{1}, \ldots, x_{n}\right) \rightarrow \exists x_{n+1} t\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)
$$

Proof

Take any a_{1}, \ldots, a_{k} such that $\mathfrak{G} \models s\left(a_{1}, \ldots, a_{k}\right)$. Goal: Find a_{k+1} such that $\mathfrak{G} \models t\left(a_{1}, \ldots, a_{k}, a_{k+1}\right)$.
We divide indices $1,2, \ldots, k$ into Con $:=\left\{i \mid \mathrm{E}\left(x_{i}, x_{k+1}\right) \in t\right\}$ and $\operatorname{DisC}:=\left\{i \mid \neg \mathrm{E}\left(x_{i}, x_{k+1}\right) \in t\right\}$.
Thus, our a_{k+1} must be connected to all a_{i} with $i \in$ Con and disconnected from all a_{i} with $i \in \operatorname{DisC}$.

$$
a_{k+1}:=\Pi_{i \in C o n} p_{a_{i}} \cdot q, \text { where } q \text { is any prime number bigger than } \Pi_{i=1}^{k} p_{a_{i}}
$$

And now it is easy to check our choice of a_{k+1} is correct.

Divide $x_{1}, x_{2}, \ldots, x_{k}$ biased on type connections with $k+1 \quad$ (Dis)connected with $x \approx$ (non)dividable by the x-th prime number

Copyright of used icons and pictures

1. Universities/DeciGUT/ERC logos downloaded from the corresponding institutional webpages.
2. Idea icon created by Vectors Market - Flaticon flaticon.com/free-icons/idea.
3. Head icons created by Eucalyp - Flaticon flaticon.com/free-icons/head
4. Dice icons created by Dimi Kazak - Flaticon flaticon.com/free-icons/dice
