Project Domain	AHP adaptation for Ontology Evaluation	Domain Coverage	System Design	Experiments	Conclusions

An Ontology Selection and Ranking System Based on the Analytic Hierarchy Process

Adrian Groza¹, Irina Dragoste¹, Iulia Sincai¹, Ioana Jimborean¹, Vasile Moraru²

¹Department of Computer Science, Technical University of Cluj-Napoca, Romania Adrian.Groza@cs.utcluj.ro ²Department of Applied Informatics, Technical University of Moldova moraru@mail.utm.md

September 24, 2014

Project Domain	AHP adaptation for Ontology Evaluation	Domain Coverage	System Design	Experiments	Conclusions O

Outline

Project Domain

- Ontology Evaluation
- Analytic Hierarchy Process

2 AHP adaptation for Ontology Evaluation

- Criteria Tree
- Metrics for Atomic Criteria
- Including Negative Criteria
- Alternative Weight Elicitation
- **3** Domain Coverage
- 4 System Design

5 Experiments

Ontology evaluation and selection

• **MCDM** problem (Multiple-Criteria-Decision-Making): *domain coverage*, *size*, *consistency* etc.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- both **qualitative** (*language expressivity*) and **quantitative** (*number of classes*) criteria
- both **positive** (*domain coverage*) and **negative** (*inconsistencies, unsatisfiable classes*) criteria
- depends on evaluation context (wide knowledge representation, efficiency, re-usability)

MCDM solution developed by Thomas Saaty in early 1970s;

Figure : Hierarchy of problem goal, criteria and alternatives

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Criteria Preference - Pairwise Comparisons

 criteria weights ⇐ derived from pairwise comparisons between brother nodes → positive reciprocal matrix

$$A = \begin{bmatrix} 1 & a_{12} & a_{13} & \cdots & a_{1n} \\ 1/a_{12} & 1 & 1/a_{23} & \cdots & a_{2n} \\ 1/a_{13} & 1/a_{23} & 1 & \cdots & a_{3n} \\ 1/a_{1n} & 1/a_{2n} & 1/a_{3n} & \cdots & 1 \end{bmatrix}$$

• the PC (*Pairwise Comparisons*) matrix can contain inconsistent judgments

 $a_{ii} =$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Project Domain ○○○●○○○○○	AHP adaptation for Ontology Evaluation	Domain Coverage	System Design	Experiments	Conclusions ○
Analytic Hierarch	y Process				
PC mat	trix Consistency				

Definition

A reciprocal matrix A is said to be (cardinally) consistent if $a_{ij} = a_{ik}a_{kj} \forall i,j,k$ where a_{ij} is called a direct judgment, given by the Decision Maker, and $a_{ik}a_{kj}$ is an indirect judgment.

Definition

A reciprocal matrix A is said to be ordinally transitive (ordinally consistent) if $\forall i \quad \exists j, k \text{ s.t. } a_{ij} \geq a_{ik} \Rightarrow a_{jk} \leq 1.$

Cardinal Consistency Metrics

- Consistency Ratio (CR): $\frac{\lambda_{max} n}{n-1} / RI$
- **Consistency Measure (CM)**: $max(\overline{CM}_{i,j,k})$, $i \neq j \neq k$ $\overline{CM}_{i,j,k} = min(\frac{a_{ij}-a_{ik}a_{kj}}{a_{ij}}, \frac{a_{ij}-a_{ik}a_{kj}}{a_{ik}a_{kj}})$
- Congruence (Θ): $\Theta_{ij} = \frac{1}{n-2} \sum_{k=1}^{n} \delta(a_{ij}, a_{ik}a_{kj}), \quad i \neq j \neq k$ $\delta(a_{ij}, a_{ik}a_{kj}) = |log(a_{ij}) - log(_{ik}a_{kj})|$ $\Theta = \frac{2}{2(n-1)} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Theta_{ij}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Ordinal Consistency Metrics

The Number of Three-way Cycles (L): $E_i \rightarrow E_i \rightarrow E_k \rightarrow E_i$ • $log(a_{ii})log(a_{ik}) \leq and log(a_{ik})log(a_{ik}) < 0 \text{ OR}$ • $log(a_{ii}) = 0$ and $log(a_{ik}) = 0$ and $log(a_{ik}) \neq 0$ • Dissonance(Ψ): $\Psi_{ij} = \frac{1}{n-2}\sum_{k} step(-\log a_{ij}\log a_{ik}a_{kj}), \quad i \neq j \neq k$ $step(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{otherwise} \end{cases}$ $\Psi = \frac{2}{n(n-1)} \sum_{i=1}^{n-1} \sum_{i=i+1}^{n} \Psi_{ij}$

Project Domain ○○○○○○●○○	AHP adaptation for Ontology Evaluation	Domain Coverage	System Design	Experiments	Conclusions ○
Analytic Hierarch	y Process				
Eigenva	alue Method				

- elicit weights
- right eigenvector w = (w₁, ..., w_n) is calculated from its PC matrix A:

$$Aw = \lambda_{max}w \tag{1}$$

where λ_{max} is largest **eigenvalue** of A

Weight Elicitation Accuracy Metrics

- TD \rightarrow Total Direct Deviation from Direct Judgments: $TD(w) = \sum_{i=1}^{n} \sum_{j=1}^{n} (a_{ij} - \frac{w_i}{w_j})^2$
- TD2 \rightarrow Indirect Total Deviation from Indirect Judgments: $TD2(w) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} (a_{ik}a_{kj} - \frac{w_i}{w_j})^2$
- NV \rightarrow Number of Priority Violations: $NV(w) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} v_{ij}$

$$v_{ij} = \left\{ egin{array}{lll} 1, & ext{if } (w_i < w_j) ext{ and } (a_{ij} > 1) \ 0.5, & ext{if } (w_i
eq w_j) ext{ and } (a_{ij} = 1) \ 0.5, & ext{if } (w_i = w_j) ext{ and } (a_{ij}
eq 1) \ 0, & ext{otherwise} \end{array}
ight.$$

Alternatives evaluation - Weighted Sum Method

- assess and normalize alternative *i* for each atomic criterion k ⇒ V_ileaf_k
- moving up trough the tree, for each node alternative values are defined as a weighted sum of the values computed below for each tree level.

$$V_{ik} = V_{i1} * w_{1k} + V_{i2} * w_{2k} + \dots$$
 (2)

where $(w_{1k}, w_{2k}, ...) = w_k$ is the *eigenvector* of **non-leaf** criterion **k** and V_{ik} represents the value of alternative *i* evaluated against criterion *k*.

• V_igoal = global value of alternative i

Project Domain	AHP adaptation for Ontology Evaluation ●○○○○○	Domain Coverage	System Design	Experiments	Conclusions O
Criteria Tree					
Ontolog	gy Criteria				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• proposed solution for defining metrics for qualitative criteria (*language expressivity, inconsistency*)

Algorithm 1 Define Qualitative_Criterion_metric (ontology)

IF (Qualitative_Criterion) is atomic property THEN IF ontology has property Qualitative_Criterion_metric THEN Qualitative_Criterion_metric(ontology) := 1 ELSE Qualitative_Criterion_metric(ontology) := 0 ELSE DECOMPOSE Qualitative_Criterion

24 language features to asses Language Expressivity

・ロト ・ 一下・ ・ モト ・ モト・

æ.

- original AHP: use different trees for benefit and cost criteria
- proposed solution: include negative criteria in the same tree
- leaf level negative criteria: inconsistency, unsatisfiable classes

$$\overline{\textit{leaf}_i} = 1 - \overline{\textit{leaf}_i}, \quad \text{if criterion leaf is negative}$$
 (3)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Project Domain	AHP adaptation for Ontology Evaluation	Domain Coverage	System Design	Experiments	Conclusions ○
Alternative Weig	ht Elicitation				
Assessi	ng alternatives				

 existing solutions: human manual evaluation, using PC matrices (*PriEst*) and fuzzy intervals (*ONTOMETRIC*)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 proposed solution: automatically, from ontology measurements Project Domain AHP adaptation for Ontology Evaluation Domain Coverage System Design Experiments Conclusions 000000

Alternative Weight Elicitation

Alternatives Measurements Normalization

Mathad	stops	sum
Method	steps	to 1
	step 1:	
	$\overline{\textit{leaf}_i} = \textit{leaf}_i / \sum_i \textit{leaf}_j$	
Weighted	step 2:	
Arithmetic Mean	V_{i} leaf - $\int \overline{leaf_i}$, leaf - positive	\checkmark
	$V_i \text{ leaf} = \begin{cases} 1 - \overline{\text{leaf}_i}, & \text{leaf} - \text{negative} \end{cases}$	
	step 3:	
	V_i leaf = V_i leaf / $\sum_j V_j$ leaf , leaf - negative	
	step 1:	
Max	$\overline{\textit{leaf}_i} = \textit{leaf}_i / \textit{Max}(\textit{leaf}_j)$	
	step 2:	X
INDIMALIZATION	$V_{i}loaf = \int \overline{leaf_i}, leaf - positive$	
	$\sqrt{1 - leaf_i}$, leaf - negative	-

Project Domain	AHP adaptation for Ontology Evaluation	Domain Coverage ●○	System Design	Experiments	Conclusions ○

Search Using Synonyms

• Knowledge Domain: terms to be searched in ontology concepts

- lexical and semantic search: WordNet
 - synonyms
 - polysemy disambiguation
- $T = \{ \langle t_i, Syn(t_i) \rangle \mid i \ge 1 \}$

Project Domain	AHP adaptation for Ontology Evaluation	Domain Coverage ○●	System Design	Experiments	Conclusions O

Domain Coverage Metric

The **coverage** of a given domain T for an ontology O is the ratio of terms matched by classes of the ontology:

$$DomainCoverage(T, O) = rac{matched(T, O)}{|T|},$$

where —T— counts the $\langle t_i, Syn(t_i) \rangle$ pairs;

matched(T, O) =the number of pairs $\langle t_i, Syn(t_i) \rangle$ for which \exists a class $c \in O$ s.t. $c = t_i$ or $c \in Syn(t_i)$

Project Domain	AHP adaptation for Ontology Evaluation	Domain Coverage	System Design	Experiments	Conclusions
			•000000000		

System Architecture

・ロト ・ 日 ト ・ 日 ト ・ 日 ・ つくぐ

Project Domain	AHP adaptation for Ontology Evaluation	Domain Coverage	System Design ○●○○○○○○○○	Experiments	Conclusions O

Functionality

Project Domain	AHP adaptation for Ontology Evaluation	Domain Coverage	System Design	Experiments	Conclusions
000000000			000000000		

Domain Definition

<u>ه</u>	
Concept (noun)	WordNet synonyms:
sail Get Synonyms	SENSE: a large piece of fabric (usually canvas fabr sail
Add concept to Search Terms List	canvas canvass
Add synonym for concept Cruise	sheet
Search Terme List	SENSE: an ocean trip taken for pleasure : cruise
<pre>search rems List < tourist, < holidaymaker, tourer> > < sail , >></pre>	sail
Reset Done	

Project Domain	AHP adaptation for Ontology Evaluation	Domain Coverage	System Design ○○○●○○○○○○	Experiments	Conclusions O

Functionality

Domain Coverage Pre-selection

Input	×
?	Preselect model with Domain Coverage >= 0 OK Cancel

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Project Domain	AHP adaptation for Ontology Evaluation	Domain Coverage	System Design ○○○○○●○○○○	Experiments	Conclusions O

Functionality

 Project Domain
 AHP adaptation for Ontology Evaluation
 Domain Coverage
 System Design
 Experiments
 Conclusions

 00000000
 000000
 000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 <

AHP using PriEsT Components

Project Domain	AHP adaptation for Ontology Evaluation	Domain Coverage	System Design ○○○○○○●○○	Experiments	Conclusions ○

Inconsistency

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Project Domain	AHP adaptation for Ontology Evaluation	Domain Coverage	System Design ○○○○○○○●○	Experiments	Conclusions ○

Inconsistency

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Project Domain	AHP adaptation for Ontology Evaluation	Domain Coverage	System Design	Experiments	Conclusions
			000000000		

Alternatives Evaluation

ſ	Vectors									Best Ontology
	Gantt V	iew N	lumeric V	/alues						Sub-criteria Weights
			vector			TD	NV	TD2	method	
	0.297	0.099	0.091	0.128	0.385	169.706	3	5160.316	EV	

1	/ectors					
	Gantt View Numeric Values					for Avg. Sub-classes
	vector	TD	NV	TD2	method	101 Avg. 505 clusses
	0.22 0.172 0.183 0.189 0.106 0.13	0	0	0	EV	

Project Domain	AHP adaptation for Ontology Evaluation	Domain Coverage	System Design	Experiments	Conclusions
				•00	

Domain Coverage

Evaluating the domain coverage of ontologies from online repositories in **tourism** domain

D

- 2. mountain (mount)
- 3. monument (memorial)
- 4. museum
- 5. travelling (travel, traveling)
- 6. camping (tenting, bivouacking, encampment)
- 7. hiking (hike, tramp)

Ontology Id	Ontology URI	Domain Coverage
102	http://rewerse.net/A1/otn/OTN.owl	0.2857
103	http://harmonisa.uni-klu.ac.at/ontology/skeleton.owl	0.0
104	http://www.info.uqam.ca/Members/valtchev_p/mbox/ETP- tourism.owl	0.1429
105	http://harmonisa.uni-klu.ac.at/ontology/moland.owl	0.1429
106	http://fivo.cyf- kr.edu.pl/ontologies/test/VOTours/TravelOntology.owl	0.1429
107	http://cui.unige.ch/isi/onto/2010/urba-en.owl	0.5714
108	http://en.openei.org/wiki/Special:ExportRDF/South_Africa_Depart ment of Environment Affairs and Tourism	0.0
109	http://en.openei.org/wiki/Special:ExportRDF/Climate_Change_Ada ptation and Mitigation in the Tourism Sector	0.0
111	http://jxml2owl.projects.semwebcentral.org/sample/tourism.owl	0.0
112	http://iri.columbia.edu/~benno/data_center.owl	0.0
113	http://www.pms.ifi.lmu.de/rewerse-wga1/otn/OTN.owl	0.2857
114	http://aabs-semanticweb-prototypes.googlecode.com/svn- history/r2/trunk/ontologies/2007/02/Test/needs.rdf	0.0
115	http://aabs-semanticweb-prototypes.googlecode.com/svn- history/r2/trunk/ontologies/2007/02/Flight/Flight.owl	0.0
116	http://aabs-semanticweb-prototypes.googlecode.com/svn- history/r2/trunk/ontologies/2007/02/Places/Places.owl	0.1429
117	http://www.esd.org.uk/standards/lgcl/1.03/lgcl-schema/lgcl.xml	0.0
118	http://www.cs.ox.ac.uk/isg/ontologies/lib/GardinerCorpus/http_pr otege.stanford.edu_plugins_owl_owl-library_travel.owl/2009-02- 13/00120.owl	0.1429
119	http://harmonisa.uni-klu.ac.at/ontology/realraum.owl	0.0

Project Domain	AHP adaptation for Ontology Evaluation	Domain Coverage	System Design	Experiments ○●○	Conclusions ○

Alternative Normalization

Ontologies with both negative and positive characteristics were evaluated. Final ontology AHP evaluation values for different normalization methods:

- different rankings
- Max Normalization differentiates alternatives better

id	Weighted Arithmetic Mean	Max Normalization
1	0.180	0.923
2	0.179	0.929
3	0.177	0.921
4	0.173	0.878
5	0.155	0.865
6	0.120	0.677

Project Domain	AHP adaptation for Ontology Evaluation	Domain Coverage	System Design	Experiments ○○●	Conclusions O

Consistency and Accuracy

Weight elicitation results for medium inconsistency in PC matrices

• inconsistency alters elicitation accuracy

PC matrix	input inconsistency				output inaccuracy			
	CR	CM	L	Θ	Ψ	TD	TD2	NV
Best Ontology	0.022	0.603	0	0.395	0.033	6.211	53.115	0
Language Expressivity	0.028	0.95	150	0.106	0.008	62.358	4647.295	2
Size	0.012	0.5	0	0.299	0.33	979.823	10647.875	1

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Table : Medium Inconsistency Results

Project Domain	AHP adaptation for Ontology Evaluation	Domain Coverage	System Design	Experiments	Conclusions ●
Conclu	sions				

Our proposed adaptation of the Analytic Hierarchy Process has proved useful and effective ontology evaluation domain. Contributions:

- a hierarchy of independent criteria that describe the quality of an ontology;
- an AHP adaptation for integrating cost and benefit criteria in the same tree;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- an automated system for ontology measurement and evaluation;
- a reliable domain coverage evaluation and pre-selection functionality;

Thank you for your attention!