
SEMANTIC COMPUTING

Lecture 10: Deep Learning: Optimization and Long-Short
Term Memory

Dagmar Gromann

International Center For Computational Logic

TU Dresden, 11 December 2018

https://iccl.inf.tu-dresden.de/web/Semantic_Computing_(SS2018)
https://iccl.inf.tu-dresden.de/web/Semantic_Computing_(SS2018)
https://iccl.inf.tu-dresden.de/web/Dagmar_Gromann

Overview

• Optimiziation

• Long-Short Term Memory (LSTM)

Dagmar Gromann, 11 December 2018 Semantic Computing 2

How to get updates from OPAL?

Dagmar Gromann, 11 December 2018 Semantic Computing 3

Optimization

Dagmar Gromann, 11 December 2018 Semantic Computing 4

Reminder: What is optimization?

If we knew the distribution of our data, the training would be an
optimization problem. However, we only have a sample of training
data and do not know the full distribution of the data in machine
learning. We try to approximate the distribution of our data (also
the ”unseen” examples we use for testing the model’s ability to
generalize).

So instead we try to: minimize the expected loss on the training set
First algorithm: (Mini-batch) Gradient Descent
Today: alternatives

Dagmar Gromann, 11 December 2018 Semantic Computing 5

Reminder: Which datasets do we optimize on?

Usual daset split 80 | 10 | 10 into:

• Training set: data used as input to train model (80)

• Validation set: data used during training to check model’s
ability to generalize (10)

• Test set: data NEVER used during training, but when we
finished training to check final model’s ability to generalize,
after a good training and validation performance has already
been achieved (10)

Dagmar Gromann, 11 December 2018 Semantic Computing 6

Optimization Beyond SGD

We have looked at Stochastic Gradient Descent (SGD) and today
we will cover further means of optimization:

• Batch normalization

• Parameter initialization

• Hyperparameter settings

Dagmar Gromann, 11 December 2018 Semantic Computing 7

Batch Normalization

Definition
Batch normalization accelerates deep network training by
stabilizing the data distribution which reduces the internal covariate
shift between two layers and smooths the optimization landscape

Why useful for deep learning? Faster and more stable training.

Covariate Shift
Changes in the input distribution slow down or stop model’s
convergence because hidden units have to continuously adapt to
changing inputs and cannot learn any pattern from the inputs.

Reference: Santurkar et al. (2018) "How Does Batch Normalization Help Optimization?", 32nd Conference on
Neural Information Processing Systems (NIPS 2018).

Dagmar Gromann, 11 December 2018 Semantic Computing 8

How does Batch Normalization work?

It is a mechanism that aims to stabilize the distribution of inputs by:
• adding an additional hidden layer (weights z) that normalizes

the input:
– set mean to 0: µ = 1

m
∑

i z(i)

– set variance to 1: σ2 = 1
m
∑

i(zi − µ)2

– this gives us z(i)
norm =

z(i)−µ
√
σ2+ε

• mean and variance should be controlled but not always
constant, so we add trainable parameters (γ, β):
z′(i) = γ z(i)

norm + β

Dagmar Gromann, 11 December 2018 Semantic Computing 9

Visualization of Batch Normalization Effects

Source: Santurkar et al. (2018) "How Does Batch Normalization Help Optimization?", 32nd Conference on
Neural Information Processing Systems (NIPS 2018).
Dagmar Gromann, 11 December 2018 Semantic Computing 10

Parameter (Weight) Initialization

Careful choice for the random initialization for the neural network
can optimize. Can determine whether and how quickly the learning
converges. Typical settings:

• different initialization for different layers when using the same
activation function (“break symmetry” between different
hidden units)

• bias for each unit is heuristically constant

• weights initialized with random weights drawn from a
Gaussian or uniform distribution

Dagmar Gromann, 11 December 2018 Semantic Computing 11

Parameter (Weight) Initialization

One heuristic to initialize is where x is our input and y is the output:

U(−
1
√

x
,

1
√

x
)

And an extended normalized initialization is:

Wi,j ∼ U(−

√
6

x + x
,

√
6

x + y
)

Sparse initialization: have exactly k nonzero weights (downside:
maxout problems)

Dagmar Gromann, 11 December 2018 Semantic Computing 12

Hyperparameters: Adaptive Learning Rates

Problems of classical SGD are:

• too small learning rate = very slow convergence

• too large learning rate = constant overstepping of local
minimum

• decaying learning rate by schedule or certain threshold if an
objective between epochs is met, needs to be defined in
advance (not dynamic)

• same learning rate applies to all parameter updates

• likely to get stuck on a saddle point

One solution: decay the learning rate by multiplying it by the
inverse squared root gradient sum matrix or other optimization
method with adaptive learning rate
Dagmar Gromann, 11 December 2018 Semantic Computing 13

Optimization Methods with Adaptive Learning
Rates

• Momentum

• Adagrad

• Adadelta

• Adam

Animation of Differences

Dagmar Gromann, 11 December 2018 Semantic Computing 14

http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

Momentum

Method to accelerate SGD in the relevant direction of the local
minimum while reducing the strong oscillating by adding a fraction
γ of the vector of the past time step to the current vector of the
current time step:

vt = γ vt−1 + ε ∇J(θ)

Usual value of momentum term γ = 0.9 or similar; ε is our learning
rate and θ are the model parameters; idea: ball rolling down a hill

Dagmar Gromann, 11 December 2018 Semantic Computing 15

AdaGrad
Decays learning rate by inverse squared roots; performs
per-parameter updates idea:

• frequently occurring features: small updates (low learning
rates)

• infrequent features: large updates (high learning rates)
• particularly well suited for sparse data
• update for each parameter θi at teach time step t:
θt+1,i = θt,i − ε∇J(θt,i)

• decays learning rate based on the sum of the squares of past
gradients, which are stored along the diagonal of matrix Gt

and a small constant δ to avoid zeros: θt+1 = θt −
ε

√
Gt+δ
∇J(θt)

Adadelta: extension of AdaGrad that restricts the window to
accumulate past gradients to some fixed size w.
Dagmar Gromann, 11 December 2018 Semantic Computing 16

Adam

Adaptive Moment Estimation (Adam) keeps an exponentially
decaying average of past gradients mt and past squared gradients
vt - estimates of the first moment (mean) and the second moment
(uncentered variance) of gradients:

mt = β1 mt−1 + (1 − β1)gt

vt = β2 vt−1 + (1 − β2)g2
t

Update rule: θt+1 = θt −
ε
√

vt+δ
mt where mt is usually normalized to

mt
1−βt

1
as is vt with β2

Idea: ball with heave friction, i.e., prefers flat minima in the error
surface

Dagmar Gromann, 11 December 2018 Semantic Computing 17

Long-Short Term Memory (LSTM)

Dagmar Gromann, 11 December 2018 Semantic Computing 18

Long-Short Term Memory (LSTM)

RNN problem: In RNNs, gradients propagated over many stages
tend to vanish or explode - the difficulty of long-term dependencies
is generated by the exponentially smaller weights given to
long-term interactions compared to short-term ones.

LSTM solution: LSTMs are explicitly designed to avoid the
long-term dependency problem. The hidden layer is replaced by
four interacting layers that regulate the information flow more tightly.

Seminal paper: Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8),
1735-1780.

Dagmar Gromann, 11 December 2018 Semantic Computing 19

LSTM

The repeating, recurrent module in an LSTM consists of four
interacting layers. Information is removed or added to the cell state
(C) based on carefully regulated gates.
Forget gate: which information to let through and which to ignore;
Input gate: which information will be stored in the cell state.

Image Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Dagmar Gromann, 11 December 2018 Semantic Computing 20

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Forget Gate

Controls which information to keep from the cell state; sigmoid
layer (zero = let nothing through, one = let everything through) and
a pointwise multiplication

ft = σ(Wf xt + Uf h(t−1) + bf)

Image Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Dagmar Gromann, 11 December 2018 Semantic Computing 21

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Input Gate

Controls which information to store in the cell state; sigmoid layer
decides what to update, the tanh layer creates a vector of new
candidate values (values between -1 and 1).

it = σ(Wixt + Uih(t−1) + bi)
C̃t = tanh(Wcxt + Uch(t−1) + bc)

Image Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Dagmar Gromann, 11 December 2018 Semantic Computing 22

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

From Old to New Cell State

Update the old cell stat Ct−1 into the new cell state Ct. We multiply
the old state with ft to forget the things that were decided to be
forgotten earlier. Then it ∗ C̃t (where ∗ denotes the Hadamard
product) are added.

Ct = ft ∗ Ct−1 + it ∗ C̃t

Image Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Dagmar Gromann, 11 December 2018 Semantic Computing 23

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Output Gate
The output is a filtered version of the cell state. The sigmoid
function decides which parts of the cell state we need to keep and
the cell state is then put through a tanh layer (values squished
between -1 and 1) and multiply it with the output of the sigmoid
gate.

ot = σ(Woxt + Uoh(t−1) + bo)
ht = ot ∗ tanh(Ct)

Image Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Dagmar Gromann, 11 December 2018 Semantic Computing 24

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM variant: Gated Recurrent Unit (GRU)

Variant of LSTM unit that combines the forget and the input gates
into a single update gate and merges the cell state and the hidden
state.

• update gate: determines how much of the past information
from previous steps needs to be passed along

• forget gate: determines how much of the past information to
forget

• those two gates are two vectors that decide which information
should be passed to the output of the unit

• they can store information from “a long time ago”.
Seminal paper: Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio,
Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078.

Dagmar Gromann, 11 December 2018 Semantic Computing 25

A Single GRU

Single Gated Recurrent Unit (GRU) where zt is the update gate, rt

is the forget gate, h̃t is the current memory content, and ht is the
final memory at current time step => update gate decides what to
keep from previous and current time steps

Image Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Dagmar Gromann, 11 December 2018 Semantic Computing 26

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Bidirectional RNNs
This could be RNNs, LSTMs, or GRUs. An input sequence is red
from left to right (A) and from right to left (A′).

Output: ŷt = g(Wy[A, A′] + by)

Image source:
https://towardsdatascience.com/understanding-bidirectional-rnn-in-pytorch-5bd25a5dd66

Dagmar Gromann, 11 December 2018 Semantic Computing 27

https://towardsdatascience.com/understanding-bidirectional-rnn-in-pytorch-5bd25a5dd66

Deep RNNs
This could be RNNs, LSTMs, or GRUs. Several hidden layers are
stacked on top of each other (here: three hidden layers).

Image source: https://www.ibm.com/developerworks/library/
cc-machine-learning-deep-learning-architectures/index.html

Dagmar Gromann, 11 December 2018 Semantic Computing 28

https://www.ibm.com/developerworks/library/cc-machine-learning-deep-learning-architectures/index.html
https://www.ibm.com/developerworks/library/cc-machine-learning-deep-learning-architectures/index.html

Review of Lecture 10

• How can RNNs be optimized?

• What is an adaptive learning rate and how can it be
implemented?

• What is the difference between an RNN and an LSTM?

• In what way do GRUs differ from LSTMs?

• What does it mean for an RNN to be bidirectional? improved?

Dagmar Gromann, 11 December 2018 Semantic Computing 29

