

Foundations of Knowledge Representation

Lecture 10: Abstract Argumentation

Sebastian Rudolph

based on slides of Sarah Gaggl and Stefan Woltran

Introduction

Argumentation:

The study of processes "concerned with how assertions are proposed, discussed, and resolved in the context of issues upon which several diverging opinions may be held".

[Bench-Capon and Dunne, Argumentation in Al, AlJ 171:619-641, 2007]

Formal Models of Argumentation are concerned with

- representation of an argument (i.e. an expression of opinion)
- representation of the relationship between arguments
- solving conflicts between the arguments ("acceptability")

Overall Process

The overall process of managing argumentation frameworks consists of the following steps:

- Starting point: knowledge-base
- 2 Form arguments
- 3 Identify conflicts
- 4 Abstract from internal structure
- 5 Resolve conflicts
- 6 Draw conclusions

Overall Process – Form Arguments

Consider the following knowledge base:

Example

$$\Delta = \{ \boldsymbol{s}, \boldsymbol{r}, \boldsymbol{w}, \boldsymbol{s} \to \neg \boldsymbol{r}, \boldsymbol{r} \to \neg \boldsymbol{w}, \boldsymbol{w} \to \neg \boldsymbol{s} \}$$

From this, form arguments:

$$\left(\langle \{ \textit{W},\textit{W}
ightarrow \neg \textit{s} \}, \neg \textit{s}
angle
ight)$$

$$\left(\langle \{s, s \to \neg r\}, \neg r \rangle\right) \left(\langle \{r, r \to \neg w\}, \neg w \rangle\right)$$

Overall Process – Identify Conflicts

Example

$$\Delta = \{\boldsymbol{s}, \boldsymbol{r}, \boldsymbol{w}, \boldsymbol{s} \rightarrow \neg \boldsymbol{r}, \boldsymbol{r} \rightarrow \neg \boldsymbol{w}, \boldsymbol{w} \rightarrow \neg \boldsymbol{s}\}$$

Overall Process – Abstract from Internal Structure

Example (Knowledge Base)

$$\Delta = \{ \boldsymbol{s}, \boldsymbol{r}, \boldsymbol{w}, \boldsymbol{s} \to \neg \boldsymbol{r}, \boldsymbol{r} \to \neg \boldsymbol{w}, \boldsymbol{w} \to \neg \boldsymbol{s} \}$$

 F_{Δ} :

Overall Process – Resolve Conflicts

Example (Knowledge Base)

$$\Delta = \{ \boldsymbol{s}, \boldsymbol{r}, \boldsymbol{w}, \boldsymbol{s} \rightarrow \neg \boldsymbol{r}, \boldsymbol{r} \rightarrow \neg \boldsymbol{w}, \boldsymbol{w} \rightarrow \neg \boldsymbol{s} \}$$

$$pref(F_{\Delta}) = \{\emptyset\}$$

 $stage(F_{\Delta}) = \{\{\alpha\}, \{\beta\}, \{\gamma\}\}$

Overall Process – Draw Conclusions

Example (Knowledge Base)

$$\Delta = \{\boldsymbol{s}, \boldsymbol{r}, \boldsymbol{w}, \boldsymbol{s} \to \neg \boldsymbol{r}, \boldsymbol{r} \to \neg \boldsymbol{w}, \boldsymbol{w} \to \neg \boldsymbol{s}\}$$

$$Cn_{pref}(F_{\Delta}) = Cn(op) \ Cn_{stage}(F_{\Delta}) = Cn(\neg r \lor \neg w \lor \neg s)$$

The Overall Process (ctd.)

Some Remarks

- Main idea dates back to Dung [1995]; has then been refined by several authors (Prakken, Gordon, Caminada, etc.)
- Separation between logical (forming arguments) and nonmonotonic reasoning ("abstract argumentation frameworks")
- Abstraction allows to compare several KR formalisms on a conceptual level ("calculus of conflict")

The Overall Process (ctd.)

Main Challenge

- All steps in the argumentation process are, in general, intractable.
- This calls for:
 - careful complexity analysis (identification of tractable fragments)
 - re-use of established tools for implementations (reduction method)

Approaches to Form Arguments

Classical Arguments [Besnard & Hunter, 2001]

- Given is a KB (a set of propositions) Δ
- an argument is a pair (Φ, α), such that Φ ⊆ Δ is consistent, Φ ⊨ α and for no Ψ ⊂ Φ, Ψ ⊨ α
- conflicts between arguments (Φ, α) and (Φ', α') arise if Φ and α' are contradicting.

Example $(\langle \{s, s \to \neg r\}, \neg r \rangle) \to (\langle \{r, r \to \neg w\}, \neg w \rangle)$

Approaches to Form Arguments

Other Approaches

- arguments are trees of statements
- claims are obtained via strict and defeasible rules
- different notions of conflict: rebuttal, undercut, etc.

Dung's Abstract Argumentation Frameworks

Example

Main Properties

- Abstract from the concrete content of arguments but only consider the relation between them
- Semantics select subsets of arguments respecting certain criteria
- Simple, yet powerful, formalism
- Most active research area in the field of argumentation.

Dung's Abstract Argumentation Frameworks

Definition

An argumentation framework (AF) is a pair (A, R) where

- A is a set of arguments,
- $R \subseteq A \times A$ is a relation representing the conflicts ("attacks").

Example

 $\mathsf{F}{=}(\{a,b,c,d,e\},\{(a,b),(c,b),(c,d),(d,c),(d,e),(e,e)\})$

Conflict-Free Sets

Given an AF F = (A, R). A set $S \subseteq A$ is conflict-free in F, if, for each $a, b \in S$, $(a, b) \notin R$.

Conflict-Free Sets

Given an AF F = (A, R). A set $S \subseteq A$ is conflict-free in F, if, for each $a, b \in S$, $(a, b) \notin R$.

Example $a \rightarrow b \leftarrow c \rightarrow e \leftarrow c$ $cf(F) = \{\{a, c\}, \}$

Conflict-Free Sets

Given an AF F = (A, R). A set $S \subseteq A$ is conflict-free in F, if, for each $a, b \in S$, $(a, b) \notin R$.

Example

 $cf(F) = \{\{a, c\}, \{a, d\},$

Conflict-Free Sets

Given an AF F = (A, R). A set $S \subseteq A$ is conflict-free in F, if, for each $a, b \in S$, $(a, b) \notin R$.

Example

$$a \rightarrow b \leftarrow c \rightarrow e \bigcirc$$

 $cf(F) = \{\{a, c\}, \{a, d\}, \{b, d\}, \}$

Conflict-Free Sets

Given an AF F = (A, R). A set $S \subseteq A$ is conflict-free in F, if, for each $a, b \in S$, $(a, b) \notin R$.

Example

 $cf(F) = \{\{a, c\}, \{a, d\}, \{b, d\}, \{a\}, \{b\}, \{c\}, \{d\}, \emptyset\}\}$

Admissible Sets [Dung, 1995]

Given an AF F = (A, R). A set $S \subseteq A$ is admissible in F, if

- S is conflict-free in F
- each $a \in S$ is defended by S in F
 - $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

Admissible Sets [Dung, 1995]

Given an AF F = (A, R). A set $S \subseteq A$ is admissible in F, if

- S is conflict-free in F
- each $a \in S$ is defended by S in F
 - $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

Example

 $adm(F) = \{\{a, c\},\$

Admissible Sets [Dung, 1995]

Given an AF F = (A, R). A set $S \subseteq A$ is admissible in F, if

- S is conflict-free in F
- each $a \in S$ is defended by S in F
 - $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

Example

 $adm(F) = \{\{a, c\}, \{a, d\},$

Admissible Sets [Dung, 1995]

Given an AF F = (A, R). A set $S \subseteq A$ is admissible in F, if

- S is conflict-free in F
- each $a \in S$ is defended by S in F
 - $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

Example

$$a \rightarrow b \leftarrow c \rightarrow e \bigcirc$$

 $adm(F) = \{\{a, c\}, \{a, d\}, \{b, d\}, \{b, d\}, \{a, d\}, \{b, d\}, \{a, d\}, \{a$

Admissible Sets [Dung, 1995]

Given an AF F = (A, R). A set $S \subseteq A$ is admissible in F, if

- S is conflict-free in F
- each $a \in S$ is defended by S in F
 - $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

Example

$$a \rightarrow b \rightarrow c \rightarrow e \bigcirc$$

 $\textit{adm}(\textit{F}) = \left\{\{\textit{a},\textit{c}\},\{\textit{a},\textit{d}\},\{\textit{a}\},\{\textit{a}\},\{\textit{c}\},\{\textit{d}\},\emptyset\right\}\right\}$

Dung's Fundamental Lemma

Let S be admissible in an AF F and a, a' arguments in F defended by S in F. Then,

- 1 $S' = S \cup \{a\}$ is admissible in F
- 2 a' is defended by S' in F

Naive Extensions

Given an AF F = (A, R). A set $S \subseteq A$ is naive in F, if

- S is conflict-free in F
- for each $T \subseteq A$ conflict-free in $F, S \not\subset T$

Naive Extensions

Given an AF F = (A, R). A set $S \subseteq A$ is naive in F, if

- S is conflict-free in F
- for each $T \subseteq A$ conflict-free in $F, S \not\subset T$

Example

$$a \rightarrow b \leftarrow c \qquad d \rightarrow e \bigcirc$$

 $naive(F) = \{ \{a, c\}, \}$

Naive Extensions

Given an AF F = (A, R). A set $S \subseteq A$ is naive in F, if

- S is conflict-free in F
- for each $T \subseteq A$ conflict-free in $F, S \not\subset T$

Example

$$a \rightarrow b \rightarrow c \rightarrow e \bigcirc$$

 $naive(F) = \{\{a, c\}, \{a, d\}, \}$

Naive Extensions

Given an AF F = (A, R). A set $S \subseteq A$ is naive in F, if

- S is conflict-free in F
- for each $T \subseteq A$ conflict-free in $F, S \not\subset T$

Example

$$a \rightarrow b \leftarrow c \rightarrow e \bigcirc$$

 $naive(F) = \{\{a, c\}, \{a, d\}, \{b, d\}, \}$

Naive Extensions

Given an AF F = (A, R). A set $S \subseteq A$ is naive in F, if

- S is conflict-free in F
- for each $T \subseteq A$ conflict-free in $F, S \not\subset T$

Example

$$a \rightarrow b \rightarrow c d \rightarrow e \bigcirc$$

 $naive(F) = \{\{a, c\}, \{a, d\}, \{b, d\}, \{b, d\}, \{c\}, \{c\}, \{d\}, \emptyset\}\}$

Grounded Extension [Dung, 1995]

Given an AF F = (A, R). The unique grounded extension of F is defined as the outcome S (initially empty) of the following "algorithm":

- put each argument a ∈ A which is not attacked in F into S; if no such argument exists, return S;
- 2 remove from F all (new) arguments in S and all arguments attacked by them (together with all adjacent attacks); and continue with Step 1.

Grounded Extension [Dung, 1995]

Given an AF F = (A, R). The unique grounded extension of F is defined as the outcome S (initially empty) of the following "algorithm":

- put each argument a ∈ A which is not attacked in F into S; if no such argument exists, return S;
- 2 remove from F all (new) arguments in S and all arguments attacked by them (together with all adjacent attacks); and continue with Step 1.

Complete Extension [Dung, 1995]

Given an AF (A, R). A set $S \subseteq A$ is complete in F, if

- S is admissible in F
- each $a \in A$ defended by S in F is contained in S
 - Recall: $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

Complete Extension [Dung, 1995]

Given an AF (A, R). A set $S \subseteq A$ is complete in F, if

- S is admissible in F
- each $a \in A$ defended by S in F is contained in S
 - Recall: $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

Example

 $comp(F) = \{\{a, c\},$

Complete Extension [Dung, 1995]

Given an AF (A, R). A set $S \subseteq A$ is complete in F, if

- S is admissible in F
- each $a \in A$ defended by S in F is contained in S
 - Recall: $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

Example

 $comp(F) = \{\{a, c\}, \{a, d\},$

Complete Extension [Dung, 1995]

Given an AF (A, R). A set $S \subseteq A$ is complete in F, if

- S is admissible in F
- each $a \in A$ defended by S in F is contained in S
 - Recall: $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

Example

$$a \rightarrow b \rightarrow c \rightarrow e \bigcirc$$

Complete Extension [Dung, 1995]

Given an AF (A, R). A set $S \subseteq A$ is complete in F, if

- S is admissible in F
- each $a \in A$ defended by S in F is contained in S
 - Recall: $a \in A$ is defended by S in F, if for each $b \in A$ with $(b, a) \in R$, there exists a $c \in S$, such that $(c, b) \in R$.

Example

$$a \rightarrow b \rightarrow c \rightarrow e \bigcirc$$

 $\textit{comp}(\textit{F}) = \left\{ \{\textit{a},\textit{c}\}, \{\textit{a},\textit{d}\}, \{\textit{a}\}, \{\textit{c}\}, \{\textit{d}\}, \emptyset \right\}$

Properties of the Grounded Extension

For any AF F, the grounded extension of F is the subset-minimal complete extension of F.

Properties of the Grounded Extension

For any AF F, the grounded extension of F is the subset-minimal complete extension of F.

Remark

Since there exists exactly one grounded extension for each AF *F*, we often write ground(F) = S instead of $ground(F) = \{S\}$.

Preferred Extensions [Dung, 1995]

Given an AF F = (A, R). A set $S \subseteq A$ is a preferred extension of F, if

- S is admissible in F
- for each $T \subseteq A$ admissible in $F, S \not\subset T$

Preferred Extensions [Dung, 1995]

Given an AF F = (A, R). A set $S \subseteq A$ is a preferred extension of F, if

- S is admissible in F
- for each $T \subseteq A$ admissible in $F, S \not\subset T$

Example

$$a \rightarrow b \leftarrow c \rightarrow e \bigcirc$$

 $pref(F) = \{\{a, c\}, \{a, d\}, \{c\}, \{d\}, \emptyset\}\}$

Stable Extensions [Dung, 1995]

Given an AF F = (A, R). A set $S \subseteq A$ is a stable extension of F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$

Stable Extensions [Dung, 1995]

Given an AF F = (A, R). A set $S \subseteq A$ is a stable extension of F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$

Example

$$a \rightarrow b \rightarrow c d \rightarrow e \bigcirc$$

 $stable(F) = \{ \{a, c\} \}$

Stable Extensions [Dung, 1995]

Given an AF F = (A, R). A set $S \subseteq A$ is a stable extension of F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$

Example

$$a \rightarrow b \leftarrow c \quad d \rightarrow e \bigcirc$$

 $stable(F) = \{ \{ a, c \}, \{ a, d \}, \}$

Stable Extensions [Dung, 1995]

Given an AF F = (A, R). A set $S \subseteq A$ is a stable extension of F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$

Example

$$a \rightarrow b \rightarrow c \rightarrow e \leftarrow$$

Stable Extensions [Dung, 1995]

Given an AF F = (A, R). A set $S \subseteq A$ is a stable extension of F, if

- S is conflict-free in F
- for each $a \in A \setminus S$, there exists a $b \in S$, such that $(b, a) \in R$

Example

$$a \rightarrow b \rightarrow c d \rightarrow e \bigcirc$$

Some Relations

For any AF *F* the following relations hold:

- 1 Each stable extension of *F* is admissible in *F*
- 2 Each stable extension of *F* is also a preferred one
- 3 Each preferred extension of *F* is also a complete one

Semi-Stable Extensions [Caminada, 2006]

Given an AF F = (A, R). A set $S \subseteq A$ is a semi-stable extension of F, if

- S is admissible in F
- for each $T \subseteq A$ admissible in $F, S^+ \not\subset T^+$
 - for $S \subseteq A$, define $S^+ = S \cup \{a \mid \exists b \in S \text{ with } (b, a) \in R\}$

Semi-Stable Extensions [Caminada, 2006]

Given an AF F = (A, R). A set $S \subseteq A$ is a semi-stable extension of F, if

- S is admissible in F
- for each $T \subseteq A$ admissible in $F, S^+ \not\subset T^+$
 - for $S \subseteq A$, define $S^+ = S \cup \{a \mid \exists b \in S \text{ with } (b, a) \in R\}$

Example

$$a \rightarrow b \rightarrow c \rightarrow e \sim$$

 $semi(F) = \{\{a, c\}, \{a, d\}, \{c\}, \{d\}, \emptyset\}$

Stage Extensions [Verheij, 1996]

Given an AF F = (A, R). A set $S \subseteq A$ is a stage extension of F, if

- S is conflict-free in F
 for each T ⊆ A conflict-free in F, S⁺ ⊄ T⁺
 - recall $S^+ = S \cup \{a \mid \exists b \in S \text{ with } (b, a) \in R\}$

Ideal Extension [Dung, Mancarella & Toni 2007]

Given an AF F = (A, R). A set $S \subseteq A$ is an ideal extension of F, if

- S is admissible in F and contained in each preferred extension of F
- there is no T ⊃ S admissible in F and contained in each of pref(F)

Properties of Ideal Extensions

For any AF *F* the following observations hold:

- 1 there exists exactly one ideal extension of F
- 2 the ideal extension of F is also a complete one

Relations between Semantics

Figure: An arrow from semantics σ to semantics τ encodes that each σ -extension is also a τ -extension.

Characteristics of Argumentation Semantics

Example

$$pref(F) = \{\{a, d, e\}, \{b, c, e\}, \{a, b\}\}\$$

naive(F) = $\{\{a, d, e\}, \{b, c, e\}, \{a, b, e\}\}$

Characteristics of Argumentation Semantics

Natural Questions

- How to change the AF if we want {a, b, e} instead of {a, b} in pref(F)?
- How to change the AF if we want {a, b, d} instead of {a, b} in pref(F)?
- Can we have equivalent AFs without argument f?
- \Rightarrow Realizability

Some Properties ...

Theorem

For any AFs F and G, we have

- $adm(F) = adm(G) \Longrightarrow \sigma(F) = \sigma(G)$, for $\sigma \in \{pref, ideal\};$
- $comp(F) = comp(G) \Longrightarrow \theta(F) = \theta(G)$, for $\theta \in \{pref, ideal, ground\};$
- no other such relation between the different semantics (adm, pref, ideal, semi, ground, comp, stable) in terms of standard equivalence holds.

Decision Problems on AFs

Credulous Acceptance

Cred_{σ}: Given AF F = (A, R) and $a \in A$; is *a* contained in <u>at least one</u> σ -extension of *F*?

Skeptical Acceptance

Skept_{σ}: Given AF F = (A, R) and $a \in A$; is *a* contained in every σ -extension of *F*?

If no extension exists then all arguments are skeptically accepted and no argument is credulously accepted¹.

32/34

¹This is only relevant for stable semantics.

Decision Problems on AFs

Hence we are also interested in the following problem:

Skeptically and Credulously accepted

Skept'_{σ}: Given AF F = (A, R) and $a \in A$; is *a* contained in <u>every</u> and <u>at least one</u> σ -extension of *F*?

Further Decision Problems

Verifying an extension

Ver_{σ}: Given AF F = (A, R) and $S \subseteq A$; is S a σ -extension of F?

Does there exist an extension?

Exists_{σ}: Given AF F = (A, R); Does there exist a σ -extension for F?

Does there exist a nonempty extensions?

Exists σ^{0} : Does there exist a non-empty σ -extension for *F*?