

COMPLEXITY THEORY

Lecture 8: NP-Complete Problems

Markus Krötzsch Knowledge-Based Systems

TU Dresden, 14th Nov 2017

Towards More NP-Complete Problems

Starting with **S**_{AT}, one can readily show more problems **P** to be NP-complete, each time performing two steps:

- (1) Show that $P \in NP$
- (2) Find a known NP-complete problem \mathbf{P}' and reduce $\mathbf{P}' \leq_p \mathbf{P}$

Thousands of problem have now been shown to be NP-complete. (See Garey and Johnson for an early survey)

In this course:

3-Sat, Hamiltonian Path, and Subset Sum

Markus Krötzsch, 14th Nov 2017 Complexity Theory slide 3 of 36

NP-Completeness of 3-SAT

3-Sat: Satisfiability of formulae in CNF with ≤ 3 literals per clause

Theorem 8.1: 3-SAT is NP-complete.

Proof: Hardness by reduction **Sat** \leq_p **3-Sat**:

- Given: φ in CNF
- Construct φ' by replacing clauses $C_i = (L_1 \vee \cdots \vee L_k)$ with k > 3 by

$$C'_i := (L_1 \vee Y_1) \wedge (\neg Y_1 \vee L_2 \vee Y_2) \wedge \dots \wedge (\neg Y_{k-1} \vee L_k)$$

Here, the Y_i are fresh variables for each clause.

• Claim: φ is satisfiable iff φ' is satisfiable.

Example

Let
$$\varphi:=(X_1\vee X_2\vee \neg X_3\vee X_4)$$
 \wedge $(\neg X_4\vee \neg X_2\vee X_5\vee \neg X_1)$
Then $\varphi':=(X_1\vee Y_1)\wedge$ $(\neg Y_1\vee X_2\vee Y_2)\wedge$ $(\neg Y_2\vee \neg X_3\vee Y_3)\wedge$ $(\neg Y_3\vee X_4)\wedge$ $(\neg X_4\vee Z_1)\wedge$ $(\neg Z_1\vee \neg X_2\vee Z_2)\wedge$ $(\neg Z_2\vee X_5\vee Z_3)\wedge$ $(\neg Z_3\vee \neg X_1)$

Proving NP-Completeness of 3-SAT

" \Rightarrow " Given $\varphi := \bigwedge_{i=1}^m C_i$ with clauses C_i , show that if φ is satisfiable then φ' is satisfiable

For a satisfying assignment β for φ , define an assignment β' for φ' :

For each $C := (L_1 \vee \cdots \vee L_k)$, with k > 3, in φ there is

$$C' = (L_1 \vee Y_1) \wedge (\neg Y_1 \vee L_2 \vee Y_2) \wedge \dots \wedge (\neg Y_{k-1} \vee L_k) \text{ in } \varphi'$$

As β satisfies φ , there is $i \le k$ s.th. $\beta(L_i) = 1$ i.e. $\beta(X) = 1$ if $L_i = X$ $\beta(X) = 0$ if $L_i = \neg X$

$$\beta'(Y_j) = 1 \qquad \text{ for } j < i$$
Set $\beta'(Y_j) = 0 \qquad \text{ for } j \ge i$

$$\beta'(X) = \beta(X) \qquad \text{ for all variables in } \varphi$$

This is a satisfying asignment for φ'

Proving NP-Completeness of 3-SAT

" \Leftarrow " Show that if φ' is satisfiable then so is φ

Suppose β is a satisfying assignment for φ' – then β satisfies φ :

Let $C := (L_1 \vee \cdots \vee L_k)$ be a clause of φ

- (1) If $k \le 3$ then *C* is a clause of φ
- (2) If k > 3 then

$$C' = (L_1 \vee Y_1) \wedge (\neg Y_1 \vee L_2 \vee Y_2) \wedge \dots \wedge (\neg Y_{k-1} \vee L_k) \text{ in } \varphi'$$

 β must satisfy at least one L_i , $1 \le i \le k$

Case (2) follows since, if $\beta(L_i) = 0$ for all $i \le k$ then C' can be reduced to

$$C' = (Y_1) \land (\neg Y_1 \lor Y_2) \land \dots \land (\neg Y_{k-1})$$

$$\equiv Y_1 \land (Y_1 \to Y_2) \land \dots \land (Y_{k-2} \to Y_{k-1}) \land \neg Y_{k-1}$$

which is not satisfiable.

DIRECTED HAMILTONIAN PATH

Input: A directed graph *G*.

Problem: Is there a directed path in *G* containing every ver-

tex exactly once?

Theorem 8.2: DIRECTED HAMILTONIAN PATH is NP-complete.

DIRECTED HAMILTONIAN PATH

Input: A directed graph *G*.

Problem: Is there a directed path in *G* containing every ver-

tex exactly once?

Theorem 8.2: Directed Hamiltonian Path is NP-complete.

Proof:

(1) Directed Hamiltonian Path $\in NP$:

Take the path to be the certificate.

Digression: How to design reductions

Task: Show that problem **P** (**Directed Hamiltonian Path**) is NP-hard.

Arguably, the most important part is to decide where to start from.

That is, which problem to reduce to **Directed Hamiltonian Path**?

Digression: How to design reductions

Task: Show that problem **P** (**Directed Hamiltonian Path**) is NP-hard.

Arguably, the most important part is to decide where to start from.

That is, which problem to reduce to **DIRECTED HAMILTONIAN PATH?**

- Considerations:
 - Is there an NP-complete problem similar to P? (for example, CLIQUE and INDEPENDENT SET)
 - It is not always beneficial to choose a problem of the same type (for example, reducing a graph problem to a graph problem)
 - For instance, CLIQUE, INDEPENDENT SET are "local" problems (is there a set of vertices inducing some structure)
 - Hamiltonian Path is a global problem (find a structure – the Hamiltonian path – containing all vertices)

Digression: How to design reductions

Task: Show that problem **P** (**Directed Hamiltonian Path**) is NP-hard.

Arguably, the most important part is to decide where to start from.

That is, which problem to reduce to **DIRECTED HAMILTONIAN PATH?**

- Considerations:
 - Is there an NP-complete problem similar to P? (for example, CLIQUE and INDEPENDENT SET)
 - It is not always beneficial to choose a problem of the same type (for example, reducing a graph problem to a graph problem)
 - For instance, CLIQUE, INDEPENDENT SET are "local" problems (is there a set of vertices inducing some structure)
 - Hamiltonian Path is a global problem (find a structure – the Hamiltonian path – containing all vertices)
- How to design the reduction:
 - Does your problem come from an optimisation problem?
 If so: a maximisation problem? a minimisation problem?
 - Learn from examples, have good ideas.

DIRECTED HAMILTONIAN PATH

Input: A directed graph *G*.

Problem: Is there a directed path in G containing every ver-

tex exactly once?

Theorem 8.2: Directed Hamiltonian Path is NP-complete.

Proof:

(1) Directed Hamiltonian Path $\in NP$:

Take the path to be the certificate.

DIRECTED HAMILTONIAN PATH

Input: A directed graph *G*.

Problem: Is there a directed path in *G* containing every ver-

tex exactly once?

Theorem 8.2: Directed Hamiltonian Path is NP-complete.

Proof:

(1) DIRECTED Hamiltonian Path \in NP: Take the path to be the certificate.

(2) **DIRECTED HAMILTONIAN PATH** is NP-hard: **3-SAT** \leq_n **DIRECTED HAMILTONIAN PATH**

Proof (Proof idea): (see blackboard for details)

Let
$$\varphi := \bigwedge_{i=1}^k C_i$$
 and $C_i := (L_{i,1} \vee L_{i,2} \vee L_{i,3})$

- For each variable X occurring in φ , we construct a directed graph ("gadget") that allows only two Hamiltonian paths: "true" and "false"
- Gadgets for each variable are "chained" in a directed fashion, so that all variables must be assigned one value
- Clauses are represented by vertices that are connected to the gadgets in such a
 way that they can only be visited on a Hamiltonian path that corresponds to an
 assignment where they are true

Details are also given in [Sipser, Theorem 7.46].

Example 8.3:
$$\varphi := C_1 \wedge C_2$$
 where $C_1 := (X \vee \neg Y \vee Z)$ and $C_2 := (\neg X \vee Y \vee \neg Z)$ (see blackboard)

Towards More NP-Complete Problems

Starting with **S**_{AT}, one can readily show more problems **P** to be NP-complete, each time performing two steps:

- (1) Show that $P \in NP$
- (2) Find a known NP-complete problem P' and reduce $P' \leq_p P$

Thousands of problem have now been shown to be NP-complete. (See Garey and Johnson for an early survey)

In this course:

NP-Completeness of Subset Sum

SUBSET SUM

Input: A collection¹ of positive integers

 $S = \{a_1, \ldots, a_k\}$ and a target integer t.

Problem: Is there a subset $T \subseteq S$ such that $\sum_{a_i \in T} a_i = t$?

Theorem 8.4: Subset Sum is NP-complete.

Proof:

(1) Subset Sum \in NP: Take T to be the certificate.

(2) Subset Sum is NP-hard: Sat \leq_p Subset Sum

¹) This "collection" is supposed to be a multi-set, i.e., we allow the same number to occur several times. The solution "subset" can likewise use numbers multiple times, but not more often than they occured in the given collection.

Example

$\mathsf{Sat} \leq_p \mathsf{Subset} \; \mathsf{Sum}$

Given: $\varphi := C_1 \wedge \cdots \wedge C_k$ in conjunctive normal form.

(w.l.o.g. at most 9 literals per clause)

Let X_1, \ldots, X_n be the variables in φ . For each X_i let

$$t_i := a_1 \dots a_n c_1 \dots c_k$$
 where $a_j := \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$ and $c_j := \begin{cases} 1 & X_i \text{ occurs in } C_j \\ 0 & \text{otherwise} \end{cases}$

$$f_i := a_1 \dots a_n c_1 \dots c_k$$
 where $a_j := \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$ and $c_j := \begin{cases} 1 & \neg X_i \text{ occurs in } C_j \\ 0 & \text{otherwise} \end{cases}$

Example

$\mathsf{Sat} \leq_p \mathsf{Subset} \; \mathsf{Sum}$

Further, for each clause C_i take $r := |C_i| - 1$ integers $m_{i,1}, \ldots, m_{i,r}$

where
$$m_{i,j} := c_i \dots c_k$$
 with $c_\ell := \begin{cases} 1 & \ell = i \\ 0 & \ell \neq i \end{cases}$

Definition of S: Let

$$S := \{t_i, f_i \mid 1 \le i \le n\} \cup \{m_{i,j} \mid 1 \le i \le k, \quad 1 \le j \le |C_i| - 1\}$$

Target: Finally, choose as target

$$t := a_1 \dots a_n c_1 \dots c_k$$
 where $a_i := 1$ and $c_i := |C_i|$

Claim: There is $T \subseteq S$ with $\sum_{a_i \in T} a_i = t$ iff φ is satisfiable.

Example

NP-Completeness of Subset Sum

Let
$$\varphi := \bigwedge C_i$$
 C_i : clauses

Show: If φ is satisfiable, then there is $T \subseteq S$ with $\sum_{s \in T} s = t$.

Let β be a satisfying assignment for φ

Set
$$T_1 := \{t_i \mid \beta(X_i) = 1, \ 1 \le i \le m\} \cup \{f_i \mid \beta(X_i) = 0, \ 1 \le i \le m\}$$

Further, for each clause C_i let r_i be the number of satisfied literals in C_i (with resp. to β).

Set
$$T_2 := \{ m_{i,j} \mid 1 \le i \le k, \quad 1 \le j \le |C_i| - r_i \}$$

and define $T := T_1 \cup T_2$.

It follows:
$$\sum_{s \in T} s = t$$

NP-Completeness of Subset Sum

Show: If there is $T \subseteq S$ with $\sum_{s \in T} s = t$, then φ is satisfiable.

Let $T \subseteq S$ such that $\sum_{s \in T} s = t$

Define
$$\beta(X_i) = \begin{cases} 1 & \text{if } t_i \in T \\ 0 & \text{if } f_i \in T \end{cases}$$

This is well defined as for all i: $t_i \in T$ or $f_i \in T$ but not both.

Further, for each clause, there must be one literal set to 1 as for all i, the $m_{i,j} \in S$ do not sum up to the number of literals in the clause.

Towards More NP-Complete Problems

Starting with **S**_{AT}, one can readily show more problems **P** to be NP-complete, each time performing two steps:

- (1) Show that $P \in NP$
- (2) Find a known NP-complete problem \mathbf{P}' and reduce $\mathbf{P}' \leq_p \mathbf{P}$

Thousands of problem have now been shown to be NP-complete. (See Garey and Johnson for an early survey)

In this course:

NP-completeness of KNAPSACK

KNAPSACK

Input: A set $I := \{1, ..., n\}$ of items

each of value v_i and weight w_i for $1 \le i \le n$,

target value t and weight limit ℓ

Problem: Is there $T \subseteq I$ such that

 $\sum_{i \in T} v_i \ge t$ and $\sum_{i \in T} w_i \le \ell$?

Theorem 8.5: KNAPSACK is NP-complete.

NP-completeness of KNAPSACK

KNAPSACK

Input: A set $I := \{1, ..., n\}$ of items

each of value v_i and weight w_i for $1 \le i \le n$,

target value t and weight limit ℓ

Problem: Is there $T \subseteq I$ such that

 $\sum_{i \in T} v_i \ge t$ and $\sum_{i \in T} w_i \le \ell$?

Theorem 8.5: KNAPSACK is NP-complete.

Proof:

- (1) **KNAPSACK** \in NP: Take T to be the certificate.
- (2) Knapsack is NP-hard: Subset Sum \leq_p Knapsack

Subset Sum \leq_p Knapsack

Given: $S := \{a_1, \dots, a_n\}$ collection of positive integers

Subset Sum: t target integer

Problem: Is there a subset $T \subseteq S$ such that $\sum_{a_i \in T} a_i = t$?

Subset Sum \leq_p Knapsack

Given: $S := \{a_1, \dots, a_n\}$ collection of positive integers

Subset Sum: t target integer

Problem: Is there a subset $T \subseteq S$ such that $\sum_{a_i \in T} a_i = t$?

Reduction: From this input to Subset Sum construct

• set of items $I := \{1, \ldots, n\}$

• weights and values $v_i = w_i = a_i$ for all $1 \le i \le n$

• target value t' := t and weight limit $\ell := t$

Subset Sum \leq_p Knapsack

Given: $S := \{a_1, \dots, a_n\}$ collection of positive integers

Subset Sum: t target integer

Problem: Is there a subset $T \subseteq S$ such that $\sum_{a_i \in T} a_i = t$?

Reduction: From this input to Subset Sum construct

- set of items $I := \{1, \ldots, n\}$
- weights and values $v_i = w_i = a_i$ for all $1 \le i \le n$
- target value t' := t and weight limit $\ell := t$

Clearly: For every $T \subseteq S$

$$\sum_{a_i \in T} a_i = t \qquad \text{iff} \qquad \qquad \sum_{a_i \in T} v_i \ge t' = t$$

$$\sum_{a_i \in T} w_i \le \ell = t$$

Hence: The reduction is correct and in polynomial time.

A Polynomial Time Algorithm for KNAPSACK

KNAPSACK can be solved in time $O(n\ell)$ using dynamic programming Initialisation:

- Create an $(\ell + 1) \times (n + 1)$ matrix M
- Set M(w, 0) := 0 for all $1 \le w \le \ell$ and M(0, i) := 0 for all $1 \le i \le n$

Example

Input $I = \{1, 2, 3, 4\}$ with

Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$

Weight: $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$

Weight limit: $\ell = 5$ Target value: t = 7

weight	max. total value from first i items					
limit w	i = 0	i = 1	i = 2	i = 3	<i>i</i> = 4	
0						
1						
2						
3						
4						
5						

Set M(w, 0) := 0 for all $1 \le w \le \ell$ and M(0, i) := 0 for all $1 \le i \le n$

Example

Input $I = \{1, 2, 3, 4\}$ with

Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$

Weight: $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$

Weight limit: $\ell = 5$ Target value: t = 7

weight	max. total value from first i items					
limit w	i = 0	i = 1	i = 2	i = 3	<i>i</i> = 4	
0	0	0	0	0	0	
1	0					
2	0					
3	0					
4	0					
5	0					

Set M(w, 0) := 0 for all $1 \le w \le \ell$ and M(0, i) := 0 for all $1 \le i \le n$

A Polynomial Time Algorithm for KNAPSACK

KNAPSACK can be solved in time $O(n\ell)$ using dynamic programming Initialisation:

- Create an $(\ell + 1) \times (n + 1)$ matrix M
- Set M(w, 0) := 0 for all $1 \le w \le \ell$ and M(0, i) := 0 for all $1 \le i \le n$

A Polynomial Time Algorithm for KNAPSACK

KNAPSACK can be solved in time $O(n\ell)$ using dynamic programming Initialisation:

- Create an $(\ell + 1) \times (n + 1)$ matrix M
- Set M(w, 0) := 0 for all $1 \le w \le \ell$ and M(0, i) := 0 for all $1 \le i \le n$

Computation: Assign further M(w, i) to be the largest total value obtainable by selecting from the first i items with weight limit w:

For
$$i = 0, 1, ..., n - 1$$
 set $M(w, i + 1)$ as

$$M(w, i + 1) := \max \{M(w, i), M(w - w_{i+1}, i) + v_{i+1}\}\$$

Here, if $w - w_{i+1} < 0$ we always take M(w, i).

Acceptance: If M contains an entry $\geq t$, accept. Otherwise reject.

Example

Input $I = \{1, 2, 3, 4\}$ with

Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$

Weight: $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$

Weight limit: $\ell = 5$ Target value: t = 7

weight	max. total value from first i items					
limit w	i = 0	i = 1	i = 2	<i>i</i> = 3	<i>i</i> = 4	
0	0	0	0	0	0	
1	0					
2	0					
3	0					
4	0					
5	0					

For
$$i = 0, 1, ..., n - 1$$
 set $M(w, i + 1) := \max\{M(w, i), M(w - w_{i+1}, i) + v_{i+1}\}$

Input $I = \{1, 2, 3, 4\}$ with

Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$

Weight: $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$

weight	max. total value from first i items				
limit w	i = 0	i = 1	i = 2	<i>i</i> = 3	i = 4
0	0	0	0	0	0
1	0	1			
2	0	1			
3	0	1			
4	0	1			
5	0	1			

For
$$i = 0, 1, ..., n - 1$$
 set $M(w, i + 1) := \max\{M(w, i), M(w - w_{i+1}, i) + v_{i+1}\}$

Input $I = \{1, 2, 3, 4\}$ with

Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$

Weight: $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$

weight	max. total value from first i items							
limit w	i = 0	i = 0 $i = 1$ $i = 2$ $i = 3$ $i = 4$						
0	0	0	0	0	0			
1	0	1	3					
2	0	1						
3	0	1						
4	0	1						
5	0	1						

For
$$i = 0, 1, ..., n-1$$
 set $M(w, i + 1) := \max\{M(w, i), M(w - w_{i+1}, i) + v_{i+1}\}$

Input $I = \{1, 2, 3, 4\}$ with

Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$

Weight: $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$

weight	max. total value from first i items						
limit w	i = 0	i = 0 $i = 1$ $i = 2$ $i = 3$ $i = 4$					
0	0	0	0	0	0		
1	0	1	3				
2	0	1	4				
3	0	1					
4	0	1					
5	0	1					

For
$$i = 0, 1, ..., n-1$$
 set $M(w, i + 1) := \max\{M(w, i), M(w - w_{i+1}, i) + v_{i+1}\}$

Input $I = \{1, 2, 3, 4\}$ with

Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$

Weight: $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$

weight	max. total value from first i items						
limit w	i = 0	i = 0 $i = 1$ $i = 2$ $i = 3$ $i = 4$					
0	0	0	0	0	0		
1	0	1	3				
2	0	1	4				
3	0	1	4				
4	0	1					
5	0	1					

For
$$i = 0, 1, ..., n-1$$
 set $M(w, i + 1) := \max \{M(w, i), M(w - w_{i+1}, i) + v_{i+1}\}$

Input $I = \{1, 2, 3, 4\}$ with

Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$

Weight: $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$

weight	max. total value from first i items				
limit w	i = 0	i = 1	i = 2	i = 3	i = 4
0	0	0	0	0	0
1	0	1	3		
2	0	1	4		
3	0	1	4		
4	0	1	4		
5	0	1			

For
$$i = 0, 1, ..., n-1$$
 set $M(w, i + 1) := \max \{M(w, i), M(w - w_{i+1}, i) + v_{i+1}\}$

Input $I = \{1, 2, 3, 4\}$ with

Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$

Weight: $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$

weight	max. total value from first i items				
limit w	i = 0	i = 1	i = 2	<i>i</i> = 3	i = 4
0	0	0	0	0	0
1	0	1	3		
2	0	1	4		
3	0	1	4		
4	0	1	4		
5	0	1	4		

For
$$i = 0, 1, ..., n - 1$$
 set $M(w, i + 1) := \max\{M(w, i), M(w - w_{i+1}, i) + v_{i+1}\}$

Input $I = \{1, 2, 3, 4\}$ with

Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$

Weight: $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$

weight	max. total value from first i items							
limit w	i = 0	i = 0 $i = 1$ $i = 2$ $i = 3$ $i = 4$						
0	0	0	0	0	0			
1	0	1	3	3	3			
2	0	1	4	4	4			
3	0	1	4	4	5			
4	0	1	4	7	7			
5	0	1	4	8	8			

For
$$i = 0, 1, ..., n-1$$
 set $M(w, i + 1) := \max \{M(w, i), M(w - w_{i+1}, i) + v_{i+1}\}$

Did we prove P = NP?

Summary:

- Theorem 5: KNAPSACK is NP-complete
- Knapsack can be solved in time $O(n\ell)$ using dynamic programming

What went wrong?

KNAPSACK

Input: A set $I := \{1, ..., n\}$ of items

each of value v_i and weight w_i for $1 \le i \le n$,

target value t and weight limit ℓ

Problem: Is there $T \subseteq I$ such that

 $\sum_{i \in T} v_i \ge t$ and $\sum_{i \in T} w_i \le \ell$?

Pseudo-Polynomial Time

The previous algorithm is not sufficient to show that KNAPSACK is in P

- The algorithm fills a $(\ell + 1) \times (n + 1)$ matrix M
- The size of the input to **Knapsack** is $O(n \log \ell)$

 \rightarrow the size of M is not bounded by a polynomial in the length of the input!

Pseudo-Polynomial Time

The previous algorithm is not sufficient to show that KNAPSACK is in P

- The algorithm fills a $(\ell + 1) \times (n + 1)$ matrix M
- The size of the input to **Knapsack** is $O(n \log \ell)$

 \rightarrow the size of M is not bounded by a polynomial in the length of the input!

Definition 8.6 (Pseudo-Polynomial Time): Problems decidable in time polynomial in the sum of the input length and the value of numbers occurring in the input.

Equivalently: Problems decidable in polynomial time when using unary encoding for all numbers in the input.

- If **Knapsack** is restricted to instances with $\ell \le p(n)$ for a polynomial p, then we obtain a problem in P.
- KNAPSACK is in polynomial time for unary encoding of numbers.

Strong NP-completeness

Pseudo-Polynomial Time: Algorithms polynomial in the maximum of the input length and the value of numbers occurring in the input.

Examples:

- KNAPSACK
- Subset Sum

Strong NP-completeness: Problems which remain NP-complete even if all numbers are bounded by a polynomial in the input length (equivalently: even for unary coding of numbers).

Examples:

- CLIQUE
- SAT
- Hamiltonian Cycle
- ...

Note: Showing **Sat** \leq_p **Subset Sum** required exponentially large numbers.

Beyond NP

The Class coNP

Recall that coNP is the complement class of NP.

Definition 8.7:

- For a language $L \subseteq \Sigma^*$ let $\overline{L} := \Sigma^* \setminus L$ be its complement
- For a complexity class C, we define $coC := \{L \mid \overline{L} \in C\}$
- In particular $coNP = \{L \mid \overline{L} \in NP\}$

A problem belongs to coNP, if no-instances have short certificates.

Examples:

- No Hamiltonian Path: Does the graph *G* not have a Hamiltonian path?
- **TautoLogy**: Is the propositional logic formula φ a tautology (true under all assignments)?
- ...

coNP-completeness

Definition 8.8: A language $\mathbf{C} \in \text{coNP}$ is coNP-complete, if $\mathbf{L} \leq_p \mathbf{C}$ for all $\mathbf{L} \in \text{coNP}$.

Theorem 8.9:

- (1) P = coP
- (2) Hence, $P \subseteq NP \cap coNP$

Open questions:

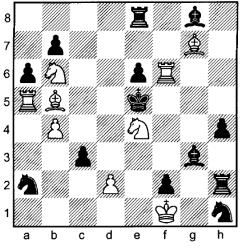
• NP = coNP?

Most people do not think so.

• $P = NP \cap coNP$?

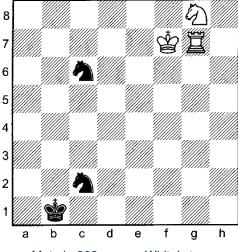
Again, most people do not think so.

Example: Chess Problems



Mate in 3 moves; White's turn

Example: Chess Problems



Mate in 262 moves; White's turn

Markus Krötzsch, 14th Nov 2017 Complexity Theory slide 35 of 36

Summary and Outlook

3-Sat and Hamiltonian Path are also NP-complete

So are **SubSet Sum** and **Knapsack**, but only if numbers are encoded efficitly (pseudo-polynomial time)

There do not seem to be polynomial certificates for coNP instances; and for some problems there seem to be certificates neither for instances nor for non-instances

What's next?

- Space
- Games
- Relating complexity classes