Lecture 3: Semantics of Programming Languages
Concurrency Theory Summer 2024

Dr. Stephan Mennicke

April 16, 2024
TU Dresden, Knowledge-Based Systems Group

Review

Overview

Part 0: Completing the Introduction
o learning about bisimilarity and bisimulations

Part 1: Semantics of (Sequential) Programming Languages
« WHILE - an old friend (today)
o denotational semantics (a baseline and an exercise of the inductive method) (also today)
- natural semantics and (structural) operational semantics

Part 2: Towards Parallel Programming Languages
« bisimilarity and its success story
o deep-dive into induction and coinduction
- algebraic properties of bisimilarity

Part 3: Expressive Power
« Calculus of Communicating Systems (CCS)
« Petri nets

Dr. Stephan Mennicke Concurrency Theory 3/16

Semantics of Programming Languages

Programming Languages

. sometimes, pragmatics included (not here :))

Syntax
. grammatical structure of programs

Example 1: The program
Z = X; X =Y}y =z

consists of three statements (separated by ;). Each statement has the form of a variable
followed by := and an expression.

Semantics
e is about specifying the meaning, or behavior, of programs, hardware, or systems in general
» to reveal ambiguities
» to form the basis for implementation, analysis, and verification
- meaning of grammatically correct programs

Dr. Stephan Mennicke Concurrency Theory 5/16

Programming Languages

Example 2: The meaning of the program
Z 1= X; X 1=Yy;y =2

is the exchange of values of variables x and y (whereas the value of z is set to the final
value of y).
o for a formal treatment we need to explain the meanings of
» sequences of statements and
» statements that are sequences of variables, :=, and expressions.

Dr. Stephan Mennicke Concurrency Theory 6/ 16

The Flavors of Semantics

Operational Semantics
- meaning = computation induced by the syntactic constructs
o it is important how? the effect of computation is produced

Denotational Semantics
- meaning = mathematical object that captures the effect of executing the program
o only the effect is important, not how it was obtained

Axiomatic Semantics
- properties of the effect of executing the program expressed as assertions
- some aspects of the computation may be neglected

Dr. Stephan Mennicke Concurrency Theory 7/ 16

Operational Semantics by Example

« how to execute the code?
» execution of a sequence of statements (separated by ;) is execution of individual state-
ments one after the other
» execution of statements with variable follows by := followed by an expression means
determining the value of the expression and assigning it to the first variable
« record the execution of programs in a sftate where x has value 5, y has value 7, and z has

value O:
(z i=x; x:i=y; y =z, x5y~ 7,2 0])
— (x :=y; y =z, [t 5y 72 5])
= (y i=z, x> Ty~ 7,2 5])
— x> T,y 5,2z 5]

Dr. Stephan Mennicke Concurrency Theory 8/ 16

Another Operational Semantics by Example

Z 1= X; X 1=y, VY =2

o the semantics so far abstracted from the computing architecture (e.g., memory locations)
- we can even go further by so-called derivation trees:

<Z :=X780>_>81 <X :=y781>_>82

(z 1= x; X 1= y,85) = S5 (y 1= z,85) — 83

(z 1= x; X 1= y; y 1=2,8) — S3

where s) = [z = 5,y—~> 7,2 0,8y =z 5,y 7,25, s =z 7,y = 7,2 5|,
and s =[x = T,y > 5,2 5|
o this style is called the natural semantics or big step semantics

Dr. Stephan Mennicke Concurrency Theory 9/ 16

Denotational Semantics by Example

Z =X} X =y, Yy =2

the effect of the computation is modeled by mathematical functions:

the effect of a sequence of statements is the function composition of the individual effects

the effect of a statement consisting of a variable, followed by := and an expression is the
function that takes a state (i.e., a mapping from variables to values) and transforms it into
a state mapping the variable in question to its new value

for the example we get S[[z := x|, S[x := y],and Sy := z] to obtain the meaning
Sz :=x; x :=y; y 1=z =8y 1= z] o S[x 1= y] oSz := X]

Remark on Order and Function Composition

Function composition is read in the reverse order: Functions g: A — B and f : B — C com-
pose to f o g such thatforallx € A, (f o g)(z) := f(g(x)).

Dr. Stephan Mennicke Concurrency Theory 10/ 16

Axiomatic Semantics by Example

{r=nAy=m}z :=x; x :=y; y:i=z{z=mAy=n}

precondition ({x = n A y = m}) and postcondition ({x = m A y = n})
viewed as a specification focusing on particular aspect of the semantics

partial correctness (i.e., upon termination) and total correctness

once again, a derivation tree is appropriate

axiomatic semantics tells us how to step-wise transform preconditions into postconditions:

|ass]

{Plx — n]}x := n{P}

]{P}SI{Q} {Q}S:{R}
{P} S1:5; {R}

[comp

Dr. Stephan Mennicke Concurrency Theory 11/ 16

The Language of WHILE-Programs

Syntactic Categories

The following categories are pairwaise disjoint sets.

« Num is the set of numerals (e.g., n, 7,15, ...)

Var is the set of variables (e.g., x, vy, 2, ...)

Aexp is the set of arithmetic expressions (e.g., a, a; * as, ...)

Bexp is the set of Boolean expressions (e.g., true, —b, a; < a,, ...)
Stm is the set of all statements (to be defined next)

Dr. Stephan Mennicke Concurrency Theory 13/ 16

Syntax of WHILE Programs

as=n|x|ada|axa|aBSa
b :=true | false | a=a | a<a| b |bAD
S :==1x:=a | skip | §;5 | if bthen SelseS | whilebdo S
where n € Num and x € Var.
These are all the syntactic categories, rigorously defined by grammars. Really all?

Exercise: Provide a definition for numerals and variables.

Dr. Stephan Mennicke Concurrency Theory 14/ 16

Semantic Functions

Assumptions:
1. numerals are given in decimal notation
2. semantic function N [-] : Num — Z

A state is a function from variables to Z.

State = ZV&

Need semantic functions for the syntactic categories
- Aexp A : Aexp — (State — 7Z)
« Bexp B : Bexp — (State — B)
« Stm § : Stm — (??)

?? should be replaced by partial functions State < State.

Dr. Stephan Mennicke Concurrency Theory 15/ 16

Total and Partial Functions

A function f : A — Bis an object f C A x B suchthat (1) Vae A:3b € B: (a,b) € f and
(2) if for a € A we have b, b, € B with (a,b;) € f and (a,b,) € f, then b; = b,. In contrast,
a partial function g : A < B removes requirement (1).

If for a € A there is a b € B such that (a,b) € g, we write g(a) = b.If for allb € B, (a,b) ¢
g, we write g(a) =1 where 1 ¢ B is assumed to be the symbol for undefined value.

Dr. Stephan Mennicke Concurrency Theory 16 / 16

	Syntax
	Semantics
	Operational Semantics
	Denotational Semantics
	Axiomatic Semantics
	Remark on Order and Function Composition

