
Diplomarbeit

Improving SAT Solvers
Using State-of-the-Art Techniques

Norbert Manthey
15. Dezember 2010

Technische Universität Dresden
Fakultät Informatik

Institut für Künstliche Intelligenz
Professur für Knowledge Representation and Reasoning

Betreut von:
Prof. Dr. rer. nat. Steffen Hölldobler
Dipl.-Inf. Peter Steinke



Norbert Manthey
Improving SAT Solvers Using State-of-the-Art Techniques
Diplomarbeit, Fakultät für Informatik
Technische Universität Dresden, Dezember 2010



Aufgabenstellung Diplomarbeit

Name, Vorname: Manthey, Norbert
Studiengang: Informatik
Matrikelnummer: 3305366
Thema: Improving SAT Solvers Using State-of-the-Art Techniques
Zielstellung: Viele Probleme lassen sich als Erfüllbarkeitsproblem (SAT) ko-

dieren. Innerhalb der letzten Jahre wurden dafür performante
Solver entwickelt. Die Leistung von diesen SAT-Solvern übertrifft
in vielen Fällen die Leistung der spezifischen Lösungsprogramme
für die jeweiligen Probleme. Dadurch werden viele industrie-
relevante Anwendungen nach SAT kodiert und mit einem SAT-
Solver gelöst. Dabei wächst die Größe der Probleme, wodurch
die Anforderungen an SAT-Solver immer weiter steigen.
Um die Auswirkungen der letzten Entwicklung besser verstehen
zu können, sollen in dieser Arbeit die einzelnen Techniken, welche
in SAT-Solver Einzug erhielten, vorgestellt und analysiert werden.
Durch diese Untersuchengen soll gezeigt werden, welche dieser
Techniken zu dem Leistungssprung von SAT-Solvern innerhalb
der letzten Jahre geführt haben. Durch die Kombination der
besten Techniken soll ein SAT-Solver entstehen, der die Leistung
eines state-of-the-art SAT-Solvers hat und auch für das Lösen
industrieller Probleme geeignet ist.
Die aktuellen Techniken sollen in einem kompontenbasierten
SAT-Solver implementiert werden, um die Auswirkungen der
einzelnen Veränderungen auf die Leistung des Solvers nachvoll-
ziehen zu können.
Schwerpunkte:
• Analysieren der aktuellen Techniken in modernen
SAT-Solvern
• Implementieren der neuen Komponenten in einen
SAT-Solver
• Empirische Untersuchung der Auswirkungen der einzelnen
Komponenten und deren Kombination

Betreuer: Dipl.-Inf. Peter Steinke
verantwortlicher Hochschullehrer: Prof. Dr. rer. nat. Steffen Hölldobler

Institut: Künstliche Intelligenz
Lehrstuhl: Knowledge Representation and Reasoning
Beginn am: 01.08.2010
Einzureichen am: 01.02.2011





Abstract. This work discusses modern techniques of state-of-the-art SAT
solvers. Since most techniques are published without regard to the effect to
recent techniques of other developers, this interference is studied in this work.
Therefore, configurations for SAT solver components are combined and the
performance of these combinations is analyzed. The SAT solver is divided
into the following components: decision heuristic, unit propagation, conflict
analysis, removal, restart strategy and preprocessor. The components of the
CDCL-based SAT solver riss are extended by state-of-the-art techniques. The
performance of these components is analyzed by using the application bench-
mark of the SAT Competition 2009 with its 292 instances from various indus-
trial applications. The performance is measured by the number of instances
that can be solved in a timeout of 3600 seconds each. Based on the performan-
ce of the configuration per component, the best performing configurations are
combined to a major configuration, increasing the number of solvable instan-
ces by 10%. By analyzing the effect of the single component configurations
on the major configuration, it has been shown that the performance of two
components interfere with each other and consequently finding the best confi-
guration for a SAT solver is not trivial. Furthermore, a component based SAT
solver implementation has a slower run time. The best configuration that was
found during the work by combining state-of-the-art SAT solving techniques
is able to solve 13% more instances than the baseline configuration. The new
techniques show that activity based components have a higher performance
than components that are based on the clause length.





Contents

1. Introduction 9

2. SAT Solving 12
2.1. Propositional Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1. Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2. Semantic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3. Formula Modification Techniques . . . . . . . . . . . . . . . . . . 14

2.2. SAT Solving Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1. Implementation Restrictions . . . . . . . . . . . . . . . . . . . . 15
2.2.2. Search Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3. Davis Putman Logemann Loveland Procedure . . . . . . . . . . . 17
2.2.4. Conflict Driven Clause Learning Procedure . . . . . . . . . . . . . 18

2.3. Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3. Improving Solver Components 26
3.1. Decision Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1. VSIDS Implementations . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2. Phase Saving . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.3. Jeroslaw-Wang Heuristic . . . . . . . . . . . . . . . . . . . . . . 28
3.1.4. Choices in rissR0 . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.5. Comparison of Heuristics to Pick a Variable . . . . . . . . . . . . 29
3.1.6. Comparison of Polarity Heuristics . . . . . . . . . . . . . . . . . 30

3.2. Unit Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.1. Two-Watched-Literal Unit Propagation . . . . . . . . . . . . . . . 31
3.2.2. Probing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.3. Blocking Literals for Unit Propagation . . . . . . . . . . . . . . . 32
3.2.4. Choices in rissR0 . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.5. Comparison of Heuristics to Run Unit Propagation . . . . . . . . 33

3.3. Conflict Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.1. First UIP Conflict Analysis . . . . . . . . . . . . . . . . . . . . . 35
3.3.2. Conflict Minimization . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.3. On-the-Fly Self Subsumption . . . . . . . . . . . . . . . . . . . . 36
3.3.4. Assignment Stack Shrinking . . . . . . . . . . . . . . . . . . . . 37
3.3.5. Choices in rissR0 . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.6. Comparison of Several Conflict Analysis Techniques . . . . . . . . 38

3.4. Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.1. Activity Removal . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.2. Literals Blocks Distance (LBD) . . . . . . . . . . . . . . . . . . . 40
3.4.3. Suffix Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.4. Dynamic Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.5. Static Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.6. Choices in rissR0 . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.7. Comparison of Removal Heuristics . . . . . . . . . . . . . . . . . 42

7



3.5. Restarting the Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5.1. Geometric Series Scheduling . . . . . . . . . . . . . . . . . . . . 44
3.5.2. Luby Series Scheduling . . . . . . . . . . . . . . . . . . . . . . . 44
3.5.3. Nested Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5.4. Dynamic Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5.5. Reject Scheduled Restarts Using Agility . . . . . . . . . . . . . . 45
3.5.6. Choices in rissR0 . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5.7. Comparison of Restart Schedules . . . . . . . . . . . . . . . . . . 46
3.5.8. Comparison of Restart Heuristics . . . . . . . . . . . . . . . . . . 46

3.6. Preprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6.1. Variable Elimination . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6.2. Blocked Clause Elimination . . . . . . . . . . . . . . . . . . . . . 49
3.6.3. Hidden Tautology Elimination . . . . . . . . . . . . . . . . . . . 49
3.6.4. Equivalence Elimination . . . . . . . . . . . . . . . . . . . . . . . 50
3.6.5. Probing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.6.6. Vivification (Asymmetric Branching) . . . . . . . . . . . . . . . . 51
3.6.7. Inprocessor Simplifications During Search . . . . . . . . . . . . . 51
3.6.8. Choices in rissR0 . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6.9. Comparison of Preprocessing Techniques . . . . . . . . . . . . . . 52
3.6.10. Comparison of Inprocessor Techniques . . . . . . . . . . . . . . . 53

4. Results 55
4.1. Combined Runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2. Looking for Beneficial Components . . . . . . . . . . . . . . . . . . . . . 56

5. Conclusions 59

6. Future Work 61

A. List of Figures 62

B. List of Algorithms 62

References 63

8



1. Introduction

1. Introduction

Solving a Sudoku can be done in many different ways. The easiest way is to guess the
values for all the free squares and verifying the solution afterwards. The most sophisti-
cated method is to reason about the fields that are already filled and to assign numbers
to free cells without guessing. Thus, solving a Sudoku by a program can be done by
implementing a naive algorithm, namely checking every single solution candidate, or by
inventing a special purpose solver that is made to solve Sudokus efficiently. Developing
and implementing such a special purpose solver is time consuming because all the rules
that are used for reasoning to be implemented. Another approach to solve the Sudoku is
to transform the Sudoku into another domain and solve the new problem in this domain.
Thus, only a transformation from the original problem, the Sudoku puzzle, into the new
domain has to be found and an efficient solver for the new domain is needed. Sudokus
can be transformed into propositional formulas [ILO06]. Afterwards, the propositional
formula can be checked for a satisfying assignment for the involved variables. This step is
called satisfiability testing (SAT) and is done by so called SAT solvers. If an assignment
is found, this assignment can be transformed back into the domain of the Sudoku and
the free cells can be filled.
The example of Sudoku puzzles shows that propositional logic can be used to describe

other problems. This feature is not the only reason why SAT is used to solve real world
problems. The performance of SAT solvers increased significantly in the last 15 years.
The worst case execution time to solve a problem with n variables is still exponential
in the number of variables. Fortunately, in average most problems can be solved much
faster by modern SAT solvers enabling users to successfully tackle formulas with millions
of variables [lB10]. A main reason is the introduction of conflict-directed clause learning
(CDCL) [SS96] that enabled solvers to cut of big parts of the search tree. In addition,
studies showed that restarting the search from time to time also helps to decrease the
average runtime significantly [Hua07]. Searching a solution is also not done naively any
more. Choosing the next variable that has to be assigned is based on properties of this
variable. Thus, variables that seem to be important are picked more frequently [MMZ+01].
Adding these heuristics to SAT solvers also increased their performance. Furthermore, the
implementation of these solvers has recently been improved. Improved data structures are
used to take advantage of properties of the algorithm. The two watched literal scheme
for example avoids unnecessary work during unit propagation [MMZ+01]. There have
also been attempts to adjust the implementation more to the provided resources of the
computing hardware and to utilize the provided hardware units, for example the cache
and the prefetching unit, as well as possible [HMS10].
All the mentioned improvements turned SAT solvers into powerful tools that can solve

large formulas efficiently. Simple problems like Sudokus can be solved without much effort,
but SAT solvers are also used to tackle real world problems from many domains resulting in
much more complex formulas. Applications that are converted into SAT come hardware
and software verification, planning, scheduling, configuration, termination analysis and
many more (see e.g. [BM00,FGM+07,KS92,LMS06]). There also are other applications
that are usually solved in the domain of the constraint satisfaction problem (CSP). Most
of the problems that can be solved in the domain of CSP can also be transformed into the

9



1. Introduction

domain of SAT [TTKB09,Gen02], increasing the number of fields that use SAT solvers
even further. All the problems that are solved by using a SAT solver can also be solved by
a single special purpose solver. However, it seems to be more efficient to use a SAT solver
whose development is pushed by annual competitions and increasing requirements of the
industry. Using SAT solvers seems to be the most efficient known way to solve these large
problems. Conveniently, as shown in Figure 1 only an encoder and a decoder have to be
implemented and afterwards highly optimized SAT solvers can be used to find a solution
as a black box. This scheme shows that using a SAT solver can also be the faster solution
to solve a problem, because the conversion is more easy to implement than inventing an
efficient special purpose solver if the problem can be converted into SAT easily. This work
will focus on the solving the formula only.

Sudoku
...

Cryptography

Encoder Decoder

SAT solver

Problem

Formula Solution

Solution

Figure 1: Using a SAT solver as black box

Applications for SAT solvers became larger because industrial problems have been trans-
formed into SAT. Formulas containing millions of variables have to be solved. Due to new
applications for SAT solvers, new algorithms are also developed and integrated into SAT
solvers [Soo10]. Furthermore, SAT techniques are improved to be able to solve recent
problems faster. These improvements and new techniques are presented at international
conferences and their performance is tested in annual competitions. Unfortunately, most
SAT solvers are implemented in a fixed configuration. Thus, it is not possible to compare
the effect of a new technique with respect to another configuration of the solver easily.
The effect of a single new technique is presented, but an overall overview of current
techniques and their interference with the new development is missing.
This work tries to fill this gap. Techniques that have been presented recently are ana-

lyzed and their performances are compared. Most recent SAT solvers are described briefly
in their competition configurations. In these descriptions only the main techniques are
enumerated. The most recently used techniques in leading SAT solvers are collected and
combined in the SAT solver riss [Man10] because it is implemented by using components
that are easily exchangeable. The solver is also easily extendable. The performance
of the baseline version of the solver, called rissR0, is comparable to MiniSAT 2 [SE09],
a well known SAT solver that is not easily extendable. The techniques that are imple-
mented in MiniSAT 2 are also implemented in rissR0. These techniques are conflict driven
clause learning [SS96] with minimization [SB09], the VSIDS decision heuristic [MMZ+01],
restarts [GSCK00] and the two watched literal unit propagation [MMZ+01]. Further-
more, both SAT solvers implement variable elimination [EB05] as the main preprocessing
technique before the search is started. For comparing the performance of the solver config-
urations, the application benchmark of the last SAT Competition 2009 with 292 instances

10



1. Introduction

of several industrial applications is used. The most interesting measure for a user, namely
the execution time, has been chosen as the criterion to compare two configurations. The
configuration that is able to solver more instances within a certain time for each instance
is considered to be the more powerful configuration. The timeout is set to 3600 seconds.
Additionally, a memory limit of 2 GB has been added, similarly to the competition. The
majority of industrial applications can be solved efficiently by SAT solvers that are based
on the CDCL algorithm instead of using other SAT techniques. Thus, only techniques for
these solvers are analyzed in this work. Stochastic and look-ahead SAT solvers are not
considered.
Based on recent publications, new techniques have been implemented into riss and

their performance has been compared. These techniques have been divided into the
main components of a SAT solver, namely decision heuristic, unit propagation, conflict
analysis, removal, restarts and the preprocessor, where the preprocessor is also an inpro-
cessor because it is able to simplify the formula also during the search. For each of these
components, rissR0 has been modified and all the single modifications have been com-
pared. Recent techniques are for example phase-saving for the decision heuristic [PD07],
restarting the search according to the Luby series [LSZ93] or applying on-the-fly self
subsumption during conflict analysis [HS09]. Afterwards the best configuration per com-
ponent has been picked and a new configuration for the solver has been created based on
these single configurations. The effect of single component configuration improvements
has been analyzed while all other components are already configured to the most powerful
configuration.
The baseline configuration rissR0 is used as a reference for all the modifications. It

is able to solve 147 instances of the benchmark within the specified limits. After all
components have been improved separately, the best performing configurations have been
combined. This configuration is able to solve 175 instances, which is 10% more instances
of the benchmark than the baseline configuration can solve. The best found configuration
of this work is able to solve 183 instances by setting a single component, the inproces-
sor, back to its standard configuration. The performance of the solver on the specified
benchmark has been improved by 13%. During the analysis the comparison of the pos-
sible configurations per component do not show only the overall performance, but also
the performance for lower timeouts. Although the performance is compared using the
specified timeout, the performance analyses can also be used to find the best configu-
ration for a lower timeout. This work yields another result, namely a SAT solver that
can easily be trained to perform well on a certain kind of instances without changing the
implementation, because it provides a very large set of component configurations.
This work is structured as follows. In Section 2 basic notations of SAT and the main

algorithms that are used in modern SAT solvers are given. In Section 3 recent techniques
for the components of a SAT solver are introduced and their performance is compared.
Combining these configurations and analyzing the interference among the components is
done in Section 4. Finally, the results are summarized in Section 5 and an overview on
the remaining work is given in Section 6.

11



2. SAT Solving

2. SAT Solving

SAT solving is widely used, because it uses a simple way to state a problem, namely
the propositional logic. In this logic any variable can be assigned only true or false and
it provides basic connectives, which combine the value of two variables to a new value.
Given this simplicity, it is easy to encode many problems into SAT and solve them using
SAT solvers.
In the following Section 2.1 propositional logic is introduced and the restricted alphabet

that is used by SAT solvers is explained. Afterwards, techniques to solve the SAT problem
are explained in Section 2.2. Recent approaches to compare SAT solvers are presented in
Section 2.3.

2.1. Propositional Logic

Propositional logic, in general, consists of a countable infinite set of propositional variables,
connectives and special characters. Since SAT solvers handle only formulas that are in
conjunctive normal form (CNF), only the necessary terms for this form will be given.
Propositional logic in general is described in [H0̈9]. The following Section 2.1.1 will
introduce terms that belong to the syntax of the formula. The semantics of propositional
logic is briefly introduced in Section 2.1.2 to understand how SAT problems can be solved.
Techniques to modify a propositional formula in CNF are presented in Section 2.1.3.

2.1.1. Syntax

A propositional formula F is a formula over an alphabet Σ that consists of a countable
infinite set V of propositional variables, the set of connectives {¬, ∧, ∨} and the special
characters "(" and ")". The connectives are called negation, conjunction and disjunction
respectively. The negation is unary, whereas conjunction and disjunction are binary con-
nectives. Propositional variables are either numbers 1, 2, . . . or small letters v, v′, . . . .
The negation for the number representation is stated as ¬1 whereas the negation for the
letter representation is stated v.

Definition 1 An atom is a propositional variable v or its negation v.

Definition 2 A literal is an atom l or its negation l.

Definition 3 The polarity of a literal is negative, if the literal is an negated atom l.
Otherwise the polarity of the literal is positive.

Definition 4 A clause is a disjunction of literals.

Definition 5 A formula in CNF is a conjunction of clauses.

A clause C that represents the disjunction of literals ((l1 ∨ l2) ∨ (l3 ∨ l4)) ∨ l5 will be
written as [l1, l2, l3, l4, l5]. The literals of a disjunction can be freely ordered because
the disjunction is commutative. The number of literals in a clause is also called the size

12



2.1. Propositional Logic

of the clause. Special clauses are the unit clause or unit of size one and the binary clause
of size two. A formula F that represents the conjunction of clauses (C1 ∧ C2) ∧ C3 is
written with diamond brackets 〈C1, C2, C3〉.

An example formula is the formula

Fexp = 〈 [1, 3], [¬2, ¬5, ¬6], [¬1, ¬4, 6], [¬1,¬2,¬4, 5], [¬1, 2]〉

This formula Fexp is used during the following sections to demonstrate presented tech-
niques. The formula contains five clauses. Each of the clauses are named Ci where i is
the index of the clause in the formula. For example, C3 =[¬1, ¬4, 6].

2.1.2. Semantic

The domain of a propositional variable has two elements, namely true and false. Thus,
the value of a propositional formula can be either true or false, depending on the values
of its variables and the connectives between these variables.

Definition 6 An assignment α of a set V of Boolean variables is a mapping
α: V→{false, true} that assigns a value true or false to every variable of V.

Definition 7 A literal is satisfied if it is an atom that is mapped to true or if it is a
negated atom that is mapped to false.

Definition 8 A clause is satisfied if one of its literals is satisfied, where an empty clause
is unsatisfied.

Definition 9 A formula is satisfied if all its clauses are satisfied, an empty formula is
always satisfied.

An assignment of the formula is also called interpretation. Interpreting the formula
F under an assignment α is written as F |α. Calculating this interpretation is done by
applying the following two rules:

1. Remove all clauses from F that contain a satisfied literal.

2. Remove all unsatisfied literals from the remaining clauses.

Definition 10 A partial assignment is an assignment α that does not contain a mapping
for all variables of the given formula F . An assignment that contains a mapping for all
variables is called complete assignment.

Definition 11 A variable that is not assigned by a partial assignment α is called undefined.
A literal whose variable is undefined is also called undefined.

In this work a partial assignment is called assignment only. Extending a partial assign-
ment by a mapping that satisfies a literal l is denoted by αl. Interpreting a formula F by
an assignment α is done by applying the same steps as for applying a complete assignment
to a formula.

13



2.1. Propositional Logic

Definition 12 If an assignment exists that evaluates the formula to true this formula is
satisfiable. If there does not exist such an assignment the formula is unsatisfiable.

Applying an assignment α = [1, 2, 3, 4, 5] to the example formula Fexp results in the
following formula Fexp|α ≡ 〈[¬6], [6]〉. The clause C1 is satisfied because it contains the
literal 1. In C2 the negative literals ¬2 and ¬5 are removed so that the remaining clause
is [¬6]. In C3 only [6] is left because the other negated literals are removed. C4 and C5
are removed from the formula because they are satisfied by 5 and 2, respectively.

Definition 13 An implication of the form (l1 ∧ · · · ∧ ln)→ l′ can be represented by the
clause [l1, . . . , ln, l′].

In general, any propositional formula can be converted into CNF. For this work, only
the transformation of implications is needed, so that the general transformation rules are
not given. The interested reader can find more on this conversion in [H0̈9].

2.1.3. Formula Modification Techniques

There are several techniques that can be applied to clauses of a formula F that do not
change the satisfiability of F . These techniques either add or remove clauses or remove
literals from clauses in F .

Definition 14 Let C1 = [x, a1, . . . , an] and C2 = [x, b1, . . . , bm] be two clauses that
share a common variable x with different polarities, a new clause called resolvent C =
[a1, . . . , an, b1, . . . , bm] can be obtained by removing all positive occurrences of literal x in
C1 and all occurrences of x from C2 and adding all remaining literals to C. This operation
is called resolution.

The first useful technique is the resolution of two clauses resulting in a new clause,
called resolvent. The satisfiability of a formula F does not change when a resolvent
C = C1 ⊗ C2 of two clauses C1, C2 ∈ F is added to the formula [BHvMW09, p. 138].
The resolution using the variable x is denoted by ⊗x. The resolution operation can be
lifted to sets of clauses [EB05]. Let Sx be the set of clauses that contain the literal x and
Sx the set of clauses that contain the literal x. The resolution of the two sets Sx ⊗x Sx
is defined as

Sx ⊗x Sx = {Cx ⊗x Cx | Cx ∈ Sx, Cx ∈ Sx}

The second technique is called subsumption and can be used to remove clauses from
the formula.

Definition 15 A clause C1 = [a1, . . . , an] subsumes another clause
C2 = [a1, . . . , an, b1, . . . , bm] if C2 contains all literals of C1.

To satisfy a formula F , all its clauses have to be satisfied (compare definition 9). If C1
subsumes C2 and F is satisfiable, then C1 has to be satisfied and thus contains a satisfied
literal l. The features of subsumption ensure that this literal is also part of C2 and thus

14



2.2. SAT Solving Techniques

whenever C1 is satisfied, C2 is also satisfied and can be removed from the formula. For
an unsatisfied formula F it is obvious that C2 can be removed.
The third technique is a combination of the two previously described techniques res-

olution and subsumption. Let C1 = [x, a1, . . . , an] and C2 = [x, a1, . . . , ai] be clauses
of a formula F and 1 ≤ i ≤ n, then the resolvent is C3 = C1 ⊗ C2 = [a1, . . . , an].
This resolvent subsumes the first clause C1 that has been used for the resolution. By
adding the resolvent C3 to the formula F , the clause C1 can be removed. These steps
can also be seen as removing the literal x from clause C1. The operation is called clause
strengthening, self subsumption or self subsuming resolution in the literature.

2.2. SAT Solving Techniques

The numbers of variables in SAT instances are quite high in recent instances. There are
formulas that contain more than 10 million variables and even more clauses [lB10]. Still,
solutions for these formulas can be found by SAT solvers. Following the naive approach,
all solutions would have to be tested. If n is the number of variables of a formula F , then
2n solution candidates have to be checked. To improve finding a solution for a formula,
partial assignments are used. These partial assignments can be represented in a binary
tree, the search tree, which is described in section 2.2.2. To process this tree faster, the
Davis Putman Logemann Loveland procedure (DPLL) has been introduced [DLL62]. This
algorithm is described in section 2.2.3. Modern SAT solvers implement a modification
of the DPLL algorithm that is also based on search trees. It is called Conflict Driven
Clause Learning and is explained in section 2.2.4. The two algorithms can be seen as a
depth first search in the search tree. Some of the properties of the propositional logic are
implemented weakly in SAT solvers. Thus, these restrictions are explained in section 2.2.1
before the solving techniques are introduced.

2.2.1. Implementation Restrictions

To simplify and accelerate the work of a SAT solver, certain assumptions are added to
the formula without changing the satisfiability or the model of the formula. The first
assumption is that any literal occurs only once in a clause. Duplicate literals are simply
removed from a clause. The implementation of the algorithms in a SAT solver ensures
that this assumption is true during the whole search. Furthermore, it is assumed that all
clauses do not contain a literal l and its negation l, because a clause with this property is
always satisfiable and thus does not constrain the search space. Therefore, these clauses
are also removed before the search is started.
During solving an instance in theory falsified literals are removed from the clauses. This

step is usually not done by the implementation because these literals might be needed
later on again. Thus, the unsatisfied literals are kept in the clause, but they will not be
regarded any more if the size of the clause is discussed. A unit clause C under a partial
assignment α might contain a single undefined literal l and a certain number of unsatisfied
literals. The same effect applies for binary clauses and clauses of any other size.

15



2.2. SAT Solving Techniques

2.2.2. Search Tree

In SAT, a search tree is a binary tree. Each node n has two child nodes nl and nr. The
two edges from n to its children are labeled with a literal. Let the edge n→ nl be labeled
with l, then the edge from n → nr to its other child is labeled by l. The variable used
for the literals on the two edges is not allowed to occur on the path from the root of the
tree to the node n. Every node in the tree is assigned a level. This level is the number of
branches on the path to the node.
The path from a node n to the root of the tree represents a partial assignment that

contains all the literals on this path. Since the aim of the search tree is to find a satisfying
solution, a path can be closed if the according partial assignment evaluates a clause C of
the formula F to false. Since all the literals of C are already on the path and consequently
C does not contain any undefined literal nor a satisfied literal, it cannot be satisfied by
adding more literals to the current path and thus extending this path can be stopped.
On the other hand, if a branch contains all variables of F and cannot be closed by any
clause of F , then this path represents a satisfying assignment for the formula. Therefore,
a search tree has to be extended by adding new child nodes to existing nodes until a
path containing all variables is found or if all paths are closed by a clause. If a satisfying
assignment is found, the formula is satisfiable by exactly this assignment. Otherwise, if
all paths are closed, the formula is unsatisfiable.

[¬1, ¬3]

[¬1, ¬4, 5]

[¬1, 2]

1 ¬1

3 ¬32 ¬2

2 ¬24 ¬4

5 ¬5

Figure 2: A search tree that is not completely extended

The search tree in Figure 2 shows a sample search tree for the formula Fexp that is
not fully extended. An important property of the clause size can be seen. A short clause
cuts off a big part of the search tree. For example, the clause C5 = [¬1, 2] forbids any
assignment where variable 1 is assigned true and variable 2 is assigned false. Thus, one
out of the four possible combinations is constrained so that this clause cuts off a quarter
of the whole search tree. This statement can be generalized. A clause of size n cuts off
up to the 2n-th part of the search tree. When the number of leaves of a search tree that

16



2.2. SAT Solving Techniques

belongs to a formula with m variables are counted, a clause of size n cuts up to 2m−n
leafs. Thus, shorter clauses tend to a faster search because they may prune the search
tree more than longer clauses.

2.2.3. Davis Putman Logemann Loveland Procedure

The Davis Putman Logemann Loveland [DLL62] (DPLL) procedure uses the search tree
and sets up some effective rules to create the search tree. The algorithm is given in
Algorithm 1 in its recursive version. It can be split into several rules. The first rule is
called SAT and returns SATISFIABLE, if the current formula is empty with respect to
the current assignment (lines 1-3). The second rule is called UNSAT and returns UNSAT-
ISFIABLE, if the current formula contains an empty clause (lines 4-6) or an unsatisfied
clause with respect to keeping the literals in the clauses when an assignment is applied.
The corresponding clause is called conflict clause or conflict. In literature it is also called
conflicting clause. The next rule is one of the most important rules of the algorithm.
Instead of always branching at a node, the DPLL procedure looks for unit clauses in the
current state and satisfies them by extending the assignment by the literal of the unit
clause (lines 7-9). Thus, this rule is called unit. The corresponding unit clause will be
called reason clause or reason. The unit rule cuts half of the current sub tree. By applying
the unit rule, visiting a sub tree that can always be closed is avoided. Thus, a node is
not extended as in the search tree having two children. The current node gets only a
single child and the edge between these two nodes is labeled with the literal of the unit
clause. The new child node is at the same level of the tree than its parent node because
the parent node does not branch the tree.

Definition 16 A clause is a conflict clause with respect to an assignment if it is unsatisfied
under this assignment.

Definition 17 A clause is called reason clause with respect to an assignment if it contains
only a single undefined literal and all the remaining literals are unsatisfied.

The next rule is usually not implemented in SAT solvers because it is expensive to
check. It checks the current formula for pure literals, namely literals that only occur in
one polarity. Satisfying a pure literal removes only satisfied clauses, but does not remove
unsatisfied literals from other clauses so that no empty clause can be generated. The rule
is called pure (lines 10-12). The last rule extends the current node by an unassigned literal
as in the search tree (lines 13-17). Afterwards, it checks the first sub tree for a satisfying
assignment (line 13). If this attempt fails, this sub tree does not contain a satisfying
solution and the other sub tree is examined (lines 15-17). The satisfiability result of the
second sub tree is the result for the whole formula and is returned. This rule is called split
because it is the only rule that splits the underlying search tree and adds nodes of higher
levels than the current level to the tree. It can also be understood as backtracking rule
because, after the first search tree had been analyzed and no solution has been found, the
search tracks back to the current node and proceeds with the other half of the tree.

17



2.2. SAT Solving Techniques

Algorithm 1 DPLL(F, α)
1: if F|α empty then
2: return SATISFIABLE
3: end if
4: if F|α contains an empty clause then
5: return UNSATISFIABLE
6: end if
7: if F|α contains an unit clause [l] then
8: return DPLL(F|αl)
9: end if

10: if F|α contains a pure literal l then
11: return DPLL(F|αl)
12: end if
13: if DPLL(F|αl) = SATISFIABLE then
14: return SATISFIABLE
15: else
16: return DPLL(F|αl)
17: end if

2.2.4. Conflict Driven Clause Learning Procedure

The Conflict Driven Clause Learning (CDCL) procedure was introduced in [SS96] and is
an extension of the DPLL procedure. It tries to take advantage of the usage of the conflict
clause better than the DPLL procedure, which simply performed backtracking. Instead,
CDCL analyzes the conflict clause, learns a new clause and performs backjumping by
undoing several decisions. When multiple decisions are undone, the order of the variables
in the search tree can also change. Whenever the CDCL algorithm or a SAT solver based
on this algorithm is discussed, backtracking will also refer to backjumping and thus can
undo multiple levels. Two advantages of the CDCL algorithm with respect to the DPLL
procedure arise: backjumping escapes faster from sub trees with no solution and the
learned clause avoids entering a similar sub tree again, which does not yield a solution.
The CDCL algorithm cannot be presented in a recursive version easily. Thus, its iterative
version is given in Algorithm 2 using more variables that represent the current state of
the search in the search tree. The given algorithm is similar to the implementations of
modern SAT solvers.

Definition 18 The trail is a stack that stores the assigned literals in the order they have
been assigned.

The algorithm starts with initializing necessary variables. Firstly, the assignment is
cleared and the current level of the search is set to 0 (line 1) because the algorithm starts
at the root of the search tree where no partial assignment exists and the level of the root
node is 0. As next step, the reference for the conflict clause is set to NO_CONF because
no conflict has been found yet. The current decision variable (the variable for the split
rule) is set to a constant NO_LIT, representing that this literal has no value. The level

18



2.2. SAT Solving Techniques

Algorithm 2 CDCL(F)
1: α ← {}, current_level← 0;
2: conflict← NO_CONF ; decision←NO_LIT; level[|V |]; reason[|V |];
3: while true do
4: conflict ← propagate(F, α);
5: if conflict = NO_CONF then
6: decision← pick_literal();
7: if no decision possible then
8: return SATISFIABLE;
9: end if

10: current_level ← current_level + 1;
11: α← αdecision;
12: level[decision]← current_level;
13: else
14: if level = 0 then
15: return UNSATISFIABLE
16: end if
17: clause←analyze(conflict);
18: literal ← single literal from current level of clause;
19: current_level← max{level[x] : x ∈ clause− {literal}};
20: backtrack(α, current_level);
21: α← αliteral;
22: level[literal]← current_level;
23: reason[literal]← clause;
24: F ← F ∪ clause;
25: end if
26: end while

of each variable is set to 0 because no variable has been assigned yet. Furthermore, the
reason clauses for the variable assignments have to be initialized to zero (line 2).
The algorithm executes a while-loop (line 3-26) that terminates only if a solution for

the formula, namely SATISFIABLE (line 7-9) or UNSATISFIABLE (line 14-16), is found.
Thus, the following steps are repeated until a solution is found. Firstly, the current partial
assignment is propagated (line 4). This step corresponds to the unit rule of the DPLL
procedure. If a unit clause is found, the according literal is added to the current assignment
and this variable is assigned the level which it has been assigned on. The unit clause is set
as the reason for this clause and the literal is also put to a stack that stores the order of
the assignments. This stack is called trail. In Algorithm 2 this trail is implemented in the
assignment to keep the algorithm simple. SAT solver implementations usually implement
an extra data structure for the trail because they need to access the assignment fast.
Accessing an ordered structure is linear such that the assignment usually is implemented
using an array with constant access time. The propagation step is repeated until no more
unit clauses can be found or until a conflict clause is found. If a conflict clause is found,
this clause is returned by the propagate method. Otherwise NO_CONF is returned to

19



2.2. SAT Solving Techniques

indicate that no conflict has been found.
If no conflict is found (line 5-12) an unassigned literal has to be picked. This literal

is stored in the variable decision. The decision literal is used to branch the search tree
at the current node (line 6). If no unassigned literal can be picked, because all variables
have already been assigned, a complete satisfying assignment has been found and the
formula can be satisfied by this assignment because no conflict has been found during
propagation. Otherwise the current node branches and one of its child nodes is examined.
Note that the CDCL algorithm does not really branch the tree and processes both child
nodes. As can be seen in Figure 3 most of the time the branched node is extended by
more nodes. Still, there are cases where the algorithm examines both child nodes. Since
the new chosen child node becomes the new current node with a higher level, the level
has to be incremented and the decision literal has to be added to the assignment (line
10-11). Furthermore, as in the propagate method, the level for the decision variable has
to be set to the current level (line 12). Then the while loop is repeated and the propagate
method is called again to find new unit clauses. Whenever no conflict is found, the level
of the current node will be increased and the search tree is extended by another branch.
If the propagate method finds a conflict clause, this clause is analyzed and backjumping

is performed. If the current level is already the lowest level possible, no backtracking can
be performed and thus no decision can be undone. Thus, the given formula F cannot be
satisfied and UNSATISFIABLE is returned (line 14-16).
Otherwise the conflict can be analyzed (line 17) and a clause is generated. The analysis

is explained in more details after the CDCL algorithm has been described. The generated
clause is called learned clause and contains only a single literal from the current level
(line 18). In literature it is also called conflict clause. The latter term is not used in this
work to indicate the learned clause but the conflicting clause. After the learned clause is
generated, backjumping is performed to a level on which the learned clause becomes a unit
clause (19-20). During backjumping, the assignments of all literals above the backjumping
level are reset and the level and reason information is also deleted. The learned clause
becomes unit at the backjumplevel, because all of its literals except the one from the
conflicting level are still unsatisfied. Since the all the variables from the conflicting level
have been unassigned, there is a single undefined literal in the clause. This literal, which
is the literal with the highest level in the learned clause, is added to the assignment (line
21). Furthermore, the level and reason information for this literal are also stored (line
22-23) and finally the learned clause is added to the formula before the new assignment
is propagated on the formula again.
To explain the conflict analysis, certain properties of the reason clauses and the assigned

literals have to be discussed. A literal that has been decided during the CDCL procedure
is called decision literal and has no reason clause that forced its assignment. All other
assigned literals are called implied literals. They do have a reason clause that has been
unit clause before the literal was assigned. Thus, a reason clause C has only a single
literal l that is satisfied whereas all the other literals are falsified with respect to the
current assignment. Whenever a conflict clause Cl = [l, o, a1, . . . , an] is found, this clause
contains only falsified literals. Note that at least one literal l has to be an implied literal.
Otherwise this literal l would have been implied during the last propagation step on a
lower level. Thus, the level of this literal level[l] has to be the current level. Furthermore,

20



2.2. SAT Solving Techniques

there needs to be at least one other literal o of the current level that has been falsified.
This literal o can be either an implied or a decision literal. Since l is an implied literal,
there also needs to be a reason clause Cl = [l, p, b1, . . . , bm] for the negated literal l (p
can be the same literal as o). The literal l will be called conflicting literal. The clause
Cl also contains at least one other literal from the current level because otherwise this
clause would have become a unit clause on a previous level and the literal l would have
been assigned on that level. The aim of the conflict analysis is to produce a learned
clause Clearn = [s, c1, . . . , ct] so that a part of the current partial assignment exists that
makes the clause Clearn become unit. Thus, the learned clause should contain only a
single literal s from the current level so that after backtracking to another level all literals
from lower levels are still falsified and s is the only undefined literal so that Clearn is a
unit clause with respect to the part of the current assignment. Note, that backtracking is
always done such that the last variable that is unassigned due to backtracking is a decision
variable and not an implied variable.

The learned clause Clearn is derived by applying resolution to the conflict clause Cl
and the reason clause Cl of the conflicting literal l. The resolvent of these two clauses
Cr = Cl⊗Cl = [o, s, a1, . . . , an, b1, . . . , bm] contains all the other literals and all of them
are falsified. Thus, this clause can also be seen as the current conflict clause because it
has the same properties as the conflict clause, except that it could contain only a single
literal from the current level. If there is only a single literal from the current level, the
analysis can be stopped and the current resolvent Cr is the learned clause. Otherwise,
one of the literals s or o is chosen as the new conflicting literal and the procedure is
repeated, until the resolvent contains only a single literal of the current level. Reaching
such a clause is ensured because removing all the clauses of the current level by resolution
cannot be done. The decision literal of the current level does not have a reason clause
and therefore this literal cannot be resolved. Thus, the analysis always terminates. To
ensure that this literal can be reached, the trail is traversed reversely and all variables that
are element of the current resolvent Cr are used as variable for the next resolution step.

[¬2, ¬5, ¬6]

C2 ⊗ C3: [¬1, ¬2, ¬4, ¬5]

⊗C4: [¬1, ¬2, ¬4]

Variable
Reason

1
-

2
C5

3
-

4
-

5
C4

6
C3

1

2
3

¬4
4

5

6

Figure 3: Backjumping after finding a conflict using the CDCL procedure

21



2.2. SAT Solving Techniques

Figure 3 shows an example search tree of a CDCL search including a learning and
backjumping step for the example formula Fexp. The first path that is examined is the
white one on the left side. The decision heuristic simply picks the next variable and assigns
it positive. The table in the figure shows the assignment and the according reason clauses.
After all variables have been assigned to true, the conflict clause C2 is found during
propagation. Now the procedure applies the conflict analysis and does the two resolution
steps that are given next to the search tree. Note that the boldly printed literals are
the literals of the current level of the search tree. As shown in the figure, resolution is
applied until the resolvent contains only a single literal of the current level. Afterwards,
the backjumping level is calculated. The level of the remaining literal is level 3. The
second highest level in the clause is level 1. Thus, backjumping can be done to level 1. As
the last step of the conflict analysis branch in the CDCL algorithm, the learned clause [¬1,
¬2, ¬4] is added to the formula. Since this clause is unit under the current assignment
(after backtracking), the literal ¬4 is added to the trail. This state can be seen in the path
with the filled nodes. Differently to the CDCL procedure, the DPLL algorithm backtracks
only to level 2 where the other branch on literal ¬4 is indicated. Thus, the example shows
that CDCL is able to jump back further then the DPLL procedure and thus saves more
time during inspecting the search tree.

Preprocessor

Unit Propagation Restart

RemovalConflict analysis Decision Heuristic

UNSAT SAT

simplified formula

schedule
con

flic
t

schedule

fix pointdecisionlea
rne
d c
lau
se

complete assignment
found empty clause

Figure 4: Flow diagram of the CDCL procedure in a component base SAT solver

A flow diagram of the CDCL procedure is given in Figure 4. This diagram also contains
additional rules of the algorithm. The restart rule resets the current partial assignment by
jumping back to level 0 and starting the search again. The removal deletes some of the
learned clauses again from the formula. Finally, the preprocessor is run before the search
is started to simplify the formula as much as possible. More details on these extensions
are given in the related sections 3.4, 3.5 and 3.6 respectively. The used SAT solver riss is

22



2.3. Benchmarking

component based and splits the CDCL algorithm into the components Decision Heuristic,
Unit Propagation, Conflict Analysis, Removal, Restart and Preprocessor as shown in the
diagram.

2.3. Benchmarking

Comparing developments in SAT solvers is difficult. Depending on the encoded problem
a chosen strategy might perform well or not. Thus, it is hard to determine in advance
whether a certain SAT solver is good at solving an instance. To push the development
of SAT solvers, annual competitions, namely the SAT Race and the SAT Competition,
take place. These competitions usually limit the runtime by a certain time threshold. The
number of solved instances determines the best solver. Thus, these competitions use a
large set of encoded problems to compare the solvers. Furthermore, they strive to have
a large variety among the instances so that all the areas where encoded problems might
come from are considered. The benchmark that is used for this work is the application
benchmark of the last SAT Competition 2009. This benchmark contains 292 instances
that come, for example, from termination analysis [FGM+07] and bounded model check-
ing [BHvMW09].

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 90  100  110  120  130  140  150  160  170  180  190

ti
m

e
 i
n

 s
e

c
o

n
d

s

solved instances

Baseline
SAT Race
PrecoSAT
MiniSAT 2
HydraSAT

riss COMB1
riss SEL9

Figure 5: Snake plot to compare SAT solvers

To compare the performance of SAT solvers, a snake plot is used. An example plot
is given in Figure 5. A line in the plot represents a SAT solver as labeled in the key in
the top left corner. The points that are connected by the line represent a number of
solved instances. The x-axis shows the number of solved instances and the y-axis shows

23



2.3. Benchmarking

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0  1000  2000  3000  4000

Time

Variables

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 0  1000  2000  3000  4000

Time

Clauses

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 0  1000  2000  3000  4000

Time

Decisions

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0  1000  2000  3000  4000

Time

Conflicts

Figure 6: Correlation between solving time and other measures. Each point in the diagram
corresponds to an instance of the benchmark. The diagrams show the number
of variables, number of clauses, the decisions of the search and the number of
conflicts with respect to the solve time of the instance.

the needed time. Thus, a point (x, y) in the diagram states that the solver is able to
solve y instances of the benchmark by using less than x seconds per instance. The chosen
timeout for the benchmark is set to 3600 seconds. Furthermore, an additional horizontal
line label with SAT Race has been added to the diagram. This line represents the timeout
of the SAT Race 2010, which has been set to 900 seconds. Looking at the diagram, the
best solver according to the solved instances measure is the solver whose line is the most
right line of all solvers because this solver is able to solve most of the instances. If a lower
timeout is considered, for example the timeout of the SAT Race, then the best performing
solver is the solver whose line is the most right line in the diagram on the horizontal line
of the according timeout. All the comparisons of SAT solvers in the following sections
are based on snake plots that always contain the baseline solver rissR0 [HMS10], which
is the solver with its standard configuration. Figure 5 also shows some other points of
the development of riss and MiniSAT 2.0 [SE09], a solver that is well known in the
SAT community. HydraSAT [BGH+09] is the solver that was used as a reference for the
development of riss and has also been developed at the ICCL. Two versions that have been
developed during this work are also presented. The setup riss COMB1 is a configuration
that combines the well performing settings for the single components of the solver. The
configuration riss SEL9 is the best configuration for the solver that has been found during

24



2.3. Benchmarking

the work. The last solver PrecoSAT is the winner of the SAT Competition 2009 and is
added to the comparison as a reference.
Usually the user is interested in the total runtime that is needed by the solver to solve

a certain instance. Unfortunately, this runtime is hard to predict and therefore lots of
instances are solved in order to compare solvers. Figure 6 shows a plot of solved instances
combined with measures that can be extracted from the instance or the search of the
solver. The top left diagram in the figure contains a dot for every solved instance and the
number of variables of the file. In theory, SAT can be solved in a worst case time of O(2n)
if the instance contains n variables. However, the diagram shows that the real runtime is
far away from this upper limit. The distribution of the variables of the instances does not
correlate with the runtime. The same effect applies for the other chosen static measure,
the number of clauses. This measure is printed in the upper right diagram. For the
dynamic measurements the plot looks nicer, but still no correlation occurs. The lower left
diagram in Figure 6 shows that there is no dependency between the time that is needed
to solve an instance and the number of decisions that have been made to find a solution.
The lower right diagram shows the found conflicts and the runtime. Again, there is no
correlation between these two measures. The four plots exemplary show that the runtime
of a SAT solver is not easy to predict and that there is no correlation of the runtime and
the number of variables or clauses. Thus, to compare two configurations of a SAT solver,
many benchmarks have to be run to be able to make statements about the performance.
In the current work these runs are done using an AMD Opteron 285 CPU with a clock
frequency of 2.66GHz. During the runs, the SAT solver was the only application that was
run on the CPU. The L2 Cache of this CPU can store 1MB. The memory limit for solving
the instances has been set to 2GB, because all the computing nodes are equipped only
by this amount of main memory.

25



3. Improving Solver Components

3. Improving Solver Components

The baseline SAT solver that is used as a reference for the techniques is called rissR0. This
solver is a very basic SAT solver that implements all the necessary components but not
the most recent ones. This solver is the comparison base for all the experiments. It is also
used as a reference to compare the recent development of SAT solvers. Most of the ideas
and approaches used in rissR0 are taken from HydraSAT [BGH+09]. HydraSAT is another
component based SAT solver that was implemented in 2008 following the algorithms in
MiniSAT v1.14.
The execution order of the components in a SAT solver is almost the same as in the

CDCL procedure. To avoid unnecessary work, the formula is simplified before the search
is started. The preprocessor component is responsible for the simplification. It ensures
that obvious simplifications are removed from the formula before it is processed. Since
unit clauses are removed by the preprocessor, the first rule of the CDCL procedure that
can be applied is the decision rule. Afterwards, the implications of the made decision are
propagated. In case of a conflict, the conflict analysis would learn a new clause and the
search will jump back in the search tree.
The following sections are structured according to this execution order. At the beginning

the major components of a CDCL SAT solver, namely decision heuristic, unit propagation
and conflict analysis, are described and recent modifications are presented. Afterwards, the
remaining state-of-the-art components, namely the removal heuristic, the restart heuris-
tic and the preprocessor, are described with the choices to improve these components.
The last component presented is the preprocessor because it is not really related to the
CDCL search. The implementation of the components is done by using rissR0. After the
techniques have been presented, the configuration of rissR0 is given. Finally, the old con-
figuration is compared to the possible modifications of the respective component. After
all the components have been analyzed separately, the best choices are combined into a
single configuration in Section 4 to be further analyzed.

3.1. Decision Heuristic

The decision heuristic is an important component because it decides the part of the search
tree that has to be examined in the next step. Whenever no other rule of the DPLL rules
can be applied, the decision heuristic makes two decisions.
The first decision is the variable that will be assigned next. Various schemes have been

developed in the last years but only one approach seems to be applied to leading SAT
solvers. The basic idea comes from the VSIDS heuristic [MMZ+01]. Every variable is
related to an activity indicating how often this variable has been involved in recent conflict
analysis. The more often the variable has been involved recently, the higher is its activity.
The decision heuristic is sometimes also called Activity Heuristic because of this feature.

The second decision, that is made by the decision heuristic is to choose the polarity
of the picked variable. The decision heuristic could simply choose a literal instead of a
variable, but most of the implementations record the activity per variable. Choosing the
polarity is done in different ways. One could set the polarity for the variable according to
a ratio of positive and negative, use the ratio of the occurrences in the formula or use the

26



3.1. Decision Heuristic

last assigned polarity of the variable. Furthermore, one could randomly assign a polarity.
The decision heuristic is essential for finding a solution for a SAT problem fast. If

the heuristic always leads to an unsatisfiable subtree before it finally decides to visit the
satisfying subtree, the performance of the solver would be low. Thus, current SAT solvers
use heuristics that perform well combined with the CDCL approach and use information
about conflict analysis to improve the decisions.

3.1.1. VSIDS Implementations

Most of the modern SAT solvers follow a simple scheme to implement the VSIDS heuristic.
Every variable is assigned to an activity a(v). Furthermore, the conflict analysis stores an
increment value inc that is initialized to 1. A parameter decay = 1/0.95 is set before the
search. Updating the activity of a variable is done after the conflict analysis step. The
activities of all variables that were touched during the analysis is increased by the current
value of the variable inc. Afterwards, inc is increased by the decay parameter to prefer
variables that have been touched in recent conflict analysis steps (inc = inc · decay). The
value of the decay parameter determines how strong recent conflict analyses are weighted
compared to previous ones. The higher its value, the stronger variables participating in
recent conflict analysis steps are picked for the next decision.
The original scheme, introduced in Chaff [MMZ+01], stored a score per literal and

initialized the activities of the literals according to the occurrence in the original formula.
Without the initialization, the very first decision is always the first variable because the
priority queue is filled with the variables in ascending order. Modifications of the VSIDS
heuristic also increase the activity of a variable if that variable is an element of the learned
clause [PD09]. In that case, the activity of this variable might be increased twice per
conflict analysis step. Most of the VSIDS implementations also pick the variable randomly
with a certain probability. This approach should help the SAT solver to avoid visiting a
similar search tree multiple times. Randomly picked variables lead to different branches
that lead to another part of the search tree. Picking the variable with the highest activity
according to the VSIDS scheme performs well, but the effect of randomly picked variables
shows that it is only a heuristic. On the other hand, picking variables only randomly
would result in a worse performance of the SAT solver. Therefore, most of the variables
are picked heuristically instead of randomly.

3.1.2. Phase Saving

Choosing the polarity of the picked variable can be done by reassigning the previous
polarity again, which was unassigned during backjumping. This approach was introduced
in [PD07] and is called phase saving. The main goal of phase saving is to avoid redoing
work. During backjumping, lots of variable assignments get lost and have to be revealed
again during search. Keeping these polarities and assigning them again seems to save
work for the search and results in finding a solution faster. When the previous polarity of
a variable is chosen, this polarity has to be stored before it can be assigned. Therefore
an additional data structure, the backup assignment, is introduced, which stores these
polarities. Whenever a variable is assigned a new polarity by the decision heuristic or during

27



3.1. Decision Heuristic

unit propagation, the assignment and the backup assignment of the variable are set to
this polarity. During backjumping only the information in the assignment is deleted. Since
polarities are only removed from the assignment, but also set in the backup assignment,
the backup assignment always contains the most recent polarity that a variable has been
assigned to.
To avoid searching in a similar part of the search tree over and over, the backup

assignment can be deleted [Bie09]. Using the backup polarity again results in a similar
search path after backjumping because all the picked variables are assigned to the same
polarity. Only the order of these variables on the path is different. Thus, the visited
subtree is similar to the previous one. Only looking in a certain subtree might take a lot
of time and does not necessarily result in a solution so that escaping might help to find
a solution in another part of the search tree. To analyze this idea, two approaches have
been implemented. The first approach deletes the backup assignment for all variables
of the conflicting level when a conflict is found. The second approach resets the whole
backup assignment when a restart is done. If no backup assignment is stored, because it
has been deleted or the variable has never been assigned before, one of the other polarity
heuristics, e.g. picking randomly or according to a certain ratio between positive and
negative polarities, is applied to assign a polarity.

3.1.3. Jeroslaw-Wang Heuristic

The Jeroslaw-Wang Heuristic is an approach to weight polarities. For every occurrence of
a literal in a clause of the formula the weight of this literal is increased by the following
value. Let l be a literal that occurs in a clause of length n, then the value of this literal will
be increased by 2−n. This value is exactly the part of the search tree that is constrained
by this clause. The values for all the literals are initialized using the described method
before the search is started and they can be updated if a new learned clause is added or
after a removal step is applied. If a polarity has to be picked for a decision variable, the
polarity with the higher value is chosen emphasizing that choosing this polarity satisfies
a set of clauses that prunes the search tree more than using the other polarity and the
corresponding clauses.

3.1.4. Choices in rissR0

The reference version rissR0 implements the following configuration. The activity of
variables is incremented only if the variable has been touched in a conflict analysis step.
Increasing the activity addend is done according to the VSIDS heuristic. The decay is
increased by 1/0.95 after every conflict.
The polarity is chosen according to a ratio between the positive and negative polarities

that have been already picked. The implementation sets the polarity for every picked vari-
able to negative. The solver does not initialize the activities according to the occurrences
in the formula before searching. Instead, all the activities are initialized to 0. A random
variable is picked every 1000 decisions. Such a random step tries to find an unassigned
variable using ten attempts. If these attempts fail, because only variables that are already
assigned have been picked, the decision variable is chosen by using the activities.

28



3.1. Decision Heuristic

3.1.5. Comparison of Heuristics to Pick a Variable

The two decisions which have been discussed in section 3.1 are analyzed separately. Fig-
ure 7 shows the comparison of the presented variants for choosing the next branching
variable. The first run VAR1 increases the activity not only if a variable has been touched
in the learning process, but also if the variable is part of the learned clause. The activity
addend is the same for both situations. Furthermore, the activity might be increased twice
for several variables during one conflict. The second run VAR2 initializes the activity of
the variables. If a variable occurs in a clause of size two, its activity is increased by 0.5.
Only clauses of a small size are considered because they cut bigger parts off the search tree.
The runs VAR3, VAR4 and VAR5 pick random variables with a probability instead after
a fixed number of decisions. The tested probabilities are 2%, 5% and 10% respectively.
The last two runs use different decays. Run VAR6 uses 1/0.9 like PicoSAT [Bie08b] and
VAR7 uses 1/0.85, like the version of riss that was used in the SAT Race 2010.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 90  100  110  120  130  140  150

ti
m

e
 i
n

 s
e

c
o

n
d

s

solved instances

SAT Race

Baseline

VAR 1

VAR 2

VAR 3

VAR 4

VAR 5

VAR 6

VAR 7

Figure 7: Comparisons of decision heuristic polarity options

The snake plot in Figure 7 shows the performance of these VSIDS implementations.
The difference of solved instances between the best configuration VAR6 and the slowest
VAR1 is only 9 instances. Increasing the activity of literals in the learned clause in VAR1
or choosing variables randomly with a high probability as in VAR4 and VAR5 results in
a slower search. Emphasizing recent conflict analysis steps more, as done in VAR6 and
VAR7, results in the best configurations for both the SAT Race timeout of 900 seconds
and the experiment timeout of 3600 seconds. For the 3600 seconds timeout the best
configuration VAR6 can solve 150 instances.

29



3.2. Unit Propagation

3.1.6. Comparison of Polarity Heuristics

Figure 8 compares the decisions on choosing the polarity of the picked variable. Run POL1
assigns the polarity using the phase saving scheme. The second run POL2 assigns the
polarity of the picked variable randomly using a uniform distribution. Run POL3 assigns
the polarity according to the Jeroslaw-Wang heuristic [JW90] of the clauses in the formula
and the learned clauses. The last two runs also use the phase saving scheme but reset the
backup assignment. POL4 resets the backup assignment of the conflicting search level
and POL5 resets the whole backup assignment during a restart.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 90  100  110  120  130  140  150  160

ti
m

e
 i
n

 s
e

c
o

n
d

s

solved instances

SAT Race

Baseline

POL 1

POL 2

POL 3

POL 4

POL 5

Figure 8: Comparisons of decision heuristic polarity options

The Experiment in Figure 8 shows that choosing a polarity can greatly influence the
search. The difference between the best configuration POL1 and the worst POL5 is 11
instances. Surprisingly, choosing the polarity randomly in POL2 performs almost as well
as using the best configuration. The performance of the static schemes in POL3 is clearly
higher than the baseline solver. Furthermore, deleting parts of the backup assignment
does not improve the performance of the solver but decreases it. Using phase saving
without resetting the backup assignment solves 158 instances and performs best. This
configuration is also used in most of the state-of-the-art SAT solvers [Bie09,Nik10].

3.2. Unit Propagation

Most of the runtime of a SAT solver is spent during propagating [HMS10]. The propaga-
tion is done by the Unit Propagation Component. This component is responsible to find
all unit clauses under the current partial assignment and adds the according literals to the

30



3.2. Unit Propagation

partial assignment. Furthermore, the unit propagation states whether the current partial
assignment is inconsistent. If an inconsistent assignment is found, the conflict clause is
returned and propagating the current implications is stopped (see Figure 4). Otherwise,
all the literals of the current unit clauses are propagated until a fix point is reached when
no other unit clauses can be found.

3.2.1. Two-Watched-Literal Unit Propagation

The only notable technique that is used in state-of-the-art SAT solvers to propagate the
current partial assignment is the Two-Watched-Literal Propagation [MMZ+01]. For this
scheme a unit queue is used that contains the literals that are implied by the current
partial assignment. Initially, this queue is empty. When a decision is made, the according
literal is added to the unit queue. Afterwards, all elements of the queue are propagated
until the queue is empty or a conflict has been found. Propagating a literal can add more
elements to the queue, if adding this literal to the current partial assignment implies other
literals. Whenever a literal is added to the unit queue, it is also added to the partial
assignment and thus the variable is assigned to the according polarity.
Finding implications of a partial assignment can be done by touching all clauses of the

formula during every propagation step. This approach would result in lots of clause visits.
Less clause checks can be achieved if only clauses are analyzed that contain the negation
of the currently propagated literal. Only these clauses can become a unit clause or a
conflict clause because only in these clauses a literal is falsified and removed in theory. All
the other clauses that contain the positive literal are satisfied and cannot become conflict
or unit.
The Two-Watched-Literal scheme improves this step even more. It uses the fact that

a clause can become unit only if one of the last two unassigned literals is falsified. If
two literals of a clause are unassigned, the clause is not unit under the current partial
assignment. Falsifying the second last unassigned literal in a clause results in a unit or a
conflict clause. The algorithm knows that only the other watched literal does not need
to be falsified, but it does not know whether this literal is already part of the unit queue.
Thus, the state of this literal is checked before enqueuing it to the unit queue. If the
literal is unassigned, it cannot be part of the unit queue and thus it is added to the queue
and assigned the according polarity. If the literal is already satisfied, it is not necessary to
enqueue it again, because it has already been added to the queue. If the second watched
literal is falsified, all the literals of the clause are falsified and thus, the current clause is
a conflict clause under the current partial assignment. If a literal is propagated, all the
clauses in which the negation of this literal is one of the two last unassigned literals have
to be visited. To achieve this quickly, watch lists per literal have been introduced. In every
clause two unassigned literals, called watched literals, are chosen. The clause is added to
the watch lists of these two literals. The two watched literals are usually stored at the
first two positions in the clause. If another literal of the clause is falsified, the watched
literals remain unassigned and the clause cannot become unit or conflict. If one of the
watched literals is falsified, the remaining literals of the clause have to be analyzed. If
there is another unassigned literal (except the other watched literal), this literal becomes
a watched literal and is exchanged with the falsified literal. If there is a satisfied literal,

31



3.2. Unit Propagation

the clause is satisfied and the next clause can be processed. If there is no unassigned
literal, the other watched literal has to satisfy the clause. Depending on the assignment
of the other watched literal, the clause becomes either a new implication of the current
partial assignment or a conflict clause.

3.2.2. Probing

Probing is a technique that is usually used in the preprocessor instead of search. It tries
to simplify the formula by comparing the partial assignment that has been created by
propagating a variable with positive and negative polarity. Therefore, this step is only
applicable if the current partial assignment does not contains any decisions, so that the
created assignment represents all the literals that are implied by a single decision with
respect to the current formula. During search, probing is only possible if the current level
in the search tree is zero. This level can be reached by backjumping or because of a
restart. Three interesting cases can occur if the probing approach is followed.
The first result of propagating both polarities can be that one of them might result

in a conflict and thus it is clear that the other polarity has to be chosen. Finding that
propagating one of the polarities fails is equivalent to finding a unit clause and thus half of
the search space can be pruned. For the other two interesting cases the following example
is used. It shows the implications of assigning variable 1 to positive and negative.

1 ⇒ 2, 3, 4, ¬5, ¬7
¬1 ⇒ 2, ¬4, 6, 7

The second effect of probing can be seen looking for variable 2. To create a complete
assignment, variable 1 has to be assigned. However, assigning it to any polarity results
in the implication of literal 2. Thus, a new unit clause is found and the current partial
assignment is extended immediately by this literal. The third case can be seen for variable
4 and 7. Variable 4 is equivalent to variable 1, because 1⇒ 4 ∧ ¬1⇒ ¬4⇔ 1 ≡ 4. The
same rule applies to 1 and ¬7. The found equivalences can be used to reduce the number
of variables in the formula by replacing all the equivalent variables by one representative.

3.2.3. Blocking Literals for Unit Propagation

The Two-Watched-Literals unit propagation is usually implemented as shown in Figure 9.
As explained in Section 3.2.1, the watch list for literal 2 is processed when this literal is
propagated. Every entry of this watch list usually contains only the reference to the clause
but no literal. If a clause has to be processed, it is simply accessed and the assignment of
its literals is evaluated. In more detail, each of the presented boxes is stored somewhere
in the main memory. If a clause is satisfied by one of its literals, it is possible to avoid
accessing the clause and checking its literals according to the Two-Watched-Literal scheme.
Instead, the possibly satisfied literal can be stored in the watch list. Before a slow clause
access is executed, it is checked whether the literal in the watch list entry is satisfied. In
this case, the clause access is blocked and the next watch list entry is analyzed. Differently
to prefetching the clauses [HMS10], the search path in the search tree can be changed by
applying this technique. If the clause is accessed and an unassigned literal is found before

32



3.2. Unit Propagation

Watcher lists
¬1
1
¬2
2
¬3
3
¬4
4

Watcher list
for literal 2

C1l1

C2l2

C3l3

C4l4

Clause Header
Activity
Size

Literals

Clause Literals
¬2
¬1
¬3

Figure 9: Implementation of the Two-Watched-Literal propagation using Blocking Literals
l1, l2, l3 and l4

the satisfied literal, the order of the literals is changed. During a conflict analysis step
this changed order results in a different resolution order and thus another clause might be
learned.
Since it is not known in advance which literal will be satisfied first, the blocking literal

is chosen statically. The blocking literal can also be updated during searching, but there
is not any well performing heuristic known.

3.2.4. Choices in rissR0

The baseline solver implements the Two-Watched-Literal propagation. It furthermore
treats binary clauses specially as introduced in [ES04]. Whenever a literal is propagated,
all the binary clauses are checked and the transitive closure of the implications on the
binary clauses is calculated and added to the queue. Afterwards, the literal is propagated
using longer clauses. The propagation stops on the first conflict that has been found or if
a fix point is reached. The solver rissR0 does not implement probing or blocking literals.

3.2.5. Comparison of Heuristics to Run Unit Propagation

Figure 10 shows the performance of three modifications on rissR0. The first run UP1
implements probing. Whenever a literal is propagated on the root of the search tree, its
negation is propagated first and checked for a conflict. Afterwards, the literal is propagated
and the approaches in Section 3.2.2 are followed. Equivalences that are found are not used
to simplify the formula. UP2 prefers longer conflict clauses [Bie09]. Therefore, whenever
a conflict during propagating binary clauses is found, the same partial assignment is
propagated on the longer clauses. If a conflict is found among the longer clauses, this
conflict is returned. Otherwise, the binary conflict is used for conflict analysis. The
third run UP3 implements the Blocking Literal scheme. The literal used for blocking
the clause access is the first literal of the clause when the clause is added to the watch
lists. The comparison of the three runs with the baseline solver in Figure 10 shows that

33



3.3. Conflict Analysis

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 90  100  110  120  130  140  150

ti
m

e
 i
n

 s
e

c
o

n
d

s

solved instances

SAT Race

Baseline

UP 1

UP 2

UP 3

Figure 10: Comparisons of unit propagation approaches

preferring long conflict (UP2) and probing(UP1) seems to be good for short timeouts like
the one for the SAT Race. If the timeout is set to 900 seconds, the difference of solved
instances between these two configurations and the baseline solver is almost 10 instances.
For longer run times the performance of UP1 drops below all other approaches. Using
blocking literals (UP3) during the search is the best configuration for very long timeouts
and can solve 149 instances. Still, the best configuration among the four runs is hard
to determine because the difference of solved instances within the timeout is only four
instances.

3.3. Conflict Analysis

Analyzing the conflict is the main difference between the DPLL and the CDCL procedure.
The advanced performance of the CDCL procedure comes with using the information of
the conflict by performing backjumping and improving the information for the decision
heuristic. Usually, learning a new clause is done by applying resolution to the conflict
clause and the reason clauses of its literals [SS96]. After some resolution steps are applied,
the resolvent is added to the formula (see section 2.2.4). Since the conflict clause and
the resolvent, called learned clause, are both unsatisfied under the current assignment,
some of the literals of the partial assignment have to be unassigned and backjumping is
applied in the search tree. Usually the backjumping distance is chosen so that the newly
learned clause becomes a unit clause and a unit propagation step can be applied instead
of deciding the next variable.

34



3.3. Conflict Analysis

3.3.1. First UIP Conflict Analysis

A Unique Implication Point (UIP) is a literal on a search path in the search tree that
leads to a conflict. Together with the partial assignment before the UIP, the UIP implies
the conflict. Thus, any literal on the current search path that implies both polarities of
a variable is a UIP. During resolution a UIP is reached if the resolvent contains only a
single literal of the conflicting decision level. The first UIP [ZMM01] is reached when only
a single variable of the current level is found for the first time and when the resolution
variables are taken from the trail reversely.. Implementing the resolution can be done
efficiently [Rya04]. Not every resolution step is done separately. Only the necessary
information is stored and processed. Furthermore, all the resolution steps share a single
set of literals for the resolvent.

Original Formula:
F=〈 C1, C2, C3, C4, C5 〉

=〈 [1, 3], [¬2, ¬5, ¬6], [¬1, ¬4, 6], [¬1,¬2,¬4, 5], [¬1, 2] 〉

Current Search Path:
Assignment 1 2 3 4 5 6
Level 1 1 2 3 3 3
Reason - C5 - - C4 C3

Conflict Analysis Resolution Steps:
Step Operation Result Remarks
1. C2 ⊗ C3 [¬1, ¬2, ¬4, ¬5] C6
2. C6 ⊗ C4 [¬1, ¬2, ¬4] C7, learned clause, subsumes C4
3. C7 ⊗ C5 [¬1, ¬4] C8, minimized clause

Resulting Formula: F = 〈 C1, C2, C3, C7, C5, C8 〉

Figure 11: Applying a state-of-the-art conflict analysis step

Conflict analysis can be illustrated using the running example as shown in Figure 11. In
the current state all variables are assigned true. Under this assignment, clause C2 is the
conflict clause. According to the learning scheme, the trail is processed reversely and thus
C2 is resolved with clause C3, resulting in the resolvent C6. Since this clause still contains
more than one variable of the conflicting decision level, the reason clause C4 belonging to
the next literal on the trail, namely literal 5, is resolved with C6 in the second resolution
step. The resulting resolvent C7 is the learned clause according to the first UIP scheme
because it contains only a single literal of the current level.

35



3.3. Conflict Analysis

3.3.2. Conflict Minimization

Sometimes a learned clause can be minimized further. The minimization is achieved by
applying self subsuming resolution, also called local minimization, or by applying recursive
minimization [SB09]. Therefore, the learned clause is resolved with the reason clauses
of its literals. If the size of the resolvent is greater than the size of the learned clause,
the learned clause is kept. Otherwise the resolvent is used as the learned clause and the
minimization is tested with the next literal.
Another techniques to determine whether a literal can be removed from the current

learned clause is called recursive minimization. This minimization applies several resolution
steps. Every literal li of the current learned clause C = [l1, . . . , ln] is tested whether it is
redundant. Let li be the literal that is currently tried to be removed. The first step is to
resolve the current clause C with the reason clause for li. If new literals are added during
a minimization step, these literals are resolved next. If a resolution step adds new literals
from a new decision level, the literal li is not redundant and thus kept in the clause. If the
size of a resolvent is smaller than the current learned clause then the current resolvent is
kept as the learned clause. Properties of the minimized clause are that it is shorter than
the learned clause and the minimized clause contains literals from the same number of
decision levels as the learned clause. Local minimization can be seen as a special case of
the recursive minimization, whereas only a single resolution step is necessary to remove a
certain variable.
The local minimization can be seen in the example in Figure 11. Continuing the

example in section 3.3.1 the learned clause can be minimized further. Therefore, it is
checked whether the resolvent with any reason clause of a contained literal is smaller than
the learned clause. The resolution of C7 and the reason clause of literal 2, namely C5,
results in a smaller clause C8. This clause is added to the formula instead of C7.

3.3.3. On-the-Fly Self Subsumption

Conflict analysis uses the fact that adding resolvents to the formula does not change
the model of the formula as shown in section 2.1.3. If a resolvent subsumes a clause
of the formula, then this clause can be removed because, if the resolvent is satisfied, all
clauses it subsumes have to be satisfied. Detecting whether a resolvent Cr = C1 ⊗v C2
subsumes one of the two originating clauses can be done by using the size of the clauses.
Cr subsumes C1 if the size of Cr is exactly one element less than the size of C1. This
case occurs only if all literals of C2 except v also occur in C1. In this case, the size of the
resolvent is less than the size of the larger participating clause. The only literal that does
not occur in Cr, but in C1, is a literal of variable v. Thus, Cr subsumes C1. Keeping the
shorter resolvent might increase the performance of the search because a shorter clause
prunes the search tree more than a longer one. Applying this method has been introduced
in [HS09].
The conflict analysis example in Figure 11 contains such an on-the-fly subsumption. The

first UIP clause C7 subsumes one of the two clauses involved in the resolution, namely
C4. Thus, C4 can be replaced by this intermediate resolvent.

36



3.3. Conflict Analysis

3.3.4. Assignment Stack Shrinking

After the conflict is analyzed and the learned clause is added to the clause database,
backjumping is performed. Usually the backjump distance in the search tree is adjusted
so that the learned clause becomes a unit clause under the new partial assignment leading
to unit propagation. As proposed in [NR10], jumping further might help to escape from
hard subtrees with no solution. This idea is realized by assignment stack shrinking, a
technique that dynamically determines the backjumping level.
Assignment Stack Shrinking uses three heuristics and works as follows: After every

conflict analysis, shrinking is applied if a certain condition, the shrinking condition, is
fulfilled. If the shrinking condition is fulfilled, the literals in the learned clause are sorted
according to a sorting scheme. Then the solver backtracks to the shrinking backtrack
level. The next decisions that have to be made by the solver are done according to the
ordered literals of the learned clause. The value of the picked literal is assigned false.
After each assignment unit propagation follows as usual.

Algorithm 3 UpdateShrinkSize(x)
1: Initialize y ← 95;
2: mean← mean of last y learned clause lengths;
3: stdev← standard deviation of last y learned clause lengths;
4: center← mean + 0.5× stdev;
5: ulimit← mean + stdev;
6: if x ≥ center then
7: x← x− 5;
8: else
9: x← x+ 5;

10: end if
11: if x > ulimit then
12: x← ulimit;
13: end if
14: if x < 5 then
15: x← 5;
16: end if

The first shrinking condition that has been developed in [Nad04] is fulfilled if all the
literals in the learned clause are from a different decision level. Another condition is the
clause size exceeding a certain threshold x as in zchaff_rand [MFM04]. The threshold
has been set dynamically, using statistics of the search, as explained in Algorithm 3. The
first implementation in zchaff_rand of this dynamical setting initialized the parameter y
to 600. Whenever and update is done,the algorithm calculates a new upper limit and
a center value based on the mean and the standard deviation of the clause lengths of
the last learned clauses. If the current threshold is below the calculated center value,
the threshold is increased by 5, otherwise it is decreased by 5. The new value of the
size threshold is bounded by a dynamic upper limit and a lower limit of 5. Besides the
introduced conditions, another condition has been introduced in [NR10] that does not

37



3.3. Conflict Analysis

allow two shrinking steps in a row. Instead of counting the number of literals in a clause,
the number of levels are counted and a threshold for this value is applied.
The literals of the learned clauses are sorted before they are reassigned again. Assigning

these literals in the same order again would lead to a similar search path as if the backjump
level is be set to the 1UIP level. If a different order is chosen, the order of the literals
on the path is different and thus the order of resolution steps using the according reason
clauses is different as well, resulting in a different learned clause. Sorting the literals of
the learned clause can be done according to the decision levels of the literals, ascending or
descending. Furthermore, the activity of the variables can be used to sort these variables
before they are assigned again during the next decision steps. The second sorting scheme
is motivated by the good performance of the VSIDS heuristic (compare section 3.1.1) and
performs better than the first one according to [NR10] as the activity of a variable seems
to be a better criterion than the level it has been assigned.
Choosing a lower shrinking backjumping level than the level where the learned clause

becomes unit can be done in several ways. Published variants include unassigning the
smallest part of the trail such that all literals of the current learned clause become unas-
signed or unassigning all levels of the current partial assignment until the first level that
is not part of the learned clause [NR10].

3.3.5. Choices in rissR0

The baseline solver rissR0 implements the usual conflict analysis combined with conflict
minimization. Although the minimization can be implemented recursively the standard
implementation does not use this fact. Neither on-the-fly self subsumption nor assignment
stack shrinking are used in rissR0.

3.3.6. Comparison of Several Conflict Analysis Techniques

Figure 12 compares several conflict analysis techniques. The first run CON1 does not
try to minimize the learned clause further. CON2 applies the on-the-fly self subsumption
during conflict analysis. Due to the component based structure of the solver, the subsumed
clause is not removed from the data structures. Instead, the new subsuming clause is
added to the formula. The clauses that can be subsumed are kept and thus introduce
an overhead. Thus, the impact on the runtime of this configuration might be better,
if the subsumed clauses were removed immediately. CON3 and CON4 apply different
assignment stack shrinking configurations. CON3 sets the backjumping level so that
all literals of the learned clause are unassigned again. Shrinking is only applied if the
learned clause contains only one literal per decision level and if its size is above a certain
threshold, namely 95. The size threshold changes according to Algorithm 3. Assigning
the literals of a conflict clause again is done according to the activity of the literals.
CON4 sets the backjumping level to the closest level in the search tree where none of
the literals in the learned clause has been set. Shrinking is applied if the learned clause
has more than 95 literals. To reassign, the literals of the currently learned clause are
sorted ascending accordingly to their decision level. The last configuration CON5 uses a
recursive implementation of the recursive minimization as implemented in MiniSAT 2.2.

38



3.4. Removal

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 90  100  110  120  130  140  150

ti
m

e
 i
n

 s
e

c
o

n
d

s

solved instances

SAT Race

Baseline

CON 1

CON 2

CON 3

CON 4

CON 5

Figure 12: Comparisons of conflict analysis strategies

The result of the minimization is always the same as in the iterative implementation in
rissR0. Thus, the search path of the two configurations is always the same.
Minimizing the learned clause is crucial for the performance of a SAT solver. This

is the major result of comparing the configurations to the baseline solver. The baseline
solver can solve 147 instances in the limits, whereas it is able to solve only 123 instances
if the minimization is disabled. The snake plot in Figure 12 shows this very nicely. The
performance of the solver is not influenced significantly if the minimization is implemented
recursively instead of iteratively. Without minimization the solver can compete with all
the other configurations only within the easiest 60 instances. Solving harder instances
takes significantly more time if conflicts are not minimized. Applying assignment stack
shrinking to the conflict analysis does not improve the performance of the solver signifi-
cantly. Shrinking the assignment leads to a better performance than the baseline solver
only for the 900 seconds timeout of the SAT Race. Applying on-the-fly self subsumption
during conflict analysis results in the best performance for the SAT Race timeout.

3.4. Removal

Analyzing the conflict clause and conflict directed backjumping boosted the performance
of DPLL search algorithms dramatically [SS96]. However, as mentioned in [SS96], the
clause database has to be managed, because too many clauses slow down the performance
of unit propagation [ES04]. Therefore, the clause database is separated into two sets of
clauses, the original formula and the set of learned clauses. All state-of-the-art SAT
solvers reduce the learned clauses according to some removal heuristic during the search

39



3.4. Removal

to keep the performance of unit propagation considerably high. Most systems always
keep clauses of size two because they prune large parts of the search tree and because
propagating binary clauses is very cheap. Furthermore, a clause that is a reason for a
current assignment of a variable cannot be removed because otherwise resolution on that
particular variable fails during conflict analysis. The point in the search when a removal
is scheduled is also chosen heuristically by a removal event heuristic.
Differently from the DPLL search, the CDCL approach needs the learned clauses to

remember which part of the search tree it has already examined. Removing a learned
clause allows the search to reach the same search path again that has been evaluated
when the learned clause was generated. If the clause removal is not restricted, the search
will visit the same conflicts again and again and will not terminate. To ensure termination,
removals are scheduled in increasing intervals. If an interval is so large that all possible
learned clauses can be generated within that interval, the search will terminate again.

3.4.1. Activity Removal

MiniSAT [ES04] stores one activity per clause. This activity is computed as the activ-
ity for the variables in the activity heuristic (compare section 3.1.1). The activity of a
clause increases if the clause is touched during conflict analysis. Again, there is a current
increment value inc = 1 and a decay value decay > 1. When a clause has been used in
a resolution step in the current conflict analysis, its activity is increased by the current
value of inc. After all touched clause activities have been updated, the increment value
is increased by the value of the decay parameter inc = inc · decay. To remove learned
clauses, the clauses are ordered according to their activity. The clauses with the lower
activity are removed because they have not been important during recent conflict analyses
and so they might not be useful in the current search tree. The percentage of the learned
clauses that is removed is another parameter that can be tuned.

3.4.2. Literals Blocks Distance (LBD)

Another activity for clauses has been introduced in [AS09b]. This value is called Literals
Blocks Distance (LBD). It is computed as follows. The literals of a clause are partitioned
into sets where all literals of a set have been assigned on the same decision level. The
number of the sets is the LBD. The LBD for a clause can be set immediately after
the clause has been generated during conflict analysis or during propagating the last
unassigned literal of this clause. It has been shown in [AS09b] that clauses with a low
LBD value are very important for conflict analysis steps. Thus, during removal, clauses
with a low LBD are kept. Clauses with a LBD= 2 are never removed because a learned
clause with this LBD value assigns all its literals on a single level after backjumping. The
percentage of the learned clauses that are removed is a parameter.

3.4.3. Suffix Removal

To determine how important a certain clause might be for the current state of the search
can be done by using activities as in the previous two sections. Another indicator of this

40



3.4. Removal

importance might be the number of assigned or unassigned literals in a clause given the
current partial assignment.
This approach is implemented in HydraSAT [BGH+09]. The literals of the learned

clause are sorted according to their level. In the next step they are divided into a prefix
and a suffix. Either the number of suffix or prefix literals can be fixed and the remaining
literals belong to the other part. The level of the last prefix literal is stored and the clause
is enqueued to a list related to that level. Therefore, per visited decision level a list, the
level-list of clauses has to be stored. If the clause contains only prefix literals or is smaller
than a certain threshold, it is stored in another data structure, the prefix-list. Important
clauses, for example clauses of size two will never be removed and thus are enqueued to
a third structure, the kept-list.
When a removal is scheduled, the current partial assignment is usually not empty and

the current state of the search is not on the root level of the search tree. Let level be the
current level of the search, then all clauses that are enqueued in level-lists at higher levels
are removed. Furthermore, clauses from the prefix-list can be removed. Since new clauses
are added at the end of the prefix-list, an aging mechanism can be applied by removing
clauses from the front of the list. This aging mechanism ensures that the average age of
the kept learned clauses does not increase significantly. Since new clauses have a low age
and previously added clauses have a higher age, clauses that have been learned recently are
kept and the older ones are removed. This aging keeps clauses that might be important
in the current sub tree.

3.4.4. Dynamic Scheduling

Scheduling a clause removal can be done statically after a certain number of conflicts and
added clauses or dynamically, depending on the size of the formula and other features
of the search. MiniSAT 1.4 schedules a removal if the ratio between learned clauses and
clauses of the formula reaches a certain threshold. At a restart (see section 3.5), the
factor ratio is increased. Initially, the ratio is set to 1/3. At every restart, it is increased
by factor = factor · 1.1. A removal is scheduled if the following equation is satisfied:
learned_clauses− assigned_variables ≥ original_clauses · factor.

3.4.5. Static Scheduling

The winning solver glucose of the UNSAT track of the SAT Competition 2009 was the first
SAT solver that implemented the LBD as clause activity combined with a static removal
scheduling. This removal follows a linear scheme depending on x, the number of removals
that have already been scheduled. A removal is scheduled, if the number of conflicts since
the last removal is greater than 20000 + 500 · x.
Another approach that is followed in the baseline solver rissR0 schedules removals

according to a geometric series. The first removal is triggered after limit = 100 conflicts.
When a removal is scheduled, this limit is increased by limit = limit · 1.5 so that after the
next limit conflicts the next removal is scheduled.

41



3.4. Removal

3.4.6. Choices in rissR0

The baseline solver rissR0 uses the static geometric scheduling (compare section 3.4.5).
Furthermore, it does not use any clause activity scheme to remove clauses but uses the
clause size. All learned clauses with more than six literals are removed from the oldest 55%
percent of the clauses. This behavior occurs because the removal is scheduled together
with a restart and thus the suffix removal is not able to handle prefixes or suffixes of
clauses. Thus, only the aging mechanism of the removal is applied.

3.4.7. Comparison of Removal Heuristics

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 90  100  110  120  130  140  150  160  170

ti
m

e
 i
n

 s
e

c
o

n
d

s

solved instances

SAT Race

Baseline

RM 1

RM 2

RM 3

RM 4

RM 5

RM 6

RM 7

RM 8

RM 9

Figure 13: Comparisons of removal heuristic options

Figure 13 shows the runtime for some removal configurations. RM1 implements the
LBD removal with removing 50% of the clauses with the highest LBD value. The LBD
value is set per clause only when the clause is generated because of the component based
structure of riss. Updating the activity during unit propagation would result in a more
complex structure of the solver. Furthermore, PrecoSAT [Bie09] implements an additional
step into the removal. This SAT solver does not allow to remove learned clauses that had
been learned directly before a restart. Whenever the activity removal is chosen, this scheme
is also applied. RM2 behaves like RM1 except that scheduling a restart is done by using
the dynamic scheduling. RM3 implements the MiniSAT activity removal, combined with
the standard geometric scheduling. RM4 also uses the MiniSAT activity and also schedules
removals according to MiniSATs dynamic scheduling. RM5 uses the same configuration
as RM1 except the treatment of learned clauses that had been generated directly before

42



3.5. Restarting the Search

a restart. Theses learned clauses are not treated specifically in RM5. Since all presented
configurations keep 50% of the learned clauses and analyze only the remaining ones when
a removal is scheduled, the next two runs analyze this behavior for two different values.
RM6 keeps only 25% of the learned clauses with the highest activity during a removal
step and RM7 keeps 75% of these clauses. Longer intervals between two removals are
tested in the last two runs. RM8 implements the same configuration as the baseline solver
except that the initial limit for the geometric series that is used to schedule removals is set
to 1000 instead of 100. RM9 also extends the initial limit to 1000 but uses the activity
removal as in RM1.
The major result of the comparison in Figure 13 is that all removals that are based

on the LBD activity removal perform better than the aging removal implemented in
the solver. Furthermore, configuration RM4 with the dynamic removal scheduling and
a dynamic clause activity performs very badly. The snake plot also shows that all the
configurations that use the LBD activity perform better than the other configurations.
Using the MiniSAT activity removal (RM3) seems to be the better choice compared to
the static aging removal in rissR0. When it comes to the LBD value, the static geometric
scheduling performs slightly better than the dynamic scheduling. Increasing the intervals
for the removal using the LBD as activity results in the best configuration, which can
solve 166 instances.

3.5. Restarting the Search

The backtracking SAT algorithm DPLL is a deterministic algorithm to find a solution for
a SAT instance. This algorithm is known to behave heavy-tailed [GSCK00]. The heavy-
tailed behavior leads to a very long run time for a certain instance although the instance
can be solved very fast if another random seed is used. Therefore, restarting the search
randomly is proposed in [GSCK00] to avoid the high variance of the runtime and to boost
the average solving performance of SAT solver.
Restarting the search is done by unassigning the whole partial assignment (except found

unit clauses). Afterwards, the decision rule is applied again and can pick a variable with
a high activity. The effect of a restart is that the complete search tree is turned over and
variables that had been assigned at very low levels become unassigned again. Restarting
also helps to escape of subtrees that are difficult to escape from by backjumping. After a
restart, the search starts again at the root of the search tree and can choose any variable.
Thus, the probability that a different subtree is examined next is higher if restarts are
enabled.
During the last years the frequency of restarts increased. It has been shown in [Hua07]

that applying restarts according to any schedule performs better than not applying restarts.
Instead of scheduling restarts randomly, they are triggered by a static schedule in recent
SAT solver. As described in [Bie08b], the high frequency of restarts helps to find the
solution instead of getting lost in a subtree that does not contain a solution or refutation.
Combined with the phase saving polarity heuristic (see section 3.1.2), restarts only change
the order of the variable assignments in the search tree instead of leading to different
assignments and different subtrees. Whenever the next conflict is found in the similar
subtree, a different conflict clause will be generated because the order of the variables on

43



3.5. Restarting the Search

the lower level than the conflicting level have a different order. This conflict clause will
lead to another subtree. Thus, for the subtree that has been examined another conflict
clause is learned before the search escapes from this tree and visits another subtree. If the
partial assignment is undone during the search, the whole algorithm might not terminate
because a restart could be scheduled before a solution is found. Thus, most of the restart
schedules have an increasing intervals so that the intervals become so large that all possible
assignments can be tested between two restarts and thus the search always terminates.
In the following section, frequently used restart policies are introduced. Most of them

follow a static schedule. The last one strategy uses some features of the current search
state to determine whether the search should escape from the current state and a restart
should be applied.

3.5.1. Geometric Series Scheduling

The first schedule that will be presented follows a geometric series and has been imple-
mented in MiniSAT 1.4 [ES04]. The solver initializes the size of the first interval with
limit = 100. When the number of occurred conflicts reaches the value of limit, a restart
is triggered and the interval size is increased by limit = limit · 1.5. After the next limit
conflicts the next restart is scheduled.

3.5.2. Luby Series Scheduling

The Luby series has been introduced in [LSZ93] and used for scheduling restarts the first
time in [Hua07]. The limits for the restart intervals starts as follows: 1 1 2 1 1 2 4 1 1
2 4 8 1 1 2 . . . . Since it is very improbable to find a solution after a single conflict, this
series is multiplied by a factor. This factor is a parameter of the Luby series schedule. For
search algorithms without information about the search state, the Luby series is proved
to be optimal in [LSZ93]. Thus, it is be the optimal choice if no information about the
search is available and it is expected that this policy performs better than the geometric
series if restarts do not interfere with the behavior of other components in the search.

3.5.3. Nested Series

The intervals of the geometric series increase very fast compared to the Luby series (com-
pare Figure 14). The intervals become so large that it is hard for the solver to escape
from hard subtrees after the first small restart intervals. Nesting two series can avoid this
problem and has been implemented in PicoSAT [Bie08b]. The solver now maintains an
inner limit and an outer limit. The outer series bounds the inner series. Whenever the
inner limit i reaches the outer limit o, the inner series starts from its beginning and o is
set to the next value of its series. The interval size for the number of conflicts between
two restarts is represented by i. Whenever the number of conflicts since the last restart
reaches the value of i, a restart is triggered and i is set to the next value of its series or
reset because it has reached its bound o.
This procedure ensures two properties. The average size of the intervals grows such

that the search still terminates. On the other hand, small intervals occur much more often
than in one of the two used series.

44



3.5. Restarting the Search

3.5.4. Dynamic Scheduling

Scheduling restarts is mostly done depending on the number of conflicts. In the static
schedules, a certain number is determined and after this number of conflicts a restart is
scheduled. Scheduling restarts in [AS09a] depends not only on the number of conflicts,
but the decision level is also taken into account to adjust the restart schedule to the
current search state. Although the Luby series has been proved to be the best series for
restarting a search without information, even better restart schedules can be created by
using the provided information of the current search state.
Glucose [AS09a] watches the decision levels of the decisions that were made during the

last 100 conflicts. The specified number of conflicts to average the decision level is called
windowSize. The solver maintains the average recent of the decision levels. If decreasing
of the average of this decision levels stalls, a restart is scheduled. To recognize this stalling,
the global average global of all decision levels is maintained as well. If the value of recent
gets below 70% of global, a restart is scheduled. Since +the value for recent has to be
calculated after a restart again, the interval size between two restarts is at least as large
as the window size for the calculation. Since the window size is not increased, termination
cannot be guaranteed for this schedule.

3.5.5. Reject Scheduled Restarts Using Agility

Scheduling restarts dynamically was considered difficult until an effective adaptive way to
reject scheduled restarts was found [Bie08a]. The used measurement to decide whether
a restart should really be scheduled is decided upon the agility of the search. This agility
is calculated by using the phase saving polarity heuristic (see section 3.1.2).
The agility is initialized with agility = 0. Whenever a polarity is assigned to a variable

, this agility is updated. If the new polarity is different from the backup assignment of
this variable, the agility should increase, if not, it should decrease. To achieve aging at
every variable assignment, the activity is decreased by a decay agility = agility · d where
d is a value between 0 and 1. Increasing the activity is done by using the same decay
agility = agility + d. Thus, it is ensured that the value of agility is bounded by 0 and
1. If a restart should be scheduled by a static restart heuristic, the current agility can
be compared to a threshold. If the agility is higher than the threshold, the restart is not
scheduled. In [Bie08a] it is assumed that the solver might find a refutation if most of the
variable assignments have a different polarity. If the agility is low, the restart is scheduled
to help the solver escaping from the current subtree.

3.5.6. Choices in rissR0

The baseline solver implements a simple static restart schedule. As in MiniSAT 1.14, the
first restart is scheduled after 100 conflicts and the increase factor for the series is set to
1.5.

45



3.5. Restarting the Search

3.5.7. Comparison of Restart Schedules

Figure 14 compares the restart intervals for a set of static restart schedules. Note the
log scale on the y-axis that represents the interval size between two restarts. The x-value
describes the number of the restart. A purely geometric schedule clearly increases the
interval size exponentially. Modern SAT solver use rapid restarts using the Luby series or
a nested geometric series. The plot shows that the intervals for a nested geometric series
are smaller than the ones for the Luby series. PicoSAT uses a nested geometric series
with an increase factor of 1.1 as shown in the plot. It schedules restarts with the highest
frequency among the compared heuristics. Skipping some of this scheduled restarts leads
to a performance boost again according to empirical results [Bie08a].

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0  50  100  150  200  250  300  350  400  450

in
te

rv
a

l 
s
iz

e

number of restart

luby 32
nested geo 100 1.5

geo 100 1.5
nested geo 100 1.1

Figure 14: Comparisons of restart schedules

3.5.8. Comparison of Restart Heuristics

In Figure 15 restart schedules are compared. The first four runs RES1, RES2, RES3 and
RES4 use a Luby series with the bases 2, 32, 64 and 1024, respectively. RES5 and RES6
use the dynamic scheduling with different window sizes. RES5 uses a window size of 100
conflicts like glucose and RES6 uses 1000 conflicts. The remaining two runs implement
the ideas from PicoSAT. RES7 restarts using two nested geometric series both with a base
of 100 and an increment factor of 1.1. RES8 enables the phase saving polarity heuristic
to be able to calculate the agility of the current search state. The configuration rejects
restarts if the measured agility of the search is lower than 22%.
Figure 15 clearly states that scheduling restarts often boosts the performance of the

46



3.6. Preprocessor

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 90  100  110  120  130  140  150  160  170

ti
m

e
 i
n

 s
e

c
o

n
d

s

solved instances

SAT Race

Baseline

RES 1

RES 2

RES 3

RES 4

RES 5

RES 6

RES 7

RES 8

Figure 15: Comparisons of restart heuristics

SAT solver. The two schedules that schedule restarts most often are clearly the fastest
configurations. The dynamic schedule in RES5 schedules restarts after at least 100 con-
flicts and avoids scheduling restarts if the search seems to escape of a certain subtree
because the decisions level decreases. This configuration is able to solve 166 instances
of the benchmark. Enlarging the window size to 1000 conflicts (RES6) already results
in a slow search. Using the nested schedule of two geometric series (RES7) is also quite
powerful and the average distance between two restarts is still lower than 1000. In case
of the Luby series, it can be seen that this series highly depends on the chosen factor by
which it is multiplied. Choosing a large factor results in large interval sizes, even for the
small numbers in this series. When too small values are chosen as factor, the Luby series
schedules restarts too fast. For example for factor two, whenever the series starts from
1 again, a restart is scheduled after two conflicts although it is very improbable that the
solver is in a difficult subtree after only two conflicts(RES1).
The comparison of the schedules shows that rapid restart are very powerful. Still,

scheduling restarts too frequently slows the SAT solver down again, since the solver is not
able to examine subtrees well enough before the next restart is scheduled. Furthermore,
the dynamic schedule or the restart rejection does not outperform static schedules.

3.6. Preprocessor

The general SAT problem is NP complete [Coo71]. For a given formula with n variables,
all known algorithms have a worst case execution time of O(2n). This execution time
depends only on the number of variables and not on the number of clauses. In theory,

47



3.6. Preprocessor

reducing the number of variables results in a faster search according to this complexity.
However, in practice the number of variables does not correlate with the runtime. The
number of clauses highly influences the performance of the unit propagation and thus also
the frequency of learning new clauses and performing backjumping. Thus, reducing the
number of variables by increasing the number of clauses does not necessarily boost the
performance of the SAT solver but slows it down. Preprocessing helps to reduce the size
of the formula by removing variables and clauses that are not necessary for finding a model
for the formula. There are different techniques that can be separated into two groups.
The first group of techniques keeps the model and that is why these techniques are called
model preserving. The other group does not keep the model and is called non-model
preserving.
Simple techniques like propagating unit clauses or applying subsumption and self sub-

sumption are model preserving [HJB10] and are not described in detail here. Nevertheless,
they are part of any modern preprocessor [EB05] and are applied to any formula to remove
redundant clauses and literals.
The following sections describe recently developed preprocessing techniques that reduce

the size of the formula. The first two techniques in the following sections are non-model
preserving whereas all the other presented techniques are model preserving.

3.6.1. Variable Elimination

Variable Elimination (VE) [EB05, SP05] is a technique to remove variables from the for-
mula. After a variable is removed, only a partial assignment is left and thus this technique
is non-model preserving. VE is based on resolution and thus it can still be used to trace
the refutation of an instance, namely keeping track of the resolution steps.
Removing a variable from a formula is done by resolving the according clauses in which

the variable occurs. Given a formula with a set of clauses S, this set contains clauses
where the variable x occurs positive Cx and negative Cx. Let F be the union of these
two sets F ≡ Cx ∪ Cx. Resolving these two sets on variable x results in a new set of
clauses F ′ where trivial clauses are not added to the new clause set. It is shown in [EB05]
that F can be replaced by F ′ without changing the satisfiability of the formula. If the
model is needed for the original formula, then the partial model can be extended using
the original clauses F to assign variable x. Usually, applying VE to a variable results in a
larger number of clauses. Thus, in state-of-the-art preprocessors VE is only applied to a
variable, if the number of clauses does not increase.

The example in Figure 16 shows the application of VE to a formula. The resulting
formula has fewer clauses than the original one and contains fewer variables. Solving the
simplified formula FV E1 without knowing the original formula might result in a satisfying
assignment like α = {1, 2,¬3, 4, 5}. Obviously, this assignment does not satisfy the
original formula F because clause C4 is not satisfied. By using all clauses where the
variable 1 occurs, the assignment for variable 1 can be set to the needed value without
changing any other variable assignments. Simply flipping the assignment to the negative
polarity results in a satisfying assignment for the original formula.

48



3.6. Preprocessor

3.6.2. Blocked Clause Elimination

Blocked clauses are redundant clauses. However, removing a blocked clause from the
formula does not keep the assignment and thus blocked clause elimination (BCE) is non-
model preserving [HJB10]. A clause C is blocked if it contains a blocking literal l. The
literal l is a blocking literal, if l is part of C, or for each clause C ′ ∈ F with l ∈ C ′ the
resolvent C ⊗l C ′ is a tautology [JBH10,HJB10]. Removing blocked clauses can be done
until a fix point is reached. The order of the removal does not change the result because
BCE is confluent [JBH10]. Not removing all blocked clauses from the formula does not
seem to influence the runtime of the solver much so that BCE is not performed for literals
with a high occurrence.

Original Formula:
F=〈 C1, C2, C3, C4, C5, C6 〉

=〈 [1, 2], [1, 3, 4], [¬1, ¬3], [¬1, ¬5], [¬3, ¬4], [¬2, 4] 〉

VE on F using variable 1, remove tautology C2 ⊗1 C3=[3, ¬3, 4]:
FV E1=〈 C1⊗3, C1⊗4, C2⊗4, C5, C6 〉

=〈 [2, ¬3], [2, ¬5], [3, 4, ¬5], [¬3, ¬4], [¬2, 4] 〉

BCE on F using C2 with blocking literal 3 removes C2:
FBCE = 〈 C1, C3, C4, C5, C6 〉

HTE on F using C2:
Step Operation Remark
1. HLA(C2,C1)=[1, ¬2, 3, 4] C ′2
2. HLA(C ′2,C6)=[1, ¬2, 3, 4, ¬4] C ′′2 , tautology
3. remove C2

FHTE = 〈 C1, C3, C4, C5, C6 〉

Figure 16: Preprocessing a formula

Reducing the original formula F in the example in Figure 16 by using BCE results in
the formula FBCE . Unfortunately, this reduced formula does not have a model that does
not satisfy F as well (compare section 3.6.3). Thus, it does not show that it is possible
to repair the model using the blocked clause. However, the example still shows that it is
possible to remove redundant clauses by applying BCE to a formula.

3.6.3. Hidden Tautology Elimination

The Hidden Tautology Elimination (HTE) is based on a clause extension, the hidden
literal addition (HLA). After the clause is extended by HLA, it is checked whether it is
a tautology. If it is a tautology, the clause can be removed from the formula. HTE is

49



3.6. Preprocessor

model preserving [HJB10]. The HLA applied to a clause C with respect to a formula F
is computed as follows: Let l be a literal of C and [l′, l] ∈ F \ {C}. If such a literal l′ can
be found, C is extended by C := C ∪ l′. This extension is applied until fix point. HTE
now removes an extended clause, if it is a tautology. Note that applying HLA or HTE to
a formula is model preserving [HJB10]. HLA is the opposite operation of self subsuming
resolution. An example HTE simplification is given in Figure 16. Firstly, in step 1 clause
C2 is extended by literal ¬2 using C1 because both clauses contain literal 1. Afterwards,
C ′2 can be extended by using the newly added literal and C6. The latter step results in
C ′′2 , a tautology. According to the features of HTE, this clause can be removed from F
still keeping all satisfying models for the original formula. This fact also shows why there
is not any assignment for FBCE that does not satisfy the original formula F .

3.6.4. Equivalence Elimination

According to the complexity theory, a SAT problem is solvable in exponential time with
respect to the variables in the formula. Reducing the number of variables to speed up the
search can be done by removing equivalent literals and only keeping one representative
of the equivalence class. An equivalence of literals can be found by finding cycles in the
binary implication graph. To visualize the implications of a formula, a binary implication
graph can be generated by using all the binary clauses of the formula. The vertexes of
the graph are all literals of the formula F . The edges of the graph show which literals
l′ are implied by another literal l. Since a binary clause represents an implication, for all
binary clauses C = [l, l′] the following two edges can be added to the graph: l → l′ and
l′ → l. Assuming the cycle a→ b→ c→ a has been found in the graph, then there have
to be edges a → b, b → c and c → a resulting from the clauses [a, b], [b, c], and [c, a].
These clauses also force the following cycle a→ c→ b→ a to exist in the graph. Given
these implications, it can be shown that a ≡ b for the given clause set. The definition of
equivalence is a ≡ b ⇔ a → b ∧ a → b. Given the first implication, the left hand side
of the assumption can be shown. The second implication gives the right hand side. This
proof sketch can be adjusted for any two literals in the cycle resulting in the statement
that all participating literals in the cycle are equivalent.
Another way of finding equivalences is to use probing and comparing assignments, as

already discussed in Section 3.2.2. How probing is implemented in the preprocessor is
described in the following section.

3.6.5. Probing

Probing is a technique to simplify the formula by propagating several single decisions, for
example l, separately and comparing their implications BCP(l) [LMS03]. Since riss is
component based, the preprocessor has to implement its own unit propagation. Currently,
the unit propagation of the preprocessor in riss is only able to propagate assignments on
binary clauses.
The preprocessor is able to apply the two rules explained in 3.2.2. The found necessary

assignments are used to simplify the formula and equivalences are eliminated. The rule to
find necessary assignments is called failed literal probing. Another rule to find necessary

50



3.6. Preprocessor

assignments, the clause probing, is implemented: For a clause [l, l′] ∈ F all the literals
BCP(l) ∩ BCP(l′) are necessary assignments. The rule can be explained by the fact
that the clause [l, l′] can only be satisfied by satisfying at least one of its literals. If both
literals of the clause imply a same literal, this literal has to be set to true for any satisfying
assignment of the formula. This rule can be extended to longer clauses.
Furthermore, as explained in [LMS03], binary clauses can be added to the formula.

Whenever a decision l is propagated, for all literals l′ that are implied by l new binary
clauses [l, l′] can be added to the formula. Naturally, not too many clauses should be
added because the higher number of clauses slows down the search.

3.6.6. Vivification (Asymmetric Branching)

Vivification is a technique to reduce the length of clauses. Replacing a long clause by a
shorter one results in more pruning of the search space and during search also to smaller
learned clauses. Thus, small clauses should be more beneficial for the search than longer
clauses. Reducing the length of a clause C = [l1, . . . , ln] of a formula F can be done as
follows: All the literals are sequentially propagated in ascending order of the index until
one of the following three cases occurs.

1. BCP({l1, . . . , li}) results in an empty clause for i < n.

2. BCP({l1, . . . , li}) implies another literal lj of the C with i < j < n

3. BCP({l1, . . . , li}) implies another negated literal lj of the C with i < j ≤ n

In the first case, the assignment that unsatisfies the formula F is not allowed. Disal-
lowing this assignment can be done by adding a clause C ′ = [l1, . . . , li]. The clause C ′ is
clearly shorter than C and also subsumes C. Thus, the longer clause C can be removed
by the newly created clause C ′.
Propagating the literals of C sequentially on the formula F resulting in the second case

can also be understood by the constraint l1 ∧ · · · ∧ li → lj . Converting this constraint
into a clause (compare Definition 13) results in C ′ = [l1, . . . , li, lj ]. This clause subsumes
C and thus C can be replaced by the shorter clause.
In the third case, the extracted relation is the following with respect to the formula F :

l1 ∧ · · · ∧ li → lj . This constraint can also be formulated in a clause C ′ = [l1, . . . , li, lj ].
Applying self subsumption to C ′′ = C ⊗lj C ′ = [l − 1, . . . , lj−1, lj+1, . . . , ln] results in a
shorter clause C ′′ that subsumes C.

3.6.7. Inprocessor Simplifications During Search

The preprocessor techniques are based on the structure of the formula F . If one of these
techniques is applied until a fix point, it is not possible to reduce the formula further by
using the same technique. However, during the search unit clauses might be learned or
found by probing. Applying this unit clause to the formula has the following consequences:

1. Satisfied clauses are removed from the formula.

2. Clauses are shortened because the unsatisfied literals can be removed.

51



3.6. Preprocessor

The implications of the unit clause can also lead to more reduction according to the
two rules. Thus, if a top level unit is found during the search and the search reaches level
zero (for example during a restart), all formula simplifications can be applied again before
the search will be continued [EB05].

3.6.8. Choices in rissR0

The preprocessor implemented in rissR0 uses three techniques. In the first step, pure
literals are detected and set to true. Afterwards, variable elimination is applied. Since
the implementation of the Satelite preprocessor [EB05] tightly couples subsumption and
variable elimination, these two algorithms are also run tightly coupled in rissR0. Firstly, all
subsumed clauses are removed. Afterwards, VE is run, using the variables of the formula
in descending ordered according to the number of their occurrence in the formula. These
two techniques are repeated until no more clauses can be subsumed and no more variables
can be eliminated without increasing the number of clauses. Finally, all found unit clauses
are propagated. Differently to the implementation of Satelite, propagating unit clauses is
not done during subsumption or variable elimination.

3.6.9. Comparison of Preprocessing Techniques

Figure 17 shows the performance of preprocessing techniques combined with rissR0. To
evaluate the preprocessing techniques, a new preprocessor is implemented that is able to
run all the presented techniques separately. It is named Coprocessor because it is also
able to simplify the formula during a restart. Applying unit propagation to the formula for
probing or asymmetric branching is done by using only the binary clauses of the formula.
This decision is a trade off between finding all implied unit clauses and running a fast unit
propagation. Due to the fact that VE is not confluent, applying VE with this preprocessor
results in a different formula than running the old preprocessor. Therefore, the first run
PP1 enables the same techniques as used in rissR0 but using a different implementation.
This run is the baseline for all the other configurations and thus VE is executed in all the
following configurations at least once. PP2 applies BCE before VE is run on the formula.
Running BCE exhaustively is expensive [JBH10] so that two limits have been chosen.
BCE is performed only if the clause that is analyzed is smaller than 4 literals and if the
literal does not occur in more than 20 clauses. These limits are set for all configurations
that use BCE. PP3 implements the combination of BCE and VE as well but repeats this
combination a second time, which is the best combination of VE and BCE in [JBH10].
Vivification is used in PP4. Again, not all clauses can be checked for redundant literals in
reasonable time so that only the largest 90% of the clauses are analyzed. PP5 runs HTE
after VE has been executed. HTE is also limited to the 10% most frequent variables.
The probing techniques have been analyzed in the configurations PP6, PP7 and PP8.

These configurations enable failed literal probing, clause probing and failed literal probing
including creating binary clauses, respectively. After probing has been applied, clauses
that can be subsumed are removed. Again, limits have been set to keep the runtime
of the preprocessor reasonable. Failed literal probing is only executed for the 20 most
frequent variables. Clause probing is done for clauses of size 3 and only for the 4 most

52



3.6. Preprocessor

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 90  100  110  120  130  140  150  160

ti
m

e
 i
n

 s
e

c
o

n
d

s

solved instances

SAT Race

Baseline

PP 1

PP 2

PP 3

PP 4

PP 5

PP 6

PP 7

PP 8

PP 9

PP 10

Figure 17: Comparisons of preprocessing algorithms.

frequent variables. PP9 disables the preprocessor completely so that the search works on
the original formula. Configuration PP10 is an extension of PP1 and enables the unit
propagation during VE again. Thus, the effect between the standard implementation and
the original algorithm in [EB05] can be compared.
In general, finding good parameters for the preprocessing techniques is hard because the

techniques involved provide lots of parameters that can be tuned to preprocess a certain
set of formulas very well. Since parameter tuning is not part of this work, finding good
settings will be part of future work.
The major result of Figure 17 is that preprocessing is important for modern SAT solvers

because less instances can be solved by PP9 than by any other configuration. Furthermore,
none of the presented techniques outperforms the VE implementation of rissR0. By
applying unit propagation during the VE (PP10) as proposed in the original algorithm,
only four additional instances can be solved. The vivification in PP4 has almost the
same performance as rissR0 and is only able to solve one more instance. Repeating BCE
and VE in PP3 solves the same number of instances as rissR0 but faster. Applying
probing results in more solved instances. Creating binary clauses during probing boosts
the overall performance the most and enables the solver to solve 154 instances. This
result emphasizes that short clauses are more important for the search than longer ones.

3.6.10. Comparison of Inprocessor Techniques

Analyzing the effect of preprocessing techniques that are applied during search is done in
Figure 18. Again, the used preprocessor is called Coprocessor because the preprocessor of

53



3.6. Preprocessor

rissR0 is not able to simplify the formula during a restart. Simplifications are not applied
during all restarts. The number of new literals on the root level is counted. Only if the
difference of this number between the last simplification and the current value is greater
than two, a simplification is triggered. The same limits as in section 3.6.9 are applied for
all the used techniques.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 90  100  110  120  130  140  150

ti
m

e
 i
n

 s
e

c
o

n
d

s

solved instances

SAT Race

Baseline

IP 1

IP 2

IP 3

IP 4

IP 5

IP 6

Figure 18: Comparisons of inprocessor algorithms

IP1 applies subsumption during a restart. Furthermore, satisfied clauses are removed
from the formula and unsatisfied literals are removed from the remaining clauses. All
the following configurations are based on IP1. Eliminating variables during a restart is
done in IP2. IP3 removes blocked clauses during simplification. IP4 applies asymmetric
branching. IP5 combines all the previous configurations and applies VE, BCE and asym-
metric branching during a restart. IP6 tries to remove hidden tautologies if the formula
is simplified during a restart.
The comparison in Figure 18 shows that none of the presented configurations speeds

up the search significantly. Sometimes a configuration can solve a set of instances faster,
for example IP1 and IP4 for the timeout of 2000 to 2500 seconds. Still, the overall
performance of the SAT solver is not improved significantly by applying simplifications
during the search. This effect might also be introduced by the component-based structure
of riss. If the formula has to be simplified, the preprocessor has to be initialized again firstly
and afterwards the structures of the search have to be filled with the simplified formula
again. Thus, moving the formula from one component to the other can be another source
for the missing performance boost.

54



4. Results

4. Results

In the following two sections the combinations that seemed to have a big impact on
the performance are combined and analyzed. In Section 4.1, some of the most powerful
configurations for the single components have been picked and combined to analyze the
interference of the performance of the components. In Section 4.2, the effect of disabling
a well performing configuration for a single component, while all the other components
keep their powerful setting, is analyzed.

4.1. Combined Runs

To find a good performing configuration for all the components of the solver, the most
powerful configurations per component have been chosen and have been combined to
analyze the effect of the combination. Figure 19 shows this comparison.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 90  100  110  120  130  140  150  160  170  180

ti
m

e
 i
n

 s
e

c
o

n
d

s

solved instances

SAT Race

Baseline

COMB 1

COMB 2

COMB 3

COMB 4

Figure 19: Combinations of winning components

The compared configurations are similar because they are based on a major configura-
tion. Thus, this major configuration is described before the differences of the configura-
tions are explained. The decision heuristic of the major combination uses a decay = 1/0.9
(VAR6) and uses phase saving without any resetting for picking a polarity (POL1). The
used unit propagation uses blocking literals (UP3). The conflict analysis applies on-the-fly
self subsumption during the analysis to shorten clauses (CON2). The removal heuristic
uses the LBD value as activity and always keeps the 25% most active clauses when a
removal is scheduled (RM6). Removals are scheduled according to the geometric series

55



4.2. Looking for Beneficial Components

with an initial limit of 100 and an increase factor of 1.5. Scheduling restarts is done accord-
ing to the dynamic scheduling with a window size of 100 (RES5). The preprocessor that
is used in the major configuration implements the Blocked Clause Elimination, Variable
Elimination, Failed Literal Probing with the creation of binary clauses of the found implica-
tions and asymmetric branching. These techniques are applied in exactly this order before
the search is started. During a restart, the formula is simplified by asymmetric branching
(IP4).

The first configuration COMB1 that is shown in Figure 19 implements exactly the
major configuration that is described in the previous paragraph. COMB2 implements a
different restart scheduling. Instead of the dynamic scheduling, two geometric series with
an initial limit of 100 and an increase factor of 1.1 have been used. The remaining two
configurations implement a different removal scheduling. The initial limit of the geometric
series has been increased to 1000 (RM8) to see the influence of a frequent removal on
a state-of-the-art solver. COMB3 corresponds to the major configuration (COMB1) and
COMB4 corresponds to COMB2, except for the changed removal schedule.
Figure 19 shows that combining the well performing components increases the perfor-

mance of the SAT solver significantly. The baseline solver was able to solve 147 instances
whereas the best configuration is able to solve 175 instances. The relative improvement is
20%. Concerning the benchmark, COMB1 can solve 10% more than the baseline solver.
However, let xcomp be the performance difference between the baseline solver and the
picked configuration for component comp. The performance difference between the base-
line solver and the major configuration COMB1 is not the sum of all the differences xcomp
for all the components. This result shows that the configurations of the components
interfere with each other concerning their performance. It is hard to determine the best
configuration for a single component if the configuration for the remaining components
is not fixed. The comparison in Figure 19 underlines this fact. The two configurations
COMB1 and COMB3 share the same restart scheduling and implement a different removal
strategy. The performance of the configuration with the dynamic restart schedule is higher
than with nested scheme, namely 175 compared to 170 solved instances. However, if a
different removal schedule is chosen as in COMB2 and COMB4, the relation of the per-
formance between these two configurations with respect to the restart scheduling behaves
inversely. COMB2 with dynamic restarts is able to solve only 172 instances, whereas
COMB4 with nested restarts can solve 176 instances. The leading configuration among
the picked opportunities is COMB4 with 176 solved instances. Since the number of pos-
sible configurations is quite high and the current comparison shows that not combining
the best single components can result in a better performance, no more combinations of
the components of the previous section have been analyzed.

4.2. Looking for Beneficial Components

In the previous Section 4.1, it has been shown that the performances of two components
in a SAT solver interfere with each other. Therefore the major configuration has been
analyzed further. For the seven choices that have been presented in Section 3, the compo-
nents in the major configuration have been set back to the standard configuration of the
baseline solver. Thus, the impact of switching a single component from well performing

56



4.2. Looking for Beneficial Components

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 90  100  110  120  130  140  150  160  170  180  190

ti
m

e
 i
n

 s
e

c
o

n
d

s

solved instances

SAT Race

Baseline

SEL 1

SEL 2

SEL 3

SEL 4

SEL 5

SEL 6

SEL 7

SEL 8

SEL 9

Figure 20: Comparison of combination except single components

back to standard can be analyzed.
The first configuration SEL1 of the comparison in Figure 20 implements the major con-

figuration COMB1 of Section 4.1. All the remaining configurations implement the major
configuration except a single component. SEL2 resets the variable heuristic. Therefore,
the decay value is set to 1/0.95. SEL3 sets the polarity of the picked variable always to
negative instead of using phase saving. SEL4 does not use blocking literals during unit
propagation. The configuration SEL5 does not use on-the-fly self subsumption during
conflict analysis to shorten clauses. SEL6 removes all clauses that contain more than
6 literals and 55% of the remaining learned clauses during a removal that is scheduled
according to a geometric series with an initial limit of 100 and an increase value of 1.5.
SEL7 schedules restarts according to a geometric series with an increment factor of 1.5
and initial limit set to 100 instead of dynamically scheduling. SEL8 uses the standard
implementation of Variable Elimination as a preprocessor. Finally, SEL9 does not use any
simplification technique during a restart.
Figure 20 shows the modifications of the major configuration. It shows that resetting

a single component back to its standard configuration still performs better than the base-
line solver. The modification with the worst performance, SEL6, still solves 154 instances.
Furthermore, the major configuration SEL1 has a higher performance than any other
modification, except the configurations that modify the preprocessor, namely SEL8 and
SEL9. Thus, the configuration of all the components is important to reach a high perfor-
mance system. Furthermore, it can be seen that setting a single component back to its
standard configuration does not lead to a worse SAT solver than setting all components

57



4.2. Looking for Beneficial Components

back. There is not any component that is responsible for the overall performance of the
SAT solver. Some configurations can solve more instances within a lower timeout than
3600 seconds. Still, combining all well performing configurations leads to the best search
procedure. The highest impact on the performance can be seen by the removal strat-
egy. Using the standard removal results in 21 instances that cannot be solved because
the upper memory limit is reached. The major configuration cannot solve two instances
because of the same reason. Thus, a good removal strategy is important to keep the
used memory of a SAT solver low. Scheduling restarts has the second highest impact on
the solver performance. If the geometric schedule with fast increasing interval sizes is
chosen (SEL7), the solver is able to solve only 170 instances. The influence of picking
a variable and polarity, allying unit propagation or on-the-fly self subsumption introduces
only a variance of 5 instances compared to the major configuration.
Surprisingly, configuration SEL9 solves significantly more instances than the major con-

figuration, namely 183 instances in total. The chosen simplifications in SEL1 remove
satisfied clauses, falsified literals and try to shorten remaining long clauses by applying
asymmetric branching. These techniques do not seem to have such a big impact on the
search to compensate the overhead that is introduced for the simplification coming from
the component based structure of riss. To simplify the formula during a restart, the
inprocessor has to be initialized and after the simplification the unit propagation and the
removal heuristic have to add the new formula to their structures again. Ignoring the
benefit of a smaller formula seems to be the better solution for the implementation of the
solver because the overhead of the simplification can be avoided. The effect that can be
achieved by simplifying the formula could also be increased by tuning the parameters of
the simplifications. As already discussed in Section 3.6.9, this tuning is difficult and yields
enough work to be done in another project.

58



5. Conclusions

5. Conclusions

This work shows that recent modifications on SAT solvers do have a significant impact on
their performance. Combining the improvements leads to 13% more solvable instances.
However, for single components the influence varies. The VSIDS heuristic is a quite
powerful heuristic that seems to be well tuned for the benchmark. Modifying leads only
to slightly changes on the performance of the SAT solver. Choosing the polarity of literals
has a greater influence. Using phase saving enables the solver to solve 11 more instances.
Adding different schemes to speed up the unit propagation has also side effects. Blocking
literals in the watch list also change the search. Still, adding these components to the
search does not result in a significant performance boost. The conflict analysis is the
main difference between a DPLL and a CDCL solver. The analysis can be improved
significantly when it is extended by conflict minimization. When conflict minimization
is used, all other suggested improvements for the conflict analysis do not improve the
performance significantly. Since learned clauses are added to the formula, applying unit
propagation slows down and thus some of the learned clauses are removed again. The
frequency of removals and the number of removed clauses is very important. Removals
that are based on an activity of clauses perform much better than length-based schemes.
As shown in Section 4.2, choosing an appropriate removal boosts the performance of a
SAT solver. Removing clauses also helps the SAT solver to limit the amount of memory
that is needed. Restarting the search influences the performance of a SAT solver, as
shown in [Hua07]. Scheduling restarts frequently results in a more efficient search than
scheduling restarts by using large intervals. Furthermore, simplifying the formula before
the search is started can improve the overall performance of the SAT solver because there
are fewer variables to decide and fewer clauses to be checked during unit propagation.
Still, the applied preprocessor techniques consume time and can be tuned to reach better
results to compensate their runtime again. This effect applies even more when these
techniques are used to simplify the formula during a restart because the search has to be
stopped and updated afterwards.
Well performing settings for the inprocessor that simplifies the formula during a restart

have not been found. All in all, the component based implementation is not the most
efficient way to implement a SAT solver. Most of the components need to communicate
with each other. For example, the activity of a variable needs to be updated during con-
flict analysis or the decision heuristic has to be informed that a certain variable becomes
undefined again during backtracking. All these procedures perform better if the method
of the component is called instead of passing the information to the other component.
Implementing a fixed configuration is also not a solution because it is very hard to deter-
mine the best configuration because of the interference of the components among each
other. As shown in Section 4.1, combining the best configurations according to a single
component does not result in the most powerful solver. Furthermore, the effect of a
single component on the whole search is not known. According to the experiments in
Section 4.2, it has been proved that restarts and removal have the biggest impact on the
overall performance.
The results of this work is that recent improvements on SAT solvers have been effective.

Since there is a great variety to implement a component of the solver, a configuration

59



5. Conclusions

has to be chosen by the developer. This work shows that this task is not trivial but
very difficult. Finding a well performing configuration for a single application might be
feasible, but fixing a configuration for solving a mixed benchmark efficiently is always a
compromise. It is also hard to completely understand the work of SAT solvers because
most of their decisions are done heuristically although the main runtime is spent during unit
propagation [MS10]. Based on this property the development of better heuristics could
improve the performance of SAT solvers more and push the major part of runtime from
unit propagation to reasoning. Unfortunately, developing new heuristics is also difficult
because there is no metric known that can compare two solvers without running them.
Thus, properties of the search can, at most, indicate whether a certain configuration is
more powerful than another one.

60



6. Future Work

6. Future Work
The main improvements of SAT solvers that participate in annual SAT competitions are
only published in short descriptions. Analyzing these single improvements has brought up
lots of open tasks that should be considered in the future. Naturally, the general aim of
the development of SAT solvers is to create a solver with the highest performance possible.
At a first glance, this solver should be an efficient sequential solver. To achieve this goal,
the single components have to be improved. On the other hand, SAT solvers are used as
general purpose solvers. Lots of applications can be converted into CNF and SAT solvers
are used to solve these problems. In the snake plots in Section 3 and 4, it can be seen
that for a certain threshold a configuration solves more instances than for another one
although the overall performance of the second configuration is higher. Furthermore, the
solved instances do not have to be the same. To improve SAT solvers, this effect could be
used. The input formula has to be analyzed first and major properties like the distribution
of literal occurrences, clause sizes or more complex information have to be extracted.
Afterwards a classifier can be applied that selects the category of the current instance
and chooses an appropriate configuration to solve it. Therefore, properties of formulas
have to be identified and a classifier has to be trained to classify instances. Furthermore,
the best performing configuration per category has to be found, for example by using the
parameter optimization tool paramILS [HHLbS09]. Similarly, the preprocessor techniques
have to be tuned better to suite the requirements of modern SAT solvers better. The step
between being able to use all introduced techniques and using them within appropriate
limits and parameters can be quite big. Even the order of the chosen techniques can
change the overall performance of a SAT solver significantly. Therefore, the influence of
preprocessing a formula on the performance of the search has to be analyzed. Furthermore,
tuning the simplification during a restart has to be done to achieve a performance boost
of the search and to overcome the overhead of the component based implementation.
The architecture of modern computing resources becomes parallel and the frequency

of CPUs is stagnating. Thus, developing parallel SAT solvers has to be considered. To
create an efficient parallel SAT solver, an efficient sequential one has to be developed
first. Furthermore, bottlenecks have to be found and reduced. According to [HMS10],
the memory architecture is the major bottleneck of a SAT solver and plays a major role in
the analysis. Since recent parallel architectures share a single memory bus among several
CPUs, the effect of this architecture has to be analyzed. Since hardware related events, like
branch prediction, might interfere with the memory bus, they also have to be considered.
After the sequential implementation is improved with respect to all the bottlenecks, an
appropriate algorithm has to be found that suits the modern multi-core architecture. After
the algorithm is implemented the effect of the bottlenecks has to be analyzed again to be
able to draw a conclusion on the scalability of the chosen implementation. In a few years,
the number of cores on a CPU will be significantly higher than today [Cor10]. Scalable
implementations of SAT solvers are needed to be still able to solve industrial instances
efficiently and without consuming unnecessary resources.

61



A. List of Figures

A. List of Figures

1. Using a SAT solver as black box . . . . . . . . . . . . . . . . . . . . . . 10
2. A search tree that is not completely extended . . . . . . . . . . . . . . . 16
3. Backjumping after finding a conflict using the CDCL procedure . . . . . . 21
4. Flow diagram of the CDCL procedure in a component base SAT solver . . 22
5. Snake plot to compare SAT solvers . . . . . . . . . . . . . . . . . . . . . 23
6. Correlation between solving time and other measures . . . . . . . . . . . 24
7. Comparisons of decision heuristic polarity options . . . . . . . . . . . . . 29
8. Comparisons of decision heuristic polarity options . . . . . . . . . . . . . 30
9. Implementation of the Two-Watched-Literal propagation using Blocking

Literals l1, l2, l3 and l4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
10. Comparisons of unit propagation approaches . . . . . . . . . . . . . . . . 34
11. Applying a state-of-the-art conflict analysis step . . . . . . . . . . . . . . 35
12. Comparisons of conflict analysis strategies . . . . . . . . . . . . . . . . . 39
13. Comparisons of removal heuristic options . . . . . . . . . . . . . . . . . . 42
14. Comparisons of restart schedules . . . . . . . . . . . . . . . . . . . . . . 46
15. Comparisons of restart heuristics . . . . . . . . . . . . . . . . . . . . . . 47
16. Preprocessing a formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
17. Comparisons of preprocessing algorithms. . . . . . . . . . . . . . . . . . 53
18. Comparisons of inprocessor algorithms . . . . . . . . . . . . . . . . . . . 54
19. Combinations of winning components . . . . . . . . . . . . . . . . . . . 55
20. Comparison of combination except single components . . . . . . . . . . . 57

B. List of Algorithms

1. DPLL(F, α) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2. CDCL(F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3. UpdateShrinkSize(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

62



References

References
[AS09a] Gilles Audemard and Laurent Simon. Glucose: a solver that predicts learnt

clauses quality. SAT 2009 Competitive Event Booklet,
http://www.cril.univ-artois.fr/SAT09/solvers/booklet.pdf,
2009.

[AS09b] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in
modern sat solver. In Twenty-first International Joint Conference on Artifi-
cial Intelligence(IJCAI’09), pages 399–404, jul 2009.

[BGH+09] C. Baldow, F. Gräter, S. Hölldobler, N. Manthey, M. Seelemann, P. Steinke,
C. Wernhard, K. Winkler, and E. Zenker. HydraSAT 2009.3 solver
description. SAT 2009 Competitive Event Booklet,
http://www.cril.univ-artois.fr/SAT09/solvers/booklet.pdf,
2009.

[BHvMW09] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of
Satisfiability. IOS Press, 2009.

[Bie08a] Armin Biere. Adaptive restart strategies for conflict driven sat solvers. In
Proceedings of the 11th international conference on Theory and applica-
tions of satisfiability testing, SAT’08, pages 28–33, Berlin, Heidelberg, 2008.
Springer-Verlag.

[Bie08b] Armin Biere. Picosat essentials. JSAT, 4(2-4):75–97, 2008.

[Bie09] A. Biere. PrecoSAT system description.
http://fmv.jku.at/precosat/preicosat-sc09.pdf, 2009.

[BM00] R. Béjar and F. Manyà. Solving the round robin problem using propositional
logic. In Procs. 17th National Conf. on Artificial Intelligence and 12th Conf.
on Innovative Applications of Artificial Intelligence, 2000.

[Coo71] S. A. Cook. The complexity of theorem-proving procedures. In Procs. 3rd
Annual ACM Symposium on Theory of Computing, 1971.

[Cor10] Intel Corporation. Intel’s Teraflops Research Chip.
http://download.intel.com/pressroom/kits/Teraflops/
Teraflops_Research_Chip_Overview.pdf, 2010.

[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem
proving. Communications of the ACM, 5(7):394–397, 1962.

[EB05] Niklas Eén and Armin Biere. Effective preprocessing in sat through variable
and clause elimination. In In proc. SAT’05, volume 3569 of LNCS, pages
61–75. Springer, 2005.

[ES04] N. Eén and N. Sörensson. An extensible SAT-solver. In Proc. 6th SAT,
LNCS 2919, 2004.

63

http://www.cril.univ-artois.fr/SAT09/solvers/booklet.pdf
http://www.cril.univ-artois.fr/SAT09/ solvers/booklet.pdf
http://fmv.jku.at/precosat/preicosat-sc09.pdf
http://download.intel.com/pressroom/kits/Teraflops/Teraflops_Research_Chip_Overview.pdf
http://download.intel.com/pressroom/kits/Teraflops/Teraflops_Research_Chip_Overview.pdf


References

[FGM+07] C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and
H. Zankl. SAT solving for termination analysis with polynomial interpreta-
tions. In Procs. 10th SAT, LNCS 4501, 2007.

[Gen02] Ian P. Gent. Arc consistency in sat. In Proceedings of ECAI 2002, pages
121–125. IOS Press, 2002.

[GSCK00] Carla P. Gomes, Bart Selman, Nuno Crato, and Henry Kautz. Heavy-tailed
phenomena in satisfiability and constraint satisfaction problems. Journal of
automated reasoning, 24:2000, 2000.

[H0̈9] S. Hölldobler. Logik und Logikprogrammierung, Band 1: Grundlagen. Syn-
chron, 2009.

[HHLbS09] Frank Hutter, Holger H. Hoos, Kevin Leyton-brown, and Thomas Stüt-
zle. Paramils: An automatic algorithm configuration framework. Technical
report, 2009.

[HJB10] Marijn Heule, Matti Järvisalo, and Armin Biere. Clause elimination proce-
dures for cnf formulas. In Christian Fermüller and Andrei Voronkov, editors,
Logic for Programming, Artificial Intelligence, and Reasoning, volume 6397
of Lecture Notes in Computer Science, pages 357–371. Springer Berlin /
Heidelberg, 2010.

[HMS10] Steffen Hölldobler, Norbert Manthey, and Ari Saptawijaya. Improving
resource-unaware sat solvers. In Christian Fermüller and Andrei Voronkov,
editors, Logic for Programming, Artificial Intelligence, and Reasoning, vol-
ume 6397 of Lecture Notes in Computer Science, pages 357–371. Springer
Berlin / Heidelberg, 2010.

[HS09] Hyojung Han and Fabio Somenzi. On-the-fly clause improvement. In Pro-
ceedings of the 12th International Conference on Theory and Applications
of Satisfiability Testing, SAT ’09, pages 209–222, Berlin, Heidelberg, 2009.
Springer-Verlag.

[Hua07] J. Huang. The effect of restarts on the efficiency of clause learning. In Pro-
ceedings of the 20th International Joint Conference on Artificial Intelligence
(IJCAI), pages 2318–2323, 2007.

[ILO06] Ines Lynce Ist, Inês Lynce, and Joël Ouaknine. Sudoku as a sat problem. In
Proceedings of the 9 th International Symposium on Artificial Intelligence
and Mathematics, AIMATH 2006, Fort Lauderdale. Springer, 2006.

[JBH10] Matti Järvisalo, Armin Biere, and Marijn Heule. Blocked clause elimination.
In Javier Esparza and Rupak Majumdar, editors, Tools and Algorithms for
the Construction and Analysis of Systems, volume 6015 of Lecture Notes in
Computer Science, pages 129–144. Springer Berlin / Heidelberg, 2010.

64



References

[JW90] Robert G. Jeroslow and Jinchang Wang. Solving propositional satisfiability
problems. Annals of Mathematics and Artificial Intelligence, 1:167–187,
1990. 10.1007/BF01531077.

[KS92] H. Kautz and B. Selman. Planning as satisfiability. In Procs. 10th European
Conference on Artificial Intelligence, 1992.

[lB10] Daniel le Berre. The International SAT Competition Webpage.
http://www.satcompetition.org/, 2010.

[LMS03] Inês Lynce and João Marques-Silva. Probing-based preprocessing techniques
for propositional satisfiability. In Proceedings of the 15th IEEE Interna-
tional Conference on Tools with Artificial Intelligence, ICTAI ’03, pages
105–, Washington, DC, USA, 2003. IEEE Computer Society.

[LMS06] I. Lynce and J. Marques-Silva. SAT in bioinformatics: making the case with
haplotype inference. In Procs. 9th SAT, LNCS 4121, 2006.

[LSZ93] Michael Luby, Alistair Sinclair, and David Zuckerman. Optimal speedup of
las vegas algorithms. Inf. Process. Lett., 47:173–180, September 1993.

[Man10] Norbert Manthey. riss 2010 solver description. http://baldur.iti.uka.
de/sat-race-2010/descriptions/solver_15.pdf, 2010.

[MFM04] Yogesh S. Mahajan, Zhaohui Fu, and Sharad Malik. Zchaff2004: An efficient
sat solver. In SAT (SELECTED PAPERS), pages 360–375, 2004.

[MMZ+01] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engi-
neering an efficient SAT solver. Design Automation Conference, pages 530–
535, 2001.

[MS10] Norbert Manthey and Ari Saptawijaya. Towards improving the resource
usage of SAT-solvers. In Pragmatics of SAT Workshop, 2010.

[Nad04] Alexander Nadel. Efficient algorithms for clause learning SAT solvers. Mas-
ter’s thesis, Hebrew University, 2004.

[Nik10] Niklas Sörensson. Minisat 2.2 and minisat++ 1.1. http://baldur.iti.
uka.de/sat-race-2010/descriptions/solver_25+26.pdf, 2010.

[NR10] Alexander Nadel and Vadim Ryvchin. Assignment stack shrinking. In
SAT, volume 6175 of Lecture Notes in Computer Science, pages 375–381.
Springer, 2010.

[PD07] Knot Pipatsrisawat and Adnan Darwiche. A lightweight component caching
scheme for satisfiability solvers. In Proceedings of 10th International Con-
ference on Theory and Applications of Satisfiability Testing(SAT), pages
294–299, 2007.

65

http://www.satcompetition.org/
http://baldur.iti.uka.de/sat-race-2010/descriptions/solver_15.pdf
http://baldur.iti.uka.de/sat-race-2010/descriptions/solver_15.pdf
http://baldur.iti.uka.de/sat-race-2010/descriptions/solver_25+26.pdf
http://baldur.iti.uka.de/sat-race-2010/descriptions/solver_25+26.pdf


References

[PD09] K. Pipatsrisawat and A. Darwiche. RSat solver description for SAT
competition 2009. SAT 2009 Competitive Event Booklet,
http://www.cril.univ-artois.fr/SAT09/solvers/booklet.pdf,
2009.

[Rya04] Lawrence Ryan. Efficient algorithms for clause-learning sat solvers, 2004.

[SB09] Niklas Sörensson and Armin Biere. Minimizing learned clauses. In Pro-
ceedings of the 12th International Conference on Theory and Applications
of Satisfiability Testing, SAT ’09, pages 237–243, Berlin, Heidelberg, 2009.
Springer-Verlag.

[SE09] N. Sörensson and N. Eén. MiniSAT 2.1 and MiniSAT++ 1.0 - SAT race
2008 editions. SAT 2009 Competitive Event Booklet, http://www.cril.
univ-artois.fr/SAT09/solvers/booklet.pdf, 2009.

[Soo10] Mate Soos. Enhanced gaussian elimination in DPLL-based SAT solvers. In
Pragmatics of SAT, Edinburgh, Scotland, UK, July 2010.

[SP05] Sathiamoorthy Subbarayan and Dhiraj K. Pradhan. Niver: Non-increasing
variable elimination resolution for preprocessing sat instances. In Holger H.
Hoos and David G. Mitchell, editors, Theory and Applications of Satisfia-
bility Testing, volume 3542 of Lecture Notes in Computer Science, pages
276–291. Springer Berlin / Heidelberg, 2005.

[SS96] João P. Marques Silva and Karem A. Sakallah. GRASP: A new search algo-
rithm for satisfiability. In Proceedings of the 1996 IEEE/ACM international
conference on Computer-aided design, ICCAD ’96, pages 220–227, Wash-
ington, DC, USA, 1996. IEEE Computer Society.

[TTKB09] Naoyuki Tamura, Akiko Taga, Satoshi Kitagawa, and Mutsunori Banbara.
Compiling finite linear csp into sat. Constraints, 14(2):254–272, 2009.

[ZMM01] Lintao Zhang, Conor F. Madigan, and Matthew H. Moskewicz. Efficient
conflict driven learning in a boolean satisfiability solver. In ICCAD, pages
279–285, 2001.

66

http://www.cril.univ-artois.fr/SAT09/solvers/booklet.pdf
http://www.cril.univ-artois.fr/SAT09/solvers/booklet.pdf
http://www.cril.univ-artois.fr/SAT09/solvers/booklet.pdf


67





Erklärung
Hiermit erkläre ich, dass ich diese Arbeit selbstständig erstellt und keine anderen als die
angegebenen Hilfsmittel benutzt habe.

Dresden, den 15. Dezember 2010

Norbert Manthey


	Introduction
	SAT Solving
	Propositional Logic
	Syntax
	Semantic
	Formula Modification Techniques

	SAT Solving Techniques
	Implementation Restrictions
	Search Tree
	Davis Putman Logemann Loveland Procedure
	Conflict Driven Clause Learning Procedure

	Benchmarking

	Improving Solver Components
	Decision Heuristic
	VSIDS Implementations 
	Phase Saving
	Jeroslaw-Wang Heuristic
	Choices in rissR0 
	Comparison of Heuristics to Pick a Variable 
	Comparison of Polarity Heuristics 

	Unit Propagation
	Two-Watched-Literal Unit Propagation
	Probing
	Blocking Literals for Unit Propagation
	Choices in rissR0 
	Comparison of Heuristics to Run Unit Propagation

	Conflict Analysis
	First UIP Conflict Analysis
	Conflict Minimization
	On-the-Fly Self Subsumption
	Assignment Stack Shrinking
	Choices in rissR0 
	Comparison of Several Conflict Analysis Techniques

	Removal
	Activity Removal
	Literals Blocks Distance (LBD)
	Suffix Removal
	Dynamic Scheduling
	Static Scheduling
	Choices in rissR0 
	Comparison of Removal Heuristics

	Restarting the Search 
	Geometric Series Scheduling
	Luby Series Scheduling
	Nested Series
	Dynamic Scheduling
	Reject Scheduled Restarts Using Agility
	Choices in rissR0 
	Comparison of Restart Schedules
	Comparison of Restart Heuristics

	Preprocessor
	Variable Elimination
	Blocked Clause Elimination
	Hidden Tautology Elimination
	Equivalence Elimination
	Probing
	Vivification (Asymmetric Branching)
	Inprocessor Simplifications During Search
	Choices in rissR0 
	Comparison of Preprocessing Techniques
	Comparison of Inprocessor Techniques


	Results
	Combined Runs
	Looking for Beneficial Components

	Conclusions
	Future Work
	List of Figures
	List of Algorithms
	References

