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@ Feel free to ask questions and interrupt me!

Don’t be shy! If needed send me an email (bartosz.bednarczyk@cs.uni.wroc.pl) or approach me after the lecture!

Reminder: this is an advanced lecture. Target: people that had fun learning logic during BSc studies!
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Let G, be the class of simple undirected graphs with n nodes. Of course |G,| = 2" )

Let P be a property of graphs. Let y,(P) = “probability that P holds in a random graph with n nodes".

H{® € Gn: & = P}

pn(P) = G, Asymptotic probability too(P) := n“—@o 16n(P)

Examples
1. Take P := "the graph is complete”. Then p(P) = lim, I{Qiegfg. SEPH _

n

= ||m,,_>oo “a(n-1) 0.
22

2. Take P := “the graph has a triangle”. p3(P) = 5. Since p3n(P) > 1 — (1 — )", we get pio(P) = 1.
3. Take P := “the graph has even number of edges”. [io(P) = % Why?
Gcg, & w0 (M1o1)/2
,UOO(P) |{ < g n(n—1) ): ,P}’ 220 g(n_%’ ) = [Sum of Even Index Binomial Coeff.] —
25T 22
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Proviso: For simplicity we focus on finite, simple, undirected graphs today!
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We consider random graphs, according to the uniform distribution, i.e. every edge has probability > Q&

n 1
Let G, be the class of simple undirected graphs with n nodes. Of course |G,| = 2" )

Let P be a property of graphs. Let y,(P) = “probability that P holds in a random graph with n nodes".
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2. Take P := “the graph has a triangle”. p3(P) = 5. Since p3n(P) > 1 — (1 — )", we get pio(P) = 1.
3. Take P := “the graph has even number of edges”. [io(P) = % Why?
&G, ® 50 (172 Ml g
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25T 22 2 2 2

4. Take P := “the graph has even number of nodes”. Then i(P) does not exist.
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k-Types and Extension Axioms
A k-type is a conjunction of formulae with variables xi, ..., xx such that for all i # j we have
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k-Types and Extension Axioms
A k-type is a conjunction of formulae with variables xi, ..., xx such that for all i # j we have
x; # x; and precisely one of E(x;, x;) or =E(x;, x;) as a conjunct.
)( ................

X]. - X2 """" PGreeee X3 X1 —_— X2 ...... PGrnennen X3 — X4_

\/ \//
S 1= x17#X0 N\ x17#x3 N\ XoF#x3 N\

E(x1, x2) A =E(x, x3) A E(x1, x3)
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A k-type is a conjunction of formulae with variables xi, ..., xx such that for all i # j we have

x; # x; and precisely one of E(x;, x;) or =E(x;, x;) as a conjunct.
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k-Types and Extension Axioms
A k-type is a conjunction of formulae with variables xi, ..., xx such that for all i # j we have

x; # x; and precisely one of E(x;, x;) or =E(x;, x;) as a conjunct.

e
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A (k + 1)-type t extends a k-type s if conjuncts(s) C conjuncts(t) (c.f. the above picture).
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A k-type is a conjunction of formulae with variables xi, ..., xx such that for all i # j we have

x; # x; and precisely one of E(x;, x;) or =E(x;, x;) as a conjunct.

e
- <>f/>< b ( Xl X e X3
S 1= x17#X0 N\ x17#x3 N\ XoF#x3 N\ \/
E(x1, %) A =E(x, x3) A E(x1, x3) t = x17#x A x1#£x3 A xo#x3 A\ E(x1, x2) A =E(x2, x3) A E(x1, x3)

Ax17£xy N\ xo7£ x4 N\ x37£xq N E(x1, %) A =E(x2, x4) A E(x3, x4)

A (k + 1)-type t extends a k-type s if conjuncts(s) C conjuncts(t) (c.f. the above picture).

An (s, t)-extension axiom o, is Vxy ... Vxk s(x1, ..., Xk) = Ixes1t(x1, - oy Xk, Xet1)-
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k-Types and Extension Axioms
A k-type is a conjunction of formulae with variables xi, ..., xx such that for all i # j we have

x; # x; and precisely one of E(x;, x;) or =E(x;, x;) as a conjunct.

e
- Q/X b ( Xl X e X3
S 1= x17#X0 N\ x17#x3 N\ XoF#x3 N\ \/
E(x1, %) A =E(x, x3) A E(x1, x3) t = x17#x A x1#£x3 A xo#x3 A\ E(x1, x2) A =E(x2, x3) A E(x1, x3)

Ax17£xy N\ xo7£ x4 N\ x37£xq N E(x1, %) A =E(x2, x4) A E(x3, x4)

A (k + 1)-type t extends a k-type s if conjuncts(s) C conjuncts(t) (c.f. the above picture).

An (s, t)-extension axiom o is Vxy ... Vxk s(X1, ..., Xk) = Ixer1t(Xa, - - - Xk, Xkr1)-

EA = {Vx —E(x, x), Vxy E(x,y) = E(y,x), s+ | sis k-type, tis (k+1)-type, t extends s}

Bartosz “Bart” Bednarczyk Finite and Algorithmic Model Theory (Lecture 2 Dresden Long) 3/8



Why the theory EA is important? Zero-One Law for FO[{E}].
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1. Every extension axiom o, ; from EA is almost surely true, i.e. p(0st) =1 (Exercise).

Bartosz “Bart” Bednarczyk Finite and Algorithmic Model Theory (Lecture 2 Dresden Long) 4/ 8



Why the theory EA is important? Zero-One Law for FO[{E}].
1. Every extension axiom o, ; from EA is almost surely true, i.e. p(0st) =1 (Exercise).

2. By Compactness, it follows that EA = ¢ implies ;1. () = 1 (TODO).
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Why the theory EA is important? Zero-One Law for FO[{E}].
1. Every extension axiom o, ; from EA is almost surely true, i.e. p(0st) =1 (Exercise).
2. By Compactness, it follows that EA = ¢ implies ;1. () = 1 (TODO).
3. The theory EA is w-categorical, i.e. has exactly one countable model up to = (TODO).
4. Thus EA is complete, i.e. for all ¢ € FO we have EA = ¢ or EA = —¢p (TODO).

Theorem (Glebskii et al. 1969, Fagin 1976)
For every formula ¢ € FO[{E}] we have that () is either 0 or 1.
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1. Every extension axiom o, ; from EA is almost surely true, i.e. p(0st) =1 (Exercise).
2. By Compactness, it follows that EA = ¢ implies ;1. () = 1 (TODO).
3. The theory EA is w-categorical, i.e. has exactly one countable model up to = (TODO).
4. Thus EA is complete, i.e. for all ¢ € FO we have EA = ¢ or EA = —¢p (TODO).
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Why the theory EA is important? Zero-One Law for FO[{E}].
1. Every extension axiom o, ; from EA is almost surely true, i.e. p(0st) =1 (Exercise).
2. By Compactness, it follows that EA = ¢ implies ;1. () = 1 (TODO).
3. The theory EA is w-categorical, i.e. has exactly one countable model up to = (TODO).
4. Thus EA is complete, i.e. for all ¢ € FO we have EA = ¢ or EA = —¢p (TODO).

Theorem (Glebskii et al. 1969, Fagin 1976)
For every formula ¢ € FO[{E}] we have that () is either 0 or 1.

Proof
Take any ¢ € FO[{E}]. By (4) either EA |= ¢ or EA = —p.
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Why the theory EA is important? Zero-One Law for FO[{E}].
1. Every extension axiom o, ; from EA is almost surely true, i.e. p(0st) =1 (Exercise).
2. By Compactness, it follows that EA = ¢ implies ;1. () = 1 (TODO).
3. The theory EA is w-categorical, i.e. has exactly one countable model up to = (TODO).
4. Thus EA is complete, i.e. for all ¢ € FO we have EA = ¢ or EA = —¢p (TODO).

Theorem (Glebskii et al. 1969, Fagin 1976)
For every formula ¢ € FO[{E}] we have that () is either 0 or 1.

Proof
Take any ¢ € FO[{E}]. By (4) either EA = ¢ or EA = —p. If EA |= ¢ then by (2) we have uo(¢) = 1.
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Why the theory EA is important? Zero-One Law for FO[{E}].
1. Every extension axiom o, ; from EA is almost surely true, i.e. p(0st) =1 (Exercise).
2. By Compactness, it follows that EA = ¢ implies ;1. () = 1 (TODO).
3. The theory EA is w-categorical, i.e. has exactly one countable model up to = (TODO).
4. Thus EA is complete, i.e. for all ¢ € FO we have EA = ¢ or EA = —¢p (TODO).

Theorem (Glebskii et al. 1969, Fagin 1976)
For every formula ¢ € FO[{E}] we have that () is either 0 or 1.

Proof
Take any ¢ € FO[{E}]. By (4) either EA = ¢ or EA = —p. If EA |= ¢ then by (2) we have uo(¢) = 1.
Otherwise EA = -y, so by (2) we infer poo(—¢) =1,
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Why the theory EA is important? Zero-One Law for FO[{E}].
1. Every extension axiom o, ; from EA is almost surely true, i.e. p(0st) =1 (Exercise).
2. By Compactness, it follows that EA = ¢ implies ;1. () = 1 (TODO).
3. The theory EA is w-categorical, i.e. has exactly one countable model up to = (TODO).
4. Thus EA is complete, i.e. for all ¢ € FO we have EA = ¢ or EA = —¢p (TODO).

Theorem (Glebskii et al. 1969, Fagin 1976)
For every formula ¢ € FO[{E}] we have that () is either 0 or 1.

Proof
Take any ¢ € FO[{E}]. By (4) either EA = ¢ or EA = —p. If EA |= ¢ then by (2) we have uo(¢) = 1.

Otherwise EA = -, so by (2) we infer poo(—¢) = 1, which leads to pix(p) = 1 — pioo(—¢) = 0. =
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Why the theory EA is important? Zero-One Law for FO[{E}].
1. Every extension axiom o, ; from EA is almost surely true, i.e. p(0st) =1 (Exercise).
2. By Compactness, it follows that EA = ¢ implies ;1. () = 1 (TODO).
3. The theory EA is w-categorical, i.e. has exactly one countable model up to = (TODO).
4. Thus EA is complete, i.e. for all ¢ € FO we have EA = ¢ or EA = —¢p (TODO).

Theorem (Glebskii et al. 1969, Fagin 1976)
For every formula ¢ € FO[{E}] we have that () is either 0 or 1.

Proof
Take any ¢ € FO[{E}]. By (4) either EA = ¢ or EA = —p. If EA |= ¢ then by (2) we have uo(¢) = 1.

Otherwise EA = -, so by (2) we infer poo(—¢) = 1, which leads to pix(p) = 1 — pioo(—¢) = 0. =

Applications?

e Evenness of the number of nodes/edges not FO[{ E}]-definable.
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Why the theory EA is important? Zero-One Law for FO[{E}].
1. Every extension axiom o, ; from EA is almost surely true, i.e. p(0st) =1 (Exercise).
2. By Compactness, it follows that EA = ¢ implies ;1. () = 1 (TODO).
3. The theory EA is w-categorical, i.e. has exactly one countable model up to = (TODO).
4. Thus EA is complete, i.e. for all ¢ € FO we have EA = ¢ or EA = —¢p (TODO).

Theorem (Glebskii et al. 1969, Fagin 1976)
For every formula ¢ € FO[{E}] we have that () is either 0 or 1.

Proof
Take any ¢ € FO[{E}]. By (4) either EA = ¢ or EA = —p. If EA |= ¢ then by (2) we have uo(¢) = 1.

Otherwise EA = -, so by (2) we infer poo(—¢) = 1, which leads to pix(p) = 1 — pioo(—¢) = 0. =

Applications?
e Evenness of the number of nodes/edges not FO[{ E}]-definable.

e No information about connectivity because i ("graph is connected") = 0.
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Proof of EA |= ¢ implies 11(p) = 1 (assuming that Vo € EA u. (o) = 1).
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Proof of EA = ¢ implies () = 1 (assuming that Vo € EA u. (o) =1).
Handy observations for all o, 3,y € FO[{E}] and all n € N:
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Proof of EA = ¢ implies () = 1 (assuming that Vo € EA u. (o) =1).
Handy observations for all o, 3,y € FO[{E}] and all n € N:

pn(mr) = 1 — pn(a)
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Proof of EA = ¢ implies () = 1 (assuming that Vo € EA u. (o) =1).
Handy observations for all o, 3,y € FO[{E}] and all n € N:

pn(—a) = 1 — pn(c) pa(BV ) < pn(B) + pal).
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Proof of EA = ¢ implies () = 1 (assuming that Vo € EA u. (o) =1).
Handy observations for all o, 3,y € FO[{E}] and all n € N:

pn(—a) = 1 — pn(c) pa(BV ) < pn(B) + pal).

Proof
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Proof of EA = ¢ implies () = 1 (assuming that Vo € EA u. (o) =1).
Handy observations for all o, 3,y € FO[{E}] and all n € N:

pn(—a) = 1 — pn(c) pa(BV ) < pn(B) + pal).

Proof
Goal: To show () = 1 it suffices to show that p,(—p) — 0 when n — oo.
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Proof of EA = ¢ implies () = 1 (assuming that Vo € EA u. (o) =1).
Handy observations for all o, 3,y € FO[{E}] and all n € N:

pn(—a) = 1 — pn(c) pa(BV ) < pn(B) + pal).

Proof
Goal: To show () = 1 it suffices to show that p,(—p) — 0 when n — oo.
Assume EA = .
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Proof of EA = ¢ implies () = 1 (assuming that Vo € EA u. (o) =1).
Handy observations for all o, 3,y € FO[{E}] and all n € N:

pn(me) = 1= () Compactness: EA |= ¢ implies BV ) < pa(B) + p1n(7)-
there is EAg G, EA implying ¢

Proof

Goal: To show () = 1 it suffices to show that p,(—p) — 0 when n — oo.
Assume EA = .
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Proof of EA = ¢ implies () = 1 (assuming that Vo € EA u. (o) =1).
Handy observations for all o, 3,y € FO[{E}] and all n € N:

pn(me) = 1= () Compactness: EA |= ¢ implies BV ) < pa(B) + p1n(7)-
there is EAg G, EA implying ¢

Proof

Goal: To show () = 1 it suffices to show that p,(—p) — 0 when n — oo.
Assume EA = . By compactness, there is a finite EAy C EA such that EAq = ¢.
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Proof of EA = ¢ implies () = 1 (assuming that Vo € EA u. (o) =1).
Handy observations for all o, 3,y € FO[{E}] and all n € N:

pn(mr) = 1 — pn(a) Compactness: EA = ¢ implies pal(BV ) < pn(B) + pa(y).
there is EAg G, EA implying ¢

Proof

Goal: To show () = 1 it suffices to show that p,(—p) — 0 when n — oo.
Assume EA = . By compactness, there is a finite EAy C EA such that EAq = ¢.

So ,LLn(QO) > Mn(/\]EAO)'
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Proof of EA = ¢ implies () = 1 (assuming that Vo € EA u. (o) =1).
Handy observations for all o, 3,y € FO[{E}] and all n € N:

pn(mr) = 1 — pn(a) Compactness: EA = ¢ implies pal(BV ) < pn(B) + pa(y).
there is EAg G, EA implying ¢

Proof

Goal: To show () = 1 it suffices to show that p,(—p) — 0 when n — oo.
Assume EA = . By compactness, there is a finite EAy C EA such that EAq = ¢.

So 1n(p) = pn(AEAg), thus pin(= AEAg) = pun(—ep).
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Proof of EA = ¢ implies () = 1 (assuming that Vo € EA u. (o) =1).
Handy observations for all o, 3,y € FO[{E}] and all n € N:

pn(me) = 1= () Compactness: EA |= ¢ implies BV ) < pa(B) + p1n(7)-
there is EAg G, EA implying ¢

Proof

Goal: To show () = 1 it suffices to show that p,(—p) — 0 when n — oo.
Assume EA = . By compactness, there is a finite EAy C EA such that EAq = ¢.

So 1n(p) = pn(AEAg), thus pin(= AEAg) = pun(—ep).

Moreover (by our assumption), p,(—0) =1 — p,(o) tends to 0 when n — oo.
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Proof of EA = ¢ implies () = 1 (assuming that Vo € EA u. (o) =1).
Handy observations for all o, 3,y € FO[{E}] and all n € N:
pn(me) = 1= () Compactness: EA |= ¢ implies BV ) < pa(B) + p1n(7)-
there is EAg G, EA implying ¢

Proof

Goal: To show () = 1 it suffices to show that p,(—p) — 0 when n — oo.
Assume EA = . By compactness, there is a finite EAy C EA such that EAq = ¢.

So 1n(p) = pn(AEAg), thus pin(= AEAg) = pun(—ep).

Moreover (by our assumption), p,(—0) =1 — p,(o) tends to 0 when n — oo.

n(—9) < pn(AEA) = pp( Vo) < X pp(—o)

c€EAq c€EAg
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Proof of EA = ¢ implies () = 1 (assuming that Vo € EA u. (o) =1).

Handy observations for all o, 3,y € FO[{E}] and all n € N:

pn(ma) = 1 = pn(@) Compactness: EA = ¢ implies (V) < pnlB) + ()

there is EAg G, EA implying ¢

Proof

Goal: To show () = 1 it suffices to show that p,(—p) — 0 when n — oo.
Assume EA = . By compactness, there is a finite EAy C EA such that EAq = ¢.

So 1n(p) = pn(AEAg), thus pin(= AEAg) = pun(—ep).

Moreover (by our assumption), p,(—0) =1 — p,(o) tends to 0 when n — oo.

n(—9) < pn(AEA) = pp( Vo) < X pp(—o)

c€EAq c€EAg
The sum > p,(—0) converges to 0 for n — oo, concluding () = 1.
UEEAO
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EA is satisfiable and complete (assuming w-categoricity)
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EA is satisfiable and complete (assuming w-categoricity)
e Note that EA }~ Vx L
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EA is satisfiable and complete (assuming w-categoricity)
e Note that EA [~ Vx L (due to p(VxL) = 0).
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EA is satisfiable and complete (assuming w-categoricity)
e Note that EA [~ Vx L (due to piso(VxL) = 0). So EA have a model (UnSAT theory entails everything).
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EA is satisfiable and complete (assuming w-categoricity)
e Note that EA [~ Vx L (due to piso(VxL) = 0). So EA have a model (UnSAT theory entails everything).

EA is complete (assuming w-categoricity), i.e. for all ¢ we either have EA = ¢ or EA = —¢.
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EA is satisfiable and complete (assuming w-categoricity)
e Note that EA [~ Vx L (due to piso(VxL) = 0). So EA have a model (UnSAT theory entails everything).

EA is complete (assuming w-categoricity), i.e. for all ¢ we either have EA = ¢ or EA = —¢.

Proof
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EA is satisfiable and complete (assuming w-categoricity)
e Note that EA [~ Vx L (due to piso(VxL) = 0). So EA have a model (UnSAT theory entails everything).

EA is complete (assuming w-categoricity), i.e. for all ¢ we either have EA = ¢ or EA = —¢.

Proof

Ad absurdum
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EA is satisfiable and complete (assuming w-categoricity)
e Note that EA [~ Vx L (due to piso(VxL) = 0). So EA have a model (UnSAT theory entails everything).

EA is complete (assuming w-categoricity), i.e. for all ¢ we either have EA = ¢ or EA = —¢.

Proof
Assume that [EA is not complete.

Ad absurdum
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EA is satisfiable and complete (assuming w-categoricity)
e Note that EA [~ Vx L (due to piso(VxL) = 0). So EA have a model (UnSAT theory entails everything).

EA is complete (assuming w-categoricity), i.e. for all ¢ we either have EA = ¢ or EA = —¢.

Proof
Assume that EA is not complete. Thus we have 2 = ¢ and 8 |= = that are both models of EA.

Ad absurdum
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EA is satisfiable and complete (assuming w-categoricity)
e Note that EA [~ Vx L (due to piso(VxL) = 0). So EA have a model (UnSAT theory entails everything).

EA is complete (assuming w-categoricity), i.e. for all ¢ we either have EA = ¢ or EA = —¢.

Proof
Assume that EA is not complete. Thus we have 2 = ¢ and 8 |= = that are both models of EA.

Ad absurdum | owenheim-Skolem
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EA is satisfiable and complete (assuming w-categoricity)
e Note that EA [~ Vx L (due to piso(VxL) = 0). So EA have a model (UnSAT theory entails everything).

EA is complete (assuming w-categoricity), i.e. for all ¢ we either have EA = ¢ or EA = —¢.

Proof
Assume that EA is not complete. Thus we have 2 = ¢ and 8 |= = that are both models of EA.

Since |[EA| = N, by Léwenheim-Skolem we can assume w.l.o.g. that 2 and 25 are also countably-infinite.

Ad absurdum | owenheim-Skolem
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EA is satisfiable and complete (assuming w-categoricity)
e Note that EA [~ Vx L (due to piso(VxL) = 0). So EA have a model (UnSAT theory entails everything).

EA is complete (assuming w-categoricity), i.e. for all ¢ we either have EA = ¢ or EA = —¢.

Proof
Assume that EA is not complete. Thus we have 2 = ¢ and 8 |= = that are both models of EA.

Since |[EA| = N, by Léwenheim-Skolem we can assume w.l.o.g. that 2 and 25 are also countably-infinite.

Ad absurdum Lowenheim-Skolem w-categoricity
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EA is satisfiable and complete (assuming w-categoricity)

e Note that EA [~ Vx L (due to piso(VxL) = 0). So EA have a model (UnSAT theory entails everything).
EA is complete (assuming w-categoricity), i.e. for all ¢ we either have EA = ¢ or EA = —¢.

Proof
Assume that EA is not complete. Thus we have 2 = ¢ and 8 |= = that are both models of EA.

Since |[EA| = N, by Léwenheim-Skolem we can assume w.l.o.g. that 2 and 25 are also countably-infinite.

But then, by w-categoricity of IEA, we infer 2 = 5.

Ad absurdum Lowenheim-Skolem w-categoricity
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EA is satisfiable and complete (assuming w-categoricity)

e Note that EA [~ Vx L (due to piso(VxL) = 0). So EA have a model (UnSAT theory entails everything).
EA is complete (assuming w-categoricity), i.e. for all ¢ we either have EA = ¢ or EA = —¢.

Proof
Assume that EA is not complete. Thus we have 2 = ¢ and 8 |= = that are both models of EA.

Since |[EA| = N, by Léwenheim-Skolem we can assume w.l.o.g. that 2 and 25 are also countably-infinite.

But then, by w-categoricity of IEA, we infer 2 = 5.

Ad absurdum Lowenheim-Skolem w-categoricity = preserves |=
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EA is satisfiable and complete (assuming w-categoricity)

e Note that EA [~ Vx L (due to piso(VxL) = 0). So EA have a model (UnSAT theory entails everything).

EA is complete (assuming w-categoricity), i.e. for all ¢ we either have EA = ¢ or EA = —¢.

Proof
Assume that [EA is not complete. Thus we have 2l = ¢ and B |= — that are both models of EA.

Since |[EA| = N, by Léwenheim-Skolem we can assume w.l.o.g. that 2 and 25 are also countably-infinite.
But then, by w-categoricity of IEA, we infer 2 = 5.
Thus 2 = ¢ and 24 = —¢ (since B = ). A contradiction!

Ad absurdum Lowenheim-Skolem w-categoricity = preserves |=
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Today’s final boss: EA is w-categorical
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Today’s final boss: EA is w-categorical

EA is w-categorical, i.e. has precisely one countably-infinite model.
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Today’s final boss: EA is w-categorical

EA is w-categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models 2,5 of EA with the domains A :={a;,a,...} and B := {by, by, .. .}.
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Today’s final boss: EA is w-categorical

EA is w-categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models 2,5 of EA with the domains A :={a;,a,...} and B := {by, by, .. .}.
Goal: We will show that 2l = 55 by
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Today’s final boss: EA is w-categorical

EA is w-categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models 2,5 of EA with the domains A :={a;,a,...} and B := {by, by, .. .}.
Goal: We will show that 2l = 55 by

induction
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Today’s final boss: EA is w-categorical

EA is w-categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models 2,5 of EA with the domains A :={a;,a,...} and B := {by, by, .. .}.

Goal: We will show that 2l = 55 by producing an infinite growing sequence of partial isomorphisms g, p1, . ..

induction
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Today’s final boss: EA is w-categorical

EA is w-categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models 2,5 of EA with the domains A :={a;,a,...} and B := {by, by, .. .}.

Goal: We will show that 2l = 55 by producing an infinite growing sequence of partial isomorphisms g, p1, . ..

The union G n; will be the desired isomorphism.
i=0

induction
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Today’s final boss: EA is w-categorical

EA is w-categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models 2,5 of EA with the domains A :={a;,a,...} and B := {by, by, .. .}.

Goal: We will show that 2l = 55 by producing an infinite growing sequence of partial isomorphisms g, p1, . ..

The union G p; will be the desired isomorphism. Start from pg := 0.
i=0

induction
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Today’s final boss: EA is w-categorical

EA is w-categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models 2,5 of EA with the domains A :={a;,a,...} and B := {by, by, .. .}.

Goal: We will show that 2l = 55 by producing an infinite growing sequence of partial isomorphisms g, p1, . ..

The union G p; will be the desired isomorphism. Start from pg := 0.
i=0

Assume that a partial isomorphism p, = {a; — bj,, a;, = bj,, ..., a;, — b; } is given.

induction
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Today’s final boss: EA is w-categorical

EA is w-categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models 2,5 of EA with the domains A :={a;,a,...} and B := {by, by, .. .}.

Goal: We will show that 2l = 55 by producing an infinite growing sequence of partial isomorphisms g, p1, . ..

The union G p; will be the desired isomorphism. Start from pg := 0.
i=0

Assume that a partial isomorphism p, = {a; — bj,, a;, = bj,, ..., a;, — bj } is given. Goal: define p, ;.

induction

Bartosz “Bart” Bednarczyk Finite and Algorithmic Model Theory (Lecture 2 Dresden Long) 7/ 8



Today’s final boss: EA is w-categorical

EA is w-categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models 2,5 of EA with the domains A :={a;,a,...} and B := {by, by, .. .}.

Goal: We will show that 2l = 55 by producing an infinite growing sequence of partial isomorphisms g, p1, . ..

The union G p; will be the desired isomorphism. Start from pg := 0.
i=0

Assume that a partial isomorphism p, = {a; — bj,, a;, = bj,, ..., a;, — bj } is given. Goal: define p, ;.

induction back and forth
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Today’s final boss: EA is w-categorical
EA is w-categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models 2,5 of EA with the domains A :={a;,a,...} and B := {by, by, .. .}.

Goal: We will show that 2l = 55 by producing an infinite growing sequence of partial isomorphisms g, p1, . ..
0

The union [J p; will be the desired isomorphism. Start from pg := 0.
i=0

Assume that a partial isomorphism p, = {a; — bj,, a;, = bj,, ..., a;, — bj } is given. Goal: define p, ;.

If n+1 is even, we will select some element from 2l

induction back and forth
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Today’s final boss: EA is w-categorical
EA is w-categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models 2,5 of EA with the domains A :={a;,a,...} and B := {by, by, .. .}.

Goal: We will show that 2l = 55 by producing an infinite growing sequence of partial isomorphisms g, p1, . ..
0. @)

The union [J p; will be the desired isomorphism. Start from pg := 0.
i=0

Assume that a partial isomorphism p, = {a; — bj,, a;, = bj,, ..., a;, — bj } is given. Goal: define p, ;.

If n+1 is even, we will select some element from 2l (otherwise proceed analogously in 98, proof omitted).

induction back and forth
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Today’s final boss: EA is w-categorical
EA is w-categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models 2,5 of EA with the domains A :={a;,a,...} and B := {by, by, .. .}.

Goal: We will show that 2l = 55 by producing an infinite growing sequence of partial isomorphisms g, p1, . ..
0. @)

The union [J p; will be the desired isomorphism. Start from pg := 0.
i=0

Assume that a partial isomorphism p, = {a; — bj,, a;, = bj,, ..., a;, — bj } is given. Goal: define p, ;.

If n+1 is even, we will select some element from 2l (otherwise proceed analogously in 98, proof omitted).

induction back and forth first not yet covered
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Today’s final boss: EA is w-categorical
EA is w-categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models 2,5 of EA with the domains A :={a;,a,...} and B := {by, by, .. .}.
Goal: We will show that 2l = 55 by producing an infinite growing sequence of partial isomorphisms g, p1, . ..

The union G p; will be the desired isomorphism. Start from pg := 0.
i=0

Assume that a partial isomorphism p, = {a; — bj,, a;, = bj,, ..., a;, — bj } is given. Goal: define p, ;.

If n+1 is even, we will select some element from 2l (otherwise proceed analogously in 98, proof omitted).

Take a, € A, for which k is the smallest index so that a, does not appear in ,.

induction back and forth first not yet covered
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Today’s final boss: EA is w-categorical
EA is w-categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models 2,5 of EA with the domains A :={a;,a,...} and B := {by, by, .. .}.
Goal: We will show that 2l = 55 by producing an infinite growing sequence of partial isomorphisms g, p1, . ..

The union G p; will be the desired isomorphism. Start from pg := 0.
i=0

Assume that a partial isomorphism p, = {a; — bj,, a;, = bj,, ..., a;, — bj } is given. Goal: define p, ;.

If n+1 is even, we will select some element from 2l (otherwise proceed analogously in 98, proof omitted).

Take a, € A, for which k is the smallest index so that ax does not appear in p,. What do we know about 37

induction back and forth first not yet covered
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Today’s final boss: EA is w-categorical
EA is w-categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models 2,5 of EA with the domains A :={a;,a,...} and B := {by, by, .. .}.
Goal: We will show that 2l = 55 by producing an infinite growing sequence of partial isomorphisms g, p1, . ..

The union G p; will be the desired isomorphism. Start from pg := 0.
i=0

Assume that a partial isomorphism p, = {a; — bj,, a;, = bj,, ..., a;, — bj } is given. Goal: define p, ;.

If n+1 is even, we will select some element from 2l (otherwise proceed analogously in 98, proof omitted).

Take a, € A, for which k is the smallest index so that ax does not appear in p,. What do we know about 37

induction back and forth first not yet covered exploit types realized by a
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Today’s final boss: EA is w-categorical

EA is w-categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models 2,5 of EA with the domains A :={a;,a,...} and B := {by, by, .. .}.

Goal: We will show that 2l = 55 by producing an infinite growing sequence of partial isomorphisms g, p1, . ..

The union G p; will be the desired isomorphism. Start from pg := 0.
i=0

Assume that a partial isomorphism p, = {a; — bj,, a;, = bj,, ..., a;, — bj } is given. Goal: define p, ;.

If n+1 is even, we will select some element from 2l (otherwise proceed analogously in 98, proof omitted).

Take a, € A, for which k is the smallest index so that a, does not appear in p,. What do we know about 37

There are unique n- and (n+1)-types s and ¢

induction back and forth first not yet covered exploit types realized by a
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EA is w-categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models 2,5 of EA with the domains A :={a;,a,...} and B := {by, by, .. .}.

Goal: We will show that 2l = 55 by producing an infinite growing sequence of partial isomorphisms g, p1, . ..

The union G p; will be the desired isomorphism. Start from pg := 0.
i=0

Assume that a partial isomorphism p, = {a; — bj,, a;, = bj,, ..., a;, — bj } is given. Goal: define p, ;.

If n+1 is even, we will select some element from 2l (otherwise proceed analogously in 98, proof omitted).

Take a, € A, for which k is the smallest index so that ax does not appear in p,. What do we know about 37

There are unique n- and (n+1)-types s and ¢ such that s C t, 2 = s(aj,,...,a;,), and 2 = t(a, ..., aj,, a).
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EA is w-categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models 2,5 of EA with the domains A :={a;,a,...} and B := {by, by, .. .}.

Goal: We will show that 2l = 55 by producing an infinite growing sequence of partial isomorphisms g, p1, . ..

The union G p; will be the desired isomorphism. Start from pg := 0.
i=0

Assume that a partial isomorphism p, = {a; — bj,, a;, = bj,, ..., a;, — bj } is given. Goal: define p, ;.

If n+1 is even, we will select some element from 2l (otherwise proceed analogously in 98, proof omitted).

Take a, € A, for which k is the smallest index so that ax does not appear in p,. What do we know about 37

There are unique n- and (n+1)-types s and ¢ such that s C t, 2 = s(aj,,...,a;,), and 2 = t(a, ..., aj,, a).

induction back and forth first not yet covered exploit types realized by @  ind. ass.
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Today’s final boss: EA is w-categorical

EA is w-categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models 2,5 of EA with the domains A :={a;,a,...} and B := {by, by, .. .}.

Goal: We will show that 2l = 55 by producing an infinite growing sequence of partial isomorphisms g, p1, . ..

The union G p; will be the desired isomorphism. Start from pg := 0.
i=0

Assume that a partial isomorphism p, = {a; — b, a;, — b .,a; — b; } is given. Goal: define p, 1.

s s+

If n+1 is even, we will select some element from 2l (otherwise proceed analogously in 98, proof omitted).

Take a, € A, for which k is the smallest index so that ax does not appear in p,. What do we know about 37

There are unique n- and (n+1)-types s and ¢ such that s C t, 2 = s(aj,,...,a;,), and 2 = t(a, ..., aj,, a).

Since p, is a partial isomorphism, we have 5 = s(b,,....b; ).
induction back and forth first not yet covered exploit types realized by @  ind. ass.
$ @ $ @ $
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Today’s final boss: EA is w-categorical

EA is w-categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models 2,5 of EA with the domains A :={a;,a,...} and B := {by, by, .. .}.

Goal: We will show that 2l = 55 by producing an infinite growing sequence of partial isomorphisms g, p1, . ..

The union G p; will be the desired isomorphism. Start from pg := 0.
i=0

Assume that a partial isomorphism p, = {a; — b, a;, — b .,a; — b; } is given. Goal: define p, 1.

i Dy + +
If n+1 is even, we will select some element from 2l (otherwise proceed analogously in 98, proof omitted).
Take a, € A, for which k is the smallest index so that ax does not appear in p,. What do we know about 37
There are unique n- and (n+1)-types s and ¢ such that s C t, 2 = s(aj,,...,a;,), and 2 = t(a, ..., aj,, a).

Since p, is a partial isomorphism, we have 5 = s(b,,....b; ).

induction back and forth first not yet covered exploit types realized by @  ind. ass. B = EA
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Today’s final boss: EA is w-categorical

EA is w-categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models 2,5 of EA with the domains A :={a;,a,...} and B := {by, by, .. .}.

Goal: We will show that 2l = 55 by producing an infinite growing sequence of partial isomorphisms g, p1, . ..

The union G p; will be the desired isomorphism. Start from pg := 0.
i=0

Assume that a partial isomorphism p, = {a; — b, a;, — b .,a; — b; } is given. Goal: define p, 1.

i Dy + +
If n+1 is even, we will select some element from 2l (otherwise proceed analogously in 98, proof omitted).
Take a, € A, for which k is the smallest index so that ax does not appear in p,. What do we know about 37
There are unique n- and (n+1)-types s and ¢ such that s C t, 2 = s(aj,,...,a;,), and 2 = t(a, ..., aj,, a).

Since p, is a partial isomorphism, we have 5 = s(b;,..... b; ). But o,; € EA and B = EA!

induction back and forth first not yet covered exploit types realized by @  ind. ass. B = EA
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Today’s final boss: EA is w-categorical

EA is w-categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models 2,5 of EA with the domains A :={a;,a,...} and B := {by, by, .. .}.

Goal: We will show that 2l = 55 by producing an infinite growing sequence of partial isomorphisms g, p1, . ..

The union G p; will be the desired isomorphism. Start from pg := 0.
i=0

Assume that a partial isomorphism p, = {a; — b, a;, — b .,a; — b; } is given. Goal: define p, 1.

i1 s iy - -
If n+1 is even, we will select some element from 2l (otherwise proceed analogously in 98, proof omitted).
Take a, € A, for which k is the smallest index so that ax does not appear in p,. What do we know about 37
There are unique n- and (n+1)-types s and ¢ such that s C t, 2 = s(aj,,...,a;,), and 2 = t(a, ..., aj,, a).
Since p, is a partial isomorphism, we have 5 = s(b;,..... b; ). But o,; € EA and B = EA!

Thus B =0, = Vx1 ... VX, s(X1, ..., Xn) = Dxpe1 t(X1, .- oy Xny Xnt1)-

induction back and forth first not yet covered exploit types realized by @  ind. ass. B = EA
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Today’s final boss: EA is w-categorical

EA is w-categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models 2,5 of EA with the domains A :={a;,a,...} and B := {by, by, .. .}.

Goal: We will show that 2l = 55 by producing an infinite growing sequence of partial isomorphisms g, p1, . ..

The union G p; will be the desired isomorphism. Start from pg := 0.
i=0

Assume that a partial isomorphism p, = {a; — b, a;, — b .,a; — b; } is given. Goal: define p, 1.

i1 s iy - -
If n+1 is even, we will select some element from 2l (otherwise proceed analogously in 98, proof omitted).
Take a, € A, for which k is the smallest index so that ax does not appear in p,. What do we know about 37
There are unique n- and (n+1)-types s and ¢ such that s C t, 2 = s(aj,,...,a;,), and 2 = t(a, ..., aj,, a).
Since p, is a partial isomorphism, we have 5 = s(b;,..... b; ). But o,; € EA and B = EA!

Thus B =0, = Vx1 ... VX, s(X1, ..., Xn) = Dxpe1 t(X1, .- oy Xny Xnt1)-

induction back and forth first not yet covered exploit types realized by @ ind. ass. B E=EA Choose a witness
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Today’s final boss: EA is w-categorical

EA is w-categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models 2,5 of EA with the domains A :={a;,a,...} and B := {by, by, .. .}.

Goal: We will show that 2l = 55 by producing an infinite growing sequence of partial isomorphisms g, p1, . ..

The union G p; will be the desired isomorphism. Start from pg := 0.
Assume tha;toa partial isomorphism p, = {a;, — bi, a, = bj,, ..., a;, — b } is given. Goal: define p,;.

If n+1 is even, we will select some element from 2l (otherwise proceed analogously in 98, proof omitted).
Take a, € A, for which k is the smallest index so that ax does not appear in p,. What do we know about 37
There are unique n- and (n+1)-types s and ¢ such that s C t, 2 = s(aj,,...,a;,), and 2 = t(a, ..., aj,, a).
Since p, is a partial isomorphism, we have 5 = s(b;,..... b; ). But o,; € EA and B = EA!

Thus B =0, = Vx1 ... VX, s(X1, ..., Xn) = Dxpe1 t(X1, .- oy Xny Xnt1)-

So there is an b € B so that B = t(bj, ..., bj, b).

induction back and forth first not yet covered exploit types realized by @ ind. ass. B E=EA Choose a witness
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Today’s final boss: EA is w-categorical

EA is w-categorical, i.e. has precisely one countably-infinite model.

Take any two countably-inf models 2,5 of EA with the domains A :={a;,a,...} and B := {by, by, .. .}.

Goal: We will show that 2l = 55 by producing an infinite growing sequence of partial isomorphisms g, p1, . ..

The union G p; will be the desired isomorphism. Start from pg := 0.
i=0

Assume that a partial isomorphism p, = {a; — bj,, a;, = bj,, ..., a;, — bj } is given. Goal: define p, ;.

If n+1 is even, we will select some element from 2l (otherwise proceed analogously in 98, proof omitted).
Take a, € A, for which k is the smallest index so that ax does not appear in p,. What do we know about 37
There are unique n- and (n+1)-types s and ¢ such that s C t, 2 = s(aj,,...,a;,), and 2 = t(a, ..., aj,, a).
Since p, is a partial isomorphism, we have 5 = s(b;,..... b; ). But o,; € EA and B = EA!

Thus B =0, = Vx1 ... VX, s(X1, ..., Xn) = Dxpe1 t(X1, .- oy Xny Xnt1)-

So there is an b € B so that B = t(b;, ..., b;, b). Continue from p,.1 = p, U {(a, > b)}.

iy O
induction back and forth first not yet covered exploit types realized by @ ind. ass. B E=EA Choose a witness
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Extra: The Random Graph
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Extra: The Random Graph

We proved that IEA has a model unconstructively.
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Extra: The Random Graph
We proved that IEA has a model unconstructively. Can we describe the countable model of EA?

Let & = (V,E) be a graph such that V =N, and (i,/) € E iff p; | j or p; | i (p; is the i-th prime number)

Lemma

S oo i =Vx1. .. VX, s(X1, ..y Xn) = Ixnr1 t(xa, -y Xy Xnt1)
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Extra: The Random Graph

We proved that IEA has a model unconstructively. Can we describe the countable model of EA?

Let & = (V,E) be a graph such that V =N, and (i,/) € E iff p; | j or p; | i (p; is the i-th prime number)

Lemma

S oo i =Vx1. .. VX, s(X1, ..y Xn) = Ixnr1 t(xa, -y Xy Xnt1)
Proof
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Extra: The Random Graph
We proved that IEA has a model unconstructively. Can we describe the countable model of EA?

Let & = (V,E) be a graph such that V =N, and (i,/) € E iff p; | j or p; | i (p; is the i-th prime number)

Lemma

S = o0sr i =Vxy...Vxp s(x1, .0, Xn) = Ixng1 (X1, - oy Xny Xnt1)
Proof

Take any ay, ..., a such that & |=s(ay, ..., a).
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Extra: The Random Graph
We proved that IEA has a model unconstructively. Can we describe the countable model of EA?

Let & = (V,E) be a graph such that V =N, and (i,/) € E iff p; | j or p; | i (p; is the i-th prime number)

Lemma

S = o0sr i =Vxy...Vxp s(x1, .0, Xn) = Ixng1 (X1, - oy Xny Xnt1)
Proof

Take any ay, ..., a such that & |=s(ay, ..., ax). Goal: Find ax 1 such that & = t(ay, ..., ak, akr1).

Bartosz “Bart” Bednarczyk Finite and Algorithmic Model Theory (Lecture 2 Dresden Long) 8/ 8



Extra: The Random Graph
We proved that IEA has a model unconstructively. Can we describe the countable model of EA?

Let & = (V,E) be a graph such that V =N, and (i,/) € E iff p; | j or p; | i (p; is the i-th prime number)

Lemma

S = o0sr i =Vxy...Vxp s(x1, .0, Xn) = Ixng1 (X1, - oy Xny Xnt1)
Proof

Take any ay, ..., a such that & |=s(ay, ..., ax). Goal: Find ax 1 such that & = t(ay, ..., ak, akr1).

Divide x1, x2, . .., Xk biased on type connections with k+1
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Extra: The Random Graph
We proved that IEA has a model unconstructively. Can we describe the countable model of EA?

Let & = (V,E) be a graph such that V =N, and (i,/) € E iff p; | j or p; | i (p; is the i-th prime number)

Lemma
S = o0sr i =Vxy...Vxp s(x1, .0, Xn) = Ixng1 (X1, - oy Xny Xnt1)
Proof

Take any ay, ..., a such that & |=s(ay, ..., ax). Goal: Find ax 1 such that & = t(ay, ..., ak, akr1).
We divide indices 1,2, ..., k into

Divide x1, x2, . .., Xk biased on type connections with k+1
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Extra: The Random Graph
We proved that IEA has a model unconstructively. Can we describe the countable model of EA?

Let & = (V,E) be a graph such that V =N, and (i,/) € E iff p; | j or p; | i (p; is the i-th prime number)

Lemma
S = o0sr i =Vxy...Vxp s(x1, .0, Xn) = Ixng1 (X1, - oy Xny Xnt1)
Proof
Take any ay, ..., a such that & |=s(ay, ..., ax). Goal: Find ax 1 such that & = t(ay, ..., ak, akr1).
We divide indices 1,2, ... k into Con := {i | E(x;, xx+1) € t} and

Divide x1, x2, . .., Xk biased on type connections with k+1
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Let & = (V,E) be a graph such that V =N, and (i,/) € E iff p; | j or p; | i (p; is the i-th prime number)

Lemma
S = o0sr i =Vxy...Vxp s(x1, .0, Xn) = Ixng1 (X1, - oy Xny Xnt1)
Proof
Take any ay, ..., a such that & |=s(ay, ..., ax). Goal: Find ax 1 such that & = t(ay, ..., ak, akr1).
We divide indices 1,2, ..., k into Con := {i | E(xj, xk+1) € t} and DisC := {i | =E(x;, xk+1) € t}.
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Extra: The Random Graph
We proved that IEA has a model unconstructively. Can we describe the countable model of EA?

Let & = (V,E) be a graph such that V =N, and (i,/) € E iff p; | j or p; | i (p; is the i-th prime number)

Lemma
S = o0sr i =Vxy...Vxp s(x1, .0, Xn) = Ixng1 (X1, - oy Xny Xnt1)
Proof
Take any ay, ..., a such that & |=s(ay, ..., ax). Goal: Find ax 1 such that & = t(ay, ..., ak, akr1).
We divide indices 1,2, ..., k into Con := {i | E(xj, xk+1) € t} and DisC := {i | =E(x;, xk+1) € t}.

Thus, our a1 must be connected to all a; with i/ € Con and disconnected from all a; with i € DisC.

Divide x1, x2, . .., Xk biased on type connections with k+1

Bartosz “Bart” Bednarczyk Finite and Algorithmic Model Theory (Lecture 2 Dresden Long) 8/ 8



Extra: The Random Graph
We proved that IEA has a model unconstructively. Can we describe the countable model of EA?

Let & = (V,E) be a graph such that V =N, and (i,/) € E iff p; | j or p; | i (p; is the i-th prime number)

Lemma
S = o0sr i =Vxy...Vxp s(x1, .0, Xn) = Ixng1 (X1, - oy Xny Xnt1)
Proof
Take any ay, ..., a such that & |=s(ay, ..., ax). Goal: Find ax 1 such that & = t(ay, ..., ak, akr1).
We divide indices 1,2, ..., k into Con := {i | E(xj, xk+1) € t} and DisC := {i | =E(x;, xk+1) € t}.

Thus, our a1 must be connected to all a; with i/ € Con and disconnected from all a; with i € DisC.

Divide x1, x2, . .., Xk biased on type connections with k+1 (Dis)connected with x ~ (non)dividable by the x-th prime number
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Extra: The Random Graph
We proved that IEA has a model unconstructively. Can we describe the countable model of EA?

Let & = (V,E) be a graph such that V =N, and (i,/) € E iff p; | j or p; | i (p; is the i-th prime number)

Lemma

S = o0sr i =Vxy...Vxp s(x1, .0, Xn) = Ixng1 (X1, - oy Xny Xnt1)
Proof
Take any ay, ..., a such that & |=s(ay, ..., ax). Goal: Find ax 1 such that & = t(ay, ..., ak, akr1).
We divide indices 1,2, ..., k into Con := {i | E(xj, xk+1) € t} and DisC := {i | =E(x;, xk+1) € t}.
Thus, our a1 must be connected to all a; with i/ € Con and disconnected from all a; with i € DisC.

ak+1 = MNiccon pa; - q, where q is any prime number bigger than I_lf-‘:1 Pa;

Divide x1, x2, . .., Xk biased on type connections with k+1 (Dis)connected with x ~ (non)dividable by the x-th prime number
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Extra: The Random Graph
We proved that IEA has a model unconstructively. Can we describe the countable model of EA?

Let & = (V,E) be a graph such that V =N, and (i,/) € E iff p; | j or p; | i (p; is the i-th prime number)

Lemma

S = o0sr i =Vxy...Vxp s(x1, .0, Xn) = Ixng1 (X1, - oy Xny Xnt1)
Proof
Take any ay, ..., a such that & |=s(ay, ..., ax). Goal: Find ax 1 such that & = t(ay, ..., ak, akr1).
We divide indices 1,2, ..., k into Con := {i | E(xj, xk+1) € t} and DisC := {i | =E(x;, xk+1) € t}.
Thus, our a1 must be connected to all a; with i/ € Con and disconnected from all a; with i € DisC.

ak+1 = MNiccon pa; - q, where q is any prime number bigger than I_lf-‘:1 Pa;

And now it is easy to check our choice of ax,1 is correct. |
Divide x1, x2, . .., Xk biased on type connections with k+1 (Dis)connected with x ~ (non)dividable by the x-th prime number
@ @
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