

Hannes Strass

Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

Approximation Fixpoint Theory

Lecture 12, 23rd Jan 2023 // Foundations of Knowledge Representation, WS 2022/23

Motivation: Objective

Goal: Define semantics for (rule-based) KR formalisms in the presence of:

Recursion

- transitive closure
- indirect effects of actions

Motivation: Objective

Goal: Define semantics for (rule-based) KR formalisms in the presence of:

Recursion

- transitive closure
- indirect effects of actions

Negation

- shorter and more intuitive descriptions
- defaults and assumptions (e.g. closed world, non-effects of actions)

Motivation: Objective

Goal: Define semantics for (rule-based) KR formalisms in the presence of:

Recursion

- transitive closure
- indirect effects of actions

Negation

- shorter and more intuitive descriptions
- defaults and assumptions (e.g. closed world, non-effects of actions)

Recursion Through Negation

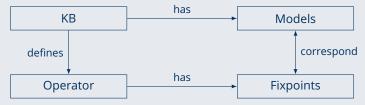
- mutually exclusive alternatives
- non-deterministic effects of actions

Motivation: Basic Idea

- Framework for studying semantics of (non-monotonic) KR formalisms
- Due to Denecker, Marek, and Truszczyński [2000, 2003, 2004]
- Based on lattice theory and fixpoint theory:

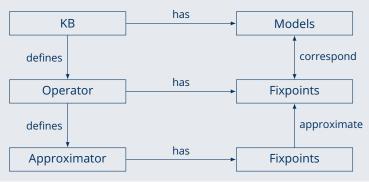
Motivation: Basic Idea

- Framework for studying semantics of (non-monotonic) KR formalisms
- Due to Denecker, Marek, and Truszczyński [2000, 2003, 2004]
- Based on lattice theory and fixpoint theory:



Motivation: Basic Idea

- Framework for studying semantics of (non-monotonic) KR formalisms
- Due to Denecker, Marek, and Truszczyński [2000, 2003, 2004]
- Based on lattice theory and fixpoint theory:



Motivation: History and Context

- ... emerged from similarities in the semantics of
- Default Logic [Reiter, 1980]
- Autoepistemic Logic [Moore, 1985]
- Logic Programs, in particular Stable Models [Gelfond and Lifschitz, 1988]
- ... and has since been applied to define/reconstruct semantics of ...
- Abstract Argumentation Frameworks
- Abstract Dialectical Frameworks
- Active Integrity Constraints
- Recursive SHACL

Agenda

Preliminaries Lattice Theory Logic Programming

Approximating Operators
Approximator
Defining Semantics

Stable Operators
Semantics via Fixpoints

Conclusion

Preliminaries

Partially Ordered Sets

Definition

A **partially ordered set** is a pair (L, \leq) with

- La set, and (carrier set)
- $\leq \subseteq L \times L$ a partial order.

(reflexive, antisymmetric, transitive)

Partially Ordered Sets

Definition

A **partially ordered set** is a pair (L, \leq) with

L a set, and

(carrier set)

• $\leq \subseteq L \times L$ a partial order.

(reflexive, antisymmetric, transitive)

A partially ordered set (L, \leq) has a

- **bottom element** $\bot \in L$ iff $\bot \leqslant x$ for all $x \in L$,
- top element $\top \in L$ iff $x \leqslant \top$ for all $x \in L$.

Partially Ordered Sets

Definition

A **partially ordered set** is a pair (L, \leq) with

L a set, and

(carrier set)

• $\leq \subseteq L \times L$ a partial order.

(reflexive, antisymmetric, transitive)

A partially ordered set (L, \leq) has a

- **bottom element** $\bot \in L$ iff $\bot \leqslant x$ for all $x \in L$,
- **top element** $\top \in L$ iff $x \leqslant \top$ for all $x \in L$.

Examples

- (\mathbb{N} , \leq): natural numbers with "usual" ordering, $\perp = 0$, no \top
- (2^S, \subseteq): any powerset with subset relation, $\bot = \emptyset$, $\top = S$
- (\mathbb{N} , |): natural numbers with divisibility relation, $\bot = 1$, $\top = 0$

Minimal, Maximal, Least, Greatest

Definition

Let (L, \leq) be a partially ordered set with $S \subseteq L$ and $x \in S$. We say that:

- x is a **minimal element** of S iff for each $y \in S$, $y \leqslant x$ implies y = x, dually,
- x is a **maximal element** of S iff for each $y \in S$, $x \le y$ implies y = x;

Minimal, Maximal, Least, Greatest

Definition

Let (L, \leq) be a partially ordered set with $S \subseteq L$ and $x \in S$. We say that:

- x is a **minimal element** of S iff for each $y \in S$, $y \leqslant x$ implies y = x, dually,
- x is a **maximal element** of S iff for each $y \in S$, $x \leq y$ implies y = x;
- x is the **least element** of S iff for each $y \in S$, we have $x \leq y$, dually,
- x is the **greatest element** of S iff for each $y \in S$, we have $y \le x$.

Minimal, Maximal, Least, Greatest

Definition

Let (L, \leq) be a partially ordered set with $S \subseteq L$ and $x \in S$. We say that:

- x is a **minimal element** of S iff for each $y \in S$, $y \leqslant x$ implies y = x, dually,
- x is a **maximal element** of S iff for each $y \in S$, $x \leq y$ implies y = x;
- x is the **least element** of S iff for each $y \in S$, we have $x \leq y$, dually,
- x is the **greatest element** of S iff for each $y \in S$, we have $y \leqslant x$.

Example

In $(\mathbb{N}, |)$ (natural numbers with divisibility $a | b \iff (\exists k \in \mathbb{N})a \cdot k = b$), ...

- the set {2, 3, 6} has minimal elements 2 and 3, greatest element 6,
- the set {2, 4, 6} has least element 2, and maximal elements 4 and 6.

Definition

Let (L, \leq) be a partially ordered set with $S \subseteq L$ and $x \in L$.

- x is an **upper bound** of S iff for each $s \in S$, we have $s \leq x$, dually,
- x is a **lower bound** of S iff for each $s \in S$, we have $x \leq s$.

Definition

Let (L, \leq) be a partially ordered set with $S \subseteq L$ and $x \in L$.

- x is an **upper bound** of S iff for each $s \in S$, we have $s \leq x$, dually,
- x is a **lower bound** of S iff for each $s \in S$, we have $x \leq s$.

The set of all upper bounds of S is denoted by S^u , its lower bounds by S^{ℓ} .

Definition

Let (L, \leq) be a partially ordered set with $S \subseteq L$ and $x \in L$.

- x is an **upper bound** of S iff for each $s \in S$, we have $s \leq x$, dually,
- x is a **lower bound** of S iff for each $s \in S$, we have $x \leq s$.

The set of all upper bounds of S is denoted by S^u , its lower bounds by S^{ℓ} .

- If S^u has a least element $z \in S$, z is the **least upper bound** of S, dually,
- if S^{ℓ} has a greatest element $z \in S$, z is the **greatest lower bound** of S.

Definition

Let (L, \leq) be a partially ordered set with $S \subseteq L$ and $x \in L$.

- x is an **upper bound** of S iff for each $s \in S$, we have $s \leq x$, dually,
- x is a **lower bound** of S iff for each $s \in S$, we have $x \leq s$.

The set of all upper bounds of S is denoted by S^u , its lower bounds by S^{ℓ} .

- If S^u has a least element $z \in S$, z is the **least upper bound** of S, dually,
- if S^{ℓ} has a greatest element $z \in S$, z is the **greatest lower bound** of S.

We denote the **glb** of $\{x,y\}$ by $x \wedge y$, and the **lub** of $\{x,y\}$ by $x \vee y$.

Definition

Let (L, \leq) be a partially ordered set with $S \subseteq L$ and $x \in L$.

- x is an **upper bound** of S iff for each $s \in S$, we have $s \leq x$, dually,
- x is a **lower bound** of S iff for each $s \in S$, we have $x \leq s$.

The set of all upper bounds of S is denoted by S^u , its lower bounds by S^{ℓ} .

- If S^u has a least element $z \in S$, z is the **least upper bound** of S, dually,
- if S^{ℓ} has a greatest element $z \in S$, z is the **greatest lower bound** of S.

We denote the **glb** of $\{x,y\}$ by $x \wedge y$, and the **lub** of $\{x,y\}$ by $x \vee y$. We denote the glb of S by $\bigwedge S$, and the lub of S by $\bigvee S$.

Definition

Let (L, \leq) be a partially ordered set with $S \subseteq L$ and $x \in L$.

- x is an **upper bound** of S iff for each $s \in S$, we have $s \leq x$, dually,
- x is a **lower bound** of S iff for each $s \in S$, we have $x \leq s$.

The set of all upper bounds of S is denoted by S^u , its lower bounds by S^{ℓ} .

- If S^u has a least element $z \in S$, z is the **least upper bound** of S, dually,
- if S^{ℓ} has a greatest element $z \in S$, z is the **greatest lower bound** of S.

We denote the **glb** of $\{x,y\}$ by $x \wedge y$, and the **lub** of $\{x,y\}$ by $x \vee y$. We denote the glb of S by $\bigwedge S$, and the lub of S by $\bigvee S$.

Examples

- In $(2^S, \subseteq)$, $\wedge = \cap$ and $\vee = \cup$;
- in (\mathbb{N} , |), $\wedge = \gcd$ and $\vee = lcm$, e.g. $4 \vee 6 = 12$ and $23 \wedge 42 = 1$.

Definition

Let (L, \leq) be a partially ordered set.

1. (L, \leq) is a **lattice** if and only if for all $x, y \in L$, both $x \wedge y$ and $x \vee y$ exist;

Definition

Let (L, \leq) be a partially ordered set.

- 1. (L, \leq) is a **lattice** if and only if for all $x, y \in L$, both $x \wedge y$ and $x \vee y$ exist;
- 2. (L, \leq) is a **complete lattice** iff for all $S \subseteq L$, both $\bigwedge S$ and $\bigvee S$ exist.

Definition

Let (L, \leq) be a partially ordered set.

- 1. (L, \leq) is a **lattice** if and only if for all $x, y \in L$, both $x \wedge y$ and $x \vee y$ exist;
- 2. (L, \leq) is a **complete lattice** iff for all $S \subseteq L$, both $\bigwedge S$ and $\bigvee S$ exist.

In particular, a complete lattice has $\bigvee \emptyset = \bigwedge L = \bot$ and $\bigwedge \emptyset = \bigvee L = \top$.

Definition

Let (L, \leq) be a partially ordered set.

- 1. (L, \leq) is a **lattice** if and only if for all $x, y \in L$, both $x \wedge y$ and $x \vee y$ exist;
- 2. (L, \leq) is a **complete lattice** iff for all $S \subseteq L$, both $\bigwedge S$ and $\bigvee S$ exist.

In particular, a complete lattice has $\bigvee \emptyset = \bigwedge L = \bot$ and $\bigwedge \emptyset = \bigvee L = \top$.

Examples

- $(2^S, \subseteq)$ is a complete lattice for every set *S*.
- (N, |) is a complete lattice.
- $(\{M \subseteq \mathbb{N} \mid M \text{ is finite}\}, \subseteq)$ is a lattice.
- Every lattice (L, \leq) with L finite is a complete lattice. (induction on |S|)

Further reading: B.A. Davey and H.A. Priestley. *Introduction to Lattices and Order*. Second Edition. Cambridge University Press, 2002

Definition

Let (L, \leq) be a partially ordered set.

An operator $O: L \to L$ is \leqslant -monotone if and only if for all $x, y \in L$,

$$x \leqslant y$$
 implies $O(x) \leqslant O(y)$

Intuition: Operator application preserves ordering.

Definition

Let (L, \leq) be a partially ordered set.

An operator $O: L \to L$ is \leqslant -monotone if and only if for all $x, y \in L$,

$$x \leqslant y$$
 implies $O(x) \leqslant O(y)$

Intuition: Operator application preserves ordering.

Example

Definition

Let (L, \leq) be a partially ordered set.

An operator $O: L \to L$ is \leqslant -monotone if and only if for all $x, y \in L$,

$$x \leqslant y$$
 implies $O(x) \leqslant O(y)$

Intuition: Operator application preserves ordering.

Example

Consider $(2^{\mathbb{N}}, \subseteq)$ with operator $O: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$, $M \mapsto \{ \prod K \mid K \subseteq M, K \text{ finite} \}$.

• $O({2,3}) = {1,2,3,6}$ and $O({2,3,5}) = {1,2,3,5,6,10,15,30}.$

Definition

Let (L, \leq) be a partially ordered set.

An operator $O: L \to L$ is \leqslant -monotone if and only if for all $x, y \in L$,

$$x \leqslant y$$
 implies $O(x) \leqslant O(y)$

Intuition: Operator application preserves ordering.

Example

- $O({2,3}) = {1,2,3,6}$ and $O({2,3,5}) = {1,2,3,5,6,10,15,30}.$
- *O* is ⊂-monotone:

Definition

Let (L, \leq) be a partially ordered set.

An operator $O: L \to L$ is \leqslant -monotone if and only if for all $x, y \in L$,

$$x \leqslant y$$
 implies $O(x) \leqslant O(y)$

Intuition: Operator application preserves ordering.

Example

- $O({2,3}) = {1,2,3,6}$ and $O({2,3,5}) = {1,2,3,5,6,10,15,30}.$
- *O* is ⊆-monotone:
 - Let M_1 ⊆ M_2 ⊆ \mathbb{N} and consider $k \in O(M_1)$.

Definition

Let (L, \leq) be a partially ordered set.

An operator $O: L \to L$ is \leqslant -monotone if and only if for all $x, y \in L$,

$$x \leqslant y$$
 implies $O(x) \leqslant O(y)$

Intuition: Operator application preserves ordering.

Example

- $O({2,3}) = {1,2,3,6}$ and $O({2,3,5}) = {1,2,3,5,6,10,15,30}.$
- *O* is ⊆-monotone:
 - Let M_1 ⊆ M_2 ⊆ \mathbb{N} and consider $k \in O(M_1)$.
 - Then there is a $K \subseteq M_1$ with $k = \prod K$.

Definition

Let (L, \leq) be a partially ordered set.

An operator $O: L \to L$ is \leqslant -monotone if and only if for all $x, y \in L$,

$$x \leqslant y$$
 implies $O(x) \leqslant O(y)$

Intuition: Operator application preserves ordering.

Example

- $O({2,3}) = {1,2,3,6}$ and $O({2,3,5}) = {1,2,3,5,6,10,15,30}.$
- *O* is ⊆-monotone:
 - Let M_1 ⊆ M_2 ⊆ \mathbb{N} and consider $k \in O(M_1)$.
 - Then there is a $K \subseteq M_1$ with $k = \prod K$.
 - By $K \subseteq M_1 \subseteq M_2$, we get $k \in O(M_2)$.

Fixpoints of Operators

Definition

Let (L, \leq) be a partially ordered set and $O: L \to L$ be an operator.

- $x \in L$ is a **fixpoint** of *O* iff O(x) = x;
- $x \in L$ is a **prefixpoint** of O iff $O(x) \le x$;
- $x \in L$ is a **postfixpoint** of O iff $x \leqslant O(x)$.

Theorem (Knaster/Tarski)

Let (L, \leq) be a complete lattice and $O: L \to L$ be a monotone operator. Then the set F of fixpoints of O has a least element and a greatest element.

Fixpoints of Operators

Definition

Let (L, \leq) be a partially ordered set and $O: L \to L$ be an operator.

- $x \in L$ is a **fixpoint** of *O* iff O(x) = x;
- $x \in L$ is a **prefixpoint** of *O* iff $O(x) \le X$;
- $x \in L$ is a **postfixpoint** of O iff $x \leqslant O(x)$.

Theorem (Knaster/Tarski)

Let (L, \leq) be a complete lattice and $O: L \to L$ be a monotone operator. Then the set F of fixpoints of O has a least element and a greatest element.

Order-preserving operators on complete lattices have a fixpoint.

Fixpoints of Operators

Definition

Let (L, \leq) be a partially ordered set and $O: L \to L$ be an operator.

- $x \in L$ is a **fixpoint** of *O* iff O(x) = x;
- $x \in L$ is a **prefixpoint** of O iff $O(x) \le x$;
- $x \in L$ is a **postfixpoint** of *O* iff $x \leq O(x)$.

Theorem (Knaster/Tarski)

Let (L, \leq) be a complete lattice and $O: L \to L$ be a monotone operator. Then the set F of fixpoints of O has a least element and a greatest element.

Order-preserving operators on complete lattices have a fixpoint.

Example (Continued.)

Consider $(2^{\mathbb{N}}, \subseteq)$ with operator $O: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$, $M \mapsto \{ \bigcap K \mid K \subseteq M, K \text{ finite} \}$. O has least and greatest fixpoints: $O(\{1\}) = \{1\}$ and $O(\mathbb{N}) = \mathbb{N}$.

Theorem (Knaster/Tarski)

Let (L, \leq) be a complete lattice and $O: L \to L$ be a monotone operator. Then the set F of fixpoints of O has a least element and a greatest element.

Define
$$A = \{x \in L \mid O(x) \leqslant x\}$$
 and $\alpha = \bigwedge A$.

$$(A \neq \emptyset \text{ as } \top \in A.)$$

Theorem (Knaster/Tarski)

Let (L, \leq) be a complete lattice and $O: L \to L$ be a monotone operator. Then the set F of fixpoints of O has a least element and a greatest element.

Proof.

Define
$$A = \{x \in L \mid O(x) \leq x\}$$
 and $\alpha = \bigwedge A$.

$$(A \neq \emptyset \text{ as } \top \in A.)$$

• For every $x \in A$, we have $\alpha \leqslant x$ and by monotonicity $O(\alpha) \leqslant O(x) \leqslant x$.

Theorem (Knaster/Tarski)

Let (L, \leq) be a complete lattice and $O: L \to L$ be a monotone operator. Then the set F of fixpoints of O has a least element and a greatest element.

Define
$$A = \{x \in L \mid O(x) \leq x\}$$
 and $\alpha = \bigwedge A$.

$$(A \neq \emptyset \text{ as } \top \in A.)$$

- For every $x \in A$, we have $\alpha \leqslant x$ and by monotonicity $O(\alpha) \leqslant O(x) \leqslant x$.
- Thus $O(\alpha)$ is a lower bound of A.

Theorem (Knaster/Tarski)

Let (L, \leq) be a complete lattice and $O: L \to L$ be a monotone operator. Then the set F of fixpoints of O has a least element and a greatest element.

Define
$$A = \{x \in L \mid O(x) \leq x\}$$
 and $\alpha = \bigwedge A$.

$$(A \neq \emptyset \text{ as } \top \in A.)$$

- For every $x \in A$, we have $\alpha \le x$ and by monotonicity $O(\alpha) \le O(x) \le x$.
- Thus $O(\alpha)$ is a lower bound of A.
- Since α is the greatest lower bound of A, we get $O(\alpha) \leqslant \alpha$, that is, $\alpha \in A$.

Theorem (Knaster/Tarski)

Let (L, \leq) be a complete lattice and $O: L \to L$ be a monotone operator. Then the set F of fixpoints of O has a least element and a greatest element.

Define
$$A = \{x \in L \mid O(x) \leq x\}$$
 and $\alpha = \bigwedge A$.

$$(A \neq \emptyset \text{ as } \top \in A.)$$

- For every $x \in A$, we have $\alpha \le x$ and by monotonicity $O(\alpha) \le O(x) \le x$.
- Thus $O(\alpha)$ is a lower bound of A.
- Since α is the greatest lower bound of A, we get $O(\alpha) \leq \alpha$, that is, $\alpha \in A$.
- Furthermore, monotonicity yields $O(O(\alpha)) \leq O(\alpha)$, whence $O(\alpha) \in A$.

Theorem (Knaster/Tarski)

Let (L, \leq) be a complete lattice and $O: L \to L$ be a monotone operator. Then the set F of fixpoints of O has a least element and a greatest element.

Define
$$A = \{x \in L \mid O(x) \leq x\}$$
 and $\alpha = \bigwedge A$.

$$(A \neq \emptyset \text{ as } \top \in A.)$$

- For every $x \in A$, we have $\alpha \leqslant x$ and by monotonicity $O(\alpha) \leqslant O(x) \leqslant x$.
- Thus $O(\alpha)$ is a lower bound of A.
- Since α is the greatest lower bound of A, we get $O(\alpha) \leqslant \alpha$, that is, $\alpha \in A$.
- Furthermore, monotonicity yields $O(O(\alpha)) \leq O(\alpha)$, whence $O(\alpha) \in A$.
- Since α is a lower bound of A, we get $\alpha \leqslant O(\alpha)$, thus $O(\alpha) = \alpha$.

Theorem (Knaster/Tarski)

Let (L, \leq) be a complete lattice and $O: L \to L$ be a monotone operator. Then the set F of fixpoints of O has a least element and a greatest element.

Define
$$A = \{x \in L \mid O(x) \leq x\}$$
 and $\alpha = \bigwedge A$.

$$(A \neq \emptyset \text{ as } \top \in A.)$$

- For every $x \in A$, we have $\alpha \le x$ and by monotonicity $O(\alpha) \le O(x) \le x$.
- Thus $O(\alpha)$ is a lower bound of A.
- Since α is the greatest lower bound of A, we get $O(\alpha) \leq \alpha$, that is, $\alpha \in A$.
- Furthermore, monotonicity yields $O(O(\alpha)) \leqslant O(\alpha)$, whence $O(\alpha) \in A$.
- Since α is a lower bound of A, we get $\alpha \leqslant O(\alpha)$, thus $O(\alpha) = \alpha$.
- Greatest fixpoint β is obtained dually: $B = \{x \in L \mid x \leq O(x)\}, \beta = \bigvee B$.

Theorem (Knaster/Tarski)

Let (L, \leq) be a complete lattice and $O: L \to L$ be a monotone operator. Then the set F of fixpoints of O has a least element and a greatest element.

Proof.

Define
$$A = \{x \in L \mid O(x) \leq x\}$$
 and $\alpha = \bigwedge A$.

$$(A \neq \emptyset \text{ as } \top \in A.)$$

- For every $x \in A$, we have $\alpha \le x$ and by monotonicity $O(\alpha) \le O(x) \le x$.
- Thus $O(\alpha)$ is a lower bound of A.
- Since α is the greatest lower bound of A, we get $O(\alpha) \leq \alpha$, that is, $\alpha \in A$.
- Furthermore, monotonicity yields $O(O(\alpha)) \leq O(\alpha)$, whence $O(\alpha) \in A$.
- Since α is a lower bound of A, we get $\alpha \leqslant O(\alpha)$, thus $O(\alpha) = \alpha$.
- Greatest fixpoint β is obtained dually: $B = \{x \in L \mid x \leq O(x)\}, \beta = \bigvee B$.

 (F, \leqslant) is a complete lattice: for $G \subseteq F$, take $([\bigvee G, \bigvee L], \leqslant)$ and $([\bigwedge L, \bigwedge G], \leqslant)$.

Nice to know there is one, but how do we get there?

Theorem

Let (L, \leq) be a complete lattice and $O: L \to L$ be a \leq -monotone operator. For ordinals α, β , define

$$O^0(\bot) = \bot$$
 $O^{\alpha+1}(\bot) = O(O^{\alpha}(\bot))$ for successor ordinals
 $O^{\beta}(\bot) = \bigvee \{O^{\alpha}(\bot) \mid \alpha < \beta\}$ for limit ordinals

Then for some ordinal α , the element $O^{\alpha}(\bot)$ is a fixpoint of O.

Example (Continued.)

Consider $(2^{\mathbb{N}}, \subseteq)$ with operator $O: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$, $M \mapsto \{ \prod K \mid K \subseteq M, K \text{ finite} \}$. We obtain the chain $O^0(\emptyset) = \emptyset \leadsto O^1(\emptyset) = \{1\} \leadsto O^2(\emptyset) = O(\{1\}) = \{1\}$.

Consider a set A of propositional atoms.

Definition

A **definite logic program** over A is a set P of rules of the form

$$a_0 \leftarrow a_1, \ldots, a_m$$

for $a_0, \ldots, a_m \in \mathcal{A}$ with $0 \leq m$.

A set of definite Horn clauses (exactly one positive literal).

Consider a set A of propositional atoms.

Definition

A **definite logic program** over A is a set P of rules of the form

$$a_0 \leftarrow a_1, \ldots, a_m$$

for $a_0, \ldots, a_m \in \mathcal{A}$ with $0 \leq m$.

A set of definite Horn clauses (exactly one positive literal).

Definition

• A set $S \subseteq A$ is **closed** under a rule $a \leftarrow a_1, \ldots, a_m$ if and only if $\{a_1, \ldots, a_m\} \subseteq S$ implies $a \in S$.

Consider a set A of propositional atoms.

Definition

A **definite logic program** over A is a set P of rules of the form

$$a_0 \leftarrow a_1, \ldots, a_m$$

for $a_0, \ldots, a_m \in \mathcal{A}$ with $0 \leq m$.

A set of definite Horn clauses (exactly one positive literal).

Definition

- A set $S \subseteq A$ is **closed** under a rule $a \leftarrow a_1, ..., a_m$ if and only if $\{a_1, ..., a_m\} \subseteq S$ implies $a \in S$.
- The **least model** of *P* is the \subseteq -least set that is closed under all rules in *P*.

Consider a set A of propositional atoms.

Definition

A **definite logic program** over A is a set P of rules of the form

$$a_0 \leftarrow a_1, \ldots, a_m$$

for $a_0, \ldots, a_m \in \mathcal{A}$ with $0 \leq m$.

A set of definite Horn clauses (exactly one positive literal).

Definition

- A set $S \subseteq A$ is **closed** under a rule $a \leftarrow a_1, ..., a_m$ if and only if $\{a_1, ..., a_m\} \subseteq S$ implies $a \in S$.
- The **least model** of *P* is the ⊆-least set that is closed under all rules in *P*.

Does such a least model always exist?

Definition

Let *P* be a definite logic program over atoms A.

The **one-step consequence operator** of *P* is given by ${}_{P}T:2^{\mathcal{A}}\rightarrow 2^{\mathcal{A}}$ with

$$S \mapsto \{a_0 \in A \mid a_0 \leftarrow a_1, \ldots, a_m \in P, \{a_1, \ldots, a_m\} \subseteq S\}$$

The $_{P}T$ operator maps an interpretation S to a revised interpretation $_{P}T(S)$.

Definition

Let *P* be a definite logic program over atoms A.

The **one-step consequence operator** of *P* is given by $_{P}T: 2^{\mathcal{A}} \to 2^{\mathcal{A}}$ with

$$S \mapsto \{a_0 \in \mathcal{A} \mid a_0 \leftarrow a_1, \ldots, a_m \in P, \{a_1, \ldots, a_m\} \subseteq S\}$$

The $_{P}T$ operator maps an interpretation S to a revised interpretation $_{P}T(S)$.

Proposition

For any definite logic program P, the operator $_{P}T$ is \subseteq -monotone.

Definition

Let *P* be a definite logic program over atoms A.

The **one-step consequence operator** of *P* is given by $_{P}T: 2^{\mathcal{A}} \rightarrow 2^{\mathcal{A}}$ with

$$S \mapsto \{a_0 \in \mathcal{A} \mid a_0 \leftarrow a_1, \ldots, a_m \in P, \{a_1, \ldots, a_m\} \subseteq S\}$$

The $_{P}T$ operator maps an interpretation S to a revised interpretation $_{P}T(S)$.

Proposition

For any definite logic program P, the operator $_{P}T$ is \subseteq -monotone.

Proof.

Let $S_1 \subseteq S_2 \subseteq \mathcal{A}$ and $a \in {}_{P}T(S_1)$.

Definition

Let *P* be a definite logic program over atoms A.

The **one-step consequence operator** of *P* is given by $_{P}T: 2^{\mathcal{A}} \rightarrow 2^{\mathcal{A}}$ with

$$S \mapsto \{a_0 \in \mathcal{A} \mid a_0 \leftarrow a_1, \ldots, a_m \in P, \{a_1, \ldots, a_m\} \subseteq S\}$$

The $_{P}T$ operator maps an interpretation S to a revised interpretation $_{P}T(S)$.

Proposition

For any definite logic program P, the operator $_{P}T$ is \subseteq -monotone.

Proof.

Let $S_1 \subseteq S_2 \subseteq \mathcal{A}$ and $a \in {}_{P}T(S_1)$.

Then there is a rule $a \leftarrow a_1, \ldots, a_m \in P$ with $\{a_1, \ldots, a_m\} \subseteq S_1$.

Definition

Let *P* be a definite logic program over atoms A.

The **one-step consequence operator** of *P* is given by $_{P}T: 2^{\mathcal{A}} \rightarrow 2^{\mathcal{A}}$ with

$$S \mapsto \{a_0 \in \mathcal{A} \mid a_0 \leftarrow a_1, \ldots, a_m \in P, \{a_1, \ldots, a_m\} \subseteq S\}$$

The $_{P}T$ operator maps an interpretation S to a revised interpretation $_{P}T(S)$.

Proposition

For any definite logic program P, the operator $_{P}T$ is \subseteq -monotone.

Proof.

Let $S_1 \subseteq S_2 \subseteq \mathcal{A}$ and $a \in {}_{P}T(S_1)$.

Then there is a rule $a \leftarrow a_1, \ldots, a_m \in P$ with $\{a_1, \ldots, a_m\} \subseteq S_1$.

But then $\{a_1, \ldots, a_m\} \subseteq S_1 \subseteq S_2$, thus $a \in {}_{P}T(S_2)$.

Definition

Let *P* be a definite logic program over atoms A.

The **one-step consequence operator** of *P* is given by $_{P}T: 2^{\mathcal{A}} \to 2^{\mathcal{A}}$ with

$$S \mapsto \{a_0 \in \mathcal{A} \mid a_0 \leftarrow a_1, \ldots, a_m \in P, \{a_1, \ldots, a_m\} \subseteq S\}$$

The $_{P}T$ operator maps an interpretation S to a revised interpretation $_{P}T(S)$.

Proposition

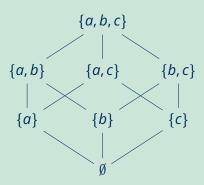
For any definite logic program P, the operator $_{P}T$ is \subseteq -monotone.

Theorem

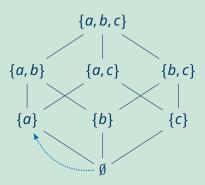
Every definite logic program P has a least model, given by the least fixpoint of $_{P}T$ in $(2^{\mathcal{A}}, \subseteq)$.

The least model of *P* captures its intended meaning.

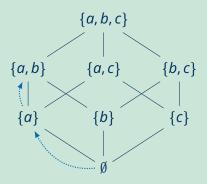
Example



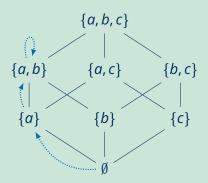
Example



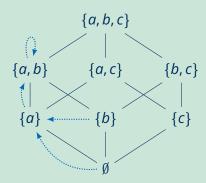
Example



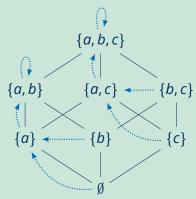
Example



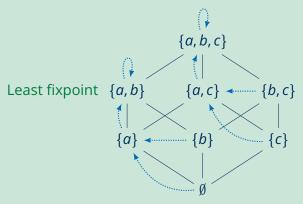
Example



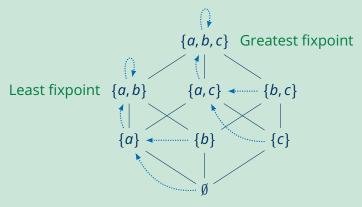
Example



Example



Example



Example

Consider $A = \{a, b, c\}$ and the logic program $P = \{a \leftarrow, b \leftarrow a, c \leftarrow c\}$. The operator $_PT$ maps as follows:

Complete lattice of fixpoints $\{a, b, c\}$ $\{a, b\} \qquad \{a, c\} \qquad \{b, c\}$ $\{a\} \qquad \{b\} \qquad \{c\}$

Normal Logic Programs

Definition

A **normal logic program** over \mathcal{A} is a set P of rules of the form $a_0 \leftarrow a_1, \ldots, a_m, \sim a_{m+1}, \ldots, \sim a_n$ for $a_0, \ldots, a_n \in \mathcal{A}$ with $0 \le m \le n$.

Allow negated atoms $\sim a$ in rule bodies.

Normal Logic Programs

Definition

A **normal logic program** over \mathcal{A} is a set P of rules of the form $a_0 \leftarrow a_1, \ldots, a_m, \sim a_{m+1}, \ldots, \sim a_n$ for $a_0, \ldots, a_n \in \mathcal{A}$ with $0 \le m \le n$.

Allow negated atoms $\sim a$ in rule bodies.

Definition

Let *P* be a normal logic program. The operator $_{P}T$ on $(2^{\mathcal{A}}, \subseteq)$ assigns thus:

$$S \mapsto \{a_0 \in \mathcal{A} \mid a_0 \leftarrow a_1, \dots, a_m, \sim a_{m+1}, \dots, \sim a_n \in P,$$

$$\{a_1, \dots, a_m\} \subseteq S, \{a_{m+1}, \dots, a_n\} \cap S = \emptyset\}$$

A set $S \subseteq A$ is a **supported model** of P iff it is a fixpoint of ${}_{P}T$.

Allow to derive the rule head from *S* whenever the rule body is satisfied in *S*. Alternative definition of supported models via Clark completion.

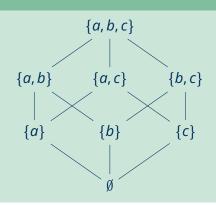
Example

Let $A = \{a, b, c\}$.

Consider the normal logic program

$$P = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c, \sim b\}.$$

Operator _PT visualised by



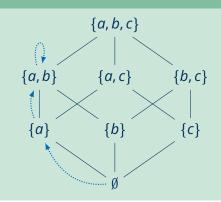
Example

Let $A = \{a, b, c\}$.

Consider the normal logic program

$$P = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c, \sim b\}.$$

Operator _PT visualised by



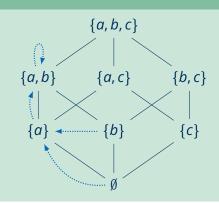
Example

Let $A = \{a, b, c\}$.

Consider the normal logic program

$$P = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c, \sim b\}.$$

Operator _PT visualised by



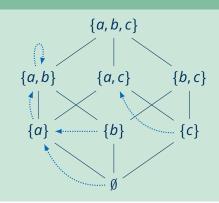
Example

Let $A = \{a, b, c\}$.

Consider the normal logic program

$$P = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c, \sim b\}.$$

Operator _PT visualised by



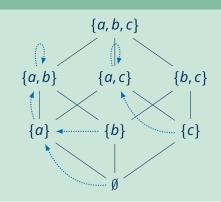
Example

Let $A = \{a, b, c\}$.

Consider the normal logic program

$$P = \{a \leftarrow, \quad b \leftarrow a, \, \sim c, \quad c \leftarrow c, \, \sim b\}.$$

Operator _PT visualised by



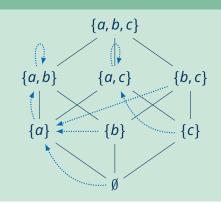
Example

Let $A = \{a, b, c\}$.

Consider the normal logic program

$$P = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c, \sim b\}.$$

Operator _PT visualised by

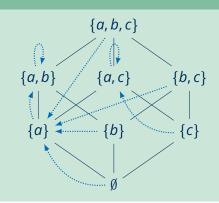


Example

Let $A = \{a, b, c\}$.

Consider the normal logic program

$$P = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c, \sim b\}.$$

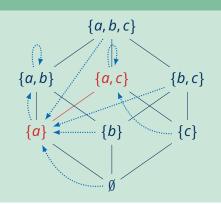


Example

Let $A = \{a, b, c\}$.

Consider the normal logic program

$$P = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c, \sim b\}.$$

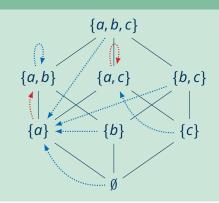


Example

Let $A = \{a, b, c\}$.

Consider the normal logic program

$$P = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c, \sim b\}.$$

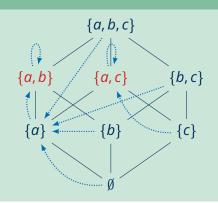


Example

Let $A = \{a, b, c\}$.

Consider the normal logic program

$$P = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c, \sim b\}.$$



Example

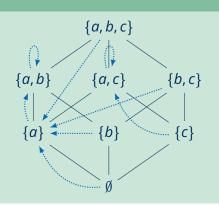
Let $A = \{a, b, c\}$.

Consider the normal logic program

$$P = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c, \sim b\}.$$

Operator _PT visualised by

 $_{P}T$ is not \subseteq -monotone.



Example

Let $A = \{a, b, c\}$.

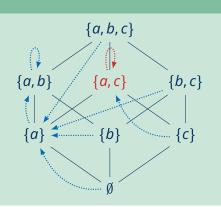
Consider the normal logic program

$$P = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c, \sim b\}.$$

Operator _PT visualised by

 $_{P}T$ is not \subseteq -monotone.

In $\{a, c\}$, atom c justifies itself.



Example

Let $A = \{a, b, c\}$.

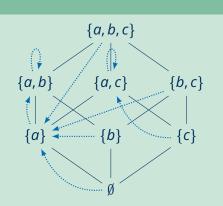
Consider the normal logic program

$$P = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c, \sim b\}.$$

Operator _PT visualised by

 $_{P}T$ is not \subseteq -monotone.

In $\{a, c\}$, atom c justifies itself.



- How to avoid self-justification?
- How to obtain interpretation operators with "nice" properties?

Definition

Let *P* be a normal logic program and $S \subseteq A$ be a set of atoms.

The **reduct of** P **with** S is the definite logic program P^S given by:

$$\{a \leftarrow a_1, \ldots, a_m \mid a \leftarrow a_1, \ldots, a_m, \sim a_{m+1}, \ldots, \sim a_n \in P, \{a_{m+1}, \ldots, a_n\} \cap S = \emptyset\}$$

A set $S \subseteq A$ is a **stable model of** P iff S is the \subseteq -least model of P^S .

Definition

Let *P* be a normal logic program and $S \subseteq A$ be a set of atoms.

The **reduct of** P **with** S is the definite logic program P^S given by:

$$\{a \leftarrow a_1, \ldots, a_m \mid a \leftarrow a_1, \ldots, a_m, \sim a_{m+1}, \ldots, \sim a_n \in P, \{a_{m+1}, \ldots, a_n\} \cap S = \emptyset\}$$

A set $S \subseteq A$ is a **stable model of** P iff S is the \subseteq -least model of P^S .

In other words, *P*^S is obtained from *P* by:

- removing all rules containing $\sim a$ for some $a \in S$;
- removing all $\sim a$ from the remaining rules.

Definition

Let *P* be a normal logic program and $S \subseteq A$ be a set of atoms.

The **reduct of** P **with** S is the definite logic program P^S given by:

$$\{a\leftarrow a_1,\,\ldots,\,a_m\mid a\leftarrow a_1,\,\ldots,\,a_m,\, \sim a_{m+1},\,\ldots,\, \sim a_n\in P, \{a_{m+1},\ldots,a_n\}\cap S=\emptyset\}$$

A set $S \subseteq \mathcal{A}$ is a **stable model of** P iff S is the \subseteq -least model of P^S .

In other words, P^S is obtained from P by:

- removing all rules containing $\sim a$ for some $a \in S$;
- removing all $\sim a$ from the remaining rules.

Example (Continued.)

Reconsider logic program $P = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c, \sim b\}$ with supported models $\{a, b\}$ and $\{a, c\}$. Are they stable models?

Definition

Let *P* be a normal logic program and $S \subseteq A$ be a set of atoms.

The **reduct of** P **with** S is the definite logic program P^S given by:

$$\{a\leftarrow a_1,\,\ldots,\,a_m\mid a\leftarrow a_1,\,\ldots,\,a_m,\, \sim a_{m+1},\,\ldots,\, \sim a_n\in P,\,\{a_{m+1},\ldots,a_n\}\cap S=\emptyset\}$$

A set $S \subseteq A$ is a **stable model of** P iff S is the \subseteq -least model of P^S .

In other words, *P*^S is obtained from *P* by:

- removing all rules containing $\sim a$ for some $a \in S$;
- removing all $\sim a$ from the remaining rules.

Example (Continued.)

Reconsider logic program $P = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c, \sim b\}$ with supported models $\{a, b\}$ and $\{a, c\}$. Are they stable models?

• $P^{\{a,b\}} = \{a \leftarrow, b \leftarrow a\}$ with least model $\{a,b\}$, so $\{a,b\}$ is a stable model.

Definition

Let *P* be a normal logic program and $S \subseteq A$ be a set of atoms.

The **reduct of** P **with** S is the definite logic program P^S given by:

$$\{a\leftarrow a_1,\,\ldots,\,a_m\mid a\leftarrow a_1,\,\ldots,\,a_m,\, \sim a_{m+1},\,\ldots,\, \sim a_n\in P, \{a_{m+1},\ldots,a_n\}\cap S=\emptyset\}$$

A set $S \subseteq A$ is a **stable model of** P iff S is the \subseteq -least model of P^S .

In other words, P^S is obtained from P by:

- removing all rules containing $\sim a$ for some $a \in S$;
- removing all $\sim a$ from the remaining rules.

Example (Continued.)

Reconsider logic program $P = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c, \sim b\}$ with supported models $\{a, b\}$ and $\{a, c\}$. Are they stable models?

- $P^{\{a,b\}} = \{a \leftarrow, b \leftarrow a\}$ with least model $\{a,b\}$, so $\{a,b\}$ is a stable model.
- $P^{\{a,c\}} = \{a \leftarrow, c \leftarrow c\}$ with least model $\{a\}$, so $\{a,c\}$ is not stable.

Stocktaking

- Monotone operators in complete lattices have (least and greatest) fixpoints.
- Operators can be associated with knowledge bases such that their fixpoints correspond to models.
- Definite logic programs lead to an operator that is monotone on $(2^A, \subseteq)$, and thus have unique least models.
- Normal logic programs lead to a non-monotone operator; model existence and uniqueness cannot be guaranteed.
- Stable model semantics deals with self-justification.
- Can we find an operator-based version of stable model semantics?

Approximating Operators

Approximating Operators

Main Idea

Use a more fine-grained structure to keep track of (partial) truth values.

Desiderata

- Preserve "interpretation revision" character of operators
- Preserve correspondence of fixpoints with models
- Obtain useful properties of operators

Approach

- Approximate sets of models by intervals.
- Use an information ordering on these approximations.
- Approximate operators by approximators operators on intervals.
- Guarantee that fixpoints of approximators contain original fixpoints.

From Lattices to Bilattices

Definition

Let (L, \leq) be a partially ordered set.

Its associated **information bilattice** is (L^2, \leq_i) with $L^2 = L \times L$ and

$$(u,v) \le_i (x,y)$$
 iff $u \le x$ and $y \le v$

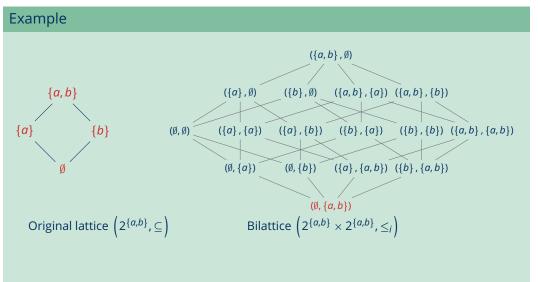
- A pair (x, y) approximates all $z \in L$ with $x \le z \le y$.
- Information ordering $\hat{=}$ interval inclusion: $(u, v) \leq_i (x, y)$ iff $[x, y] \subseteq [u, v]$

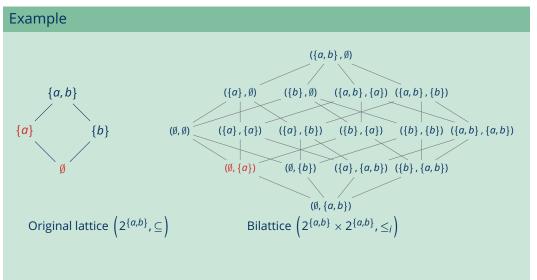
Proposition

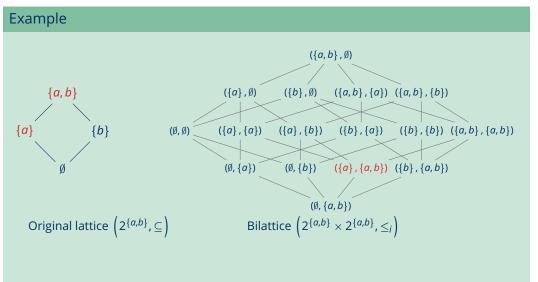
If (L, \leq) is a complete lattice, then (L^2, \leq_i) is a complete lattice. For $S \subseteq L^2$:

$$\bigwedge_{i} S = (\bigwedge S_1, \bigvee S_2) \quad \text{and} \quad \bigvee_{i} S = (\bigvee S_1, \bigwedge S_2) \quad \begin{array}{c} S_1 = \{x \mid (x, y) \in S\} \\ S_2 = \{y \mid (x, y) \in S\} \end{array}$$

Example $(\{a,b\},\emptyset)$ {a,b} $(\{b\},\emptyset)$ $(\{a\},\emptyset)$ $({a,b},{a})$ $({a,b},{b})$ *{a}* {b} (\emptyset, \emptyset) $({a}, {a})$ $({a}, {b})$ $({b}, {a})$ $({b}, {b}) ({a,b}, {a,b})$ $(\emptyset, \{a\})$ $(\emptyset, \{b\})$ $({a}, {a,b}) ({b}, {a,b})$ $(\emptyset, \{a, b\})$ Bilattice $\left(2^{\{a,b\}}\times2^{\{a,b\}},<_i\right)$ Original lattice $(2^{\{a,b\}},\subseteq)$



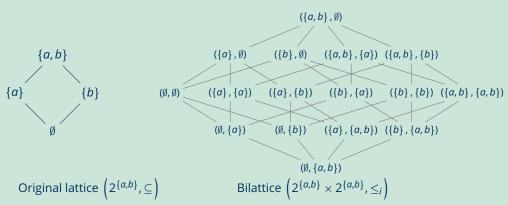




Example $(\{a,b\},\emptyset)$ {a,b} $(\{b\},\emptyset)$ $(\{a\},\emptyset)$ $({a,b},{a})$ $({a,b},{b})$ {a} {b} (\emptyset, \emptyset) $({a}, {a})$ $({a}, {b})$ $({b}, {a})$ $({b}, {b}) ({a,b}, {a,b})$ $(\emptyset, \{a\})$ $(\emptyset, \{b\})$ $({a}, {a,b}) ({b}, {a,b})$ $(\emptyset, \{a, b\})$ Bilattice $\left(2^{\{a,b\}}\times2^{\{a,b\}},<_i\right)$ Original lattice $(2^{\{a,b\}},\subseteq)$

Example $(\{a,b\},\emptyset)$ {a,b} $(\{b\},\emptyset)$ $(\{a\},\emptyset)$ $({a,b},{a})$ $({a,b},{b})$ *{a}* {b} (\emptyset, \emptyset) $({a}, {a})$ $({a}, {b})$ $({b}, {a})$ $({b}, {b}) ({a,b}, {a,b})$ $(\emptyset, \{a\})$ $(\emptyset, \{b\})$ $({a}, {a,b}) ({b}, {a,b})$ $(\emptyset, \{a, b\})$ Bilattice $\left(2^{\{a,b\}}\times2^{\{a,b\}},<_i\right)$ Original lattice $(2^{\{a,b\}},\subseteq)$

Example



Pairs in the bilattice correspond to four-valued interpretations $v: \{a, b\} \rightarrow \{\mathbf{t}, \mathbf{f}, \mathbf{u}, \mathbf{i}\}.$

Example $(\{a,b\},\emptyset)$ {a,b} $(\{b\},\emptyset)$ $(\{a\},\emptyset)$ $(\{a,b\},\{a\})$ $(\{a,b\},\{b\})$ *{a}* {b} (\emptyset, \emptyset) $({a}, {a})$ $({a}, {b})$ $({b}, {a})$ $(\{b\},\{b\})$ $(\{a,b\},\{a,b\})$ $(\emptyset, \{a\})$ $(\emptyset, \{b\})$ $({a}, {a,b}) ({b}, {a,b})$ $(\emptyset, \{a, b\})$ Original lattice $(2^{\{a,b\}}, \subseteq)$ Bilattice $\left(2^{\{a,b\}}\times2^{\{a,b\}},\leq_i\right)$ Pairs in the bilattice correspond to four-valued interpretations $v: \{a, b\} \rightarrow \{t, f, u, i\}$. $\{a \mapsto \mathbf{u}, b \mapsto \mathbf{u}\}$

Example $(\{a,b\},\emptyset)$ {a,b} $(\{b\},\emptyset)$ $(\{a\},\emptyset)$ $(\{a,b\},\{a\})$ $(\{a,b\},\{b\})$ *{a}* {b} (\emptyset, \emptyset) $({a}, {a})$ $({a}, {b})$ $({b}, {a})$ $(\{b\},\{b\})$ $(\{a,b\},\{a,b\})$ $(\emptyset, \{a\})$ $(\emptyset, \{b\})$ $(\{a\}, \{a, b\})$ $(\{b\}, \{a, b\})$ $(\emptyset, \{a, b\})$ Original lattice $(2^{\{a,b\}}, \subseteq)$ Bilattice $\left(2^{\{a,b\}}\times2^{\{a,b\}},\leq_i\right)$ Pairs in the bilattice correspond to four-valued interpretations $v: \{a, b\} \rightarrow \{t, f, u, i\}$.

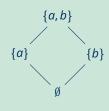
Example $(\{a,b\},\emptyset)$ {a,b} $(\{b\},\emptyset)$ $(\{a\},\emptyset)$ $(\{a,b\},\{a\})$ $(\{a,b\},\{b\})$ *{a}* {b} (\emptyset, \emptyset) $({a}, {a})$ $({a}, {b})$ $({b}, {a})$ $(\{b\},\{b\})$ $(\{a,b\},\{a,b\})$ $(\emptyset, \{a\})$ $(\emptyset, \{b\})$ $({a}, {a,b}) ({b}, {a,b})$ $(\emptyset, \{a, b\})$ Original lattice $(2^{\{a,b\}}, \subseteq)$ Bilattice $\left(2^{\{a,b\}}\times2^{\{a,b\}},\leq_i\right)$ Pairs in the bilattice correspond to four-valued interpretations $v: \{a, b\} \rightarrow \{t, f, u, i\}$. $\{a \mapsto \mathbf{t}, b \mapsto \mathbf{f}\}$

Example $(\{a,b\},\emptyset)$ {a,b} $(\{a\},\emptyset)$ $(\{b\},\emptyset)$ $(\{a,b\},\{a\})$ $(\{a,b\},\{b\})$ *{a}* {b} (\emptyset, \emptyset) $({a}, {a})$ $({a}, {b})$ $({b}, {a})$ $(\{b\},\{b\})$ $(\{a,b\},\{a,b\})$ $(\emptyset, \{a\})$ $(\emptyset, \{b\})$ $({a}, {a,b}) ({b}, {a,b})$ $(\emptyset, \{a, b\})$ Original lattice $(2^{\{a,b\}}, \subseteq)$ Bilattice $\left(2^{\{a,b\}}\times2^{\{a,b\}},\leq_i\right)$ Pairs in the bilattice correspond to four-valued interpretations $v: \{a, b\} \rightarrow \{t, f, u, i\}$. $\{a \mapsto \mathbf{i}, b \mapsto \mathbf{f}\}$

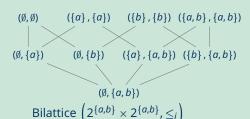
Example $(\{a,b\},\emptyset)$ {a,b} $(\{b\},\emptyset)$ $(\{a\},\emptyset)$ $(\{a,b\},\{a\})$ $(\{a,b\},\{b\})$ *{a}* {b} (\emptyset, \emptyset) $({a}, {a})$ $({a}, {b})$ $({b}, {a})$ $(\{b\},\{b\})$ $(\{a,b\},\{a,b\})$ $(\emptyset, \{a\})$ $(\emptyset, \{b\})$ $({a}, {a,b}) ({b}, {a,b})$ $(\emptyset, \{a, b\})$ Original lattice $(2^{\{a,b\}}, \subseteq)$ Bilattice $\left(2^{\{a,b\}}\times2^{\{a,b\}},\leq_i\right)$ Pairs in the bilattice correspond to four-valued interpretations $v: \{a, b\} \rightarrow \{t, f, u, i\}$. $\{a \mapsto \mathbf{i}, b \mapsto \mathbf{i}\}$

Example $(\{a,b\},\emptyset)$ {a,b} $(\{a\},\emptyset)$ $(\{b\},\emptyset)$ $(\{a,b\},\{a\})$ $(\{a,b\},\{b\})$ *{a}* {b} $({a}, {a})$ $({a}, {b})$ $(\{b\}, \{a\})$ $({b}, {b}) ({a,b}, {a,b})$ (\emptyset, \emptyset) $(\emptyset, \{a\})$ $(\emptyset, \{b\})$ $({a}, {a,b}) ({b}, {a,b})$ $(\emptyset, \{a, b\})$ Original lattice $(2^{\{a,b\}},\subseteq)$ Bilattice $\left(2^{\{a,b\}}\times2^{\{a,b\}},\leq_i\right)$ Pairs in the bilattice correspond to four-valued interpretations $v: \{a, b\} \rightarrow \{t, f, u, i\}$. We will mostly be concerned with the consistent pairs.

Example



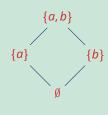
Original lattice $\left(2^{\{a,b\}},\subseteq\right)$



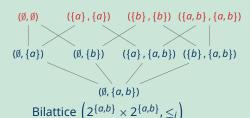
Pairs in the bilattice correspond to four-valued interpretations $v: \{a, b\} \rightarrow \{t, f, u, i\}$.

We will mostly be concerned with the consistent pairs.

Example



Original lattice $\left(2^{\{a,b\}},\subseteq\right)$



Pairs in the bilattice correspond to four-valued interpretations $v: \{a, b\} \rightarrow \{t, f, u, i\}$.

Elements of the original lattice correspond to exact pairs.

Recall approach: Approximate lattice operators on a richer structure.

Definition

Let (L, \leq) be a complete lattice and $O: L \to L$ be an operator. An operator $A: L^2 \to L^2$ approximates O iff for all $x \in L$, we have

$$A(x,x)=(O(x),O(x))$$

A is an **approximator** iff *A* approximates some *O* and *A* is \leq_i -monotone.

Approximator coincides with the operator on exact pairs.

Recall approach: Approximate lattice operators on a richer structure.

Definition

Let (L, \leq) be a complete lattice and $O: L \to L$ be an operator. An operator $A: L^2 \to L^2$ approximates O iff for all $x \in L$, we have

$$A(x,x)=(O(x),O(x))$$

A is an **approximator** iff *A* approximates some *O* and *A* is \leq_i -monotone.

Approximator coincides with the operator on exact pairs.

 $A: L^2 \to L^2 \text{ induces } A_1, A_2: L^2 \to L \text{ with } A(x,y) = (A_1(x,y), A_2(x,y)).$

Recall approach: Approximate lattice operators on a richer structure.

Definition

Let (L, \leq) be a complete lattice and $O: L \to L$ be an operator. An operator $A: L^2 \to L^2$ approximates O iff for all $x \in L$, we have

$$A(x,x)=(O(x),O(x))$$

A is an **approximator** iff *A* approximates some *O* and *A* is \leq_i -monotone.

Approximator coincides with the operator on exact pairs.

$$A: L^2 \to L^2 \text{ induces } A_1, A_2: L^2 \to L \text{ with } A(x,y) = (A_1(x,y), A_2(x,y)).$$

Definition

An approximator is **symmetric** iff $A_1(x, y) = A_2(y, x)$.

Recall approach: Approximate lattice operators on a richer structure.

Definition

Let (L, \leq) be a complete lattice and $O: L \to L$ be an operator. An operator $A: L^2 \to L^2$ approximates O iff for all $x \in L$, we have

$$A(x,x)=(O(x),O(x))$$

A is an **approximator** iff *A* approximates some *O* and *A* is \leq_i -monotone.

Approximator coincides with the operator on exact pairs.

$$A: L^2 \to L^2 \text{ induces } A_1, A_2: L^2 \to L \text{ with } A(x,y) = (A_1(x,y), A_2(x,y)).$$

Definition

An approximator is **symmetric** iff $A_1(x, y) = A_2(y, x)$.

If A is symmetric, then $A(x, y) = (A_1(x, y), A_1(y, x))$, so A_1 fully specifies A.

Approximator: Example

Example

Let *P* be a normal logic program.

Recall its one-step consequence operator _PT, defined by

$$PT(S) = \{a_0 \in A \mid a_0 \leftarrow a_1, \dots, a_m, \sim a_{m+1}, \dots, \sim a_n \in P, \\ \{a_1, \dots, a_m\} \subseteq S, \{a_{m+1}, \dots, a_n\} \cap S = \emptyset\}$$

Approximator: Example

Example

Let *P* be a normal logic program.

Recall its one-step consequence operator _PT, defined by

$$_{P}T(S) = \{a_0 \in A \mid a_0 \leftarrow a_1, \dots, a_m, \sim a_{m+1}, \dots, \sim a_n \in P, \{a_1, \dots, a_m\} \subseteq S, \{a_{m+1}, \dots, a_n\} \cap S = \emptyset\}$$

A symmetric approximator for $_{P}T$ is given by $_{P}T$ with

$$\rho \mathcal{T}_1(L, U) = \{ a_0 \in \mathcal{A} \mid a_0 \leftarrow a_1, \dots, a_m, \sim a_{m+1}, \dots, \sim a_n \in P, \\
\{a_1, \dots, a_m\} \subseteq L, \{a_{m+1}, \dots, a_n\} \cap U = \emptyset \}$$

Approximator: Example

Example

Let *P* be a normal logic program.

Recall its one-step consequence operator _PT, defined by

$$_{P}T(S) = \{a_0 \in A \mid a_0 \leftarrow a_1, \dots, a_m, \sim a_{m+1}, \dots, \sim a_n \in P,$$

 $\{a_1, \dots, a_m\} \subseteq S, \{a_{m+1}, \dots, a_n\} \cap S = \emptyset\}$

A symmetric approximator for $_{P}T$ is given by $_{P}T$ with

$$\rho \mathfrak{I}_{1}(L,U) = \{a_{0} \in \mathcal{A} \mid a_{0} \leftarrow a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n} \in P, \\
\{a_{1}, \ldots, a_{m}\} \subseteq L, \{a_{m+1}, \ldots, a_{n}\} \cap U = \emptyset\}$$

That is, $pT(L, U) = (pT_1(L, U), pT_1(U, L))$.

Approximator: Example

Example

Let *P* be a normal logic program.

Recall its one-step consequence operator _PT, defined by

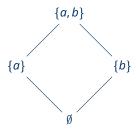
$$PT(S) = \{a_0 \in A \mid a_0 \leftarrow a_1, \dots, a_m, \sim a_{m+1}, \dots, \sim a_n \in P, \\ \{a_1, \dots, a_m\} \subseteq S, \{a_{m+1}, \dots, a_n\} \cap S = \emptyset\}$$

A symmetric approximator for $_{P}T$ is given by $_{P}T$ with

$$\rho \mathcal{T}_{1}(L,U) = \{ a_{0} \in \mathcal{A} \mid a_{0} \leftarrow a_{1}, \dots, a_{m}, \sim a_{m+1}, \dots, \sim a_{n} \in P, \\ \{a_{1}, \dots, a_{m}\} \subseteq L, \{a_{m+1}, \dots, a_{n}\} \cap U = \emptyset \}$$

That is,
$$\rho T(L, U) = (\rho T_1(L, U), \rho T_1(U, L))$$
.

For new lower bound: check truth against lower, falsity against upper bound.

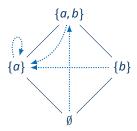


Original lattice
$$(2^{\{a,b\}},\subseteq)$$

Normal logic program $P = \{a \leftarrow, b \leftarrow \sim a, \sim b\}$

Bilattice
$$\left(2^{\{a,b\}}\times 2^{\{a,b\}},\leq_i\right)$$

Approximator $_{P}T$ for $_{P}T$: $-- \rightarrow$

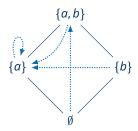


Original lattice
$$(2^{\{a,b\}},\subseteq)$$

Normal logic program $P = \{a \leftarrow, b \leftarrow \sim a, \sim b\}$ _{pT}:

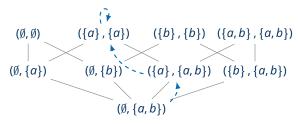
Bilattice
$$\left(2^{\{a,b\}}\times 2^{\{a,b\}},\leq_i\right)$$

Approximator $_{P}\mathcal{T}$ for $_{P}T$: --*



Original lattice
$$(2^{\{a,b\}}, \subseteq)$$

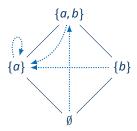
Normal logic program $P = \{a \leftarrow, b \leftarrow \sim a, \sim b\}$



Bilattice
$$\left(2^{\{a,b\}}\times 2^{\{a,b\}},\leq_i\right)$$

Approximator $_{P}\mathcal{T}$ for $_{P}T$: --

Approximator *P***𝒯**: Example



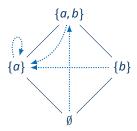
Original lattice
$$(2^{\{a,b\}},\subseteq)$$

Normal logic program $P = \{a \leftarrow, b \leftarrow \sim a, \sim b\}$ _{pT}:

$$(\emptyset,\emptyset) \qquad (\{a\},\{a\}) \qquad (\{b\},\{b\}) \qquad (\{a,b\},\{a,b\}) \\ | \qquad \qquad | \qquad \qquad | \qquad \qquad | \\ (\emptyset,\{a\}) \qquad (\emptyset,\{b\}) \qquad (\{a\},\{a,b\}) \qquad (\{b\},\{a,b\}) \\ (\emptyset,\{a,b\}) \qquad (\emptyset,\{a,$$

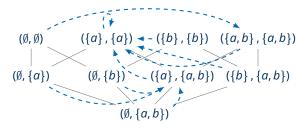
Bilattice
$$\left(2^{\{a,b\}}\times 2^{\{a,b\}},\leq_i\right)$$

Approximator $_{P}\mathfrak{T}$ for $_{P}T$: -



Original lattice
$$(2^{\{a,b\}}, \subseteq)$$

Normal logic program $P = \{a \leftarrow, b \leftarrow \sim a, \sim b\}$



Bilattice
$$\left(2^{\{a,b\}}\times 2^{\{a,b\}},\leq_i\right)$$

Approximator $_{P}$ T for $_{P}T$: --

Quiz: Approximator PT

Recall that for $L, U \subseteq A$ we defined $PT(L, U) = (PT_1(L, U), PT_1(U, L))$ with

$$\rho \mathfrak{I}_{1}(L,U) = \{ a_{0} \in \mathcal{A} \mid a_{0} \leftarrow a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n} \in P, \\ \{a_{1}, \ldots, a_{m}\} \subseteq L, \{a_{m+1}, \ldots, a_{n}\} \cap U = \emptyset \}$$

Quiz

Consider the normal logic program *P*: ...

Lemma

Let (L, \leq) be a complete lattice and A an approximator on (L^2, \leq_i) .

- 1. If C is a non-empty chain of consistent pairs, then $\bigvee_i C$ is consistent.
- 2. If (x, y) is consistent, then A(x, y) is consistent.

Approximators map consistent pairs to consistent pairs.

Lemma

Let (L, \leq) be a complete lattice and A an approximator on (L^2, \leq_i) .

- 1. If C is a non-empty chain of consistent pairs, then $\bigvee_i C$ is consistent.
- 2. If (x, y) is consistent, then A(x, y) is consistent.

Approximators map consistent pairs to consistent pairs.

Proof.

1. Let $a, b \in C$. Since C is a chain, $a \leq_i b$ (then $a_1 \leq b_1 \leq b_2$) or $b \leq_i a$ (then $a_1 \leq a_2 \leq b_2$).

Lemma

Let (L, \leq) be a complete lattice and A an approximator on (L^2, \leq_i) .

- 1. If C is a non-empty chain of consistent pairs, then $\bigvee_i C$ is consistent.
- 2. If (x, y) is consistent, then A(x, y) is consistent.

Approximators map consistent pairs to consistent pairs.

Proof.

1. Let $a, b \in C$. Since C is a chain, $a \le_i b$ (then $a_1 \le b_1 \le b_2$) or $b \le_i a$ (then $a_1 \le a_2 \le b_2$). In any case, $a_1 \le b_2$. So every $c_2 \in C_2$ is an upper bound of C_1 , and $\bigvee C_1 \le c_2$.

Lemma

Let (L, \leq) be a complete lattice and A an approximator on (L^2, \leq_i) .

- 1. If C is a non-empty chain of consistent pairs, then $\bigvee_i C$ is consistent.
- 2. If (x, y) is consistent, then A(x, y) is consistent.

Approximators map consistent pairs to consistent pairs.

Proof.

1. Let $a, b \in C$. Since C is a chain, $a \leq_i b$ (then $a_1 \leqslant b_1 \leqslant b_2$) or $b \leq_i a$ (then $a_1 \leqslant a_2 \leqslant b_2$). In any case, $a_1 \leqslant b_2$. So every $c_2 \in C_2$ is an upper bound of C_1 , and $\bigvee C_1 \leqslant c_2$. Hence $\bigvee C_1$ is a lower bound of C_2 and $\bigvee C_1 \leqslant \bigwedge C_2$.

Lemma

Let (L, \leq) be a complete lattice and A an approximator on (L^2, \leq_i) .

- 1. If C is a non-empty chain of consistent pairs, then $\bigvee_i C$ is consistent.
- 2. If (x, y) is consistent, then A(x, y) is consistent.

Approximators map consistent pairs to consistent pairs.

- 1. Let $a, b \in C$. Since C is a chain, $a \leq_i b$ (then $a_1 \leqslant b_1 \leqslant b_2$) or $b \leq_i a$ (then $a_1 \leqslant a_2 \leqslant b_2$). In any case, $a_1 \leqslant b_2$. So every $c_2 \in C_2$ is an upper bound of C_1 , and $\bigvee C_1 \leqslant c_2$. Hence $\bigvee C_1$ is a lower bound of C_2 and $\bigvee C_1 \leqslant \bigwedge C_2$.
- 2. If $x \le y$, then for z with $x \le z \le y$ we have $(x,y) \le_i (z,z)$. A is \le_i -monotone, thus $A(x,y) \le_i A(z,z)$.

Lemma

Let (L, \leq) be a complete lattice and A an approximator on (L^2, \leq_i) .

- 1. If *C* is a non-empty chain of consistent pairs, then $\bigvee_i C$ is consistent.
- 2. If (x, y) is consistent, then A(x, y) is consistent.

Approximators map consistent pairs to consistent pairs.

- 1. Let $a, b \in C$. Since C is a chain, $a \leq_i b$ (then $a_1 \leqslant b_1 \leqslant b_2$) or $b \leq_i a$ (then $a_1 \leqslant a_2 \leqslant b_2$). In any case, $a_1 \leqslant b_2$. So every $c_2 \in C_2$ is an upper bound of C_1 , and $\bigvee C_1 \leqslant c_2$. Hence $\bigvee C_1$ is a lower bound of C_2 and $\bigvee C_1 \leqslant \bigwedge C_2$.
- 2. If $x \le y$, then for z with $x \le z \le y$ we have $(x,y) \le_i (z,z)$. A is \le_i -monotone, thus $A(x,y) \le_i A(z,z)$. A approximates some O, thus A(z,z) = (O(z),O(z)).

Lemma

Let (L, \leq) be a complete lattice and A an approximator on (L^2, \leq_i) .

- 1. If C is a non-empty chain of consistent pairs, then $\bigvee_i C$ is consistent.
- 2. If (x, y) is consistent, then A(x, y) is consistent.

Approximators map consistent pairs to consistent pairs.

- 1. Let $a, b \in C$. Since C is a chain, $a \leq_i b$ (then $a_1 \leqslant b_1 \leqslant b_2$) or $b \leq_i a$ (then $a_1 \leqslant a_2 \leqslant b_2$). In any case, $a_1 \leqslant b_2$. So every $c_2 \in C_2$ is an upper bound of C_1 , and $\bigvee C_1 \leqslant c_2$. Hence $\bigvee C_1$ is a lower bound of C_2 and $\bigvee C_1 \leqslant \bigwedge C_2$.
- 2. If $x \le y$, then for z with $x \le z \le y$ we have $(x,y) \le_i (z,z)$. A is \le_i -monotone, thus $A(x,y) \le_i A(z,z)$. A approximates some O, thus A(z,z) = (O(z), O(z)). In combination $A_1(x,y) \le O(z) \le A_2(x,y)$.

Theorem

Let (L, \leq) be a complete lattice with $O: L \to L$, and A an approximator for O.

- 1. A has a \leq_i -least fixpoint (x^*, y^*) with $x^* \leqslant y^*$.
- 2. Every fixpoint *z* of *O* satisfies $x^* \le z \le y^*$.

The least fixpoint of A is consistent and approximates all fixpoints of O.

Theorem

Let (L, \leq) be a complete lattice with $O: L \to L$, and A an approximator for O.

- 1. A has a \leq_i -least fixpoint (x^*, y^*) with $x^* \leqslant y^*$.
- 2. Every fixpoint *z* of *O* satisfies $x^* \le z \le y^*$.

The least fixpoint of *A* is consistent and approximates all fixpoints of *O*.

Proof.

1. By Knaster/Tarski, A has a \leq_i -least fixpoint (x^*, y^*).

Theorem

Let (L, \leq) be a complete lattice with $O: L \to L$, and A an approximator for O.

- 1. A has a \leq_i -least fixpoint (x^*, y^*) with $x^* \leqslant y^*$.
- 2. Every fixpoint z of O satisfies $x^* \leqslant z \leqslant y^*$.

The least fixpoint of A is consistent and approximates all fixpoints of O.

Proof.

1. By Knaster/Tarski, A has a \leq_i -least fixpoint (x^*, y^*). It is also consistent:

Theorem

Let (L, \leq) be a complete lattice with $O: L \to L$, and A an approximator for O.

- 1. A has a \leq_i -least fixpoint (x^*, y^*) with $x^* \leqslant y^*$.
- 2. Every fixpoint *z* of *O* satisfies $x^* \le z \le y^*$.

The least fixpoint of A is consistent and approximates all fixpoints of O.

Proof.

1. By Knaster/Tarski, A has a \leq_i -least fixpoint (x^*, y^*) . It is also consistent: Define $Q = \{(x, y) \in L^2 \mid x \leq y \& (x, y) \leq_i A(x, y) \& (x, y) \leq_i (x^*, y^*)\}.$

Theorem

Let (L, \leq) be a complete lattice with $O: L \to L$, and A an approximator for O.

- 1. A has a \leq_i -least fixpoint (x^*, y^*) with $x^* \leqslant y^*$.
- 2. Every fixpoint *z* of *O* satisfies $x^* \le z \le y^*$.

The least fixpoint of A is consistent and approximates all fixpoints of O.

Proof.

1. By Knaster/Tarski, A has a \leq_i -least fixpoint (x^*, y^*) . It is also consistent: Define $Q = \{(x, y) \in L^2 \mid x \leqslant y \& (x, y) \leq_i A(x, y) \& (x, y) \leq_i (x^*, y^*)\}$. Q is non-empty as $(\bot, \top) \in Q$.

Theorem

Let (L, \leq) be a complete lattice with $O: L \to L$, and A an approximator for O.

- 1. A has a \leq_i -least fixpoint (x^*, y^*) with $x^* \leqslant y^*$.
- 2. Every fixpoint *z* of *O* satisfies $x^* \le z \le y^*$.

The least fixpoint of A is consistent and approximates all fixpoints of O.

Proof.

1. By Knaster/Tarski, A has a \leq_i -least fixpoint (x^*, y^*) . It is also consistent: Define $Q = \{(x, y) \in L^2 \mid x \leqslant y \& (x, y) \leq_i A(x, y) \& (x, y) \leq_i (x^*, y^*)\}$. Q is non-empty as $(\bot, \top) \in Q$. Each non-empty chain in Q has an upper bound in Q,

Theorem

Let (L, \leq) be a complete lattice with $O: L \to L$, and A an approximator for O.

- 1. A has a \leq_i -least fixpoint (x^*, y^*) with $x^* \leqslant y^*$.
- 2. Every fixpoint *z* of *O* satisfies $x^* \leq z \leq y^*$.

The least fixpoint of *A* is consistent and approximates all fixpoints of *O*.

Proof.

1. By Knaster/Tarski, A has a \leq_i -least fixpoint (x^*, y^*) . It is also consistent: Define $Q = \{(x, y) \in L^2 \mid x \leqslant y \& (x, y) \leq_i A(x, y) \& (x, y) \leq_i (x^*, y^*)\}$. Q is non-empty as $(\bot, \top) \in Q$. Each non-empty chain in Q has an upper bound in Q, therefore by Zorn's Lemma, Q has a maximal element, ρ .

Theorem

Let (L, \leq) be a complete lattice with $O: L \to L$, and A an approximator for O.

- 1. A has a \leq_i -least fixpoint (x^*, y^*) with $x^* \leqslant y^*$.
- 2. Every fixpoint *z* of *O* satisfies $x^* \le z \le y^*$.

The least fixpoint of A is consistent and approximates all fixpoints of O.

Proof.

1. By Knaster/Tarski, A has a \leq_i -least fixpoint (x^*, y^*) . It is also consistent: Define $Q = \{(x, y) \in L^2 \mid x \leqslant y \& (x, y) \leq_i A(x, y) \& (x, y) \leq_i (x^*, y^*)\}$. Q is non-empty as $(\bot, \top) \in Q$. Each non-empty chain in Q has an upper bound in Q, therefore by Zorn's Lemma, Q has a maximal element, ρ . Since ρ is maximal, $\rho \leq_i A(\rho)$ directly yields $A(\rho) = \rho = (x^*, y^*)$.

Theorem

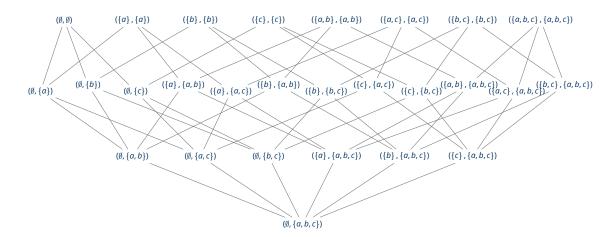
Let (L, \leq) be a complete lattice with $O: L \to L$, and A an approximator for O.

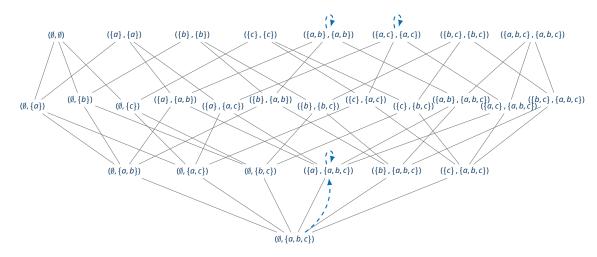
- 1. *A* has a \leq_i -least fixpoint (x^*, y^*) with $x^* \leqslant y^*$.
- 2. Every fixpoint *z* of *O* satisfies $x^* \le z \le y^*$.

The least fixpoint of A is consistent and approximates all fixpoints of O.

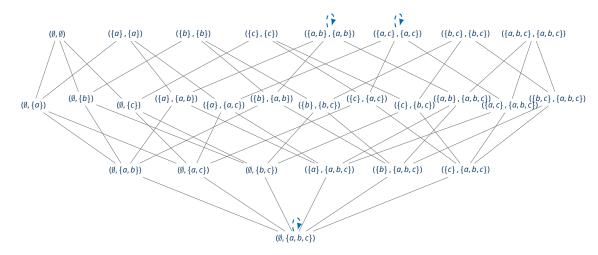
- 1. By Knaster/Tarski, A has a \leq_i -least fixpoint (x^*, y^*) . It is also consistent: Define $Q = \{(x, y) \in L^2 \mid x \leqslant y \& (x, y) \leq_i A(x, y) \& (x, y) \leq_i (x^*, y^*)\}$. Q is non-empty as $(\bot, \top) \in Q$. Each non-empty chain in Q has an upper bound in Q, therefore by Zorn's Lemma, Q has a maximal element, ρ . Since ρ is maximal, $\rho \leq_i A(\rho)$ directly yields $A(\rho) = \rho = (x^*, y^*)$.
- 2. If O(z) = z then A(z, z) = (O(z), O(z)) = (z, z) and $(x^*, y^*) \le_i (z, z)$.

Approximator PT: **Examples**





$$P_1 = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c\}$$



$$P_2 = \{a \leftarrow b, a \leftarrow c, b \leftarrow \sim c, c \leftarrow \sim b\}$$

Recovering Semantics

Approximator fixpoints give rise to several semantics.

Proposition

Let *P* be a normal logic program over A with approximator ${}_{P}T$, $X \subseteq Y \subseteq A$.

- *X* is a supported model of *P* iff $_{P}T(X,X)=(X,X)$.
- (X, Y) is a three-valued supported model of P iff $_{P}T(X, Y) = (X, Y)$.
- (X, Y) is the Kripke-Kleene semantics of P iff $(X, Y) = \text{lfp}(\rho T)$.

But what about stable model semantics?

Stable Operators

Stable Operator: Intuition

The Gelfond-Lifschitz Reduct of P...

- ... starts out with a two-valued interpretation $S \subseteq A$;
- ...removes all rules requiring some $a \in S$ to be false;
- ... assumes all $a \in A \setminus S$ to be false in the remaining rules.

Stable Operator: Intuition

The Gelfond-Lifschitz Reduct of P...

- ... starts out with a two-valued interpretation $S \subseteq A$;
- ...removes all rules requiring some $a \in S$ to be false;
- ... assumes all $a \in A \setminus S$ to be false in the remaining rules.
- To obtain reduct P^S , assume all and only atoms $a \in A \setminus S$ to be false.
- Using P^S , try to constructively prove all and only atoms $a \in S$ to be true.
- P^S is a definite logic program, so $_{P^S}T$ is a \subseteq -monotone operator on $(2^A, \subseteq)$.

Stable Operator: Intuition

The Gelfond-Lifschitz Reduct of P...

- ... starts out with a two-valued interpretation $S \subseteq A$;
- ...removes all rules requiring some $a \in S$ to be false;
- ... assumes all $a \in A \setminus S$ to be false in the remaining rules.
- To obtain reduct P^S , assume all and only atoms $a \in A \setminus S$ to be false.
- Using P^S , try to constructively prove all and only atoms $a \in S$ to be true.
- P^{S} is a definite logic program, so $p_{S}T$ is a \subseteq -monotone operator on $(2^{A}, \subseteq)$.

Expressing the Reduct via an Operator

- For pair (X, Y), an $a \in A$ is true iff $a \in X$; atom a is false iff $a \notin Y$.
- Use pT_1 to reconstruct what is true, fixing the upper bound to S:

$$pT_1(\cdot, S): 2^{\mathcal{A}} \to 2^{\mathcal{A}}, \quad X \mapsto pT_1(X, S)$$

Stable Operator: Preparation

Proposition

Let (L, \leq) be a complete lattice and A be an approximator on (L^2, \leq_i) . For every pair $(x, y) \in L^2$, the following operators are \leq -monotone:

$$A_1(\cdot,y):L\to L,\quad z\mapsto A_1(z,y)$$
 and $A_2(x,\cdot):L\to L,\quad z\mapsto A_2(x,z)$

Stable Operator: Preparation

Proposition

Let (L, \leq) be a complete lattice and A be an approximator on (L^2, \leq_i) . For every pair $(x, y) \in L^2$, the following operators are \leq -monotone:

$$A_1(\cdot,y):L\to L,\quad z\mapsto A_1(z,y)$$
 and $A_2(x,\cdot):L\to L,\quad z\mapsto A_2(x,z)$

1. Let
$$x_1 \leqslant x_2$$
 and $y \in L$.

Stable Operator: Preparation

Proposition

Let (L, \leq) be a complete lattice and A be an approximator on (L^2, \leq_i) . For every pair $(x, y) \in L^2$, the following operators are \leq -monotone:

$$A_1(\cdot,y):L\to L,\quad z\mapsto A_1(z,y)$$
 and $A_2(x,\cdot):L\to L,\quad z\mapsto A_2(x,z)$

Proof.

1. Let $x_1 \le x_2$ and $y \in L$. Then $(x_1, y) \le_i (x_2, y)$ and $A(x_1, y) \le_i A(x_2, y)$, thus $A_1(x_1, y) \le A_1(x_2, y)$.

Stable Operator: Preparation

Proposition

Let (L, \leq) be a complete lattice and A be an approximator on (L^2, \leq_i) . For every pair $(x, y) \in L^2$, the following operators are \leq -monotone:

$$A_1(\cdot,y):L\to L,\quad z\mapsto A_1(z,y)$$
 and $A_2(x,\cdot):L\to L,\quad z\mapsto A_2(x,z)$

Proof.

- 1. Let $x_1 \le x_2$ and $y \in L$. Then $(x_1, y) \le_i (x_2, y)$ and $A(x_1, y) \le_i A(x_2, y)$, thus $A_1(x_1, y) \le A_1(x_2, y)$.
- 2. Let $x \in L$ and $y_1 \leqslant y_2$.

Stable Operator: Preparation

Proposition

Let (L, \leq) be a complete lattice and A be an approximator on (L^2, \leq_i) . For every pair $(x, y) \in L^2$, the following operators are \leq -monotone:

$$A_1(\cdot,y):L\to L,\quad z\mapsto A_1(z,y)$$
 and $A_2(x,\cdot):L\to L,\quad z\mapsto A_2(x,z)$

Proof.

- 1. Let $x_1 \le x_2$ and $y \in L$. Then $(x_1, y) \le_i (x_2, y)$ and $A(x_1, y) \le_i A(x_2, y)$, thus $A_1(x_1, y) \le A_1(x_2, y)$.
- 2. Let $x \in L$ and $y_1 \le y_2$. Then $(x, y_2) \le_i (x, y_1)$ and $A(x, y_2) \le_i A(x, y_1)$, thus $A_2(x, y_1) \le A_2(x, y_2)$.
- $A_1(\cdot, y)$ has a \leq -least fixpoint, denoted $f(A_1(\cdot, y))$;
- $A_2(x, \cdot)$ has a \leq -least fixpoint, denoted $fp(A_2(x, \cdot))$.

Stable Operator: Definition

Definition

Let (L, \leq) be a complete lattice and A be an approximator on (L^2, \leq_i) . The **stable approximator** for A is given by $A^{st}: L^2 \to L^2$ with

$$A_1^{\text{st}}: L^2 \to L,$$
 $(x, y) \mapsto \text{lfp}(A_1(\cdot, y))$
 $A_2^{\text{st}}: L^2 \to L,$ $(x, y) \mapsto \text{lfp}(A_2(x, \cdot))$

- A_1^{st} : improve lower bound for all fixpoints of O at or below upper bound;
- A_2^{st} : obtain tightmost new upper bound (eliminate non-minimal fixpoints).

Proposition

Let (x, y) be a postfixpoint of approximator A. Then

$$a \in [\bot, y]$$
 implies $A_1(a, y) \in [\bot, y]$ and $b \in [x, \top]$ implies $A_2(x, b) \in [x, \top]$.

In particular, $lfp(A_1(\cdot, y)) \leq y$ and $x \leq lfp(A_2(x, \cdot))$.

Theorem

Let (L, \leq) be a complete lattice and A be an approximator on (L^2, \leq_i) .

- 1. A^{st} is \leq_i -monotone.
- 2. If (x, y) is a consistent postfixpoint of A, then $A^{st}(x, y)$ is consistent.

Proof.

1. Let $(u, v) \leq_i (x, y)$.

Theorem

Let (L, \leq) be a complete lattice and A be an approximator on (L^2, \leq_i) .

- 1. A^{st} is \leq_i -monotone.
- 2. If (x, y) is a consistent postfixpoint of A, then $A^{st}(x, y)$ is consistent.

Proof.

1. Let $(u, v) \le_i (x, y)$. Now $y \le v$ implies $A_1(z, v) \le A_1(z, y)$ for all $z \in L$ since A is \le_i -monotone.

Theorem

Let (L, \leq) be a complete lattice and A be an approximator on (L^2, \leq_i) .

- 1. A^{st} is \leq_i -monotone.
- 2. If (x, y) is a consistent postfixpoint of A, then $A^{st}(x, y)$ is consistent.

Proof.

1. Let $(u, v) \le_i (x, y)$. Now $y \le v$ implies $A_1(z, v) \le A_1(z, y)$ for all $z \in L$ since A is \le_i -monotone. In particular, for $z^* = \mathsf{lfp}(A_1(\cdot, y))$, $A_1(z^*, v) \le A_1(z^*, y) = z^*$ whence z^* is a prefixpoint of $A_1(\cdot, v)$.

Theorem

Let (L, \leq) be a complete lattice and A be an approximator on (L^2, \leq_i) .

- 1. A^{st} is \leq_i -monotone.
- 2. If (x, y) is a consistent postfixpoint of A, then $A^{st}(x, y)$ is consistent.

Proof.

1. Let $(u,v) \le_i (x,y)$. Now $y \le v$ implies $A_1(z,v) \le A_1(z,y)$ for all $z \in L$ since A is \le_i -monotone. In particular, for $z^* = \mathsf{lfp}(A_1(\cdot,y))$, $A_1(z^*,v) \le A_1(z^*,y) = z^*$ whence z^* is a prefixpoint of $A_1(\cdot,v)$. Thus $\mathsf{lfp}(A_1(\cdot,v)) \le z^* = \mathsf{lfp}(A_1(\cdot,y))$.

Theorem

Let (L, \leq) be a complete lattice and A be an approximator on (L^2, \leq_i) .

- 1. A^{st} is \leq_i -monotone.
- 2. If (x, y) is a consistent postfixpoint of A, then $A^{st}(x, y)$ is consistent.

Proof.

1. Let $(u, v) \le_i (x, y)$. Now $y \le v$ implies $A_1(z, v) \le A_1(z, y)$ for all $z \in L$ since A is \le_i -monotone. In particular, for $z^* = \operatorname{lfp}(A_1(\cdot, y))$, $A_1(z^*, v) \le A_1(z^*, y) = z^*$ whence z^* is a prefixpoint of $A_1(\cdot, v)$. Thus $\operatorname{lfp}(A_1(\cdot, v)) \le z^* = \operatorname{lfp}(A_1(\cdot, y))$. In combination, $A_1^{\operatorname{st}}(u, v) = \operatorname{lfp}(A_1(\cdot, v)) \le \operatorname{lfp}(A_1(\cdot, y)) = A_1^{\operatorname{st}}(x, y)$.

Theorem

Let (L, \leq) be a complete lattice and A be an approximator on (L^2, \leq_i) .

- 1. A^{st} is \leq_i -monotone.
- 2. If (x, y) is a consistent postfixpoint of A, then $A^{st}(x, y)$ is consistent.

Proof.

1. Let $(u, v) \le_i (x, y)$. Now $y \le v$ implies $A_1(z, v) \le A_1(z, y)$ for all $z \in L$ since A is \le_i -monotone. In particular, for $z^* = \operatorname{lfp}(A_1(\cdot, y))$, $A_1(z^*, v) \le A_1(z^*, y) = z^*$ whence z^* is a prefixpoint of $A_1(\cdot, v)$. Thus $\operatorname{lfp}(A_1(\cdot, v)) \le z^* = \operatorname{lfp}(A_1(\cdot, y))$. In combination, $A_1^{\operatorname{st}}(u, v) = \operatorname{lfp}(A_1(\cdot, v)) \le \operatorname{lfp}(A_1(\cdot, y)) = A_1^{\operatorname{st}}(x, y)$. A_2^{st} : dual.

Theorem

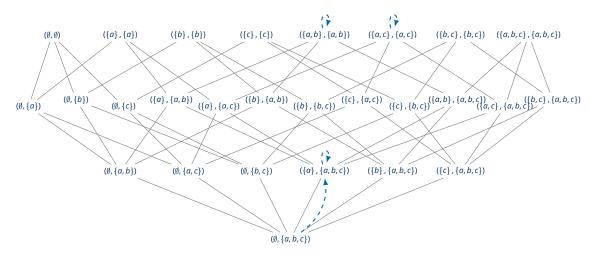
Let (L, \leq) be a complete lattice and A be an approximator on (L^2, \leq_i) .

- 1. A^{st} is \leq_i -monotone.
- 2. If (x, y) is a consistent postfixpoint of A, then $A^{st}(x, y)$ is consistent.

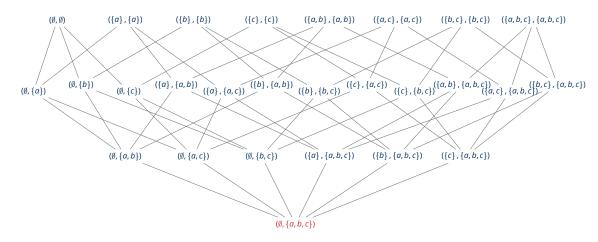
Proof.

- 1. Let $(u, v) \le_i (x, y)$. Now $y \le v$ implies $A_1(z, v) \le A_1(z, y)$ for all $z \in L$ since A is \le_i -monotone. In particular, for $z^* = \operatorname{lfp}(A_1(\cdot, y))$, $A_1(z^*, v) \le A_1(z^*, y) = z^*$ whence z^* is a prefixpoint of $A_1(\cdot, v)$. Thus $\operatorname{lfp}(A_1(\cdot, v)) \le z^* = \operatorname{lfp}(A_1(\cdot, y))$. In combination, $A_1^{\operatorname{st}}(u, v) = \operatorname{lfp}(A_1(\cdot, v)) \le \operatorname{lfp}(A_1(\cdot, y)) = A_1^{\operatorname{st}}(x, y)$. A_2^{st} : dual.
- 2. Let $x \leqslant y$ with $(x,y) \le_i A(x,y)$. For every $z \in L$ with $x \leqslant z \leqslant y$, we have $A_1^{\rm st}(x,y) \leqslant A_1^{\rm st}(z,z) = \operatorname{lfp}(A_1(\cdot,z)) \leqslant z \leqslant \operatorname{lfp}(A_2(z,\cdot)) = A_2^{\rm st}(z,z) \leqslant A_2^{\rm st}(x,y)$.

Stable Operator pTst: Example

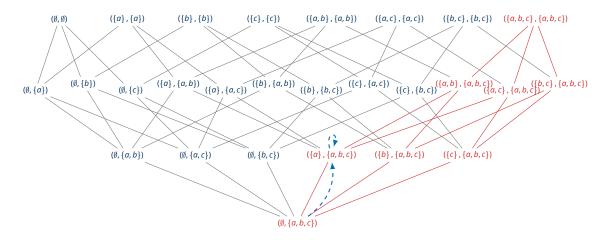


$$P_1 = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c\}$$



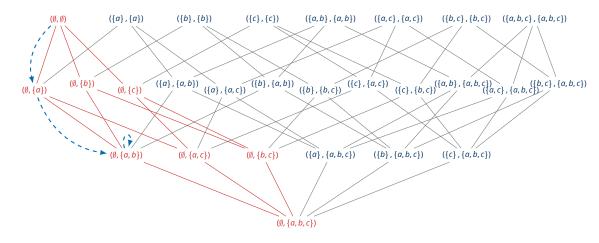
$$P_1 = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c\}$$

$$_{P}\mathfrak{I}^{\mathsf{st}}(\emptyset, \{a, b, c\}) = (\mathsf{lfp}(_{P}\mathfrak{I}_{1}(\cdot, \{a, b, c\})), \mathsf{lfp}(_{P}\mathfrak{I}_{2}(\emptyset, \cdot)))$$



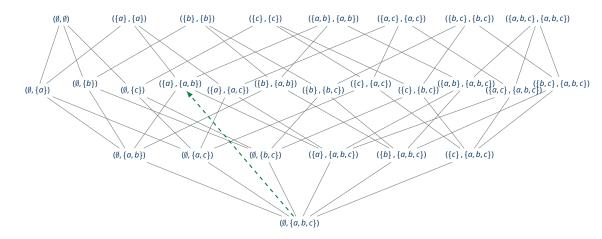
$$P_1 = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c\}$$

$$_{P}\mathfrak{I}^{\mathsf{st}}(\emptyset, \{a, b, c\}) = (\mathsf{lfp}(_{P}\mathfrak{I}_{1}(\cdot, \{a, b, c\})), \mathsf{lfp}(_{P}\mathfrak{I}_{2}(\emptyset, \cdot)))$$



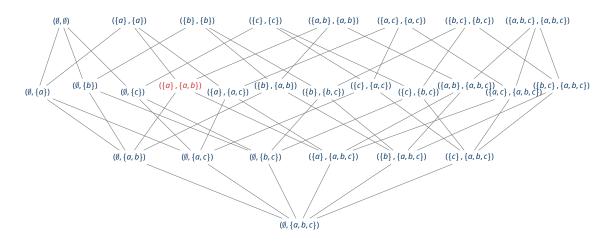
$$P_1 = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c\}$$

$$\rho \mathcal{T}^{\mathsf{st}}(\emptyset, \{a, b, c\}) = (\{a\}, \mathsf{lfp}(\rho \mathcal{T}_2(\emptyset, \cdot)))$$



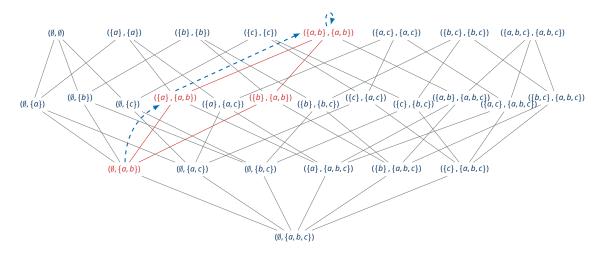
$$P_1 = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c\}$$

$$_{P}\mathcal{T}^{St}(\emptyset, \{a, b, c\}) = (\{a\}, \{a, b\})$$



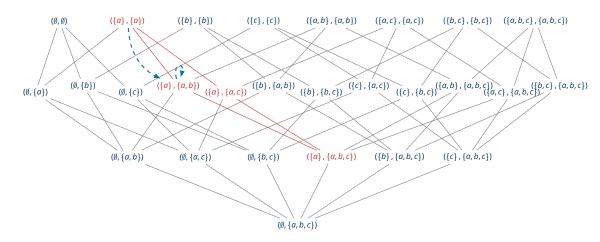
$$P_1 = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c\}$$

$$_{P}\mathfrak{I}^{\mathsf{st}}(\{a\},\{a,b\}) = (\mathsf{lfp}(_{P}\mathfrak{I}_{1}(\cdot,\{a,b\})),\mathsf{lfp}(_{P}\mathfrak{I}_{2}(\{a\},\cdot)))$$



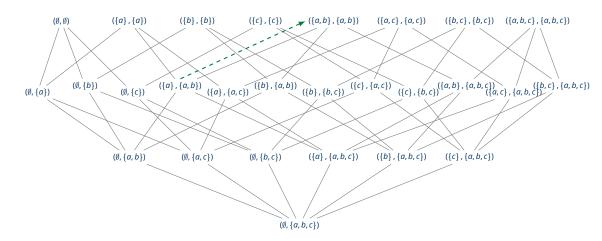
$$P_1 = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c\}$$

$$\rho \mathcal{T}^{\mathsf{st}}(\{a\}, \{a, b\}) = (\mathsf{lfp}(\rho \mathcal{T}_1(\cdot, \{a, b\})), \mathsf{lfp}(\rho \mathcal{T}_2(\{a\}, \cdot)))$$



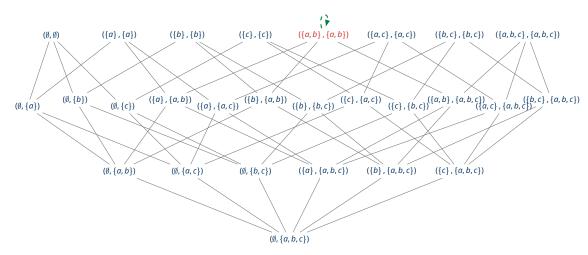
$$P_1 = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c\}$$

$$_{P}\mathfrak{I}^{\mathsf{st}}(\{a\},\{a,b\}) = (\{a,b\},\mathsf{lfp}(_{P}\mathfrak{I}_{2}(\{a\},\cdot)))$$



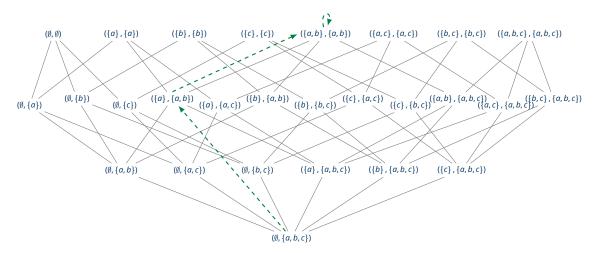
$$P_1 = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c\}$$

$$\rho \mathcal{T}^{\mathsf{St}}(\{a\}, \{a, b\}) = (\{a, b\}, \{a, b\})$$



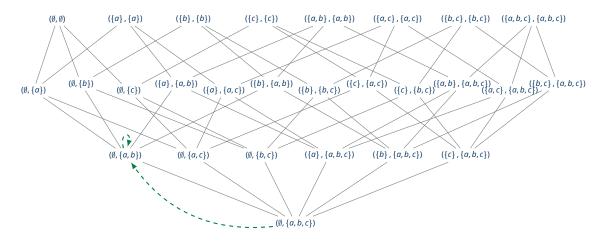
$$P_1 = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c\}$$

$$_{P}T^{\text{st}}(\{a,b\},\{a,b\}) = (_{P}T(\{a,b\}),_{P}T(\{a,b\})) = (\{a,b\},\{a,b\})$$



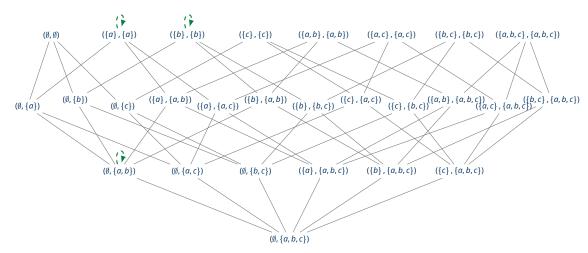
$$P_1 = \{a \leftarrow, b \leftarrow a, \sim c, c \leftarrow c\}$$

Ifp $(\rho \mathcal{T}^{st}) = (\{a, b\}, \{a, b\})$: well-founded semantics of P_1



$$P_2 = \{a \leftarrow \sim b, b \leftarrow \sim a, c \leftarrow c\}$$

Ifp(ρT^{st}): well-founded semantics of P_2



$$P_2 = \{a \leftarrow \sim b, b \leftarrow \sim a, c \leftarrow c\}$$

three-valued stable models of P2

Stable Semantics: Definition via Operators

Definition

Let (L, \leq) be a complete lattice, $O: L \to L$ be an operator. Let $A: L^2 \to L^2$ be an approximator of O in (L^2, \leq_i) . A pair $(x, y) \in L^2$ is

- a two-valued stable model of A iff x = y and $A^{st}(x, y) = (x, y)$;
- a three-valued stable model of A iff $x \le y$ and $A^{st}(x, y) = (x, y)$;
- the **well-founded model of** *A* iff it is the least fixpoint of *A*st.

Names inspired by notions from logic programming.

Theorem

- 1. If $p(A) \leq_i f(A^{st})$;
- 2. $A^{st}(x,y) = (x,y)$ implies A(x,y) = (x,y);
- 3. if $A^{st}(x,x) = (x,x)$ then x is a \leq -minimal fixpoint of O;

Reprise: How to Find an Approximator?

Definition

Let $O: L \to L$ be an operator in a complete lattice (L, \leq) .

Define the **ultimate approximator of** *O* as follows:

$$U_0: L^2 \to L^2$$
, $(x,y) \mapsto (\bigwedge \{O(z) \mid x \leqslant z \leqslant y\}, \bigvee \{O(z) \mid x \leqslant z \leqslant y\})$

Intuition: Consider glb and lub of applying *O* pointwise to given interval.

Theorem

For every approximator A of O and consistent pair $(x, y) \in L^2$, we find

$$A(x,y) \leq_i U_O(x,y)$$

Ultimate approximator is most precise approximator possible.

Used e.g. for (PSP-)semantics of aggregates in logic programming.

Conclusion

Conclusion

Summary

- Operators in complete lattices can be used to define semantics of KR formalisms.
- Approximation fixpoint theory provides a general account of operator-based semantics.
- Stable approximator reconstructs well-founded and stable model semantics of logic programming.

Outlook

AFT can be used to show correspondence of ...

- ... extensions of default theories with stable models of logic programs;
- ... expansions of autoepistemic theories with supported models of LPs;
- ... semantics of argumentation frameworks with semantics of LPs.

