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Motivation

• Search algorithms so far modified (resp. constructed) one single solution.
• Process a complete solution or construct the final solution from smaller

building blocks.
• There is a single best solution to be improved.
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Motivation

• Search algorithms so far modified (resp. constructed) one single solution.
• Process a complete solution or construct the final solution from smaller

building blocks.
• There is a single best solution to be improved.

New Idea
• Work on a population of solutions
• Let the solutions compete against each other
• Use random variation to search for new solutions
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Rabbits and Foxes

• Some rabbits are faster and smarter - they don’t get eaten by foxes
• They do what rabbits do best: make more rabbits
• Breeding mixes the rabbits’ genetic material
• Every once in a while: mutation
• Over generations, rabbits become faster and smarter
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Rabbits and Foxes ctd.

• The same happens with foxes
• They are forced to get better at finding a meal
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Rabbits and Foxes ctd.
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Evolutionary Algorithms (EAs)

• A population of individuals exists in an environment with limited resources
• Competition for resources causes selection of fitter individuals that are

better adapted to environment
• These individuals act as seeds for generation of new individuals through

recombination and mutation
• New individuals have their fitness evaluated and compete (possibly also

with parents) for survival
• Over time natural selection causes a rise in the fitness of the population
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Evolutionary Algorithms (EAs)

• A population of individuals exists in an environment with limited resources
• Competition for resources causes selection of fitter individuals that are

better adapted to environment
• These individuals act as seeds for generation of new individuals through

recombination and mutation
• New individuals have their fitness evaluated and compete (possibly also

with parents) for survival
• Over time natural selection causes a rise in the fitness of the population

Facts on EAs
• EAs are generate and test algorithms
• They are stochastic and population-based
• Variation operators (recombination and mutation) create necessary

diversity
• Selection reduces diversity and acts as a force pushing quality
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General Schema of EAs
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Structure of an EA

Algorithm 1: evolutionary algorithm

INITIALISE population with random candidate solutions
EVALUATE each candidate
while not TERMINATION-CONDITION is satisfied do

SELECT parents
RECOMBINE pairs of parents
MUTATE the resulting offspring
EVALUATE new candidates
SELECT individuals for the next generation

end while
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Types of EAs

Historically different types of EAs have been associated with different
representations.

• Binary strings: Genetic Algorithms
• Real-valued vectors: Evolution Strategies
• Finite state machines: Evolutionary Programming
• Trees: Genetic Programming
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Types of EAs

Historically different types of EAs have been associated with different
representations.

• Binary strings: Genetic Algorithms
• Real-valued vectors: Evolution Strategies
• Finite state machines: Evolutionary Programming
• Trees: Genetic Programming

Technically
• choose representation to suit problem
• choose variation operators to suit representation
• selection operators only use fitness – so they are independent of

representation
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Components of EAs

• Representation (definition of individuals)
• Evaluation function (or fitness function)
• Population
• Parent selection mechanism
• Variation operators, recombination and mutation
• Survivor selection mechanism (replacement)

Necessary
• Initialisation procedure
• Termination condition
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Representation

• Candidate solutions (individuals) exist in phenotype space
• They are encoded in chromosomes, which exist in genotype space

– Encoding: phenotype→ genotype (not necessarily one-to-one)
– Decoding: genotype→ phenotype (mutst be one-to-one)

• Chromosomes contain genes, which are in (usually fixed) positions called
loci (sing. locus) and have a value (allele)
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Representation

• Candidate solutions (individuals) exist in phenotype space
• They are encoded in chromosomes, which exist in genotype space

– Encoding: phenotype→ genotype (not necessarily one-to-one)
– Decoding: genotype→ phenotype (mutst be one-to-one)

• Chromosomes contain genes, which are in (usually fixed) positions called
loci (sing. locus) and have a value (allele)

To find global optimum, every feasible solution must be represented in genotype
space.
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Representation

• Candidate solutions (individuals) exist in phenotype space
• They are encoded in chromosomes, which exist in genotype space

– Encoding: phenotype→ genotype (not necessarily one-to-one)
– Decoding: genotype→ phenotype (mutst be one-to-one)

• Chromosomes contain genes, which are in (usually fixed) positions called
loci (sing. locus) and have a value (allele)

To find global optimum, every feasible solution must be represented in genotype
space.

Example (8-Queens)

1 3 5 7 2 4 6 8

• Phenotype: a board configuration
• Genotype: a permutation of the numbers 1− 8
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Evaluation (Fitness) Function

• Represents the requirements the population should adopt to
• aka quality function or objective function
• Assigns a single real-valued fitness to each phenotype which forms the

basis for selection
• Typically we talk about fitness being maximized
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Evaluation (Fitness) Function

• Represents the requirements the population should adopt to
• aka quality function or objective function
• Assigns a single real-valued fitness to each phenotype which forms the

basis for selection
• Typically we talk about fitness being maximized

Example (8-Queens ctd.)
• Penalty of one queen: number of queens she can check
• Penalty of a configuration: sum of penalties of all queens

⇒ Penalty needs to be minimized

⇒ Fitness of a configuration: inverse penalty to be maximized
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Population

• Holds (representations of) possible solutions
• Usually has a fixed size and is a multiset of genotypes
• Some sophisticated EAs also assert a spatial structure on the population

e.g. a grid
• Selection operators usually take whole population into account i.e.

reproductive probabilities are relative to current generation
• Diversity of a population refers to the number of different solutions
• No single measure for diversity exists
• Typically one refers to number of different fitness

values/phenotypes/genotypes present
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Parent Selection Mechanism

• Distinguish among individuals based on their quality – allow better
individuals to become parents of next generation

• Individual is a parent if it has been selected to create offspring
• Responsible for pushing quality improvements
• Usually probabilistic

– high quality solutions more likely to become parents than low quality
– BUT: not guaranteed
– even worst in current population has non-zero probability of

becoming a parent
• Stochastic nature can aid escape from local optima
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Parent Selection Mechanism

• Distinguish among individuals based on their quality – allow better
individuals to become parents of next generation

• Individual is a parent if it has been selected to create offspring
• Responsible for pushing quality improvements
• Usually probabilistic

– high quality solutions more likely to become parents than low quality
– BUT: not guaranteed
– even worst in current population has non-zero probability of

becoming a parent
• Stochastic nature can aid escape from local optima

Example (8-Queens ctd.)
Pick 5 parents randomly and take the two best to generate offspring.
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Variation Operators

• Role is to generate new candidate solutions
• Usually divided into two types according to their arity
Arity 1: mutation operator

Arity >1: recombination operator; arity=2 typically called crossover
• Debate about relative importance of recombination and mutation

– Nowadays most EAs use both
– Choice of particular variation operator is representation dependent
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Mutation

• Acts on one genotype and delivers another
• Element of randomness is essential and differentiates if from other unary

heuristic operators
• Generating a child amounts to stepping to a new point in search space

⇒ Mutation may guarantee connectedness of search space
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Mutation

• Acts on one genotype and delivers another
• Element of randomness is essential and differentiates if from other unary

heuristic operators
• Generating a child amounts to stepping to a new point in search space

⇒ Mutation may guarantee connectedness of search space

Example (8-Queens ctd.)
Swap values of two randomly chosen positions

1 3 5 7 2 4 6 8 ⇒ 1 3 6 7 2 4 5 8

TU Dresden, 3rd June 2019 PSSAI slide 35 of 57



Recombination

• Merges information from parents into offspring
• Choice of what information to merge is stochastic
• Most offspring may be worse, or the same as parents
• Hope that some are better by combining elements of genotypes that lead

to good traits
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Recombination

• Merges information from parents into offspring
• Choice of what information to merge is stochastic
• Most offspring may be worse, or the same as parents
• Hope that some are better by combining elements of genotypes that lead

to good traits

Note
• Variation operators are representation dependent
• Different representations require different variation operators
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Example (8-Queens ctd.)
Combine two permutations into two new permutations

• Choose random crossover point
• Copy fist parts into children
• Create second part by inserting values from other parent

– in order they appear there
– beginning after crossover point
– skipping values already in child
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Example (8-Queens ctd.)
Combine two permutations into two new permutations

• Choose random crossover point
• Copy fist parts into children
• Create second part by inserting values from other parent

– in order they appear there
– beginning after crossover point
– skipping values already in child

Note
Offspring needs to be a permutation (as genotype is permutation)!

TU Dresden, 3rd June 2019 PSSAI slide 39 of 57



Example (8-Queens ctd.)
Combine two permutations into two new permutations

• Choose random crossover point
• Copy fist parts into children
• Create second part by inserting values from other parent

– in order they appear there
– beginning after crossover point
– skipping values already in child

Note
Offspring needs to be a permutation (as genotype is permutation)!

1 3 5 7 2 4 6 8
8 7 6 5 4 3 2 1 ⇒ 1 3 5 4 2 8 7 6

8 7 6 2 4 1 3 5
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Example (8-Queens ctd.)
Combine two permutations into two new permutations

• Choose random crossover point
• Copy fist parts into children
• Create second part by inserting values from other parent

– in order they appear there
– beginning after crossover point
– skipping values already in child

Note
Offspring needs to be a permutation (as genotype is permutation)!

1 3 5 7 2 4 6 8
8 7 6 5 4 3 2 1 ⇒ 1 3 5 4 2 8 7 6

8 7 6 2 4 1 3 5

Children inherit genetic material from both parents!
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Survivor Selection

• aka replacement
• Most EAs use fixed population size
• Often deterministic

– Fitness-based: e.g. rank parents and offspring and take the best
– Age-based: make as many offspring as parents and delete all

parents
– Combinations of the former two (elitism)
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Survivor Selection

• aka replacement
• Most EAs use fixed population size
• Often deterministic

– Fitness-based: e.g. rank parents and offspring and take the best
– Age-based: make as many offspring as parents and delete all

parents
– Combinations of the former two (elitism)

Example (8-Queens ctd.)
Merge population and offspring – rank them according to fitness – delete the
worst two.
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Initialization/Termination

Initialization
• Usually done at random
• Needs to ensure even spread and mixture of possible allele values
• Can include existing solutions, or use problem-specific heuristics to seed

the population
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Initialization/Termination

Initialization
• Usually done at random
• Needs to ensure even spread and mixture of possible allele values
• Can include existing solutions, or use problem-specific heuristics to seed

the population

Termination Condition
• Checked every iteration
• Reaching some (known/hoped for) fitness
• Reaching some maximum allowed number of generations
• Reaching some minimum level of diversity
• Reaching some specified number of generations without fitness

improvement
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Example (8-Queens ctd.)

• Initial population: randomly generated permutations
• Termination condition: solution or 10000 fitness evaluations
• Population size: 100
• Recombination probability: 100%
• Mutation probability: 80%

TU Dresden, 3rd June 2019 PSSAI slide 48 of 57



Outline

1 Motivation

2 Structure of EAs

3 Components of EAs

4 Working of EAs

5 Conclusion

TU Dresden, 3rd June 2019 PSSAI slide 49 of 57



Working of EAs

Typical progress of an EA illustrated in terms of population distribution

Figure: begin Figure: halfway Figure: end
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Working of EAs ctd.

Typical progress in terms of development of best fitness value within population
in time.
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No Need for Heuristic Initialisation

• Level a: best fitness in a randomly initialised population
• Level b: heuristic initialisation
• After k generations same level reached
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Termination Conditions

• Divide the run into two equally long sections
• Fitness increases in the first half X

• Progress in second half Y is much smaller
• Due to anytime behaviour, efforts spent after a certain time may not result

in better solution quality
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Performance from Global Perspective

• Performance on a wide range of problems
• EAs are robust problem solving tools
• For most problems a problem-specific tool may

– perform better than a generic search algorithm on most instances
– have limited utility
– not do well on all instances

• EAs provide an evenly good performance over a range of problems and
instances
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Summary

• Idea for EAs come from evolution theory
• Components

– Representation (definition of individuals)
– Evaluation function (or fitness function)
– Population
– Parent selection mechanism
– Variation operators, recombination and mutation
– Survivor selection mechanism (replacement)
– Initialisation and termination condition

• Performance
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