

COMPLEXITY THEORY

Lecture 8: NP-Complete Problems

Markus Krötzsch Knowledge-Based Systems

TU Dresden, 5th Nov 2019

Towards More NP-Complete Problems

Starting with **S**_{AT}, one can readily show more problems **P** to be NP-complete, each time performing two steps:

- (1) Show that $P \in NP$
- (2) Find a known NP-complete problem P' and reduce $P' \leq_p P$

Thousands of problem have now been shown to be NP-complete. (See Garey and Johnson for an early survey)

In this course:

Markus Krötzsch, 5th Nov 2019 Complexity Theory slide 2 of 36

3-Sat, Hamiltonian Path, and Subset Sum

Markus Krötzsch, 5th Nov 2019 Complexity Theory slide 3 of 36

NP-Completeness of 3-SAT

3-Sat: Satisfiability of formulae in CNF with ≤ 3 literals per clause

Theorem 8.1: 3-SAT is NP-complete.

Proof: Hardness by reduction **Sat** \leq_p **3-Sat**:

- Given: φ in CNF
- Construct φ' by replacing clauses $C_i = (L_1 \vee \cdots \vee L_k)$ with k > 3 by

$$C'_i := (L_1 \vee Y_1) \wedge (\neg Y_1 \vee L_2 \vee Y_2) \wedge \dots \wedge (\neg Y_{k-1} \vee L_k)$$

Here, the Y_i are fresh variables for each clause.

• Claim: φ is satisfiable iff φ' is satisfiable.

Example

Let
$$\varphi:=(X_1\vee X_2\vee \neg X_3\vee X_4)$$
 \wedge $(\neg X_4\vee \neg X_2\vee X_5\vee \neg X_1)$
Then $\varphi':=(X_1\vee Y_1)\wedge$ $(\neg Y_1\vee X_2\vee Y_2)\wedge$ $(\neg Y_2\vee \neg X_3\vee Y_3)\wedge$ $(\neg Y_3\vee X_4)\wedge$ $(\neg X_4\vee Z_1)\wedge$ $(\neg Z_1\vee \neg X_2\vee Z_2)\wedge$ $(\neg Z_2\vee X_5\vee Z_3)\wedge$ $(\neg Z_3\vee \neg X_1)$

Proving NP-Completeness of 3-SAT

" \Rightarrow " Given $\varphi := \bigwedge_{i=1}^m C_i$ with clauses C_i , show that if φ is satisfiable then φ' is satisfiable

For a satisfying assignment β for φ , define an assignment β' for φ' :

For each $C := (L_1 \vee \cdots \vee L_k)$, with k > 3, in φ there is

$$C' = (L_1 \vee Y_1) \wedge (\neg Y_1 \vee L_2 \vee Y_2) \wedge \dots \wedge (\neg Y_{k-1} \vee L_k) \text{ in } \varphi'$$

As
$$\beta$$
 satisfies φ , there is $i \le k$ s.th. $\beta(L_i) = 1$ i.e.
$$\beta(X) = 1 \text{ if } L_i = X$$

$$\beta(X) = 0 \text{ if } L_i = X$$

$$\beta'(Y_j) = 1 \qquad \text{ for } j < i$$
Set $\beta'(Y_j) = 0 \qquad \text{ for } j \ge i$

$$\beta'(X) = \beta(X) \qquad \text{ for all variables in } \varphi$$

This is a satisfying asignment for φ'

Proving NP-Completeness of 3-SAT

" \Leftarrow " Show that if φ' is satisfiable then so is φ

Suppose β is a satisfying assignment for φ' – then β satisfies φ :

Let $C := (L_1 \vee \cdots \vee L_k)$ be a clause of φ

- (1) If $k \le 3$ then *C* is a clause of φ
- (2) If k > 3 then

$$C' = (L_1 \vee Y_1) \wedge (\neg Y_1 \vee L_2 \vee Y_2) \wedge ... \wedge (\neg Y_{k-1} \vee L_k) \text{ in } \varphi'$$

 β must satisfy at least one L_i , $1 \le i \le k$

Case (2) follows since, if $\beta(L_i) = 0$ for all $i \le k$ then C' can be reduced to

$$C' = (Y_1) \land (\neg Y_1 \lor Y_2) \land \dots \land (\neg Y_{k-1})$$

$$\equiv Y_1 \land (Y_1 \to Y_2) \land \dots \land (Y_{k-2} \to Y_{k-1}) \land \neg Y_{k-1}$$

which is not satisfiable.

DIRECTED HAMILTONIAN PATH

Input: A directed graph *G*.

Problem: Is there a directed path in *G* containing every ver-

tex exactly once?

Theorem 8.2: DIRECTED HAMILTONIAN PATH is NP-complete.

Markus Krötzsch, 5th Nov 2019 Complexity Theory slide 8 of 36

DIRECTED HAMILTONIAN PATH

Input: A directed graph *G*.

Problem: Is there a directed path in *G* containing every ver-

tex exactly once?

Theorem 8.2: Directed Hamiltonian Path is NP-complete.

Proof:

(1) Directed Hamiltonian Path $\in NP$:

Take the path to be the certificate.

Digression: How to design reductions

Task: Show that problem **P** (**Directed Hamiltonian Path**) is NP-hard.

Arguably, the most important part is to decide where to start from.

That is, which problem to reduce to **DIRECTED HAMILTONIAN PATH?**

Markus Krötzsch, 5th Nov 2019 Complexity Theory slide 9 of 36

Digression: How to design reductions

Task: Show that problem **P** (**Directed Hamiltonian Path**) is NP-hard.

Arguably, the most important part is to decide where to start from.

That is, which problem to reduce to **DIRECTED HAMILTONIAN PATH?**

- Considerations:
 - Is there an NP-complete problem similar to P? (for example, CLIQUE and INDEPENDENT SET)
 - It is not always beneficial to choose a problem of the same type (for example, reducing a graph problem to a graph problem)
 - For instance, CLIQUE, INDEPENDENT SET are "local" problems (is there a set of vertices inducing some structure)
 - Hamiltonian Path is a global problem (find a structure – the Hamiltonian path – containing all vertices)

Markus Krötzsch, 5th Nov 2019 Complexity Theory slide 9 of 36

Digression: How to design reductions

Task: Show that problem **P** (**Directed Hamiltonian Path**) is NP-hard.

Arguably, the most important part is to decide where to start from.

That is, which problem to reduce to **DIRECTED HAMILTONIAN PATH?**

- Considerations:
 - Is there an NP-complete problem similar to P? (for example, CLIQUE and INDEPENDENT SET)
 - It is not always beneficial to choose a problem of the same type (for example, reducing a graph problem to a graph problem)
 - For instance, CLIQUE, INDEPENDENT SET are "local" problems (is there a set of vertices inducing some structure)
 - Hamiltonian Path is a global problem (find a structure – the Hamiltonian path – containing all vertices)
- How to design the reduction:
 - Does your problem come from an optimisation problem?
 If so: a maximisation problem? a minimisation problem?
 - Learn from examples, have good ideas.

Markus Krötzsch, 5th Nov 2019 Complexity Theory slide 9 of 36

DIRECTED HAMILTONIAN PATH

Input: A directed graph *G*.

Problem: Is there a directed path in *G* containing every ver-

tex exactly once?

Theorem 8.2: Directed Hamiltonian Path is NP-complete.

Proof:

(1) Directed Hamiltonian Path $\in NP$:

Take the path to be the certificate.

DIRECTED HAMILTONIAN PATH

Input: A directed graph *G*.

Problem: Is there a directed path in *G* containing every ver-

tex exactly once?

Theorem 8.2: Directed Hamiltonian Path is NP-complete.

Proof:

(1) DIRECTED Hamiltonian Path \in NP: Take the path to be the certificate.

(2) DIRECTED HAMILTONIAN PATH is NP-hard: 3-Sat \leq_p Directed Hamiltonian Path

Proof (Proof idea): (see blackboard for details)

Let
$$\varphi := \bigwedge_{i=1}^k C_i$$
 and $C_i := (L_{i,1} \vee L_{i,2} \vee L_{i,3})$

- For each variable X occurring in φ , we construct a directed graph ("gadget") that allows only two Hamiltonian paths: "true" and "false"
- Gadgets for each variable are "chained" in a directed fashion, so that all variables must be assigned one value
- Clauses are represented by vertices that are connected to the gadgets in such a
 way that they can only be visited on a Hamiltonian path that corresponds to an
 assignment where they are true

Details are also given in [Sipser, Theorem 7.46].

Example 8.3:
$$\varphi := C_1 \wedge C_2$$
 where $C_1 := (X \vee \neg Y \vee Z)$ and $C_2 := (\neg X \vee Y \vee \neg Z)$ (see blackboard)

Markus Krötzsch, 5th Nov 2019 Complexity Theory slide 11 of 36

Towards More NP-Complete Problems

Starting with **S**_{AT}, one can readily show more problems **P** to be NP-complete, each time performing two steps:

- (1) Show that $P \in NP$
- (2) Find a known NP-complete problem P' and reduce $P' \leq_p P$

Thousands of problem have now been shown to be NP-complete. (See Garey and Johnson for an early survey)

In this course:

Markus Krötzsch, 5th Nov 2019 Complexity Theory slide 12 of 36

NP-Completeness of Subset Sum

SUBSET SUM

Input: A collection¹ of positive integers

 $S = \{a_1, \ldots, a_k\}$ and a target integer t.

Problem: Is there a subset $T \subseteq S$ such that $\sum_{a_i \in T} a_i = t$?

Theorem 8.4: Subset Sum is NP-complete.

Proof:

- (1) Subset Sum \in NP: Take T to be the certificate.
- (2) Subset Sum is NP-hard: Sat \leq_p Subset Sum

¹) This "collection" is supposed to be a multi-set, i.e., we allow the same number to occur several times. The solution "subset" can likewise use numbers multiple times, but not more often than they occured in the given collection.

Example

$\mathsf{Sat} \leq_p \mathsf{Subset} \; \mathsf{Sum}$

Given: $\varphi := C_1 \wedge \cdots \wedge C_k$ in conjunctive normal form.

(w.l.o.g. at most 9 literals per clause)

Let X_1, \ldots, X_n be the variables in φ . For each X_i let

$$t_i := a_1 \dots a_n c_1 \dots c_k$$
 where $a_j := \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$ and $c_j := \begin{cases} 1 & X_i \text{ occurs in } C_j \\ 0 & \text{otherwise} \end{cases}$

$$f_i := a_1 \dots a_n c_1 \dots c_k$$
 where $a_j := \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$ and $c_j := \begin{cases} 1 & \neg X_i \text{ occurs in } C_j \\ 0 & \text{otherwise} \end{cases}$

Example

$\mathsf{Sat} \leq_p \mathsf{Subset} \; \mathsf{Sum}$

Further, for each clause C_i take $r := |C_i| - 1$ integers $m_{i,1}, \ldots, m_{i,r}$

where
$$m_{i,j} := c_i \dots c_k$$
 with $c_\ell := \begin{cases} 1 & \ell = i \\ 0 & \ell \neq i \end{cases}$

Definition of S: Let

$$S := \{t_i, f_i \mid 1 \le i \le n\} \cup \{m_{i,j} \mid 1 \le i \le k, \quad 1 \le j \le |C_i| - 1\}$$

Target: Finally, choose as target

$$t := a_1 \dots a_n c_1 \dots c_k$$
 where $a_i := 1$ and $c_i := |C_i|$

Claim: There is $T \subseteq S$ with $\sum_{a_i \in T} a_i = t$ iff φ is satisfiable.

Example

NP-Completeness of Subset Sum

Let
$$\varphi := \bigwedge C_i$$
 C_i : clauses

Show: If φ is satisfiable, then there is $T \subseteq S$ with $\sum_{s \in T} s = t$.

Let β be a satisfying assigment for φ

Set
$$T_1 := \{t_i \mid \beta(X_i) = 1, \ 1 \le i \le m\} \cup \{f_i \mid \beta(X_i) = 0, \ 1 \le i \le m\}$$

Further, for each clause C_i let r_i be the number of satisfied literals in C_i (with resp. to β).

Set
$$T_2 := \{ m_{i,j} \mid 1 \le i \le k, \quad 1 \le j \le |C_i| - r_i \}$$

and define $T := T_1 \cup T_2$.

It follows:
$$\sum_{s \in T} s = t$$

NP-Completeness of Subset Sum

Show: If there is $T \subseteq S$ with $\sum_{s \in T} s = t$, then φ is satisfiable.

Let $T \subseteq S$ such that $\sum_{s \in T} s = t$

Define
$$\beta(X_i) = \begin{cases} 1 & \text{if } t_i \in T \\ 0 & \text{if } f_i \in T \end{cases}$$

This is well defined as for all i: $t_i \in T$ or $f_i \in T$ but not both.

Further, for each clause, there must be one literal set to 1 as for all i, the $m_{i,j} \in S$ do not sum up to the number of literals in the clause.

Towards More NP-Complete Problems

Starting with **S**_{AT}, one can readily show more problems **P** to be NP-complete, each time performing two steps:

- (1) Show that $P \in NP$
- (2) Find a known NP-complete problem P' and reduce $P' \leq_p P$

Thousands of problem have now been shown to be NP-complete. (See Garey and Johnson for an early survey)

In this course:

Markus Krötzsch, 5th Nov 2019 Complexity Theory slide 21 of 36

NP-completeness of KNAPSACK

KNAPSACK

Input: A set $I := \{1, ..., n\}$ of items

each of value v_i and weight w_i for $1 \le i \le n$,

target value t and weight limit ℓ

Problem: Is there $T \subseteq I$ such that

 $\sum_{i \in T} v_i \ge t$ and $\sum_{i \in T} w_i \le \ell$?

Theorem 8.5: KNAPSACK is NP-complete.

NP-completeness of KNAPSACK

KNAPSACK

Input: A set $I := \{1, ..., n\}$ of items

each of value v_i and weight w_i for $1 \le i \le n$,

target value t and weight limit ℓ

Problem: Is there $T \subseteq I$ such that

 $\sum_{i \in T} v_i \ge t$ and $\sum_{i \in T} w_i \le \ell$?

Theorem 8.5: KNAPSACK is NP-complete.

Proof:

- (1) **KNAPSACK** \in NP: Take T to be the certificate.
- (2) Knapsack is NP-hard: Subset Sum \leq_p Knapsack

Subset Sum \leq_p Knapsack

Given: $S := \{a_1, \dots, a_n\}$ collection of positive integers

Subset Sum: t target integer

Problem: Is there a subset $T \subseteq S$ such that $\sum_{a_i \in T} a_i = t$?

Subset Sum \leq_p Knapsack

Given: $S := \{a_1, \dots, a_n\}$ collection of positive integers

Subset Sum: t target integer

Problem: Is there a subset $T \subseteq S$ such that $\sum_{a_i \in T} a_i = t$?

Reduction: From this input to Subset Sum construct

• set of items $I := \{1, \ldots, n\}$

• weights and values $v_i = w_i = a_i$ for all $1 \le i \le n$

• target value t' := t and weight limit $\ell := t$

Subset Sum \leq_p Knapsack

Given: $S := \{a_1, \dots, a_n\}$ collection of positive integers

Subset Sum: t target integer

Problem: Is there a subset $T \subseteq S$ such that $\sum_{a_i \in T} a_i = t$?

Reduction: From this input to Subset Sum construct

- set of items $I := \{1, \ldots, n\}$
- weights and values $v_i = w_i = a_i$ for all $1 \le i \le n$
- target value t' := t and weight limit $\ell := t$

Clearly: For every $T \subseteq S$

$$\sum_{a_i \in T} a_i = t \qquad \text{iff} \qquad \qquad \sum_{a_i \in T} v_i \ge t' = t$$

$$\sum_{a_i \in T} w_i \le \ell = t$$

Hence: The reduction is correct and in polynomial time.

A Polynomial Time Algorithm for KNAPSACK

KNAPSACK can be solved in time $O(n\ell)$ using dynamic programming Initialisation:

- Create an $(\ell + 1) \times (n + 1)$ matrix M
- Set M(w, 0) := 0 for all $1 \le w \le \ell$ and M(0, i) := 0 for all $1 \le i \le n$

Example

Input $I = \{1, 2, 3, 4\}$ with

Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$

Weight: $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$

Weight limit: $\ell = 5$ Target value: t = 7

weight	max. total value from first i items					
limit w	i = 0	i = 1	i = 2	i = 3	i = 4	
0						
1						
2						
3						
4						
5						

Set M(w, 0) := 0 for all $1 \le w \le \ell$ and M(0, i) := 0 for all $1 \le i \le n$

Example

Input $I = \{1, 2, 3, 4\}$ with

Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$

Weight: $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$

Weight limit: $\ell = 5$ Target value: t = 7

weight	max. total value from first i items					
limit w	i = 0	i = 1	i = 2	i = 3	i = 4	
0	0	0	0	0	0	
1	0					
2	0					
3	0					
4	0					
5	0					

Set M(w, 0) := 0 for all $1 \le w \le \ell$ and M(0, i) := 0 for all $1 \le i \le n$

A Polynomial Time Algorithm for KNAPSACK

KNAPSACK can be solved in time $O(n\ell)$ using dynamic programming Initialisation:

- Create an $(\ell + 1) \times (n + 1)$ matrix M
- Set M(w, 0) := 0 for all $1 \le w \le \ell$ and M(0, i) := 0 for all $1 \le i \le n$

A Polynomial Time Algorithm for KNAPSACK

Knapsack can be solved in time $O(n\ell)$ using dynamic programming

Initialisation:

- Create an $(\ell + 1) \times (n + 1)$ matrix M
- Set M(w, 0) := 0 for all $1 \le w \le \ell$ and M(0, i) := 0 for all $1 \le i \le n$

Computation: Assign further M(w, i) to be the largest total value obtainable by selecting from the first i items with weight limit w:

For
$$i = 0, 1, ..., n - 1$$
 set $M(w, i + 1)$ as

$$M(w, i + 1) := \max \{M(w, i), M(w - w_{i+1}, i) + v_{i+1}\}\$$

Here, if $w - w_{i+1} < 0$ we always take M(w, i).

Acceptance: If M contains an entry $\geq t$, accept. Otherwise reject.

Example

Input $I = \{1, 2, 3, 4\}$ with

Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$

Weight: $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$

Weight limit: $\ell = 5$ Target value: t = 7

weight	max. total value from first i items					
limit w	i = 0	i = 1	i = 2	<i>i</i> = 3	<i>i</i> = 4	
0	0	0	0	0	0	
1	0					
2	0					
3	0					
4	0					
5	0					

For
$$i = 0, 1, ..., n-1$$
 set $M(w, i + 1) := \max \{M(w, i), M(w - w_{i+1}, i) + v_{i+1}\}$

Input $I = \{1, 2, 3, 4\}$ with

Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$

Weight: $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$

weight	max. total value from first i items				
limit w	i = 0	i = 1	i = 2	<i>i</i> = 3	i = 4
0	0	0	0	0	0
1	0	1			
2	0	1			
3	0	1			
4	0	1			
5	0	1			

For
$$i = 0, 1, ..., n-1$$
 set $M(w, i + 1) := \max \{M(w, i), M(w - w_{i+1}, i) + v_{i+1}\}$

Input $I = \{1, 2, 3, 4\}$ with

Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$

Weight: $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$

weight	max. total value from first i items				
limit w	i = 0	i = 1	i = 2	<i>i</i> = 3	i = 4
0	0	0	0	0	0
1	0	1	3		
2	0	1			
3	0	1			
4	0	1			
5	0	1			

For
$$i = 0, 1, ..., n-1$$
 set $M(w, i + 1) := \max \{M(w, i), M(w - w_{i+1}, i) + v_{i+1}\}$

Input $I = \{1, 2, 3, 4\}$ with

Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$

Weight: $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$

weight	max. total value from first i items						
limit w	i = 0	i = 0 $i = 1$ $i = 2$ $i = 3$ $i = 4$					
0	0	0	0	0	0		
1	0	1	3				
2	0	1	4				
3	0	1					
4	0	1					
5	0	1					

For
$$i = 0, 1, ..., n - 1$$
 set $M(w, i + 1) := \max\{M(w, i), M(w - w_{i+1}, i) + v_{i+1}\}$

Input $I = \{1, 2, 3, 4\}$ with

Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$

Weight: $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$

weight	max. total value from first i items				
limit w	i = 0	i = 1	i = 2	<i>i</i> = 3	i = 4
0	0	0	0	0	0
1	0	1	3		
2	0	1	4		
3	0	1	4		
4	0	1			
5	0	1			

For
$$i = 0, 1, ..., n-1$$
 set $M(w, i + 1) := \max \{M(w, i), M(w - w_{i+1}, i) + v_{i+1}\}$

Input $I = \{1, 2, 3, 4\}$ with

Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$

Weight: $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$

weight	max. total value from first i items				
limit w	i = 0	i = 1	i = 2	<i>i</i> = 3	i = 4
0	0	0	0	0	0
1	0	1	3		
2	0	1	4		
3	0	1	4		
4	0	1	4		
5	0	1			

For
$$i = 0, 1, ..., n-1$$
 set $M(w, i + 1) := \max \{M(w, i), M(w - w_{i+1}, i) + v_{i+1}\}$

Input $I = \{1, 2, 3, 4\}$ with

Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$

Weight: $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$

weight	max. total value from first i items				
limit w	i = 0	i = 1	i = 2	<i>i</i> = 3	i = 4
0	0	0	0	0	0
1	0	1	3		
2	0	1	4		
3	0	1	4		
4	0	1	4		
5	0	1	4		

For
$$i = 0, 1, ..., n - 1$$
 set $M(w, i + 1) := \max \{M(w, i), M(w - w_{i+1}, i) + v_{i+1}\}$

Input $I = \{1, 2, 3, 4\}$ with

Values: $v_1 = 1$ $v_2 = 3$ $v_3 = 4$ $v_4 = 2$

Weight: $w_1 = 1$ $w_2 = 1$ $w_3 = 3$ $w_4 = 2$

weight	max. total value from first <i>i</i> items						
limit w	i = 0	i = 0 $i = 1$ $i = 2$ $i = 3$ $i = 4$					
0	0	0	0	0	0		
1	0	1	3	3	3		
2	0	1	4	4	4		
3	0	1	4	4	5		
4	0	1	4	7	7		
5	0	1	4	8	8		

For
$$i = 0, 1, ..., n - 1$$
 set $M(w, i + 1) := \max \{M(w, i), M(w - w_{i+1}, i) + v_{i+1}\}$

Did we prove P = NP?

Summary:

- Theorem 8.5: KNAPSACK is NP-complete
- KNAPSACK can be solved in time $O(n\ell)$ using dynamic programming

What went wrong?

KNAPSACK

Input: A set $I := \{1, ..., n\}$ of items

each of value v_i and weight w_i for $1 \le i \le n$,

target value t and weight limit ℓ

Problem: Is there $T \subseteq I$ such that

 $\sum_{i \in T} v_i \ge t$ and $\sum_{i \in T} w_i \le \ell$?

Pseudo-Polynomial Time

The previous algorithm is not sufficient to show that KNAPSACK is in P

- The algorithm fills a $(\ell + 1) \times (n + 1)$ matrix M
- The size of the input to **Knapsack** is $O(n \log \ell)$

 \rightarrow the size of M is not bounded by a polynomial in the length of the input!

Pseudo-Polynomial Time

The previous algorithm is not sufficient to show that KNAPSACK is in P

- The algorithm fills a $(\ell + 1) \times (n + 1)$ matrix M
- The size of the input to **Knapsack** is $O(n \log \ell)$

 \rightarrow the size of M is not bounded by a polynomial in the length of the input!

Definition 8.6 (Pseudo-Polynomial Time): Problems decidable in time polynomial in the sum of the input length and the value of numbers occurring in the input.

Equivalently: Problems decidable in polynomial time when using unary encoding for all numbers in the input.

- If **Knapsack** is restricted to instances with $\ell \le p(n)$ for a polynomial p, then we obtain a problem in P.
- KNAPSACK is in polynomial time for unary encoding of numbers.

Markus Krötzsch, 5th Nov 2019 Complexity Theory slide 29 of 36

Strong NP-completeness

Pseudo-Polynomial Time: Algorithms polynomial in the maximum of the input length and the value of numbers occurring in the input.

Examples:

- KNAPSACK
- SUBSET SUM

Strong NP-completeness: Problems which remain NP-complete even if all numbers are bounded by a polynomial in the input length (equivalently: even for unary coding of numbers).

Examples:

- CLIQUE
- SAT
- Hamiltonian Cycle
- •

Note: Showing **Sat** \leq_p **Subset Sum** required exponentially large numbers.

Beyond NP

Markus Krötzsch, 5th Nov 2019 Complexity Theory slide 31 of 36

The Class coNP

Recall that coNP is the complement class of NP.

Definition 8.7:

- For a language $L \subseteq \Sigma^*$ let $\overline{L} := \Sigma^* \setminus L$ be its complement
- For a complexity class C, we define $coC := \{L \mid \overline{L} \in C\}$
- In particular $coNP = \{L \mid \overline{L} \in NP\}$

A problem belongs to coNP, if no-instances have short certificates.

Examples:

- No Hamiltonian Path: Does the graph *G* not have a Hamiltonian path?
- **TautoLogy**: Is the propositional logic formula φ a tautology (true under all assignments)?
- ...

Markus Krötzsch, 5th Nov 2019

coNP-completeness

Definition 8.8: A language $\mathbf{C} \in \text{coNP}$ is coNP-complete, if $\mathbf{L} \leq_p \mathbf{C}$ for all $\mathbf{L} \in \text{coNP}$.

Theorem 8.9:

- (1) P = coP
- (2) Hence, $P \subseteq NP \cap coNP$

Open questions:

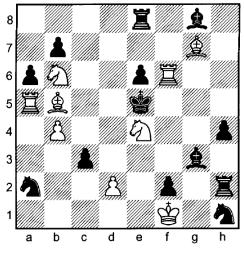
• NP = coNP?

Most people do not think so.

• $P = NP \cap coNP$?

Again, most people do not think so.

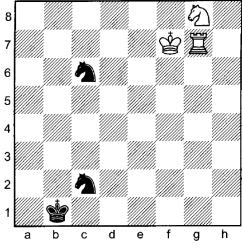
Example: Chess Problems



Mate in 3 moves; White's turn

Markus Krötzsch, 5th Nov 2019 Complexity Theory slide 34 of 36

Example: Chess Problems



Mate in 262 moves; White's turn

Markus Krötzsch, 5th Nov 2019 Complexity Theory slide 35 of 36

Summary and Outlook

3-Sat and Hamiltonian Path are also NP-complete

So are **SubSet Sum** and **Knapsack**, but only if numbers are encoded efficitly (pseudo-polynomial time)

There do not seem to be polynomial certificates for coNP instances; and for some problems there seem to be certificates neither for instances nor for non-instances

What's next?

- Space
- Games
- Relating complexity classes