Exercise Sheet 2: RDF Modelling
Maximilian Marx, Markus Krötzsch
Knowledge Graphs, 2021-11-02, Winter Term 2021/2022

Exercise 2.1. Which of the following literals describe the same value? Explain your answer.

```
1. "2"^^xsd:integer vs. "2.0"^^xsd:decimal
2. "2"^^xsd:decimal vs. "2"^^xsd:float
3. "2018-11-06T15:40:00+01:00"^^xsd:dateTime vs.
    "2018-11-06T14:40:00Z"^^xsd:dateTime
4. "2018-11-06T15:40:00+01:00"^^xsd:dateTime vs.
    "2018-11-06T14:40:00"^^xsd:dateTime
```

A detailed description of each of the various XML Schema datatypes is given in the online specification: see https://www.w3.org/TR/xmlschema11-2/.

Exercise 2.2. Recall that blank nodes act as placeholders for arbitrary resources in RDF: they assert that there is something without saying what it is. Such an assertion might logically follow from other, stronger assertions, so that some triples in a graph might be redundant. For example, the second triple in the following dataset can be omitted without loss of information:

```
eg:s eg:p eg:o .
_:1 eg:p _:2 .
```

More generally, an instance of an RDF graph G is a graph $\sigma(G)$ obtained by applying a function σ that maps blank nodes to arbitrary RDF terms. A graph is lean if it does not have any instance $\sigma(G) \subset G$ that is strictly contained in G. In the example, $\sigma=\{-: 1 \mapsto\langle s\rangle,-: 2 \mapsto<0\rangle\}$ shows that this graph is not lean.

Determine if the following graphs are lean:

Exercise 2.3. Show that it is NP-complete to decide if an RDF graph is not lean.

Hint:

Exercise 2.4. The bibliographic database DBLP ${ }^{1}$ offers individual data records as RDF in N Triples format. This data can be downloaded from the URL obtained by appending .nt to the URI. Use this interface to find all publications that have https://dblp.org/pers/s/Studer:Rudi as their only author.

- Download some RDF files in your browser to find out how this information is encoded.

[^0]- Write a program that crawls a small part of the data to answer the query.

Note: If your program sends too many requests in a short time, the server will deny the request and cancel the connection. Dirty trick: use time.sleep(1) before executing a request.

Hint: requests ${ }^{2}$ provides a high-level API for making HTTP requests in Python, but you may need to install it, e.g., using pip. ${ }^{3}$ A built-in alternative that provides a lower-level interface is urllib. requests. ${ }^{4}$

* Exercise 2.5. Let $G=\langle V, E\rangle$ be an undirected graph. Show that if G is triangle-free (i.e., there are no triangles in G), then

$$
|E| \leq\left\lfloor\frac{|V|^{2}}{4}\right\rfloor
$$

[^1]
[^0]: ${ }^{1}$ https://dblp.org

[^1]: ${ }^{2}$ http://docs.python-requests.org/en/master/
 ${ }^{3}$ https://pypi.org/project/pip/
 ${ }^{4}$ https://docs.python.org/3/library/urllib.request.html

