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Today’s agenda

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

1. Asymptotic probabilities with examples.

Different perspective: What percentage of graphs verify a given FO sentence?

2. Zero-One Law of FO = Probability that a random structure satisfies ϕ is always 0 or 1.
3. Proof of the Zero-One Law for FO, based on Grädel’s notes [HERE].
• Atomic k-types and extensions axioms. Theory EA of extension axioms.
• Each extension axiom is almost surely true.
• EA is ω-categorical, i.e. has exactly one countable model up to ∼=, the Rado graph (the random graph).
• EA is complete, i.e. for all ϕ ∈ FO we have EA |= ϕ or EA |= ¬ϕ.

Feel free to ask questions and interrupt me!
Don’t be shy! If needed send me an email (bartosz.bednarczyk@cs.uni.wroc.pl) or approach me after the lecture!

Reminder: this is an advanced lecture. Target: people that had fun learning logic during BSc studies!
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Asymptotic Probabilities

Proviso: For simplicity we focus on finite, simple, undirected graphs today!

We consider random graphs, according to the uniform distribution, i.e. every edge has probability 1
2.

Let Gn be the class of simple undirected graphs with n nodes. Of course |Gn| = 2
n(n−1)

2 .
Let P be a property of graphs. Let µn(P) = “probability that P holds in a random graph with n nodes”.

µn(P) := |{G ∈ Gn : G |= P}|
|Gn|

Asymptotic probability µ∞(P) := limn→∞µn(P)

Examples
1. Take P := “the graph is complete”. Then µ∞(P) = limn→∞

|{G∈Gn : G|=P}|
|Gn| = limn→∞

1

2
n(n−1)

2
= 0.

2. Take P := “the graph has a triangle”. µ3(P) = 1
8. Since µ3n(P) ≥ 1− (1− 1

8)n, we get µ∞(P) = 1.

3. Take P := “the graph has even number of edges”. µ∞(P) = 1
2. Why?

µ∞(P) = |{G ∈ Gn : G |= P}|
2n(n−1)

2
=

∑
i≥0

(n(n−1)/2
2i

)
2n(n−1)

2
= [Sum of Even Index Binomial Coeff.] = 2

n(n−1)
2 −1

2n(n−1)
2

= 1
2

4. Take P := “the graph has even number of nodes”. Then µ∞(P) does not exist.
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k-Types and Extension Axioms

A k-type is a conjunction of formulae with variables x1, . . . , xk such that for all i 6= j we have
xi 6= xj and precisely one of E(xi , xj) or ¬E(xi , xj) as a conjunct.

x1 x2 x3× x1 x2 x3 x4×
×

s := x1 6=x2 ∧ x1 6=x3 ∧ x2 6=x3 ∧
E(x1, x2) ∧ ¬E(x2, x3) ∧ E(x1, x3) t := x1 6=x2 ∧ x1 6=x3 ∧ x2 6=x3 ∧ E(x1, x2) ∧ ¬E(x2, x3) ∧ E(x1, x3)

∧x1 6=x4 ∧ x2 6=x4 ∧ x3 6=x4 ∧ E(x1, x4) ∧ ¬E(x2, x4) ∧ E(x3, x4)

A (k + 1)-type t extends a k-type s if conjuncts(s) ⊆ conjuncts(t) (c.f. the above picture).

⊆

An (s, t)-extension axiom σs,t is ∀x1 . . . ∀xk s(x1, . . . , xk)→ ∃xk+1t(x1, . . . , xk , xk+1).

EA :=
{
∀x ¬E(x , x), ∀xy E(x , y)→ E(y , x), σs,t | s is k-type, t is (k+1)-type, t extends s

}
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Why the theory EA is important? Zero-One Law for FO[{E}].

1. Every extension axiom σs,t from EA is almost surely true, i.e. µ∞(σs,t) = 1 (Exercise).
2. By Compactness, it follows that EA |= ϕ implies µ∞(ϕ) = 1 (TODO).
3. The theory EA is ω-categorical, i.e. has exactly one countable model up to ∼= (TODO).
4. Thus EA is complete, i.e. for all ϕ ∈ FO we have EA |= ϕ or EA |= ¬ϕ (TODO).

Theorem (Glebskii et al. 1969, Fagin 1976)
For every formula ϕ ∈ FO[{E}] we have that µ∞(ϕ) is either 0 or 1.

Proof
Take any ϕ ∈ FO[{E}]. By (4) either EA |= ϕ or EA |= ¬ϕ. If EA |= ϕ then by (2) we have µ∞(ϕ) = 1.
Otherwise EA |= ¬ϕ, so by (2) we infer µ∞(¬ϕ) = 1, which leads to µ∞(ϕ) = 1− µ∞(¬ϕ) = 0.

�

Applications?
• Evenness of the number of nodes/edges not FO[{E}]-definable.
• No information about connectivity because µ∞(“graph is connected”) = 0.
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Proof of EA |= ϕ implies µ∞(ϕ) = 1 (assuming that ∀σ ∈ EA µ∞(σ) = 1).

Handy observations for all α, β, γ ∈ FO[{E}] and all n ∈ N:
µn(¬α) = 1− µn(α) µn(β ∨ γ) ≤ µn(β) + µn(γ).

Proof
Goal: To show µ∞(ϕ) = 1 it suffices to show that µn(¬ϕ)→ 0 when n→∞.
Assume EA |= ϕ.

Compactness: EA |= ϕ implies
there is EA0 ⊆fin EA implying ϕ

By compactness, there is a finite EA0 ⊆ EA such that EA0 |= ϕ.
So µn(ϕ) ≥ µn(∧EA0), thus µn(¬∧EA0) ≥ µn(¬ϕ).
Moreover (by our assumption), µn(¬σ) = 1− µn(σ) tends to 0 when n→∞.

µn(¬ϕ) ≤ µn(¬∧EA0) = µn( ∨
σ∈EA0

¬σ) ≤ ∑
σ∈EA0

µn(¬σ)

The sum ∑
σ∈EA0

µn(¬σ) converges to 0 for n→∞, concluding µ∞(ϕ) = 1.
�
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EA is satisfiable and complete (assuming ω-categoricity)

• Note that EA 6|= ∀x⊥ (due to µ∞(∀x⊥) = 0). So EA have a model (UnSAT theory entails everything).

EA is complete (assuming ω-categoricity), i.e. for all ϕ we either have EA |= ϕ or EA |= ¬ϕ.

Proof

Ad absurdum

Assume that EA is not complete.Thus we have A |= ϕ and B |= ¬ϕ that are both models of EA.

Löwenheim-Skolem

Since |EA| = ℵ0, by Löwenheim-Skolem we can assume w.l.o.g. that A and B are also countably-infinite.

ω-categoricity

But then, by ω-categoricity of EA, we infer A ∼= B.

∼= preserves |=

Thus A |= ϕ and A |= ¬ϕ (since B |= ¬ϕ). A contradiction!
�
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Today’s final boss: EA is ω-categorical

EA is ω-categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models A,B of EA with the domains A := {a1, a2, . . .} and B := {b1, b2, . . .}.
Goal: We will show that A ∼= B by

induction

producing an infinite growing sequence of partial isomorphisms p0, p1, . . .
The union

∞⋃
i=0

pi will be the desired isomorphism. Start from p0 := ∅.
Assume that a partial isomorphism pn = {ai1 7→ bi1, ai2 7→ bi2, . . . , ain 7→ bin} is given. Goal: define pn+1.

back and forth

If n+1 is even, we will select some element from A (otherwise proceed analogously in B, proof omitted).

first not yet covered

Take ak ∈ A, for which k is the smallest index so that ak does not appear in pn. What do we know about a?

exploit types realized by a

There are unique n- and (n+1)-types s and t such that s ⊆ t, A |= s(ai1, . . . , ain), and A |= t(ai1, . . . , ain, ak).

ind. ass.

Since pn is a partial isomorphism, we have B |= s(bi1, . . . , bin).

B |= EA

But σs,t ∈ EA and B |= EA!
Thus B |= σs,t := ∀x1 . . . ∀xn s(x1, . . . , xn)→ ∃xn+1 t(x1, . . . , xn, xn+1).

Choose a witness

So there is an b ∈ B so that B |= t(bi1, . . . , bin, b). Continue from pn+1 := pn ∪ {(ak 7→ b)}.
�
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Extra: The Random Graph

We proved that EA has a model unconstructively. Can we describe the countable model of EA?

Let G = (V ,E) be a graph such that V = N+ and (i , j) ∈ EG iff pi | j or pj | i (pi is the i -th prime number)

Lemma
G |= σs,t := ∀x1 . . . ∀xn s(x1, . . . , xn)→ ∃xn+1 t(x1, . . . , xn, xn+1)

Proof
Take any a1, . . . , ak such that G |= s(a1, . . . , ak). Goal: Find ak+1 such that G |= t(a1, . . . , ak , ak+1).

Divide x1, x2, . . . , xk biased on type connections with k+1

We divide indices 1, 2, . . . , k into Con := {i | E(xi , xk+1) ∈ t} and DisC := {i | ¬E(xi , xk+1) ∈ t}.
Thus, our ak+1 must be connected to all ai with i ∈ Con and disconnected from all ai with i ∈ DisC.

(Dis)connected with x ≈ (non)dividable by the x -th prime number

ak+1 := Πi∈Con pai · q, where q is any prime number bigger than Πk
i=1 pai

And now it is easy to check our choice of ak+1 is correct. �
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Extra: The Random Graph
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ak+1 := Πi∈Con pai · q, where q is any prime number bigger than Πk
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