
Exercise 3: Complexity of First-Order Queries

Database Theory
2022-04-26

Maximilian Marx, Markus Krötzsch

1 / 75



Exercise 1
Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does I |= q hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple c, does c ∈ M[q](I) hold?

Query Emptiness Given a query q and a database instance I, is M[q](I) , ∅?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be
used to solve the others.

Solution.
I We restate the problems as decision problems:

BQE =
{
〈I, q〉

∣∣∣ q a BCQ with I |= q
}

QA =
{
〈I, q[x], c〉

∣∣∣ c ∈ M[q](I)
}

QE =
{
〈I, q[x]〉

∣∣∣ M[q](I) , ∅
}

2 / 75



Exercise 1
Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does I |= q hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple c, does c ∈ M[q](I) hold?

Query Emptiness Given a query q and a database instance I, is M[q](I) , ∅?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be
used to solve the others.
Solution.

I We restate the problems as decision problems:

BQE =
{
〈I, q〉

∣∣∣ q a BCQ with I |= q
}

QA =
{
〈I, q[x], c〉

∣∣∣ c ∈ M[q](I)
}

QE =
{
〈I, q[x]〉

∣∣∣ M[q](I) , ∅
}

3 / 75



Exercise 1
Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does I |= q hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple c, does c ∈ M[q](I) hold?

Query Emptiness Given a query q and a database instance I, is M[q](I) , ∅?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be
used to solve the others.
Solution.
I We restate the problems as decision problems:

BQE =
{
〈I, q〉

∣∣∣ q a BCQ with I |= q
}

QA =
{
〈I, q[x], c〉

∣∣∣ c ∈ M[q](I)
}

QE =
{
〈I, q[x]〉

∣∣∣ M[q](I) , ∅
}

4 / 75



Exercise 1
Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does I |= q hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple c, does c ∈ M[q](I) hold?

Query Emptiness Given a query q and a database instance I, is M[q](I) , ∅?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be
used to solve the others.
Solution.
I We restate the problems as decision problems:

BQE =
{
〈I, q〉

∣∣∣ q a BCQ with I |= q
}

QA =
{
〈I, q[x], c〉

∣∣∣ c ∈ M[q](I)
}

QE =
{
〈I, q[x]〉

∣∣∣ M[q](I) , ∅
}

5 / 75



Exercise 1
Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does I |= q hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple c, does c ∈ M[q](I) hold?

Query Emptiness Given a query q and a database instance I, is M[q](I) , ∅?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be
used to solve the others.
Solution.
I We restate the problems as decision problems:

BQE =
{
〈I, q〉

∣∣∣ q a BCQ with I |= q
}

QA =
{
〈I, q[x], c〉

∣∣∣ c ∈ M[q](I)
}

QE =
{
〈I, q[x]〉

∣∣∣ M[q](I) , ∅
}

6 / 75



Exercise 1
Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does I |= q hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple c, does c ∈ M[q](I) hold?

Query Emptiness Given a query q and a database instance I, is M[q](I) , ∅?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be
used to solve the others.
Solution.
I We restate the problems as decision problems:

BQE =
{
〈I, q〉

∣∣∣ q a BCQ with I |= q
}

QA =
{
〈I, q[x], c〉

∣∣∣ c ∈ M[q](I)
}

QE =
{
〈I, q[x]〉

∣∣∣ M[q](I) , ∅
}

7 / 75



Exercise 1
Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does I |= q hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple c, does c ∈ M[q](I) hold?

Query Emptiness Given a query q and a database instance I, is M[q](I) , ∅?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be
used to solve the others.
Solution.
I We restate the problems as decision problems:

BQE =
{
〈I, q〉

∣∣∣ q a BCQ with I |= q
}

QA =
{
〈I, q[x], c〉

∣∣∣ c ∈ M[q](I)
}

QE =
{
〈I, q[x]〉

∣∣∣ M[q](I) , ∅
}

I Note that a BCQ q is entailed in I iff M[q](I) , ∅. Thus, a TM deciding QE also decides BQE.

8 / 75



Exercise 1
Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does I |= q hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple c, does c ∈ M[q](I) hold?

Query Emptiness Given a query q and a database instance I, is M[q](I) , ∅?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be
used to solve the others.
Solution.
I We restate the problems as decision problems:

BQE =
{
〈I, q〉

∣∣∣ q a BCQ with I |= q
}

QA =
{
〈I, q[x], c〉

∣∣∣ c ∈ M[q](I)
}

QE =
{
〈I, q[x]〉

∣∣∣ M[q](I) , ∅
}

I Note that a BCQ q is entailed in I iff M[q](I) , ∅. Thus, a TM deciding QE also decides BQE.
I We show that using a TM deciding BQE, we can construct a TM deciding QA, and

9 / 75



Exercise 1
Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does I |= q hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple c, does c ∈ M[q](I) hold?

Query Emptiness Given a query q and a database instance I, is M[q](I) , ∅?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be
used to solve the others.
Solution.
I We restate the problems as decision problems:

BQE =
{
〈I, q〉

∣∣∣ q a BCQ with I |= q
}

QA =
{
〈I, q[x], c〉

∣∣∣ c ∈ M[q](I)
}

QE =
{
〈I, q[x]〉

∣∣∣ M[q](I) , ∅
}

I Note that a BCQ q is entailed in I iff M[q](I) , ∅. Thus, a TM deciding QE also decides BQE.
I We show that using a TM deciding BQE, we can construct a TM deciding QA, and
I that using a TM deciding QA we can construct a TM deciding QE.

10 / 75



Exercise 1
Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does I |= q hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple c, does c ∈ M[q](I) hold?

Query Emptiness Given a query q and a database instance I, is M[q](I) , ∅?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be
used to solve the others.
Solution.
I We restate the problems as decision problems:

BQE =
{
〈I, q〉

∣∣∣ q a BCQ with I |= q
}

QA =
{
〈I, q[x], c〉

∣∣∣ c ∈ M[q](I)
}

QE =
{
〈I, q[x]〉

∣∣∣ M[q](I) , ∅
}

I We show that using a TM deciding BQE, we can construct a TM deciding QA:

11 / 75



Exercise 1
Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does I |= q hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple c, does c ∈ M[q](I) hold?

Query Emptiness Given a query q and a database instance I, is M[q](I) , ∅?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be
used to solve the others.
Solution.
I We restate the problems as decision problems:

BQE =
{
〈I, q〉

∣∣∣ q a BCQ with I |= q
}

QA =
{
〈I, q[x], c〉

∣∣∣ c ∈ M[q](I)
}

QE =
{
〈I, q[x]〉

∣∣∣ M[q](I) , ∅
}

I We show that using a TM deciding BQE, we can construct a TM deciding QA:
I LetM be a TM deciding BQE.

12 / 75



Exercise 1
Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does I |= q hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple c, does c ∈ M[q](I) hold?

Query Emptiness Given a query q and a database instance I, is M[q](I) , ∅?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be
used to solve the others.
Solution.
I We restate the problems as decision problems:

BQE =
{
〈I, q〉

∣∣∣ q a BCQ with I |= q
}

QA =
{
〈I, q[x], c〉

∣∣∣ c ∈ M[q](I)
}

QE =
{
〈I, q[x]〉

∣∣∣ M[q](I) , ∅
}

I We show that using a TM deciding BQE, we can construct a TM deciding QA:
I LetM be a TM deciding BQE.
I Construct the TMM′ that, on input 〈I, q[x], c〉 with x = 〈x1, . . . , xn〉 and c = 〈c1, . . . , cn〉:

1. transforms 〈I, q[x], c〉 into 〈I, q[x1/c1, . . . , xn/cn]〉,
2. simulatesM on input 〈I, q[x1/c1, . . . , xn/cn]〉, and
3. accepts iffM accepts.

13 / 75



Exercise 1
Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does I |= q hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple c, does c ∈ M[q](I) hold?

Query Emptiness Given a query q and a database instance I, is M[q](I) , ∅?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be
used to solve the others.
Solution.
I We restate the problems as decision problems:

BQE =
{
〈I, q〉

∣∣∣ q a BCQ with I |= q
}

QA =
{
〈I, q[x], c〉

∣∣∣ c ∈ M[q](I)
}

QE =
{
〈I, q[x]〉

∣∣∣ M[q](I) , ∅
}

I We show that using a TM deciding BQE, we can construct a TM deciding QA:
I LetM be a TM deciding BQE.
I Construct the TMM′ that, on input 〈I, q[x], c〉 with x = 〈x1, . . . , xn〉 and c = 〈c1, . . . , cn〉:

1. transforms 〈I, q[x], c〉 into 〈I, q[x1/c1, . . . , xn/cn]〉,

2. simulatesM on input 〈I, q[x1/c1, . . . , xn/cn]〉, and
3. accepts iffM accepts.

14 / 75



Exercise 1
Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does I |= q hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple c, does c ∈ M[q](I) hold?

Query Emptiness Given a query q and a database instance I, is M[q](I) , ∅?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be
used to solve the others.
Solution.
I We restate the problems as decision problems:

BQE =
{
〈I, q〉

∣∣∣ q a BCQ with I |= q
}

QA =
{
〈I, q[x], c〉

∣∣∣ c ∈ M[q](I)
}

QE =
{
〈I, q[x]〉

∣∣∣ M[q](I) , ∅
}

I We show that using a TM deciding BQE, we can construct a TM deciding QA:
I LetM be a TM deciding BQE.
I Construct the TMM′ that, on input 〈I, q[x], c〉 with x = 〈x1, . . . , xn〉 and c = 〈c1, . . . , cn〉:

1. transforms 〈I, q[x], c〉 into 〈I, q[x1/c1, . . . , xn/cn]〉,
2. simulatesM on input 〈I, q[x1/c1, . . . , xn/cn]〉, and

3. accepts iffM accepts.

15 / 75



Exercise 1
Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does I |= q hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple c, does c ∈ M[q](I) hold?

Query Emptiness Given a query q and a database instance I, is M[q](I) , ∅?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be
used to solve the others.
Solution.
I We restate the problems as decision problems:

BQE =
{
〈I, q〉

∣∣∣ q a BCQ with I |= q
}

QA =
{
〈I, q[x], c〉

∣∣∣ c ∈ M[q](I)
}

QE =
{
〈I, q[x]〉

∣∣∣ M[q](I) , ∅
}

I We show that using a TM deciding BQE, we can construct a TM deciding QA:
I LetM be a TM deciding BQE.
I Construct the TMM′ that, on input 〈I, q[x], c〉 with x = 〈x1, . . . , xn〉 and c = 〈c1, . . . , cn〉:

1. transforms 〈I, q[x], c〉 into 〈I, q[x1/c1, . . . , xn/cn]〉,
2. simulatesM on input 〈I, q[x1/c1, . . . , xn/cn]〉, and
3. accepts iffM accepts.

16 / 75



Exercise 1
Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does I |= q hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple c, does c ∈ M[q](I) hold?

Query Emptiness Given a query q and a database instance I, is M[q](I) , ∅?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be
used to solve the others.
Solution.
I We restate the problems as decision problems:

BQE =
{
〈I, q〉

∣∣∣ q a BCQ with I |= q
}

QA =
{
〈I, q[x], c〉

∣∣∣ c ∈ M[q](I)
}

QE =
{
〈I, q[x]〉

∣∣∣ M[q](I) , ∅
}

I We show that using a TM deciding BQE, we can construct a TM deciding QA:
I LetM be a TM deciding BQE.
I Construct the TMM′ that, on input 〈I, q[x], c〉 with x = 〈x1, . . . , xn〉 and c = 〈c1, . . . , cn〉:

1. transforms 〈I, q[x], c〉 into 〈I, q[x1/c1, . . . , xn/cn]〉,
2. simulatesM on input 〈I, q[x1/c1, . . . , xn/cn]〉, and
3. accepts iffM accepts.

I ThenM′ decides QA.

17 / 75



Exercise 1
Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does I |= q hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple c, does c ∈ M[q](I) hold?

Query Emptiness Given a query q and a database instance I, is M[q](I) , ∅?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be
used to solve the others.
Solution.
I We restate the problems as decision problems:

BQE =
{
〈I, q〉

∣∣∣ q a BCQ with I |= q
}

QA =
{
〈I, q[x], c〉

∣∣∣ c ∈ M[q](I)
}

QE =
{
〈I, q[x]〉

∣∣∣ M[q](I) , ∅
}

I We show that using a TM deciding BQE, we can construct a TM deciding QA, and
I that using a TM deciding QA we can construct a TM deciding QE:
I LetM be a TM deciding QA.

18 / 75



Exercise 1
Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does I |= q hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple c, does c ∈ M[q](I) hold?

Query Emptiness Given a query q and a database instance I, is M[q](I) , ∅?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be
used to solve the others.
Solution.
I We restate the problems as decision problems:

BQE =
{
〈I, q〉

∣∣∣ q a BCQ with I |= q
}

QA =
{
〈I, q[x], c〉

∣∣∣ c ∈ M[q](I)
}

QE =
{
〈I, q[x]〉

∣∣∣ M[q](I) , ∅
}

I We show that using a TM deciding BQE, we can construct a TM deciding QA, and
I that using a TM deciding QA we can construct a TM deciding QE:
I LetM be a TM deciding QA.
I Construct the TMM′ that, on input 〈I, q[x]〉 with x = 〈x1, . . . , xn〉:

1. If n = 0, thenM′ simulatesM on input 〈I, q, 〈〉〉 and accept iff the simulation accepts.
2. Otherwise,M′ simulatesM on all inputs 〈I, q[x], c〉 with c ∈ adom(I, q)n and accepts if any simulation accepts.
3. If no simulation accepts,M′ rejects.

19 / 75



Exercise 1
Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does I |= q hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple c, does c ∈ M[q](I) hold?

Query Emptiness Given a query q and a database instance I, is M[q](I) , ∅?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be
used to solve the others.
Solution.
I We restate the problems as decision problems:

BQE =
{
〈I, q〉

∣∣∣ q a BCQ with I |= q
}

QA =
{
〈I, q[x], c〉

∣∣∣ c ∈ M[q](I)
}

QE =
{
〈I, q[x]〉

∣∣∣ M[q](I) , ∅
}

I We show that using a TM deciding BQE, we can construct a TM deciding QA, and
I that using a TM deciding QA we can construct a TM deciding QE:
I LetM be a TM deciding QA.
I Construct the TMM′ that, on input 〈I, q[x]〉 with x = 〈x1, . . . , xn〉:

1. If n = 0, thenM′ simulatesM on input 〈I, q, 〈〉〉 and accept iff the simulation accepts.

2. Otherwise,M′ simulatesM on all inputs 〈I, q[x], c〉 with c ∈ adom(I, q)n and accepts if any simulation accepts.
3. If no simulation accepts,M′ rejects.

20 / 75



Exercise 1
Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does I |= q hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple c, does c ∈ M[q](I) hold?

Query Emptiness Given a query q and a database instance I, is M[q](I) , ∅?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be
used to solve the others.
Solution.
I We restate the problems as decision problems:

BQE =
{
〈I, q〉

∣∣∣ q a BCQ with I |= q
}

QA =
{
〈I, q[x], c〉

∣∣∣ c ∈ M[q](I)
}

QE =
{
〈I, q[x]〉

∣∣∣ M[q](I) , ∅
}

I We show that using a TM deciding BQE, we can construct a TM deciding QA, and
I that using a TM deciding QA we can construct a TM deciding QE:
I LetM be a TM deciding QA.
I Construct the TMM′ that, on input 〈I, q[x]〉 with x = 〈x1, . . . , xn〉:

1. If n = 0, thenM′ simulatesM on input 〈I, q, 〈〉〉 and accept iff the simulation accepts.
2. Otherwise,M′ simulatesM on all inputs 〈I, q[x], c〉 with c ∈ adom(I, q)n and accepts if any simulation accepts.

3. If no simulation accepts,M′ rejects.

21 / 75



Exercise 1
Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does I |= q hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple c, does c ∈ M[q](I) hold?

Query Emptiness Given a query q and a database instance I, is M[q](I) , ∅?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be
used to solve the others.
Solution.
I We restate the problems as decision problems:

BQE =
{
〈I, q〉

∣∣∣ q a BCQ with I |= q
}

QA =
{
〈I, q[x], c〉

∣∣∣ c ∈ M[q](I)
}

QE =
{
〈I, q[x]〉

∣∣∣ M[q](I) , ∅
}

I We show that using a TM deciding BQE, we can construct a TM deciding QA, and
I that using a TM deciding QA we can construct a TM deciding QE:
I LetM be a TM deciding QA.
I Construct the TMM′ that, on input 〈I, q[x]〉 with x = 〈x1, . . . , xn〉:

1. If n = 0, thenM′ simulatesM on input 〈I, q, 〈〉〉 and accept iff the simulation accepts.
2. Otherwise,M′ simulatesM on all inputs 〈I, q[x], c〉 with c ∈ adom(I, q)n and accepts if any simulation accepts.
3. If no simulation accepts,M′ rejects.

22 / 75



Exercise 1
Exercise. We consider three problems related to query answering in the lecture:

Boolean Query Entailment Given a Boolean query q and a database instance I, does I |= q hold?

Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple c, does c ∈ M[q](I) hold?

Query Emptiness Given a query q and a database instance I, is M[q](I) , ∅?

Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be
used to solve the others.
Solution.
I We restate the problems as decision problems:

BQE =
{
〈I, q〉

∣∣∣ q a BCQ with I |= q
}

QA =
{
〈I, q[x], c〉

∣∣∣ c ∈ M[q](I)
}

QE =
{
〈I, q[x]〉

∣∣∣ M[q](I) , ∅
}

I We show that using a TM deciding BQE, we can construct a TM deciding QA, and
I that using a TM deciding QA we can construct a TM deciding QE:
I LetM be a TM deciding QA.
I Construct the TMM′ that, on input 〈I, q[x]〉 with x = 〈x1, . . . , xn〉:

1. If n = 0, thenM′ simulatesM on input 〈I, q, 〈〉〉 and accept iff the simulation accepts.
2. Otherwise,M′ simulatesM on all inputs 〈I, q[x], c〉 with c ∈ adom(I, q)n and accepts if any simulation accepts.
3. If no simulation accepts,M′ rejects.

I ThenM′ decides QE.

23 / 75



Exercise 2
Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that
implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20–21)
A LogSpace transducer is a deterministic TM with three tapes:
I a read-only input tape
I a read/write working tape of size O(log n)

I a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers
compute partial functions Σ∗ → Σ∗.

Solution.
I We describe a LogSpace transducerM that, given a table R with schema R[a1, . . . , an] and some

ai , aj ∈ { a1, . . . , an }, computes σai =aj (R).

24 / 75



Exercise 2
Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that
implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20–21)
A LogSpace transducer is a deterministic TM with three tapes:
I a read-only input tape
I a read/write working tape of size O(log n)

I a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers
compute partial functions Σ∗ → Σ∗.

Solution.
I We describe a LogSpace transducerM that, given a table R with schema R[a1, . . . , an] and some

ai , aj ∈ { a1, . . . , an }, computes σai =aj (R).

25 / 75



Exercise 2
Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that
implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20–21)
A LogSpace transducer is a deterministic TM with three tapes:
I a read-only input tape
I a read/write working tape of size O(log n)

I a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers
compute partial functions Σ∗ → Σ∗.

Solution.

I We describe a LogSpace transducerM that, given a table R with schema R[a1, . . . , an] and some
ai , aj ∈ { a1, . . . , an }, computes σai =aj (R).

26 / 75



Exercise 2
Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that
implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20–21)
A LogSpace transducer is a deterministic TM with three tapes:
I a read-only input tape
I a read/write working tape of size O(log n)

I a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers
compute partial functions Σ∗ → Σ∗.

Solution.
I We describe a LogSpace transducerM that, given a table R with schema R[a1, . . . , an] and some

ai , aj ∈ { a1, . . . , an }, computes σai =aj (R):

27 / 75



Exercise 2
Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that
implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20–21)
A LogSpace transducer is a deterministic TM with three tapes:
I a read-only input tape
I a read/write working tape of size O(log n)

I a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers
compute partial functions Σ∗ → Σ∗.

Solution.
I We describe a LogSpace transducerM that, given a table R with schema R[a1, . . . , an] and some

ai , aj ∈ { a1, . . . , an }, computes σai =aj (R):
I 1. We use the unnamed perspective, encoding attributes ai and aj as numbers i and j , and storing the table R as a sequence

of rows of the form $c1, . . . , cn#.

2. We use three pointers pr , pi , and pj .
3. Initially, pr points to the first $ symbol, and we repeat:

3.1 point pi at the beginning of the i-th constant of the row;
3.2 point pj at the beginning of the j-th constant of the row;
3.3 using pi and pj compare the two constants.
3.4 if the constants are equal, copy the row to the output tape (using pr ); and
3.5 point pr to the next $, if there is any, otherwise halt.

28 / 75



Exercise 2
Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that
implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20–21)
A LogSpace transducer is a deterministic TM with three tapes:
I a read-only input tape
I a read/write working tape of size O(log n)

I a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers
compute partial functions Σ∗ → Σ∗.

Solution.
I We describe a LogSpace transducerM that, given a table R with schema R[a1, . . . , an] and some

ai , aj ∈ { a1, . . . , an }, computes σai =aj (R):
I 1. We use the unnamed perspective, encoding attributes ai and aj as numbers i and j , and storing the table R as a sequence

of rows of the form $c1, . . . , cn#.
2. We use three pointers pr , pi , and pj .

3. Initially, pr points to the first $ symbol, and we repeat:

3.1 point pi at the beginning of the i-th constant of the row;
3.2 point pj at the beginning of the j-th constant of the row;
3.3 using pi and pj compare the two constants.
3.4 if the constants are equal, copy the row to the output tape (using pr ); and
3.5 point pr to the next $, if there is any, otherwise halt.

29 / 75



Exercise 2
Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that
implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20–21)
A LogSpace transducer is a deterministic TM with three tapes:
I a read-only input tape
I a read/write working tape of size O(log n)

I a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers
compute partial functions Σ∗ → Σ∗.

Solution.
I We describe a LogSpace transducerM that, given a table R with schema R[a1, . . . , an] and some

ai , aj ∈ { a1, . . . , an }, computes σai =aj (R):
I 1. We use the unnamed perspective, encoding attributes ai and aj as numbers i and j , and storing the table R as a sequence

of rows of the form $c1, . . . , cn#.
2. We use three pointers pr , pi , and pj .
3. Initially, pr points to the first $ symbol, and we repeat:

3.1 point pi at the beginning of the i-th constant of the row;
3.2 point pj at the beginning of the j-th constant of the row;
3.3 using pi and pj compare the two constants.
3.4 if the constants are equal, copy the row to the output tape (using pr ); and
3.5 point pr to the next $, if there is any, otherwise halt.

30 / 75



Exercise 2
Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that
implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20–21)
A LogSpace transducer is a deterministic TM with three tapes:
I a read-only input tape
I a read/write working tape of size O(log n)

I a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers
compute partial functions Σ∗ → Σ∗.

Solution.
I We describe a LogSpace transducerM that, given a table R with schema R[a1, . . . , an] and some

ai , aj ∈ { a1, . . . , an }, computes σai =aj (R):
I 1. We use the unnamed perspective, encoding attributes ai and aj as numbers i and j , and storing the table R as a sequence

of rows of the form $c1, . . . , cn#.
2. We use three pointers pr , pi , and pj .
3. Initially, pr points to the first $ symbol, and we repeat:

3.1 point pi at the beginning of the i-th constant of the row;

3.2 point pj at the beginning of the j-th constant of the row;
3.3 using pi and pj compare the two constants.
3.4 if the constants are equal, copy the row to the output tape (using pr ); and
3.5 point pr to the next $, if there is any, otherwise halt.

31 / 75



Exercise 2
Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that
implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20–21)
A LogSpace transducer is a deterministic TM with three tapes:
I a read-only input tape
I a read/write working tape of size O(log n)

I a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers
compute partial functions Σ∗ → Σ∗.

Solution.
I We describe a LogSpace transducerM that, given a table R with schema R[a1, . . . , an] and some

ai , aj ∈ { a1, . . . , an }, computes σai =aj (R):
I 1. We use the unnamed perspective, encoding attributes ai and aj as numbers i and j , and storing the table R as a sequence

of rows of the form $c1, . . . , cn#.
2. We use three pointers pr , pi , and pj .
3. Initially, pr points to the first $ symbol, and we repeat:

3.1 point pi at the beginning of the i-th constant of the row;
3.2 point pj at the beginning of the j-th constant of the row;

3.3 using pi and pj compare the two constants.
3.4 if the constants are equal, copy the row to the output tape (using pr ); and
3.5 point pr to the next $, if there is any, otherwise halt.

32 / 75



Exercise 2
Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that
implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20–21)
A LogSpace transducer is a deterministic TM with three tapes:
I a read-only input tape
I a read/write working tape of size O(log n)

I a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers
compute partial functions Σ∗ → Σ∗.

Solution.
I We describe a LogSpace transducerM that, given a table R with schema R[a1, . . . , an] and some

ai , aj ∈ { a1, . . . , an }, computes σai =aj (R):
I 1. We use the unnamed perspective, encoding attributes ai and aj as numbers i and j , and storing the table R as a sequence

of rows of the form $c1, . . . , cn#.
2. We use three pointers pr , pi , and pj .
3. Initially, pr points to the first $ symbol, and we repeat:

3.1 point pi at the beginning of the i-th constant of the row;
3.2 point pj at the beginning of the j-th constant of the row;
3.3 using pi and pj compare the two constants.

3.4 if the constants are equal, copy the row to the output tape (using pr ); and
3.5 point pr to the next $, if there is any, otherwise halt.

33 / 75



Exercise 2
Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that
implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20–21)
A LogSpace transducer is a deterministic TM with three tapes:
I a read-only input tape
I a read/write working tape of size O(log n)

I a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers
compute partial functions Σ∗ → Σ∗.

Solution.
I We describe a LogSpace transducerM that, given a table R with schema R[a1, . . . , an] and some

ai , aj ∈ { a1, . . . , an }, computes σai =aj (R):
I 1. We use the unnamed perspective, encoding attributes ai and aj as numbers i and j , and storing the table R as a sequence

of rows of the form $c1, . . . , cn#.
2. We use three pointers pr , pi , and pj .
3. Initially, pr points to the first $ symbol, and we repeat:

3.1 point pi at the beginning of the i-th constant of the row;
3.2 point pj at the beginning of the j-th constant of the row;
3.3 using pi and pj compare the two constants.
3.4 if the constants are equal, copy the row to the output tape (using pr ); and

3.5 point pr to the next $, if there is any, otherwise halt.

34 / 75



Exercise 2
Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that
implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20–21)
A LogSpace transducer is a deterministic TM with three tapes:
I a read-only input tape
I a read/write working tape of size O(log n)

I a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers
compute partial functions Σ∗ → Σ∗.

Solution.
I We describe a LogSpace transducerM that, given a table R with schema R[a1, . . . , an] and some

ai , aj ∈ { a1, . . . , an }, computes σai =aj (R):
I 1. We use the unnamed perspective, encoding attributes ai and aj as numbers i and j , and storing the table R as a sequence

of rows of the form $c1, . . . , cn#.
2. We use three pointers pr , pi , and pj .
3. Initially, pr points to the first $ symbol, and we repeat:

3.1 point pi at the beginning of the i-th constant of the row;
3.2 point pj at the beginning of the j-th constant of the row;
3.3 using pi and pj compare the two constants.
3.4 if the constants are equal, copy the row to the output tape (using pr ); and
3.5 point pr to the next $, if there is any, otherwise halt.

35 / 75



Exercise 2
Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that
implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20–21)
A LogSpace transducer is a deterministic TM with three tapes:
I a read-only input tape
I a read/write working tape of size O(log n)

I a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers
compute partial functions Σ∗ → Σ∗.

Solution.
I We describe a LogSpace transducerM that, given a table R with schema R[a1, . . . , an] and some

ai , aj ∈ { a1, . . . , an }, computes σai =aj (R).
I We describe a LogSpace transducerM that, given a table R with schema R[a1, . . . , an] and some
{ a′1, . . . , a

′
`
} ⊆ { a1, . . . , an }, computes πa′1 ,...,a

′
`
(R):

36 / 75



Exercise 2
Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that
implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20–21)
A LogSpace transducer is a deterministic TM with three tapes:
I a read-only input tape
I a read/write working tape of size O(log n)

I a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers
compute partial functions Σ∗ → Σ∗.

Solution.
I We describe a LogSpace transducerM that, given a table R with schema R[a1, . . . , an] and some

ai , aj ∈ { a1, . . . , an }, computes σai =aj (R).
I We describe a LogSpace transducerM that, given a table R with schema R[a1, . . . , an] and some
{ a′1, . . . , a

′
`
} ⊆ { a1, . . . , an }, computes πa′1 ,...,a

′
`
(R):

I 1. We use the named perspective, encoding the set of attributes { a′1, . . . , a
′
` } as #a′1, . . . , a

′
`# at the start of the input, and then

encoding R as $a1 7→ c i
1, . . . , an 7→ c i

n$.
2. We point a pointer pc to the first attribute a′1, and, for every row of the input, proceed:

2.1 write $ to the output.
2.2 for every pair aj 7→ ci

j , check whether aj occurs in { a′1 , . . . , a
′
n } and write aj 7→ ci

j if that is the case.

2.3 write $ to the output.

37 / 75



Exercise 2
Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that
implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20–21)
A LogSpace transducer is a deterministic TM with three tapes:
I a read-only input tape
I a read/write working tape of size O(log n)

I a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers
compute partial functions Σ∗ → Σ∗.

Solution.
I We describe a LogSpace transducerM that, given a table R with schema R[a1, . . . , an] and some

ai , aj ∈ { a1, . . . , an }, computes σai =aj (R).
I We describe a LogSpace transducerM that, given a table R with schema R[a1, . . . , an] and some
{ a′1, . . . , a

′
`
} ⊆ { a1, . . . , an }, computes πa′1 ,...,a

′
`
(R):

I 1. We use the named perspective, encoding the set of attributes { a′1, . . . , a
′
` } as #a′1, . . . , a

′
`# at the start of the input, and then

encoding R as $a1 7→ c i
1, . . . , an 7→ c i

n$.
2. We point a pointer pc to the first attribute a′1, and, for every row of the input, proceed:

2.1 write $ to the output.

2.2 for every pair aj 7→ ci
j , check whether aj occurs in { a′1 , . . . , a

′
n } and write aj 7→ ci

j if that is the case.

2.3 write $ to the output.

38 / 75



Exercise 2
Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that
implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20–21)
A LogSpace transducer is a deterministic TM with three tapes:
I a read-only input tape
I a read/write working tape of size O(log n)

I a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers
compute partial functions Σ∗ → Σ∗.

Solution.
I We describe a LogSpace transducerM that, given a table R with schema R[a1, . . . , an] and some

ai , aj ∈ { a1, . . . , an }, computes σai =aj (R).
I We describe a LogSpace transducerM that, given a table R with schema R[a1, . . . , an] and some
{ a′1, . . . , a

′
`
} ⊆ { a1, . . . , an }, computes πa′1 ,...,a

′
`
(R):

I 1. We use the named perspective, encoding the set of attributes { a′1, . . . , a
′
` } as #a′1, . . . , a

′
`# at the start of the input, and then

encoding R as $a1 7→ c i
1, . . . , an 7→ c i

n$.
2. We point a pointer pc to the first attribute a′1, and, for every row of the input, proceed:

2.1 write $ to the output.
2.2 for every pair aj 7→ ci

j , check whether aj occurs in { a′1 , . . . , a
′
n } and write aj 7→ ci

j if that is the case.

2.3 write $ to the output.

39 / 75



Exercise 2
Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that
implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20–21)
A LogSpace transducer is a deterministic TM with three tapes:
I a read-only input tape
I a read/write working tape of size O(log n)

I a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers
compute partial functions Σ∗ → Σ∗.

Solution.
I We describe a LogSpace transducerM that, given a table R with schema R[a1, . . . , an] and some

ai , aj ∈ { a1, . . . , an }, computes σai =aj (R).
I We describe a LogSpace transducerM that, given a table R with schema R[a1, . . . , an] and some
{ a′1, . . . , a

′
`
} ⊆ { a1, . . . , an }, computes πa′1 ,...,a

′
`
(R):

I 1. We use the named perspective, encoding the set of attributes { a′1, . . . , a
′
` } as #a′1, . . . , a

′
`# at the start of the input, and then

encoding R as $a1 7→ c i
1, . . . , an 7→ c i

n$.
2. We point a pointer pc to the first attribute a′1, and, for every row of the input, proceed:

2.1 write $ to the output.
2.2 for every pair aj 7→ ci

j , check whether aj occurs in { a′1 , . . . , a
′
n } and write aj 7→ ci

j if that is the case.

2.3 write $ to the output.

40 / 75



Exercise 3
Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a
similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra
gives rise to a corresponding circuit by describing the circuits for the following expressions:

σi=c(R) (c a constant) σi=j (R) (j an attribute)

πa1 ,...,a` (R) R ./ S

δa1 ,...,a`→b1 ,...,b` (R) R − S

R ∪ S R ∩ S

Solution.

σi=c(R) for each tuple 〈c1, . . . , cn〉 in R, we add one of these two circuits:

σi=j (R) analogous.

πa1 ,...,a` (R) for all tuples 〈c1, . . . , cn〉, . . . , 〈c′1, . . . , c
′
n〉 in R with

ca1 = c′a1
, . . . , ca` = c′a` , we add the circuit:

R ./ S for each tuple 〈a1, . . . , a`, c1, . . . , cn〉 in R and each tuple
〈b1, . . . , bk , c1, . . . , cn〉 in S, we add the circuit:

δa1 ,...an→b1 ,...,bn (R) for each tuple 〈ca1 , . . . , can 〉 in R, we add the circuit:

R − S for each tuple 〈c1, . . . , cn〉 in R, we add the circuit:

R ∪ S for each tuple 〈c1, . . . , cn〉 in R, we add the circuit:

R ∩ S analogous to R ./ S.

41 / 75



Exercise 3
Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a
similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra
gives rise to a corresponding circuit by describing the circuits for the following expressions:

σi=c(R) (c a constant) σi=j (R) (j an attribute)

πa1 ,...,a` (R) R ./ S

δa1 ,...,a`→b1 ,...,b` (R) R − S

R ∪ S R ∩ S

Solution.

σi=c(R) for each tuple 〈c1, . . . , cn〉 in R, we add one of these two circuits:

σi=j (R) analogous.

πa1 ,...,a` (R) for all tuples 〈c1, . . . , cn〉, . . . , 〈c′1, . . . , c
′
n〉 in R with

ca1 = c′a1
, . . . , ca` = c′a` , we add the circuit:

R ./ S for each tuple 〈a1, . . . , a`, c1, . . . , cn〉 in R and each tuple
〈b1, . . . , bk , c1, . . . , cn〉 in S, we add the circuit:

δa1 ,...an→b1 ,...,bn (R) for each tuple 〈ca1 , . . . , can 〉 in R, we add the circuit:

R − S for each tuple 〈c1, . . . , cn〉 in R, we add the circuit:

R ∪ S for each tuple 〈c1, . . . , cn〉 in R, we add the circuit:

R ∩ S analogous to R ./ S.

42 / 75



Exercise 3
Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a
similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra
gives rise to a corresponding circuit by describing the circuits for the following expressions:

σi=c(R) (c a constant) σi=j (R) (j an attribute)

πa1 ,...,a` (R) R ./ S

δa1 ,...,a`→b1 ,...,b` (R) R − S

R ∪ S R ∩ S

Solution.

σi=c(R) for each tuple 〈c1, . . . , cn〉 in R, we add one of these two circuits:

σi=j (R) analogous.

πa1 ,...,a` (R) for all tuples 〈c1, . . . , cn〉, . . . , 〈c′1, . . . , c
′
n〉 in R with

ca1 = c′a1
, . . . , ca` = c′a` , we add the circuit:

R ./ S for each tuple 〈a1, . . . , a`, c1, . . . , cn〉 in R and each tuple
〈b1, . . . , bk , c1, . . . , cn〉 in S, we add the circuit:

δa1 ,...an→b1 ,...,bn (R) for each tuple 〈ca1 , . . . , can 〉 in R, we add the circuit:

R − S for each tuple 〈c1, . . . , cn〉 in R, we add the circuit:

R ∪ S for each tuple 〈c1, . . . , cn〉 in R, we add the circuit:

R ∩ S analogous to R ./ S.

R(c1, . . . , cn)

σi=c

j

(R)(c1, . . . , cn)

if ci = c

j

R(c1, . . . , cn)

if ci , c

j

¬

∧

σi=c

j

(R)(c1, . . . , cn)

43 / 75



Exercise 3
Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a
similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra
gives rise to a corresponding circuit by describing the circuits for the following expressions:

σi=c(R) (c a constant) σi=j (R) (j an attribute)

πa1 ,...,a` (R) R ./ S

δa1 ,...,a`→b1 ,...,b` (R) R − S

R ∪ S R ∩ S

Solution.

σi=c(R) for each tuple 〈c1, . . . , cn〉 in R, we add one of these two circuits:

σi=j (R) analogous.

πa1 ,...,a` (R) for all tuples 〈c1, . . . , cn〉, . . . , 〈c′1, . . . , c
′
n〉 in R with

ca1 = c′a1
, . . . , ca` = c′a` , we add the circuit:

R ./ S for each tuple 〈a1, . . . , a`, c1, . . . , cn〉 in R and each tuple
〈b1, . . . , bk , c1, . . . , cn〉 in S, we add the circuit:

δa1 ,...an→b1 ,...,bn (R) for each tuple 〈ca1 , . . . , can 〉 in R, we add the circuit:

R − S for each tuple 〈c1, . . . , cn〉 in R, we add the circuit:

R ∪ S for each tuple 〈c1, . . . , cn〉 in R, we add the circuit:

R ∩ S analogous to R ./ S.

R(c1, . . . , cn)

σi=cj (R)(c1, . . . , cn)

if ci = c j

R(c1, . . . , cn)

if ci , c j

¬

∧

σi=cj (R)(c1, . . . , cn)

44 / 75



Exercise 3
Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a
similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra
gives rise to a corresponding circuit by describing the circuits for the following expressions:

σi=c(R) (c a constant) σi=j (R) (j an attribute)

πa1 ,...,a` (R) R ./ S

δa1 ,...,a`→b1 ,...,b` (R) R − S

R ∪ S R ∩ S

Solution.

σi=c(R) for each tuple 〈c1, . . . , cn〉 in R, we add one of these two circuits:

σi=j (R) analogous.

πa1 ,...,a` (R) for all tuples 〈c1, . . . , cn〉, . . . , 〈c′1, . . . , c
′
n〉 in R with

ca1 = c′a1
, . . . , ca` = c′a` , we add the circuit:

R ./ S for each tuple 〈a1, . . . , a`, c1, . . . , cn〉 in R and each tuple
〈b1, . . . , bk , c1, . . . , cn〉 in S, we add the circuit:

δa1 ,...an→b1 ,...,bn (R) for each tuple 〈ca1 , . . . , can 〉 in R, we add the circuit:

R − S for each tuple 〈c1, . . . , cn〉 in R, we add the circuit:

R ∪ S for each tuple 〈c1, . . . , cn〉 in R, we add the circuit:

R ∩ S analogous to R ./ S.

R(c1, . . . , cn)

πa1 ,...,a` (R)(ca1 , . . . , ca` )

· · · R(c′1, . . . , c
′
n)

∨

45 / 75



Exercise 3
Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a
similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra
gives rise to a corresponding circuit by describing the circuits for the following expressions:

σi=c(R) (c a constant) σi=j (R) (j an attribute)

πa1 ,...,a` (R) R ./ S

δa1 ,...,a`→b1 ,...,b` (R) R − S

R ∪ S R ∩ S

Solution.

σi=c(R) for each tuple 〈c1, . . . , cn〉 in R, we add one of these two circuits:

σi=j (R) analogous.

πa1 ,...,a` (R) for all tuples 〈c1, . . . , cn〉, . . . , 〈c′1, . . . , c
′
n〉 in R with

ca1 = c′a1
, . . . , ca` = c′a` , we add the circuit:

R ./ S for each tuple 〈a1, . . . , a`, c1, . . . , cn〉 in R and each tuple
〈b1, . . . , bk , c1, . . . , cn〉 in S, we add the circuit:

δa1 ,...an→b1 ,...,bn (R) for each tuple 〈ca1 , . . . , can 〉 in R, we add the circuit:

R − S for each tuple 〈c1, . . . , cn〉 in R, we add the circuit:

R ∪ S for each tuple 〈c1, . . . , cn〉 in R, we add the circuit:

R ∩ S analogous to R ./ S.

R(a1, . . . , a`, c1, . . . , cn)

(R ./ S)(a1, . . . , a`, c1, . . . , cn, b1, . . . , bk )

S(b1, . . . , bk , c1, . . . , cn)

∧

46 / 75



Exercise 3
Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a
similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra
gives rise to a corresponding circuit by describing the circuits for the following expressions:

σi=c(R) (c a constant) σi=j (R) (j an attribute)

πa1 ,...,a` (R) R ./ S

δa1 ,...,a`→b1 ,...,b` (R) R − S

R ∪ S R ∩ S

Solution.

σi=c(R) for each tuple 〈c1, . . . , cn〉 in R, we add one of these two circuits:

σi=j (R) analogous.

πa1 ,...,a` (R) for all tuples 〈c1, . . . , cn〉, . . . , 〈c′1, . . . , c
′
n〉 in R with

ca1 = c′a1
, . . . , ca` = c′a` , we add the circuit:

R ./ S for each tuple 〈a1, . . . , a`, c1, . . . , cn〉 in R and each tuple
〈b1, . . . , bk , c1, . . . , cn〉 in S, we add the circuit:

δa1 ,...an→b1 ,...,bn (R) for each tuple 〈ca1 , . . . , can 〉 in R, we add the circuit:

R − S for each tuple 〈c1, . . . , cn〉 in R, we add the circuit:

R ∪ S for each tuple 〈c1, . . . , cn〉 in R, we add the circuit:

R ∩ S analogous to R ./ S.

R(ca1 , . . . , can )

δa1 ,...,an→b1 ,...,bn (R)(cb1 , . . . , cbn )

47 / 75



Exercise 3
Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a
similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra
gives rise to a corresponding circuit by describing the circuits for the following expressions:

σi=c(R) (c a constant) σi=j (R) (j an attribute)

πa1 ,...,a` (R) R ./ S

δa1 ,...,a`→b1 ,...,b` (R) R − S

R ∪ S R ∩ S

Solution.

σi=c(R) for each tuple 〈c1, . . . , cn〉 in R, we add one of these two circuits:

σi=j (R) analogous.

πa1 ,...,a` (R) for all tuples 〈c1, . . . , cn〉, . . . , 〈c′1, . . . , c
′
n〉 in R with

ca1 = c′a1
, . . . , ca` = c′a` , we add the circuit:

R ./ S for each tuple 〈a1, . . . , a`, c1, . . . , cn〉 in R and each tuple
〈b1, . . . , bk , c1, . . . , cn〉 in S, we add the circuit:

δa1 ,...an→b1 ,...,bn (R) for each tuple 〈ca1 , . . . , can 〉 in R, we add the circuit:

R − S for each tuple 〈c1, . . . , cn〉 in R, we add the circuit:

R ∪ S for each tuple 〈c1, . . . , cn〉 in R, we add the circuit:

R ∩ S analogous to R ./ S.

R(c1, . . . , cn) S(c1, . . . , cn)

(R − S)(c1, . . . , cn)

∧

¬

48 / 75



Exercise 3
Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a
similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra
gives rise to a corresponding circuit by describing the circuits for the following expressions:

σi=c(R) (c a constant) σi=j (R) (j an attribute)

πa1 ,...,a` (R) R ./ S

δa1 ,...,a`→b1 ,...,b` (R) R − S

R ∪ S R ∩ S

Solution.

σi=c(R) for each tuple 〈c1, . . . , cn〉 in R, we add one of these two circuits:

σi=j (R) analogous.

πa1 ,...,a` (R) for all tuples 〈c1, . . . , cn〉, . . . , 〈c′1, . . . , c
′
n〉 in R with

ca1 = c′a1
, . . . , ca` = c′a` , we add the circuit:

R ./ S for each tuple 〈a1, . . . , a`, c1, . . . , cn〉 in R and each tuple
〈b1, . . . , bk , c1, . . . , cn〉 in S, we add the circuit:

δa1 ,...an→b1 ,...,bn (R) for each tuple 〈ca1 , . . . , can 〉 in R, we add the circuit:

R − S for each tuple 〈c1, . . . , cn〉 in R, we add the circuit:

R ∪ S for each tuple 〈c1, . . . , cn〉 in R, we add the circuit:

R ∩ S analogous to R ./ S.

R(c1, . . . , cn) S(c1, . . . , cn)

(R ∪ S)(c1, . . . , cn)

∨

49 / 75



Exercise 3
Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a
similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra
gives rise to a corresponding circuit by describing the circuits for the following expressions:

σi=c(R) (c a constant) σi=j (R) (j an attribute)

πa1 ,...,a` (R) R ./ S

δa1 ,...,a`→b1 ,...,b` (R) R − S

R ∪ S R ∩ S

Solution.

σi=c(R) for each tuple 〈c1, . . . , cn〉 in R, we add one of these two circuits:

σi=j (R) analogous.

πa1 ,...,a` (R) for all tuples 〈c1, . . . , cn〉, . . . , 〈c′1, . . . , c
′
n〉 in R with

ca1 = c′a1
, . . . , ca` = c′a` , we add the circuit:

R ./ S for each tuple 〈a1, . . . , a`, c1, . . . , cn〉 in R and each tuple
〈b1, . . . , bk , c1, . . . , cn〉 in S, we add the circuit:

δa1 ,...an→b1 ,...,bn (R) for each tuple 〈ca1 , . . . , can 〉 in R, we add the circuit:

R − S for each tuple 〈c1, . . . , cn〉 in R, we add the circuit:

R ∪ S for each tuple 〈c1, . . . , cn〉 in R, we add the circuit:

R ∩ S analogous to R ./ S.

R(c1, . . . , cn)

(R ∩ S)(c1, . . . , cn)

S(c1, . . . , cn)

∧

50 / 75



Exercise 4
Exercise. Decide whether the following statements are true or false:

1. The combined complexity of a query language is at least as high as its data complexity.

2. The query complexity of a query language is at least as high as its data complexity.

If true, explain why, otherwise give a counter-example.

Definition (Lecture 3, Slide 5)
Combined complexity given BCQ q and database instance I does I |= q hold?

Data complexity given database instance I, does I |= q hold for a fixed BCQ q?

Query complexity given BCQ q, does I |= q hold for a fixed database instance I?

Solution.

1. True (why?).

2. False: Consider L = {q} with q a non-trivial BCQ, i.e., a BCQ such that there are database instances I and J
with I |= q and J 6|= q. Then the query complexity is constant, yet the data complexity of L is still in AC0.

51 / 75



Exercise 4
Exercise. Decide whether the following statements are true or false:

1. The combined complexity of a query language is at least as high as its data complexity.

2. The query complexity of a query language is at least as high as its data complexity.

If true, explain why, otherwise give a counter-example.

Definition (Lecture 3, Slide 5)
Combined complexity given BCQ q and database instance I does I |= q hold?

Data complexity given database instance I, does I |= q hold for a fixed BCQ q?

Query complexity given BCQ q, does I |= q hold for a fixed database instance I?

Solution.

1. True (why?).

2. False: Consider L = {q} with q a non-trivial BCQ, i.e., a BCQ such that there are database instances I and J
with I |= q and J 6|= q. Then the query complexity is constant, yet the data complexity of L is still in AC0.

52 / 75



Exercise 4
Exercise. Decide whether the following statements are true or false:

1. The combined complexity of a query language is at least as high as its data complexity.

2. The query complexity of a query language is at least as high as its data complexity.

If true, explain why, otherwise give a counter-example.

Definition (Lecture 3, Slide 5)
Combined complexity given BCQ q and database instance I does I |= q hold?

Data complexity given database instance I, does I |= q hold for a fixed BCQ q?

Query complexity given BCQ q, does I |= q hold for a fixed database instance I?

Solution.

1. True (why?).

2. False: Consider L = {q} with q a non-trivial BCQ, i.e., a BCQ such that there are database instances I and J
with I |= q and J 6|= q. Then the query complexity is constant, yet the data complexity of L is still in AC0.

53 / 75



Exercise 4
Exercise. Decide whether the following statements are true or false:

1. The combined complexity of a query language is at least as high as its data complexity.

2. The query complexity of a query language is at least as high as its data complexity.

If true, explain why, otherwise give a counter-example.

Definition (Lecture 3, Slide 5)
Combined complexity given BCQ q and database instance I does I |= q hold?

Data complexity given database instance I, does I |= q hold for a fixed BCQ q?

Query complexity given BCQ q, does I |= q hold for a fixed database instance I?

Solution.

1. True (why?).

2. False: Consider L = {q} with q a non-trivial BCQ, i.e., a BCQ such that there are database instances I and J
with I |= q and J 6|= q. Then the query complexity is constant, yet the data complexity of L is still in AC0.

54 / 75



Exercise 4
Exercise. Decide whether the following statements are true or false:

1. The combined complexity of a query language is at least as high as its data complexity.

2. The query complexity of a query language is at least as high as its data complexity.

If true, explain why, otherwise give a counter-example.

Definition (Lecture 3, Slide 5)
Combined complexity given BCQ q and database instance I does I |= q hold?

Data complexity given database instance I, does I |= q hold for a fixed BCQ q?

Query complexity given BCQ q, does I |= q hold for a fixed database instance I?

Solution.

1. True (why?).

2. False: Consider L = {q} with q a non-trivial BCQ, i.e., a BCQ such that there are database instances I and J
with I |= q and J 6|= q. Then the query complexity is constant, yet the data complexity of L is still in AC0.

55 / 75



Exercise 5
Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20–21)
A LogSpace transducer is a deterministic TM with three tapes:
I a read-only input tape
I a read/write working tape of size O(log n)

I a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers
compute partial functions Σ∗ → Σ∗.

Solution.
I Let f , g : Σ∗ → Σ∗ be LogSpace-computable functions.
I LetMf andMg be LogSpace transducers computing f and g, respectively.
I We show that f ◦ g is also LogSpace computable by constructing a LogSpace transducerM computing f ◦ g:

1. We can’t just simulateMg to compute g(w) for input w : |g(w)| may be polynomial in |w | (but not larger, since L ⊆ P).
2. But we can constructM′g that computes the k -th symbol of g(w):

2.1 We use a binary counter p to store k (since |g(w)| is polynomial in |w |, we can do that in logarithmic space).
2.2 On input k#w ,M′g computes the k -th symbol of g(w).

3. ThenM computes f ◦ g on input w by simulatingMf .
4. Each time the simulation ofMf tries to read the k -th symbol of g(w), we simulateM′g , reading w from the input tape and k

from the working tape, respectively, storing the result in a single cell of the working tape.
5. Both simulations can be performed in logarithmic space, and thus,M runs in logarithmic space.

56 / 75



Exercise 5
Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20–21)
A LogSpace transducer is a deterministic TM with three tapes:
I a read-only input tape
I a read/write working tape of size O(log n)

I a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers
compute partial functions Σ∗ → Σ∗.

Solution.
I Let f , g : Σ∗ → Σ∗ be LogSpace-computable functions.
I LetMf andMg be LogSpace transducers computing f and g, respectively.
I We show that f ◦ g is also LogSpace computable by constructing a LogSpace transducerM computing f ◦ g:

1. We can’t just simulateMg to compute g(w) for input w : |g(w)| may be polynomial in |w | (but not larger, since L ⊆ P).
2. But we can constructM′g that computes the k -th symbol of g(w):

2.1 We use a binary counter p to store k (since |g(w)| is polynomial in |w |, we can do that in logarithmic space).
2.2 On input k#w ,M′g computes the k -th symbol of g(w).

3. ThenM computes f ◦ g on input w by simulatingMf .
4. Each time the simulation ofMf tries to read the k -th symbol of g(w), we simulateM′g , reading w from the input tape and k

from the working tape, respectively, storing the result in a single cell of the working tape.
5. Both simulations can be performed in logarithmic space, and thus,M runs in logarithmic space.

57 / 75



Exercise 5
Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20–21)
A LogSpace transducer is a deterministic TM with three tapes:
I a read-only input tape
I a read/write working tape of size O(log n)

I a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers
compute partial functions Σ∗ → Σ∗.

Solution.

I Let f , g : Σ∗ → Σ∗ be LogSpace-computable functions.
I LetMf andMg be LogSpace transducers computing f and g, respectively.
I We show that f ◦ g is also LogSpace computable by constructing a LogSpace transducerM computing f ◦ g:

1. We can’t just simulateMg to compute g(w) for input w : |g(w)| may be polynomial in |w | (but not larger, since L ⊆ P).
2. But we can constructM′g that computes the k -th symbol of g(w):

2.1 We use a binary counter p to store k (since |g(w)| is polynomial in |w |, we can do that in logarithmic space).
2.2 On input k#w ,M′g computes the k -th symbol of g(w).

3. ThenM computes f ◦ g on input w by simulatingMf .
4. Each time the simulation ofMf tries to read the k -th symbol of g(w), we simulateM′g , reading w from the input tape and k

from the working tape, respectively, storing the result in a single cell of the working tape.
5. Both simulations can be performed in logarithmic space, and thus,M runs in logarithmic space.

58 / 75



Exercise 5
Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20–21)
A LogSpace transducer is a deterministic TM with three tapes:
I a read-only input tape
I a read/write working tape of size O(log n)

I a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers
compute partial functions Σ∗ → Σ∗.

Solution.
I Let f , g : Σ∗ → Σ∗ be LogSpace-computable functions.

I LetMf andMg be LogSpace transducers computing f and g, respectively.
I We show that f ◦ g is also LogSpace computable by constructing a LogSpace transducerM computing f ◦ g:

1. We can’t just simulateMg to compute g(w) for input w : |g(w)| may be polynomial in |w | (but not larger, since L ⊆ P).
2. But we can constructM′g that computes the k -th symbol of g(w):

2.1 We use a binary counter p to store k (since |g(w)| is polynomial in |w |, we can do that in logarithmic space).
2.2 On input k#w ,M′g computes the k -th symbol of g(w).

3. ThenM computes f ◦ g on input w by simulatingMf .
4. Each time the simulation ofMf tries to read the k -th symbol of g(w), we simulateM′g , reading w from the input tape and k

from the working tape, respectively, storing the result in a single cell of the working tape.
5. Both simulations can be performed in logarithmic space, and thus,M runs in logarithmic space.

59 / 75



Exercise 5
Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20–21)
A LogSpace transducer is a deterministic TM with three tapes:
I a read-only input tape
I a read/write working tape of size O(log n)

I a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers
compute partial functions Σ∗ → Σ∗.

Solution.
I Let f , g : Σ∗ → Σ∗ be LogSpace-computable functions.
I LetMf andMg be LogSpace transducers computing f and g, respectively.

I We show that f ◦ g is also LogSpace computable by constructing a LogSpace transducerM computing f ◦ g:

1. We can’t just simulateMg to compute g(w) for input w : |g(w)| may be polynomial in |w | (but not larger, since L ⊆ P).
2. But we can constructM′g that computes the k -th symbol of g(w):

2.1 We use a binary counter p to store k (since |g(w)| is polynomial in |w |, we can do that in logarithmic space).
2.2 On input k#w ,M′g computes the k -th symbol of g(w).

3. ThenM computes f ◦ g on input w by simulatingMf .
4. Each time the simulation ofMf tries to read the k -th symbol of g(w), we simulateM′g , reading w from the input tape and k

from the working tape, respectively, storing the result in a single cell of the working tape.
5. Both simulations can be performed in logarithmic space, and thus,M runs in logarithmic space.

60 / 75



Exercise 5
Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20–21)
A LogSpace transducer is a deterministic TM with three tapes:
I a read-only input tape
I a read/write working tape of size O(log n)

I a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers
compute partial functions Σ∗ → Σ∗.

Solution.
I Let f , g : Σ∗ → Σ∗ be LogSpace-computable functions.
I LetMf andMg be LogSpace transducers computing f and g, respectively.
I We show that f ◦ g is also LogSpace computable by constructing a LogSpace transducerM computing f ◦ g:

1. We can’t just simulateMg to compute g(w) for input w : |g(w)| may be polynomial in |w | (but not larger, since L ⊆ P).
2. But we can constructM′g that computes the k -th symbol of g(w):

2.1 We use a binary counter p to store k (since |g(w)| is polynomial in |w |, we can do that in logarithmic space).
2.2 On input k#w ,M′g computes the k -th symbol of g(w).

3. ThenM computes f ◦ g on input w by simulatingMf .
4. Each time the simulation ofMf tries to read the k -th symbol of g(w), we simulateM′g , reading w from the input tape and k

from the working tape, respectively, storing the result in a single cell of the working tape.
5. Both simulations can be performed in logarithmic space, and thus,M runs in logarithmic space.

61 / 75



Exercise 5
Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20–21)
A LogSpace transducer is a deterministic TM with three tapes:
I a read-only input tape
I a read/write working tape of size O(log n)

I a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers
compute partial functions Σ∗ → Σ∗.

Solution.
I Let f , g : Σ∗ → Σ∗ be LogSpace-computable functions.
I LetMf andMg be LogSpace transducers computing f and g, respectively.
I We show that f ◦ g is also LogSpace computable by constructing a LogSpace transducerM computing f ◦ g:

1. We can’t just simulateMg to compute g(w) for input w : |g(w)| may be polynomial in |w | (but not larger, since L ⊆ P).

2. But we can constructM′g that computes the k -th symbol of g(w):

2.1 We use a binary counter p to store k (since |g(w)| is polynomial in |w |, we can do that in logarithmic space).
2.2 On input k#w ,M′g computes the k -th symbol of g(w).

3. ThenM computes f ◦ g on input w by simulatingMf .
4. Each time the simulation ofMf tries to read the k -th symbol of g(w), we simulateM′g , reading w from the input tape and k

from the working tape, respectively, storing the result in a single cell of the working tape.
5. Both simulations can be performed in logarithmic space, and thus,M runs in logarithmic space.

62 / 75



Exercise 5
Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20–21)
A LogSpace transducer is a deterministic TM with three tapes:
I a read-only input tape
I a read/write working tape of size O(log n)

I a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers
compute partial functions Σ∗ → Σ∗.

Solution.
I Let f , g : Σ∗ → Σ∗ be LogSpace-computable functions.
I LetMf andMg be LogSpace transducers computing f and g, respectively.
I We show that f ◦ g is also LogSpace computable by constructing a LogSpace transducerM computing f ◦ g:

1. We can’t just simulateMg to compute g(w) for input w : |g(w)| may be polynomial in |w | (but not larger, since L ⊆ P).
2. But we can constructM′g that computes the k -th symbol of g(w):

2.1 We use a binary counter p to store k (since |g(w)| is polynomial in |w |, we can do that in logarithmic space).
2.2 On input k#w ,M′g computes the k -th symbol of g(w).

3. ThenM computes f ◦ g on input w by simulatingMf .
4. Each time the simulation ofMf tries to read the k -th symbol of g(w), we simulateM′g , reading w from the input tape and k

from the working tape, respectively, storing the result in a single cell of the working tape.
5. Both simulations can be performed in logarithmic space, and thus,M runs in logarithmic space.

63 / 75



Exercise 5
Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20–21)
A LogSpace transducer is a deterministic TM with three tapes:
I a read-only input tape
I a read/write working tape of size O(log n)

I a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers
compute partial functions Σ∗ → Σ∗.

Solution.
I Let f , g : Σ∗ → Σ∗ be LogSpace-computable functions.
I LetMf andMg be LogSpace transducers computing f and g, respectively.
I We show that f ◦ g is also LogSpace computable by constructing a LogSpace transducerM computing f ◦ g:

1. We can’t just simulateMg to compute g(w) for input w : |g(w)| may be polynomial in |w | (but not larger, since L ⊆ P).
2. But we can constructM′g that computes the k -th symbol of g(w):

2.1 We use a binary counter p to store k (since |g(w)| is polynomial in |w |, we can do that in logarithmic space).

2.2 On input k#w ,M′g computes the k -th symbol of g(w).

3. ThenM computes f ◦ g on input w by simulatingMf .
4. Each time the simulation ofMf tries to read the k -th symbol of g(w), we simulateM′g , reading w from the input tape and k

from the working tape, respectively, storing the result in a single cell of the working tape.
5. Both simulations can be performed in logarithmic space, and thus,M runs in logarithmic space.

64 / 75



Exercise 5
Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20–21)
A LogSpace transducer is a deterministic TM with three tapes:
I a read-only input tape
I a read/write working tape of size O(log n)

I a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers
compute partial functions Σ∗ → Σ∗.

Solution.
I Let f , g : Σ∗ → Σ∗ be LogSpace-computable functions.
I LetMf andMg be LogSpace transducers computing f and g, respectively.
I We show that f ◦ g is also LogSpace computable by constructing a LogSpace transducerM computing f ◦ g:

1. We can’t just simulateMg to compute g(w) for input w : |g(w)| may be polynomial in |w | (but not larger, since L ⊆ P).
2. But we can constructM′g that computes the k -th symbol of g(w):

2.1 We use a binary counter p to store k (since |g(w)| is polynomial in |w |, we can do that in logarithmic space).
2.2 On input k#w ,M′g computes the k -th symbol of g(w).

3. ThenM computes f ◦ g on input w by simulatingMf .
4. Each time the simulation ofMf tries to read the k -th symbol of g(w), we simulateM′g , reading w from the input tape and k

from the working tape, respectively, storing the result in a single cell of the working tape.
5. Both simulations can be performed in logarithmic space, and thus,M runs in logarithmic space.

65 / 75



Exercise 5
Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20–21)
A LogSpace transducer is a deterministic TM with three tapes:
I a read-only input tape
I a read/write working tape of size O(log n)

I a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers
compute partial functions Σ∗ → Σ∗.

Solution.
I Let f , g : Σ∗ → Σ∗ be LogSpace-computable functions.
I LetMf andMg be LogSpace transducers computing f and g, respectively.
I We show that f ◦ g is also LogSpace computable by constructing a LogSpace transducerM computing f ◦ g:

1. We can’t just simulateMg to compute g(w) for input w : |g(w)| may be polynomial in |w | (but not larger, since L ⊆ P).
2. But we can constructM′g that computes the k -th symbol of g(w):

2.1 We use a binary counter p to store k (since |g(w)| is polynomial in |w |, we can do that in logarithmic space).
2.2 On input k#w ,M′g computes the k -th symbol of g(w).

3. ThenM computes f ◦ g on input w by simulatingMf .

4. Each time the simulation ofMf tries to read the k -th symbol of g(w), we simulateM′g , reading w from the input tape and k
from the working tape, respectively, storing the result in a single cell of the working tape.

5. Both simulations can be performed in logarithmic space, and thus,M runs in logarithmic space.

66 / 75



Exercise 5
Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20–21)
A LogSpace transducer is a deterministic TM with three tapes:
I a read-only input tape
I a read/write working tape of size O(log n)

I a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers
compute partial functions Σ∗ → Σ∗.

Solution.
I Let f , g : Σ∗ → Σ∗ be LogSpace-computable functions.
I LetMf andMg be LogSpace transducers computing f and g, respectively.
I We show that f ◦ g is also LogSpace computable by constructing a LogSpace transducerM computing f ◦ g:

1. We can’t just simulateMg to compute g(w) for input w : |g(w)| may be polynomial in |w | (but not larger, since L ⊆ P).
2. But we can constructM′g that computes the k -th symbol of g(w):

2.1 We use a binary counter p to store k (since |g(w)| is polynomial in |w |, we can do that in logarithmic space).
2.2 On input k#w ,M′g computes the k -th symbol of g(w).

3. ThenM computes f ◦ g on input w by simulatingMf .
4. Each time the simulation ofMf tries to read the k -th symbol of g(w), we simulateM′g , reading w from the input tape and k

from the working tape, respectively, storing the result in a single cell of the working tape.

5. Both simulations can be performed in logarithmic space, and thus,M runs in logarithmic space.

67 / 75



Exercise 5
Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20–21)
A LogSpace transducer is a deterministic TM with three tapes:
I a read-only input tape
I a read/write working tape of size O(log n)

I a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers
compute partial functions Σ∗ → Σ∗.

Solution.
I Let f , g : Σ∗ → Σ∗ be LogSpace-computable functions.
I LetMf andMg be LogSpace transducers computing f and g, respectively.
I We show that f ◦ g is also LogSpace computable by constructing a LogSpace transducerM computing f ◦ g:

1. We can’t just simulateMg to compute g(w) for input w : |g(w)| may be polynomial in |w | (but not larger, since L ⊆ P).
2. But we can constructM′g that computes the k -th symbol of g(w):

2.1 We use a binary counter p to store k (since |g(w)| is polynomial in |w |, we can do that in logarithmic space).
2.2 On input k#w ,M′g computes the k -th symbol of g(w).

3. ThenM computes f ◦ g on input w by simulatingMf .
4. Each time the simulation ofMf tries to read the k -th symbol of g(w), we simulateM′g , reading w from the input tape and k

from the working tape, respectively, storing the result in a single cell of the working tape.
5. Both simulations can be performed in logarithmic space, and thus,M runs in logarithmic space.

68 / 75



Exercise 6
Exercise. Is the question “P = NP?” decidable?

Definition (Lecture 3, slide 10)
A TM decides a decision problem L if it halts on all inputs and accepts exactly the words in L.

Solution.
I Let L be the decision problem for “P = NP?”, i.e., let L = Σ∗ if P = NP, and let L = ∅ otherwise.
I LetMA andMR be two terminating TMs that accept and reject every input, respectively.
I One of these two TMs decides L.
I Thus, L is decidable, and hence, so is “P = NP?”.

69 / 75



Exercise 6
Exercise. Is the question “P = NP?” decidable?

Definition (Lecture 3, slide 10)
A TM decides a decision problem L if it halts on all inputs and accepts exactly the words in L.

Solution.
I Let L be the decision problem for “P = NP?”, i.e., let L = Σ∗ if P = NP, and let L = ∅ otherwise.
I LetMA andMR be two terminating TMs that accept and reject every input, respectively.
I One of these two TMs decides L.
I Thus, L is decidable, and hence, so is “P = NP?”.

70 / 75



Exercise 6
Exercise. Is the question “P = NP?” decidable?

Definition (Lecture 3, slide 10)
A TM decides a decision problem L if it halts on all inputs and accepts exactly the words in L.

Solution.

I Let L be the decision problem for “P = NP?”, i.e., let L = Σ∗ if P = NP, and let L = ∅ otherwise.
I LetMA andMR be two terminating TMs that accept and reject every input, respectively.
I One of these two TMs decides L.
I Thus, L is decidable, and hence, so is “P = NP?”.

71 / 75



Exercise 6
Exercise. Is the question “P = NP?” decidable?

Definition (Lecture 3, slide 10)
A TM decides a decision problem L if it halts on all inputs and accepts exactly the words in L.

Solution.
I Let L be the decision problem for “P = NP?”, i.e., let L = Σ∗ if P = NP, and let L = ∅ otherwise.

I LetMA andMR be two terminating TMs that accept and reject every input, respectively.
I One of these two TMs decides L.
I Thus, L is decidable, and hence, so is “P = NP?”.

72 / 75



Exercise 6
Exercise. Is the question “P = NP?” decidable?

Definition (Lecture 3, slide 10)
A TM decides a decision problem L if it halts on all inputs and accepts exactly the words in L.

Solution.
I Let L be the decision problem for “P = NP?”, i.e., let L = Σ∗ if P = NP, and let L = ∅ otherwise.
I LetMA andMR be two terminating TMs that accept and reject every input, respectively.

I One of these two TMs decides L.
I Thus, L is decidable, and hence, so is “P = NP?”.

73 / 75



Exercise 6
Exercise. Is the question “P = NP?” decidable?

Definition (Lecture 3, slide 10)
A TM decides a decision problem L if it halts on all inputs and accepts exactly the words in L.

Solution.
I Let L be the decision problem for “P = NP?”, i.e., let L = Σ∗ if P = NP, and let L = ∅ otherwise.
I LetMA andMR be two terminating TMs that accept and reject every input, respectively.
I One of these two TMs decides L.

I Thus, L is decidable, and hence, so is “P = NP?”.

74 / 75



Exercise 6
Exercise. Is the question “P = NP?” decidable?

Definition (Lecture 3, slide 10)
A TM decides a decision problem L if it halts on all inputs and accepts exactly the words in L.

Solution.
I Let L be the decision problem for “P = NP?”, i.e., let L = Σ∗ if P = NP, and let L = ∅ otherwise.
I LetMA andMR be two terminating TMs that accept and reject every input, respectively.
I One of these two TMs decides L.
I Thus, L is decidable, and hence, so is “P = NP?”.

75 / 75


