Exercise 3: Complexity of First-Order Queries

Database Theory
2022-04-26
Maximilian Marx, Markus Krötzsch

Exercise 1

Exercise. We consider three problems related to query answering in the lecture:
Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \vDash q$ hold?
Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c}, does $\mathbf{c} \in M[q](I)$ hold?
Query Emptiness Given a query q and a database instance \mathcal{I}, is $M[q](\mathcal{I}) \neq \emptyset$?
Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Exercise 1

Exercise. We consider three problems related to query answering in the lecture:
Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?
Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c}, does $\mathbf{c} \in M[q](I)$ hold?
Query Emptiness Given a query q and a database instance \mathcal{I}, is $M[q](\mathcal{I}) \neq \emptyset$?
Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

Exercise 1

Exercise. We consider three problems related to query answering in the lecture:
Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \vDash q$ hold?
Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c}, does $\mathbf{c} \in M[q](I)$ hold?
Query Emptiness Given a query q and a database instance \mathcal{I}, is $M[q](\mathcal{I}) \neq \emptyset$?
Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

- We restate the problems as decision problems:

Exercise 1

Exercise. We consider three problems related to query answering in the lecture:
Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \vDash q$ hold?
Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c}, does $\mathbf{c} \in M[q](I)$ hold?
Query Emptiness Given a query q and a database instance I, is $M[q](I) \neq \emptyset$?
Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

- We restate the problems as decision problems:

$$
\mathrm{BQE}=\{\langle I, q\rangle \mid q \text { a BCQ with } I \models q\}
$$

Exercise 1

Exercise. We consider three problems related to query answering in the lecture:
Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?
Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c}, does $\mathbf{c} \in M[q](I)$ hold?
Query Emptiness Given a query q and a database instance I, is $M[q](\mathcal{I}) \neq \emptyset$?
Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

- We restate the problems as decision problems:

$$
\mathrm{BQE}=\{\langle I, q\rangle \mid q \text { a BCQ with } I \models q\} \quad \mathrm{QA}=\{\langle I, q[\mathbf{x}], \mathbf{c}\rangle \mid \mathbf{c} \in M[q](I)\}
$$

Exercise 1

Exercise. We consider three problems related to query answering in the lecture:
Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?
Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c}, does $\mathbf{c} \in M[q](I)$ hold?
Query Emptiness Given a query q and a database instance I, is $M[q](\mathcal{I}) \neq \emptyset$?
Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

- We restate the problems as decision problems:

$$
\mathrm{BQE}=\{\langle I, q\rangle \mid q \text { a BCQ with } I \models q\} \quad \mathrm{QA}=\{\langle I, q[\mathbf{x}], \mathbf{c}\rangle \mid \mathbf{c} \in M[q](I)\} \quad \mathrm{QE}=\{\langle I, q[\mathbf{x}]\rangle \mid M[q](I) \neq \emptyset\}
$$

Exercise 1

Exercise. We consider three problems related to query answering in the lecture:
Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?
Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c}, does $\mathbf{c} \in M[q](I)$ hold?
Query Emptiness Given a query q and a database instance I, is $M[q](\mathcal{I}) \neq \emptyset$?
Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

- We restate the problems as decision problems:

$$
\mathrm{BQE}=\{\langle I, q\rangle \mid q \text { a BCQ with } I \models q\} \quad \mathrm{QA}=\{\langle I, q[\mathbf{x}], \mathbf{c}\rangle \mid \mathbf{c} \in M[q](I)\} \quad \mathrm{QE}=\{\langle I, q[\mathbf{x}]\rangle \mid M[q](I) \neq \emptyset\}
$$

- Note that a BCQ q is entailed in I iff $M[q](I) \neq \emptyset$. Thus, a TM deciding QE also decides BQE.

Exercise 1

Exercise. We consider three problems related to query answering in the lecture:
Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?
Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c}, does $\mathbf{c} \in M[q](I)$ hold?
Query Emptiness Given a query q and a database instance \mathcal{I}, is $M[q](\mathcal{I}) \neq \emptyset$?
Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

- We restate the problems as decision problems:

$$
\mathrm{BQE}=\{\langle I, q\rangle \mid q \text { a BCQ with } I \models q\} \quad \mathrm{QA}=\{\langle I, q[\mathbf{x}], \mathbf{c}\rangle \mid \mathbf{c} \in M[q](I)\} \quad \mathrm{QE}=\{\langle I, q[\mathbf{x}]\rangle \mid M[q](I) \neq \emptyset\}
$$

- Note that a BCQ q is entailed in I iff $M[q](I) \neq \emptyset$. Thus, a TM deciding QE also decides BQE.
- We show that using a TM deciding BQE, we can construct a TM deciding QA, and

Exercise 1

Exercise. We consider three problems related to query answering in the lecture:
Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?
Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c}, does $\mathbf{c} \in M[q](I)$ hold?
Query Emptiness Given a query q and a database instance \mathcal{I}, is $M[q](\mathcal{I}) \neq \emptyset$?
Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

- We restate the problems as decision problems:

$$
\mathrm{BQE}=\{\langle I, q\rangle \mid q \text { a BCQ with } I \models q\} \quad \mathrm{QA}=\{\langle I, q[\mathbf{x}], \mathbf{c}\rangle \mid \mathbf{c} \in M[q](I)\} \quad \mathrm{QE}=\{\langle I, q[\mathbf{x}]\rangle \mid M[q](I) \neq \emptyset\}
$$

- Note that a BCQ q is entailed in I iff $M[q](I) \neq \emptyset$. Thus, a TM deciding QE also decides BQE.
- We show that using a TM deciding BQE, we can construct a TM deciding QA, and
- that using a TM deciding QA we can construct a TM deciding QE.

Exercise 1

Exercise. We consider three problems related to query answering in the lecture:
Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?
Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c}, does $\mathbf{c} \in M[q](I)$ hold?
Query Emptiness Given a query q and a database instance I, is $M[q](\mathcal{I}) \neq \emptyset$?
Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

- We restate the problems as decision problems:

$$
\mathrm{BQE}=\{\langle I, q\rangle \mid q \text { a BCQ with } I \models q\} \quad \mathrm{QA}=\{\langle I, q[\mathbf{x}], \mathbf{c}\rangle \mid \mathbf{c} \in M[q](I)\} \quad \mathrm{QE}=\{\langle I, q[\mathbf{x}]\rangle \mid M[q](I) \neq \emptyset\}
$$

- We show that using a TM deciding BQE, we can construct a TM deciding QA:

Exercise 1

Exercise. We consider three problems related to query answering in the lecture:
Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?
Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c}, does $\mathbf{c} \in M[q](I)$ hold?
Query Emptiness Given a query q and a database instance I, is $M[q](\mathcal{I}) \neq \emptyset$?
Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

- We restate the problems as decision problems:

$$
\mathrm{BQE}=\{\langle I, q\rangle \mid q \text { a BCQ with } I \models q\} \quad \mathrm{QA}=\{\langle I, q[\mathbf{x}], \mathbf{c}\rangle \mid \mathbf{c} \in M[q](I)\} \quad \mathrm{QE}=\{\langle I, q[\mathbf{x}]\rangle \mid M[q](I) \neq \emptyset\}
$$

- We show that using a TM deciding BQE, we can construct a TM deciding QA:
- Let \mathcal{M} be a TM deciding BQE.

Exercise 1

Exercise. We consider three problems related to query answering in the lecture:
Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?
Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c}, does $\mathbf{c} \in M[q](I)$ hold?
Query Emptiness Given a query q and a database instance \mathcal{I}, is $M[q](\mathcal{I}) \neq \emptyset$?
Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

- We restate the problems as decision problems:

$$
\mathrm{BQE}=\{\langle I, q\rangle \mid q \text { a BCQ with } I \models q\} \quad \mathrm{QA}=\{\langle I, q[\mathbf{x}], \mathbf{c}\rangle \mid \mathbf{c} \in M[q](I)\} \quad \mathrm{QE}=\{\langle I, q[\mathbf{x}]\rangle \mid M[q](I) \neq \emptyset\}
$$

- We show that using a TM deciding BQE, we can construct a TM deciding QA:
- Let \mathcal{M} be a TM deciding BQE.
- Construct the TM \mathcal{M}^{\prime} that, on input $\langle\mathcal{I}, q[\mathbf{x}], \mathbf{c}\rangle$ with $\mathbf{x}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ and $\mathbf{c}=\left\langle c_{1}, \ldots, c_{n}\right\rangle$:

Exercise 1

Exercise. We consider three problems related to query answering in the lecture:
Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?
Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c}, does $\mathbf{c} \in M[q](I)$ hold?
Query Emptiness Given a query q and a database instance I, is $M[q](\mathcal{I}) \neq \emptyset$?
Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

- We restate the problems as decision problems:

$$
\mathrm{BQE}=\{\langle I, q\rangle \mid q \text { a BCQ with } I \models q\} \quad \mathrm{QA}=\{\langle I, q[\mathbf{x}], \mathbf{c}\rangle \mid \mathbf{c} \in M[q](I)\} \quad \mathrm{QE}=\{\langle I, q[\mathbf{x}]\rangle \mid M[q](I) \neq \emptyset\}
$$

- We show that using a TM deciding BQE, we can construct a TM deciding QA:
- Let \mathcal{M} be a TM deciding BQE.
- Construct the TM \mathcal{M}^{\prime} that, on input $\langle\mathcal{I}, q[\mathbf{x}], \mathbf{c}\rangle$ with $\mathbf{x}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ and $\mathbf{c}=\left\langle c_{1}, \ldots, c_{n}\right\rangle$:

1. transforms $\langle I, q[\mathbf{x}], \mathbf{c}\rangle$ into $\left\langle I, q\left[x_{1} / c_{1}, \ldots, x_{n} / c_{n}\right]\right\rangle$,

Exercise 1

Exercise. We consider three problems related to query answering in the lecture:
Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?
Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c}, does $\mathbf{c} \in M[q](I)$ hold?
Query Emptiness Given a query q and a database instance I, is $M[q](\mathcal{I}) \neq \emptyset$?
Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

- We restate the problems as decision problems:

$$
\mathrm{BQE}=\{\langle I, q\rangle \mid q \text { a BCQ with } I \models q\} \quad \mathrm{QA}=\{\langle I, q[\mathbf{x}], \mathbf{c}\rangle \mid \mathbf{c} \in M[q](I)\} \quad \mathrm{QE}=\{\langle I, q[\mathbf{x}]\rangle \mid M[q](I) \neq \emptyset\}
$$

- We show that using a TM deciding BQE, we can construct a TM deciding QA:
- Let \mathcal{M} be a TM deciding BQE.
- Construct the TM \mathcal{M}^{\prime} that, on input $\langle\mathcal{I}, q[\mathbf{x}], \mathbf{c}\rangle$ with $\mathbf{x}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ and $\mathbf{c}=\left\langle c_{1}, \ldots, c_{n}\right\rangle$:

1. transforms $\langle I, q[\mathbf{x}], \mathbf{c}\rangle$ into $\left\langle I, q\left[x_{1} / c_{1}, \ldots, x_{n} / c_{n}\right]\right\rangle$,
2. simulates \mathcal{M} on input $\left\langle I, q\left[x_{1} / c_{1}, \ldots, x_{n} / c_{n}\right]\right\rangle$, and

Exercise 1

Exercise. We consider three problems related to query answering in the lecture:
Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?
Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c}, does $\mathbf{c} \in M[q](I)$ hold?
Query Emptiness Given a query q and a database instance I, is $M[q](\mathcal{I}) \neq \emptyset$?
Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

- We restate the problems as decision problems:

$$
\text { BQE }=\{\langle I, q\rangle \mid q \text { a BCQ with } I \models q\} \quad \mathrm{QA}=\{\langle I, q[\mathbf{x}], \mathbf{c}\rangle \mid \mathbf{c} \in M[q](I)\} \quad \mathrm{QE}=\{\langle I, q[\mathbf{x}]\rangle \mid M[q](I) \neq \emptyset\}
$$

- We show that using a TM deciding BQE, we can construct a TM deciding QA:
- Let \mathcal{M} be a TM deciding BQE.
- Construct the TM \mathcal{M}^{\prime} that, on input $\langle\mathcal{I}, q[\mathbf{x}], \mathbf{c}\rangle$ with $\mathbf{x}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ and $\mathbf{c}=\left\langle c_{1}, \ldots, c_{n}\right\rangle$:

1. transforms $\langle I, q[\mathbf{x}], \mathbf{c}\rangle$ into $\left\langle\mathcal{I}, q\left[x_{1} / c_{1}, \ldots, x_{n} / c_{n}\right]\right\rangle$,
2. simulates \mathcal{M} on input $\left\langle\mathcal{I}, q\left[x_{1} / c_{1}, \ldots, x_{n} / c_{n}\right]\right\rangle$, and
3. accepts iff \mathcal{M} accepts.

Exercise 1

Exercise. We consider three problems related to query answering in the lecture:
Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?
Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c}, does $\mathbf{c} \in M[q](I)$ hold?
Query Emptiness Given a query q and a database instance I, is $M[q](\mathcal{I}) \neq \emptyset$?
Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

- We restate the problems as decision problems:

$$
\mathrm{BQE}=\{\langle I, q\rangle \mid q \text { a BCQ with } I \models q\} \quad \mathrm{QA}=\{\langle I, q[\mathbf{x}], \mathbf{c}\rangle \mid \mathbf{c} \in M[q](I)\} \quad \mathrm{QE}=\{\langle I, q[\mathbf{x}]\rangle \mid M[q](I) \neq \emptyset\}
$$

- We show that using a TM deciding BQE, we can construct a TM deciding QA:
- Let \mathcal{M} be a TM deciding BQE.
- Construct the TM \mathcal{M}^{\prime} that, on input $\langle\mathcal{I}, q[\mathbf{x}], \mathbf{c}\rangle$ with $\mathbf{x}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ and $\mathbf{c}=\left\langle c_{1}, \ldots, c_{n}\right\rangle$:

1. transforms $\langle I, q[\mathbf{x}], \mathbf{c}\rangle$ into $\left\langle I, q\left[x_{1} / c_{1}, \ldots, x_{n} / c_{n}\right]\right\rangle$,
2. simulates \mathcal{M} on input $\left\langle I, q\left[x_{1} / c_{1}, \ldots, x_{n} / c_{n}\right]\right\rangle$, and
3. accepts iff \mathcal{M} accepts.

- Then \mathcal{M}^{\prime} decides QA.

Exercise 1

Exercise. We consider three problems related to query answering in the lecture:
Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?
Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c}, does $\mathbf{c} \in M[q](I)$ hold?
Query Emptiness Given a query q and a database instance I, is $M[q](\mathcal{I}) \neq \emptyset$?
Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

- We restate the problems as decision problems:

$$
\mathrm{BQE}=\{\langle I, q\rangle \mid q \text { a BCQ with } I \models q\} \quad \mathrm{QA}=\{\langle I, q[\mathbf{x}], \mathbf{c}\rangle \mid \mathbf{c} \in M[q](I)\} \quad \mathrm{QE}=\{\langle I, q[\mathbf{x}]\rangle \mid M[q](I) \neq \emptyset\}
$$

- We show that using a TM deciding BQE, we can construct a TM deciding QA, and
- that using a TM deciding QA we can construct a TM deciding QE:
- Let \mathcal{M} be a TM deciding QA.

Exercise 1

Exercise. We consider three problems related to query answering in the lecture:
Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?
Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c}, does $\mathbf{c} \in M[q](I)$ hold?
Query Emptiness Given a query q and a database instance \mathcal{I}, is $M[q](\mathcal{I}) \neq \emptyset$?
Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

- We restate the problems as decision problems:

$$
\text { BQE }=\{\langle I, q\rangle \mid q \text { a BCQ with } I \models q\} \quad \mathrm{QA}=\{\langle I, q[\mathbf{x}], \mathbf{c}\rangle \mid \mathbf{c} \in M[q](I)\} \quad \mathrm{QE}=\{\langle I, q[\mathbf{x}]\rangle \mid M[q](I) \neq \emptyset\}
$$

- We show that using a TM deciding BQE, we can construct a TM deciding QA, and
- that using a TM deciding QA we can construct a TM deciding QE:
- Let \mathcal{M} be a TM deciding QA.
- Construct the TM \mathcal{M}^{\prime} that, on input $\langle I, q[\mathbf{x}]\rangle$ with $\mathbf{x}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$:

Exercise 1

Exercise. We consider three problems related to query answering in the lecture:
Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?
Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c}, does $\mathbf{c} \in M[q](I)$ hold?
Query Emptiness Given a query q and a database instance I, is $M[q](\mathcal{I}) \neq \emptyset$?
Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

- We restate the problems as decision problems:

$$
\text { BQE }=\{\langle I, q\rangle \mid q \text { a BCQ with } I \models q\} \quad \mathrm{QA}=\{\langle I, q[\mathbf{x}], \mathbf{c}\rangle \mid \mathbf{c} \in M[q](I)\} \quad \mathrm{QE}=\{\langle I, q[\mathbf{x}]\rangle \mid M[q](I) \neq \emptyset\}
$$

- We show that using a TM deciding BQE, we can construct a TM deciding QA, and
- that using a TM deciding QA we can construct a TM deciding QE:
- Let \mathcal{M} be a TM deciding QA.
- Construct the TM \mathcal{M}^{\prime} that, on input $\langle I, q[\mathbf{x}]\rangle$ with $\mathbf{x}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$:

1. If $n=0$, then \mathcal{M}^{\prime} simulates \mathcal{M} on input $\langle\mathcal{I}, q,\langle \rangle\rangle$ and accept iff the simulation accepts.

Exercise 1

Exercise. We consider three problems related to query answering in the lecture:
Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?
Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c}, does $\mathbf{c} \in M[q](I)$ hold?
Query Emptiness Given a query q and a database instance I, is $M[q](\mathcal{I}) \neq \emptyset$?
Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

- We restate the problems as decision problems:

$$
\mathrm{BQE}=\{\langle I, q\rangle \mid q \text { a BCQ with } I \models q\} \quad \mathrm{QA}=\{\langle I, q[\mathbf{x}], \mathbf{c}\rangle \mid \mathbf{c} \in M[q](I)\} \quad \mathrm{QE}=\{\langle I, q[\mathbf{x}]\rangle \mid M[q](I) \neq \emptyset\}
$$

- We show that using a TM deciding BQE, we can construct a TM deciding QA, and
- that using a TM deciding QA we can construct a TM deciding QE:
- Let \mathcal{M} be a TM deciding QA.
- Construct the TM \mathcal{M}^{\prime} that, on input $\langle I, q[\mathbf{x}]\rangle$ with $\mathbf{x}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$:

1. If $n=0$, then \mathcal{M}^{\prime} simulates \mathcal{M} on input $\langle I, q,\langle \rangle\rangle$ and accept iff the simulation accepts.
2. Otherwise, \mathcal{M}^{\prime} simulates \mathcal{M} on all inputs $\langle\mathcal{I}, q[\mathbf{x}], \mathbf{c}\rangle$ with $\mathbf{c} \in \operatorname{adom}(I, q)^{n}$ and accepts if any simulation accepts.

Exercise 1

Exercise. We consider three problems related to query answering in the lecture:
Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?
Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c}, does $\mathbf{c} \in M[q](I)$ hold?
Query Emptiness Given a query q and a database instance I, is $M[q](\mathcal{I}) \neq \emptyset$?
Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

- We restate the problems as decision problems:

$$
\text { BQE }=\{\langle I, q\rangle \mid q \text { a BCQ with } I \models q\} \quad \mathrm{QA}=\{\langle I, q[\mathbf{x}], \mathbf{c}\rangle \mid \mathbf{c} \in M[q](I)\} \quad \mathrm{QE}=\{\langle I, q[\mathbf{x}]\rangle \mid M[q](I) \neq \emptyset\}
$$

- We show that using a TM deciding BQE, we can construct a TM deciding QA, and
- that using a TM deciding QA we can construct a TM deciding QE:
- Let \mathcal{M} be a TM deciding QA.
- Construct the TM \mathcal{M}^{\prime} that, on input $\langle I, q[\mathbf{x}]\rangle$ with $\mathbf{x}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$:

1. If $n=0$, then \mathcal{M}^{\prime} simulates \mathcal{M} on input $\langle\mathcal{I}, q,\langle \rangle\rangle$ and accept iff the simulation accepts.
2. Otherwise, \mathcal{M}^{\prime} simulates \mathcal{M} on all inputs $\langle\mathcal{I}, q[\mathbf{x}], \mathbf{c}\rangle$ with $\mathbf{c} \in \operatorname{adom}(\mathcal{I}, q)^{n}$ and accepts if any simulation accepts.
3. If no simulation accepts, \mathcal{M}^{\prime} rejects.

Exercise 1

Exercise. We consider three problems related to query answering in the lecture:
Boolean Query Entailment Given a Boolean query q and a database instance I, does $I \models q$ hold?
Query Answering Given an n-ary query q, a database instance I, and an n-ary tuple \mathbf{c}, does $\mathbf{c} \in M[q](I)$ hold?
Query Emptiness Given a query q and a database instance I, is $M[q](\mathcal{I}) \neq \emptyset$?
Show that these problems are equivalent, i.e., show that any algorithm solving one of these problems, it can also be used to solve the others.

Solution.

- We restate the problems as decision problems:

$$
\text { BQE }=\{\langle I, q\rangle \mid q \text { a BCQ with } I \models q\} \quad \mathrm{QA}=\{\langle I, q[\mathbf{x}], \mathbf{c}\rangle \mid \mathbf{c} \in M[q](I)\} \quad \mathrm{QE}=\{\langle I, q[\mathbf{x}]\rangle \mid M[q](I) \neq \emptyset\}
$$

- We show that using a TM deciding BQE, we can construct a TM deciding QA, and
- that using a TM deciding QA we can construct a TM deciding QE:
- Let \mathcal{M} be a TM deciding QA.
- Construct the TM \mathcal{M}^{\prime} that, on input $\langle I, q[\mathbf{x}]\rangle$ with $\mathbf{x}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$:

1. If $n=0$, then \mathcal{M}^{\prime} simulates \mathcal{M} on input $\langle I, q,\langle \rangle\rangle$ and accept iff the simulation accepts.
2. Otherwise, \mathcal{M}^{\prime} simulates \mathcal{M} on all inputs $\langle I, q[\mathbf{x}], \mathbf{c}\rangle$ with $\mathbf{c} \in \operatorname{adom}(I, q)^{n}$ and accepts if any simulation accepts.
3. If no simulation accepts, \mathcal{M}^{\prime} rejects.

- Then \mathcal{M}^{\prime} decides QE.

Exercise 2

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that implement selection, and projection in logarithmic space.

Exercise 2

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20-21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^{*} \rightarrow \Sigma^{*}$.

Exercise 2

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20-21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^{*} \rightarrow \Sigma^{*}$.
Solution.

Exercise 2

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20-21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^{*} \rightarrow \Sigma^{*}$.

Solution.

- We describe a LogSpace transducer \mathcal{M} that, given a table R with schema $R\left[a_{1}, \ldots, a_{n}\right]$ and some $a_{i}, a_{j} \in\left\{a_{1}, \ldots, a_{n}\right\}$, computes $\sigma_{a_{i}=a_{j}}(R)$:

Exercise 2

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20-21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^{*} \rightarrow \Sigma^{*}$.

Solution.

- We describe a LogSpace transducer \mathcal{M} that, given a table R with schema $R\left[a_{1}, \ldots, a_{n}\right]$ and some $a_{i}, a_{j} \in\left\{a_{1}, \ldots, a_{n}\right\}$, computes $\sigma_{a_{i}=a_{j}}(R)$:
- 1. We use the unnamed perspective, encoding atributes a_{i} and a_{j} as numbers i and j, and storing the table R as a sequence of rows of the form $\$ c_{1}, \ldots, c_{n} \#$.

Exercise 2

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20-21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^{*} \rightarrow \Sigma^{*}$.

Solution.

- We describe a LogSpace transducer \mathcal{M} that, given a table R with schema $R\left[a_{1}, \ldots, a_{n}\right]$ and some $a_{i}, a_{j} \in\left\{a_{1}, \ldots, a_{n}\right\}$, computes $\sigma_{a_{i}=a_{j}}(R)$:
- 1. We use the unnamed perspective, encoding attributes a_{i} and a_{j} as numbers i and j, and storing the table R as a sequence of rows of the form $\$ c_{1}, \ldots, c_{n} \#$.

2. We use three pointers p_{r}, p_{i}, and p_{j}.

Exercise 2

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20-21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^{*} \rightarrow \Sigma^{*}$.

Solution.

- We describe a LogSpace transducer \mathcal{M} that, given a table R with schema $R\left[a_{1}, \ldots, a_{n}\right]$ and some $a_{i}, a_{j} \in\left\{a_{1}, \ldots, a_{n}\right\}$, computes $\sigma_{a_{i}=a_{j}}(R)$:
- 1. We use the unnamed perspective, encoding attributes a_{i} and a_{j} as numbers i and j, and storing the table R as a sequence of rows of the form $\$ c_{1}, \ldots, c_{n} \#$.

2. We use three pointers p_{r}, p_{i}, and p_{j}.
3. Initially, p_{r} points to the first $\$$ symbol, and we repeat:

Exercise 2

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20-21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LOGSpaCE transducers compute partial functions $\Sigma^{*} \rightarrow \Sigma^{*}$.

Solution.

- We describe a LogSpace transducer \mathcal{M} that, given a table R with schema $R\left[a_{1}, \ldots, a_{n}\right]$ and some $a_{i}, a_{j} \in\left\{a_{1}, \ldots, a_{n}\right\}$, computes $\sigma_{a_{i}=a_{j}}(R)$:
- 1. We use the unnamed perspective, encoding attributes a_{i} and a_{j} as numbers i and j, and storing the table R as a sequence of rows of the form $\$ c_{1}, \ldots, c_{n} \#$.

2. We use three pointers p_{r}, p_{i}, and p_{j}.
3. Initially, p_{r} points to the first $\$$ symbol, and we repeat:
3.1 point p_{i} at the beginning of the i-th constant of the row;

Exercise 2

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20-21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^{*} \rightarrow \Sigma^{*}$.

Solution.

- We describe a LogSpace transducer \mathcal{M} that, given a table R with schema $R\left[a_{1}, \ldots, a_{n}\right]$ and some $a_{i}, a_{j} \in\left\{a_{1}, \ldots, a_{n}\right\}$, computes $\sigma_{a_{i}=a_{j}}(R)$:
- 1. We use the unnamed perspective, encoding attributes a_{i} and a_{j} as numbers i and j, and storing the table R as a sequence of rows of the form $\$ c_{1}, \ldots, c_{n} \#$.

2. We use three pointers p_{r}, p_{i}, and p_{j}.
3. Initially, p_{r} points to the first $\$$ symbol, and we repeat:
3.1 point p_{i} at the beginning of the i-th constant of the row;
3.2 point p_{j} at the beginning of the j-th constant of the row;

Exercise 2

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20-21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^{*} \rightarrow \Sigma^{*}$.

Solution.

- We describe a LogSpace transducer \mathcal{M} that, given a table R with schema $R\left[a_{1}, \ldots, a_{n}\right]$ and some $a_{i}, a_{j} \in\left\{a_{1}, \ldots, a_{n}\right\}$, computes $\sigma_{a_{i}=a_{j}}(R)$:
- 1. We use the unnamed perspective, encoding attributes a_{i} and a_{j} as numbers i and j, and storing the table R as a sequence of rows of the form $\$ c_{1}, \ldots, c_{n} \#$.

2. We use three pointers p_{r}, p_{i}, and p_{j}.
3. Initially, p_{r} points to the first $\$$ symbol, and we repeat:
3.1 point p_{i} at the beginning of the i-th constant of the row;
3.2 point p_{j} at the beginning of the j-th constant of the row;
3.3 using p_{i} and p_{j} compare the two constants.

Exercise 2

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20-21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^{*} \rightarrow \Sigma^{*}$.

Solution.

- We describe a LogSpace transducer \mathcal{M} that, given a table R with schema $R\left[a_{1}, \ldots, a_{n}\right]$ and some $a_{i}, a_{j} \in\left\{a_{1}, \ldots, a_{n}\right\}$, computes $\sigma_{a_{i}=a_{j}}(R)$:
- 1. We use the unnamed perspective, encoding attributes a_{i} and a_{j} as numbers i and j, and storing the table R as a sequence of rows of the form $\$ c_{1}, \ldots, c_{n} \#$.

2. We use three pointers p_{r}, p_{i}, and p_{j}.
3. Initially, p_{r} points to the first $\$$ symbol, and we repeat:
3.1 point p_{i} at the beginning of the i-th constant of the row;
3.2 point p_{j} at the beginning of the j-th constant of the row;
3.3 using p_{i} and p_{j} compare the two constants.
3.4 if the constants are equal, copy the row to the output tape (using p_{r}); and

Exercise 2

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20-21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^{*} \rightarrow \Sigma^{*}$.

Solution.

- We describe a LogSpace transducer \mathcal{M} that, given a table R with schema $R\left[a_{1}, \ldots, a_{n}\right]$ and some $a_{i}, a_{j} \in\left\{a_{1}, \ldots, a_{n}\right\}$, computes $\sigma_{a_{i}=a_{j}}(R)$:
- 1. We use the unnamed perspective, encoding attributes a_{i} and a_{j} as numbers i and j, and storing the table R as a sequence of rows of the form $\$ c_{1}, \ldots, c_{n} \#$.

2. We use three pointers p_{r}, p_{i}, and p_{j}.
3. Initially, p_{r} points to the first $\$$ symbol, and we repeat:
3.1 point p_{i} at the beginning of the i-th constant of the row;
3.2 point p_{j} at the beginning of the j-th constant of the row;
3.3 using p_{i} and p_{j} compare the two constants.
3.4 if the constants are equal, copy the row to the output tape (using p_{r}); and
3.5 point p_{r} to the next $\$$, if there is any, otherwise halt.

Exercise 2

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20-21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LOGSpace transducers compute partial functions $\Sigma^{*} \rightarrow \Sigma^{*}$.

Solution.

- We describe a LogSpace transducer \mathcal{M} that, given a table R with schema $R\left[a_{1}, \ldots, a_{n}\right]$ and some $a_{i}, a_{j} \in\left\{a_{1}, \ldots, a_{n}\right\}$, computes $\sigma_{a_{i}=a_{j}}(R)$.
- We describe a LogSpace transducer \mathcal{M} that, given a table R with schema $R\left[a_{1}, \ldots, a_{n}\right]$ and some $\left\{a_{1}^{\prime}, \ldots, a_{\ell}^{\prime}\right\} \subseteq\left\{a_{1}, \ldots, a_{n}\right\}$, computes $\pi_{a_{1}^{\prime}, \ldots, a_{\ell}^{\prime}}(R)$:

Exercise 2

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20-21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^{*} \rightarrow \Sigma^{*}$.

Solution.

- We describe a LogSpace transducer \mathcal{M} that, given a table R with schema $R\left[a_{1}, \ldots, a_{n}\right]$ and some $a_{i}, a_{j} \in\left\{a_{1}, \ldots, a_{n}\right\}$, computes $\sigma_{a_{i}=a_{j}}(R)$.
- We describe a LogSpace transducer \mathcal{M} that, given a table R with schema $R\left[a_{1}, \ldots, a_{n}\right]$ and some $\left\{a_{1}^{\prime}, \ldots, a_{\ell}^{\prime}\right\} \subseteq\left\{a_{1}, \ldots, a_{n}\right\}$, computes $\pi_{a_{1}^{\prime}, \ldots, a_{\ell}^{\prime}}(R)$:
- 1. We use the named perspective, encoding the set of attributes $\left\{a_{1}^{\prime}, \ldots, a_{\ell}^{\prime}\right\}$ as $\# a_{1}^{\prime}, \ldots, a_{\ell}^{\prime} \#$ at the start of the input, and then encoding R as $\$ a_{1} \mapsto c_{1}^{i}, \ldots, a_{n} \mapsto c_{n}^{i} \$$.

2. We point a pointer p_{c} to the first attribute a_{1}^{\prime}, and, for every row of the input, proceed:

Exercise 2

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20-21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^{*} \rightarrow \Sigma^{*}$.

Solution.

- We describe a LogSpace transducer \mathcal{M} that, given a table R with schema $R\left[a_{1}, \ldots, a_{n}\right]$ and some $a_{i}, a_{j} \in\left\{a_{1}, \ldots, a_{n}\right\}$, computes $\sigma_{a_{i}=a_{j}}(R)$.
- We describe a LogSpace transducer \mathcal{M} that, given a table R with schema $R\left[a_{1}, \ldots, a_{n}\right]$ and some $\left\{a_{1}^{\prime}, \ldots, a_{\ell}^{\prime}\right\} \subseteq\left\{a_{1}, \ldots, a_{n}\right\}$, computes $\pi_{a_{1}^{\prime}, \ldots, a_{\ell}^{\prime}}(R)$:
- 1. We use the named perspective, encoding the set of attributes $\left\{a_{1}^{\prime}, \ldots, a_{\ell}^{\prime}\right\}$ as $\# a_{1}^{\prime}, \ldots, a_{\ell}^{\prime} \#$ at the start of the input, and then encoding R as $\$ a_{1} \mapsto c_{1}^{i}, \ldots, a_{n} \mapsto c_{n}^{i} \$$.

2. We point a pointer p_{c} to the first attribute a_{1}^{\prime}, and, for every row of the input, proceed:
2.1 write $\$$ to the output.

Exercise 2

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20-21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^{*} \rightarrow \Sigma^{*}$.

Solution.

- We describe a LogSpace transducer \mathcal{M} that, given a table R with schema $R\left[a_{1}, \ldots, a_{n}\right]$ and some $a_{i}, a_{j} \in\left\{a_{1}, \ldots, a_{n}\right\}$, computes $\sigma_{a_{i}=a_{j}}(R)$.
- We describe a LogSpace transducer \mathcal{M} that, given a table R with schema $R\left[a_{1}, \ldots, a_{n}\right]$ and some $\left\{a_{1}^{\prime}, \ldots, a_{\ell}^{\prime}\right\} \subseteq\left\{a_{1}, \ldots, a_{n}\right\}$, computes $\pi_{a_{1}^{\prime}, \ldots, a_{\ell}^{\prime}}(R)$:
- 1. We use the named perspective, encoding the set of attributes $\left\{a_{1}^{\prime}, \ldots, a_{\ell}^{\prime}\right\}$ as $\# a_{1}^{\prime}, \ldots, a_{\ell}^{\prime} \#$ at the start of the input, and then encoding R as $\$ a_{1} \mapsto c_{1}^{i}, \ldots, a_{n} \mapsto c_{n}^{i} \$$.

2. We point a pointer p_{c} to the first attribute a_{1}^{\prime}, and, for every row of the input, proceed:
2.1 write $\$$ to the output.
2.2 for every pair $a_{j} \mapsto c_{j}^{j}$, check whether a_{j} occurs in $\left\{a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right\}$ and write $a_{j} \mapsto c_{j}^{j}$ if that is the case.

Exercise 2

Exercise. It was shown in the lecture that joins can be computed in logarithmic space. Outline algorithms that implement selection, and projection in logarithmic space.

Definition (Lecture 3, Slides 20-21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^{*} \rightarrow \Sigma^{*}$.

Solution.

- We describe a LogSpace transducer \mathcal{M} that, given a table R with schema $R\left[a_{1}, \ldots, a_{n}\right]$ and some $a_{i}, a_{j} \in\left\{a_{1}, \ldots, a_{n}\right\}$, computes $\sigma_{a_{i}=a_{j}}(R)$.
- We describe a LogSpace transducer \mathcal{M} that, given a table R with schema $R\left[a_{1}, \ldots, a_{n}\right]$ and some $\left\{a_{1}^{\prime}, \ldots, a_{\ell}^{\prime}\right\} \subseteq\left\{a_{1}, \ldots, a_{n}\right\}$, computes $\pi_{a_{1}^{\prime}, \ldots, a_{\ell}^{\prime}}(R)$:
- 1. We use the named perspective, encoding the set of attributes $\left\{a_{1}^{\prime}, \ldots, a_{\ell}^{\prime}\right\}$ as $\# a_{1}^{\prime}, \ldots, a_{\ell}^{\prime} \#$ at the start of the input, and then encoding R as $\$ a_{1} \mapsto c_{1}^{i}, \ldots, a_{n} \mapsto c_{n}^{i} \$$.

2. We point a pointer p_{c} to the first attribute a_{1}^{\prime}, and, for every row of the input, proceed:
2.1 write $\$$ to the output.
2.2 for every pair $a_{j} \mapsto c_{j}^{j}$, check whether a_{j} occurs in $\left\{a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right\}$ and write $a_{j} \mapsto c_{j}^{j}$ if that is the case.
2.3 write $\$$ to the output.

Exercise 3

Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra gives rise to a corresponding circuit by describing the circuits for the following expressions:

$$
\begin{array}{rl}
\sigma_{i=c}(R) \quad(c \text { a constant }) & \sigma_{i=j}(R) \quad(j \text { an attribute }) \\
\pi_{a_{1}, \ldots, a_{\ell}}(R) & R \bowtie S \\
\delta_{a_{1}, \ldots, a_{\ell} \rightarrow b_{1}, \ldots, b_{\ell}}(R) & R-S \\
R \cup S & R \cap S
\end{array}
$$

Exercise 3

Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra gives rise to a corresponding circuit by describing the circuits for the following expressions:

$$
\begin{array}{rl}
\sigma_{i=c}(R) \quad(c \text { a constant }) & \sigma_{i=j}(R) \quad(j \text { an attribute }) \\
\pi_{a_{1}, \ldots, a_{\ell}}(R) & R \bowtie S \\
\delta_{a_{1}, \ldots, a_{\ell} \rightarrow b_{1}, \ldots, b_{\ell}}(R) & R-S \\
R \cup S & R \cap S
\end{array}
$$

Solution.

Exercise 3

Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra gives rise to a corresponding circuit by describing the circuits for the following expressions:

$$
\begin{array}{rl}
\sigma_{i=c}(R) \quad(c \text { a constant }) & \sigma_{i=j}(R) \quad(j \text { an attribute }) \\
\pi_{a_{1}, \ldots, a_{\ell}}(R) & R \bowtie S \\
\delta_{a_{1}, \ldots, a_{\ell} \rightarrow b_{1}, \ldots, b_{\ell}}(R) & R-S \\
R \cup S & R \cap S
\end{array}
$$

Solution.

$\sigma_{i=c}(R)$ for each tuple $\left\langle c_{1}, \ldots, c_{n}\right\rangle$ in R, we add one of these two circuits:

Exercise 3

Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra gives rise to a corresponding circuit by describing the circuits for the following expressions:

$$
\begin{array}{rl}
\sigma_{i=c}(R) \quad(c \text { a constant }) & \sigma_{i=j}(R) \quad(j \text { an attribute }) \\
\pi_{a_{1}, \ldots, a_{\ell}}(R) & R \bowtie S \\
\delta_{a_{1}, \ldots, a_{\ell} \rightarrow b_{1}, \ldots, b_{\ell}}(R) & R-S \\
R \cup S & R \cap S
\end{array}
$$

Solution.

$\sigma_{i=c}(R)$ for each tuple $\left\langle c_{1}, \ldots, c_{n}\right\rangle$ in R, we add one of these two circuits:
$\sigma_{i=j}(R)$ analogous.

Exercise 3

Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra gives rise to a corresponding circuit by describing the circuits for the following expressions:

$$
\begin{array}{rl}
\sigma_{i=c}(R) \quad(c \text { a constant }) & \sigma_{i=j}(R) \quad(j \text { an attribute }) \\
\pi_{a_{1}, \ldots, a_{\ell}}(R) & R \bowtie S \\
\delta_{a_{1}, \ldots, a_{\ell} \rightarrow b_{1}, \ldots, b_{\ell}}(R) & R-S \\
R \cup S & R \cap S
\end{array}
$$

Solution.

$\sigma_{i=c}(R)$ for each tuple $\left\langle c_{1}, \ldots, c_{n}\right\rangle$ in R, we add one of these two circuits:
$\sigma_{i=j}(R)$ analogous.
$\pi_{a_{1}, \ldots, a_{\ell}}(R)$ for all tuples $\left\langle c_{1}, \ldots, c_{n}\right\rangle, \ldots,\left\langle c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right\rangle$ in R with $c_{a_{1}}=c_{a_{1}}^{\prime}, \ldots, c_{a_{\ell}}=c_{a_{\ell}}^{\prime}$, we add the circuit:

Exercise 3

Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra gives rise to a corresponding circuit by describing the circuits for the following expressions:

$$
\begin{array}{rl}
\sigma_{i=c}(R) \quad(c \text { a constant }) & \sigma_{i=j}(R) \quad(j \text { an attribute }) \\
\pi_{a_{1}, \ldots, a_{\ell}}(R) & R \bowtie S \\
\delta_{a_{1}, \ldots, a_{\ell} \rightarrow b_{1}, \ldots, b_{\ell}}(R) & R-S \\
R \cup S & R \cap S
\end{array}
$$

Solution.

$\sigma_{i=c}(R)$ for each tuple $\left\langle c_{1}, \ldots, c_{n}\right\rangle$ in R, we add one of these two circuits:
$\sigma_{i=j}(R)$ analogous.
$\pi_{a_{1}, \ldots, a_{\ell}}(R)$ for all tuples $\left\langle c_{1}, \ldots, c_{n}\right\rangle, \ldots,\left\langle c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right\rangle$ in R with $c_{a_{1}}=c_{a_{1}}^{\prime}, \ldots, c_{a_{\ell}}=c_{a_{\ell}}^{\prime}$, we add the circuit:
$R \bowtie S$ for each tuple $\left\langle a_{1}, \ldots, a_{\ell}, c_{1}, \ldots, c_{n}\right\rangle$ in R and each tuple $\left\langle b_{1}, \ldots, b_{k}, c_{1}, \ldots, c_{n}\right\rangle$ in S, we add the circuit:

Exercise 3

Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra gives rise to a corresponding circuit by describing the circuits for the following expressions:

$$
\begin{array}{rl}
\sigma_{i=c}(R) \quad(c \text { a constant }) & \sigma_{i=j}(R) \quad(j \text { an attribute }) \\
\pi_{a_{1}, \ldots, a_{\ell}}(R) & R \bowtie S \\
\delta_{a_{1}, \ldots, a_{\ell} \rightarrow b_{1}, \ldots, b_{\ell}}(R) & R-S \\
R \cup S & R \cap S
\end{array}
$$

Solution.

$\sigma_{i=c}(R)$ for each tuple $\left\langle c_{1}, \ldots, c_{n}\right\rangle$ in R, we add one of these two circuits:
$\sigma_{i=j}(R)$ analogous.
$\pi_{a_{1}, \ldots, a_{\ell}}(R)$ for all tuples $\left\langle c_{1}, \ldots, c_{n}\right\rangle, \ldots,\left\langle c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right\rangle$ in R with $c_{a_{1}}=c_{a_{1}}^{\prime}, \ldots, c_{a_{\ell}}=c_{a_{\ell}}^{\prime}$, we add the circuit:
$R \bowtie S$ for each tuple $\left\langle a_{1}, \ldots, a_{\ell}, c_{1}, \ldots, c_{n}\right\rangle$ in R and each tuple $\left\langle b_{1}, \ldots, b_{k}, c_{1}, \ldots, c_{n}\right\rangle$ in S, we add the circuit:
$\delta_{a_{1}, \ldots, a_{n} \rightarrow b_{1}, \ldots, b_{n}}(R)$ for each tuple $\left\langle c_{a_{1}}, \ldots, c_{a_{n}}\right\rangle$ in R, we add the circuit:

Exercise 3

Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra gives rise to a corresponding circuit by describing the circuits for the following expressions:

$$
\begin{array}{rll}
\sigma_{i=c}(R) & (c \text { a constant }) & \sigma_{i=j}(R) \quad(j \text { an attribute }) \\
\pi_{a_{1}, \ldots, a_{\ell}}(R) & R \bowtie S \\
\delta_{a_{1}, \ldots, a_{\ell} \rightarrow b_{1}, \ldots, b_{\ell}}(R) & R-S \\
R \cup S & R \cap S
\end{array}
$$

Solution.

$\sigma_{i=c}(R)$ for each tuple $\left\langle c_{1}, \ldots, c_{n}\right\rangle$ in R, we add one of these two circuits:
$\sigma_{i=j}(R)$ analogous.
$\pi_{a_{1}, \ldots, a_{\ell}}(R)$ for all tuples $\left\langle c_{1}, \ldots, c_{n}\right\rangle, \ldots,\left\langle c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right\rangle$ in R with $c_{a_{1}}=c_{a_{1}}^{\prime}, \ldots, c_{a_{\ell}}=c_{a_{\ell}}^{\prime}$, we add the circuit:
$R \bowtie S$ for each tuple $\left\langle a_{1}, \ldots, a_{\ell}, c_{1}, \ldots, c_{n}\right\rangle$ in R and each tuple $\left\langle b_{1}, \ldots, b_{k}, c_{1}, \ldots, c_{n}\right\rangle$ in S, we add the circuit:
$\delta_{a_{1}, \ldots, a_{n} \rightarrow b_{1}, \ldots, b_{n}}(R)$ for each tuple $\left\langle c_{a_{1}}, \ldots, c_{a_{n}}\right\rangle$ in R, we add the circuit: $R-S$ for each tuple $\left\langle c_{1}, \ldots, c_{n}\right\rangle$ in R, we add the circuit:

Exercise 3

Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra gives rise to a corresponding circuit by describing the circuits for the following expressions:

$$
\begin{array}{rll}
\sigma_{i=c}(R) & (c \text { a constant }) & \sigma_{i=j}(R) \quad(j \text { an attribute }) \\
\pi_{a_{1}, \ldots, a_{\ell}}(R) & R \bowtie S \\
\delta_{a_{1}, \ldots, a_{\ell} \rightarrow b_{1}, \ldots, b_{\ell}}(R) & R-S \\
R \cup S & R \cap S
\end{array}
$$

Solution.

$\sigma_{i=c}(R)$ for each tuple $\left\langle c_{1}, \ldots, c_{n}\right\rangle$ in R, we add one of these two circuits:
$\sigma_{i=j}(R)$ analogous.
$\pi_{a_{1}, \ldots, a_{\ell}}(R)$ for all tuples $\left\langle c_{1}, \ldots, c_{n}\right\rangle, \ldots,\left\langle c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right\rangle$ in R with $c_{a_{1}}=c_{a_{1}}^{\prime}, \ldots, c_{a_{\ell}}=c_{a_{\ell}}^{\prime}$, we add the circuit:
$R \bowtie S$ for each tuple $\left\langle a_{1}, \ldots, a_{\ell}, c_{1}, \ldots, c_{n}\right\rangle$ in R and each tuple $\left\langle b_{1}, \ldots, b_{k}, c_{1}, \ldots, c_{n}\right\rangle$ in S, we add the circuit:
$\delta_{a_{1}, \ldots, a_{n} \rightarrow b_{1}, \ldots, b_{n}}(R)$ for each tuple $\left\langle c_{a_{1}}, \ldots, c_{a_{n}}\right\rangle$ in R, we add the circuit: $R-S$ for each tuple $\left\langle c_{1}, \ldots, c_{n}\right\rangle$ in R, we add the circuit:
$R \cup S$ for each tuple $\left\langle c_{1}, \ldots, c_{n}\right\rangle$ in R, we add the circuit:

Exercise 3

Exercise. Expressions of relational algebra under named perspective can be translated into Boolean circuits, in a similar fashion to the translation illustrated for FO queries in the lecture. Show how each operator of relational algebra gives rise to a corresponding circuit by describing the circuits for the following expressions:

$$
\begin{array}{rl}
\sigma_{i=c}(R) \quad(c \text { a constant }) & \sigma_{i=j}(R) \quad(j \text { an attribute }) \\
\pi_{a_{1}, \ldots, a_{\ell}}(R) & R \bowtie S \\
\delta_{a_{1}, \ldots, a_{\ell} \rightarrow b_{1}, \ldots, b_{\ell}}(R) & R-S \\
R \cup S & R \cap S
\end{array}
$$

Solution.

$\sigma_{i=c}(R)$ for each tuple $\left\langle c_{1}, \ldots, c_{n}\right\rangle$ in R, we add one of these two circuits:
$\sigma_{i=j}(R)$ analogous.
$\pi_{a_{1}, \ldots, a_{\ell}}(R)$ for all tuples $\left\langle c_{1}, \ldots, c_{n}\right\rangle, \ldots,\left\langle c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right\rangle$ in R with $c_{a_{1}}=c_{a_{1}}^{\prime}, \ldots, c_{a_{\ell}}=c_{a_{\ell}}^{\prime}$, we add the circuit:
$R \bowtie S$ for each tuple $\left\langle a_{1}, \ldots, a_{\ell}, c_{1}, \ldots, c_{n}\right\rangle$ in R and each tuple $\left\langle b_{1}, \ldots, b_{k}, c_{1}, \ldots, c_{n}\right\rangle$ in S, we add the circuit:
$\delta_{a_{1}, \ldots, a_{n} \rightarrow b_{1}, \ldots, b_{n}}(R)$ for each tuple $\left\langle c_{a_{1}}, \ldots, c_{a_{n}}\right\rangle$ in R, we add the circuit: $R-S$ for each tuple $\left\langle c_{1}, \ldots, c_{n}\right\rangle$ in R, we add the circuit:
$R \cup S$ for each tuple $\left\langle c_{1}, \ldots, c_{n}\right\rangle$ in R, we add the circuit:

$R \cap S$ analogous to $R \bowtie S$.

Exercise 4

Exercise. Decide whether the following statements are true or false:

1. The combined complexity of a query language is at least as high as its data complexity.
2. The query complexity of a query language is at least as high as its data complexity.

If true, explain why, otherwise give a counter-example.

Exercise 4

Exercise. Decide whether the following statements are true or false:

1. The combined complexity of a query language is at least as high as its data complexity.
2. The query complexity of a query language is at least as high as its data complexity.

If true, explain why, otherwise give a counter-example.

Definition (Lecture 3, Slide 5)

Combined complexity given BCQ q and database instance I does $I \vDash q$ hold?
Data complexity given database instance I, does $I \models q$ hold for a fixed BCQ q ?
Query complexity given BCQ q, does $I \models q$ hold for a fixed database instance I ?

Exercise 4

Exercise. Decide whether the following statements are true or false:

1. The combined complexity of a query language is at least as high as its data complexity.
2. The query complexity of a query language is at least as high as its data complexity.

If true, explain why, otherwise give a counter-example.

Definition (Lecture 3, Slide 5)

Combined complexity given BCQ q and database instance I does $I \vDash q$ hold?
Data complexity given database instance I, does $I \models q$ hold for a fixed BCQ q ?
Query complexity given $\mathrm{BCQ} q$, does $I \models q$ hold for a fixed database instance I ?

Solution.

Exercise 4

Exercise. Decide whether the following statements are true or false:

1. The combined complexity of a query language is at least as high as its data complexity.
2. The query complexity of a query language is at least as high as its data complexity.

If true, explain why, otherwise give a counter-example.

Definition (Lecture 3, Slide 5)

Combined complexity given BCQ q and database instance I does $I \vDash q$ hold?
Data complexity given database instance I, does $I \models q$ hold for a fixed BCQ q ?
Query complexity given BCQ q, does $I \models q$ hold for a fixed database instance I ?

Solution.

1. True (why?).

Exercise 4

Exercise. Decide whether the following statements are true or false:

1. The combined complexity of a query language is at least as high as its data complexity.
2. The query complexity of a query language is at least as high as its data complexity.

If true, explain why, otherwise give a counter-example.

Definition (Lecture 3, Slide 5)

Combined complexity given BCQ q and database instance I does $I \vDash q$ hold?
Data complexity given database instance I, does $I \models q$ hold for a fixed BCQ q ?
Query complexity given BCQ q, does $I \models q$ hold for a fixed database instance I ?

Solution.

1. True (why?).
2. False: Consider $L=\{q\}$ with q a non-trivial BCQ, i.e., a BCQ such that there are database instances I and \mathcal{J} with $I \models q$ and $\mathcal{J} \not \models q$. Then the query complexity is constant, yet the data complexity of L is still in $A C^{0}$.

Exercise 5

Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Exercise 5

Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20-21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LOGSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^{*} \rightarrow \Sigma^{*}$.

Exercise 5

Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20-21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^{*} \rightarrow \Sigma^{*}$.

Solution.

Exercise 5

Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20-21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LOGSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^{*} \rightarrow \Sigma^{*}$.

Solution.

- Let $f, g: \Sigma^{*} \rightarrow \Sigma^{*}$ be LogSpace-computable functions.

Exercise 5

Exercise. Show that the composition of logspace reductions yields a logspace reduction.
Definition (Lecture 3, Slides 20-21)
A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LOGSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^{*} \rightarrow \Sigma^{*}$.

Solution.

- Let $f, g: \Sigma^{*} \rightarrow \Sigma^{*}$ be LogSpace-computable functions.
- Let \mathcal{M}_{f} and \mathcal{M}_{g} be LogSpace transducers computing f and g, respectively.

Exercise 5

Exercise. Show that the composition of logspace reductions yields a logspace reduction.
Definition (Lecture 3, Slides 20-21)
A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^{*} \rightarrow \Sigma^{*}$.

Solution.

- Let $f, g: \Sigma^{*} \rightarrow \Sigma^{*}$ be LogSpace-computable functions.
- Let \mathcal{M}_{f} and \mathcal{M}_{g} be LogSpace transducers computing f and g, respectively.
- We show that $f \circ g$ is also LogSpace computable by constructing a LogSpace transducer \mathcal{M} computing $f \circ g$:

Exercise 5

Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20-21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^{*} \rightarrow \Sigma^{*}$.

Solution.

- Let $f, g: \Sigma^{*} \rightarrow \Sigma^{*}$ be LogSpace-computable functions.
- Let \mathcal{M}_{f} and \mathcal{M}_{g} be LogSpace transducers computing f and g, respectively.
- We show that $f \circ g$ is also LogSpace computable by constructing a LogSpace transducer \mathcal{M} computing $f \circ g$:

1. We can't just simulate \mathcal{M}_{g} to compute $g(w)$ for input $w:|g(w)|$ may be polynomial in $|w|$ (but not larger, since $\mathrm{L} \subseteq \mathrm{P}$).

Exercise 5

Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20-21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^{*} \rightarrow \Sigma^{*}$.

Solution.

- Let $f, g: \Sigma^{*} \rightarrow \Sigma^{*}$ be LOGSPACE-computable functions.
- Let \mathcal{M}_{f} and \mathcal{M}_{g} be LOGSPACE transducers computing f and g, respectively.
- We show that $f \circ g$ is also LOGSpace computable by constructing a LOGSpace transducer \mathcal{M} computing $f \circ g$:

1. We can't just simulate \mathcal{M}_{g} to compute $g(w)$ for input $w:|g(w)|$ may be polynomial in $|w|$ (but not larger, since $\mathrm{L} \subseteq \mathrm{P}$).
2. But we can construct \mathcal{M}_{g}^{\prime} that computes the k-th symbol of $g(w)$:

Exercise 5

Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20-21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^{*} \rightarrow \Sigma^{*}$.

Solution.

- Let $f, g: \Sigma^{*} \rightarrow \Sigma^{*}$ be LOGSpace-computable functions.
- Let \mathcal{M}_{f} and \mathcal{M}_{g} be LOGSPACE transducers computing f and g, respectively.
- We show that $f \circ g$ is also LOGSpace computable by constructing a LOGSpace transducer \mathcal{M} computing $f \circ g$:

1. We can't just simulate \mathcal{M}_{g} to compute $g(w)$ for input $w:|g(w)|$ may be polynomial in $|w|$ (but not larger, since $\mathrm{L} \subseteq \mathrm{P}$).
2. But we can construct \mathcal{M}_{g}^{\prime} that computes the k-th symbol of $g(w)$:
2.1 We use a binary counter p to store k (since $|g(w)|$ is polynomial in $|w|$, we can do that in logarithmic space).

Exercise 5

Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20-21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^{*} \rightarrow \Sigma^{*}$.

Solution.

- Let $f, g: \Sigma^{*} \rightarrow \Sigma^{*}$ be LOGSpace-computable functions.
- Let \mathcal{M}_{f} and \mathcal{M}_{g} be LOGSPACE transducers computing f and g, respectively.
- We show that $f \circ g$ is also LOGSpace computable by constructing a LOGSpace transducer \mathcal{M} computing $f \circ g$:

1. We can't just simulate \mathcal{M}_{g} to compute $g(w)$ for input $w:|g(w)|$ may be polynomial in $|w|$ (but not larger, since $\mathrm{L} \subseteq \mathrm{P}$).
2. But we can construct \mathcal{M}_{g}^{\prime} that computes the k-th symbol of $g(w)$:
2.1 We use a binary counter p to store k (since $|g(w)|$ is polynomial in $|w|$, we can do that in logarithmic space).
2.2 On input $k \# w, \mathcal{M}_{g}^{\prime}$ computes the k-th symbol of $g(w)$.

Exercise 5

Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20-21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^{*} \rightarrow \Sigma^{*}$.

Solution.

- Let $f, g: \Sigma^{*} \rightarrow \Sigma^{*}$ be LOGSpACE-computable functions.
- Let \mathcal{M}_{f} and \mathcal{M}_{g} be LOGSPACE transducers computing f and g, respectively.
- We show that $f \circ g$ is also LOGSpace computable by constructing a LOGSpace transducer \mathcal{M} computing $f \circ g$:

1. We can't just simulate \mathcal{M}_{g} to compute $g(w)$ for input $w:|g(w)|$ may be polynomial in $|w|$ (but not larger, since $\mathrm{L} \subseteq \mathrm{P}$).
2. But we can construct \mathcal{M}_{g}^{\prime} that computes the k-th symbol of $g(w)$:
2.1 We use a binary counter p to store k (since $|g(w)|$ is polynomial in $|w|$, we can do that in logarithmic space).
2.2 On input $k \# w, \mathcal{M}_{g}^{\prime}$ computes the k-th symbol of $g(w)$.
3. Then \mathcal{M} computes $f \circ g$ on input w by simulating \mathcal{M}_{f}.

Exercise 5

Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20-21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^{*} \rightarrow \Sigma^{*}$.

Solution.

- Let $f, g: \Sigma^{*} \rightarrow \Sigma^{*}$ be LogSpace-computable functions.
- Let \mathcal{M}_{f} and \mathcal{M}_{g} be LogSpace transducers computing f and g, respectively.
- We show that $f \circ g$ is also LogSpace computable by constructing a LogSpace transducer \mathcal{M} computing $f \circ g$:

1. We can't just simulate \mathcal{M}_{g} to compute $g(w)$ for input $w:|g(w)|$ may be polynomial in $|w|$ (but not larger, since $\mathrm{L} \subseteq \mathrm{P}$).
2. But we can construct \mathcal{M}_{g}^{\prime} that computes the k-th symbol of $g(w)$:
2.1 We use a binary counter p to store k (since $|g(w)|$ is polynomial in $|w|$, we can do that in logarithmic space).
2.2 On input $k \# w, \mathcal{M}_{g}^{\prime}$ computes the k-th symbol of $g(w)$.
3. Then \mathcal{M} computes $f \circ g$ on input w by simulating \mathcal{M}_{f}.
4. Each time the simulation of \mathcal{M}_{f} tries to read the k-th symbol of $g(w)$, we simulate \mathcal{M}_{g}^{\prime}, reading w from the input tape and k from the working tape, respectively, storing the result in a single cell of the working tape.

Exercise 5

Exercise. Show that the composition of logspace reductions yields a logspace reduction.

Definition (Lecture 3, Slides 20-21)

A LogSpace transducer is a deterministic TM with three tapes:

- a read-only input tape
- a read/write working tape of size $O(\log n)$
- a write-only, write-once output tape

The output of a LogSpace transducer is the contents of its output tape when it halts, i.e., LogSpace transducers compute partial functions $\Sigma^{*} \rightarrow \Sigma^{*}$.

Solution.

- Let $f, g: \Sigma^{*} \rightarrow \Sigma^{*}$ be LogSpace-computable functions.
- Let \mathcal{M}_{f} and \mathcal{M}_{g} be LogSpace transducers computing f and g, respectively.
- We show that $f \circ g$ is also LogSpace computable by constructing a LogSpace transducer \mathcal{M} computing $f \circ g$:

1. We can't just simulate \mathcal{M}_{g} to compute $g(w)$ for input $w:|g(w)|$ may be polynomial in $|w|$ (but not larger, since $\mathrm{L} \subseteq \mathrm{P}$).
2. But we can construct \mathcal{M}_{g}^{\prime} that computes the k-th symbol of $g(w)$:
2.1 We use a binary counter p to store k (since $|g(w)|$ is polynomial in $|w|$, we can do that in logarithmic space).
2.2 On input $k \# w, \mathcal{M}_{g}^{\prime}$ computes the k-th symbol of $g(w)$.
3. Then \mathcal{M} computes $f \circ g$ on input w by simulating \mathcal{M}_{f}.
4. Each time the simulation of \mathcal{M}_{f} tries to read the k-th symbol of $g(w)$, we simulate \mathcal{M}_{g}^{\prime}, reading w from the input tape and k from the working tape, respectively, storing the result in a single cell of the working tape.
5. Both simulations can be performed in logarithmic space, and thus, \mathcal{M} runs in logarithmic space.

Exercise 6

Exercise. Is the question " $\mathrm{P}=\mathrm{NP}$?" decidable?

Exercise 6

Exercise. Is the question " $\mathrm{P}=\mathrm{NP}$?" decidable?
Definition (Lecture 3, slide 10)
A TM decides a decision problem \mathcal{L} if it halts on all inputs and accepts exactly the words in \mathcal{L}.

Exercise 6

Exercise. Is the question " $\mathrm{P}=\mathrm{NP}$?" decidable?
Definition (Lecture 3, slide 10)
A TM decides a decision problem \mathcal{L} if it halts on all inputs and accepts exactly the words in \mathcal{L}.
Solution.

Exercise 6

Exercise. Is the question " $\mathrm{P}=\mathrm{NP}$?" decidable?
Definition (Lecture 3, slide 10)
A TM decides a decision problem \mathcal{L} if it halts on all inputs and accepts exactly the words in \mathcal{L}.

Solution.

- Let \mathcal{L} be the decision problem for " $\mathrm{P}=\mathrm{NP}$?", i.e., let $\mathcal{L}=\Sigma^{*}$ if $\mathrm{P}=\mathrm{NP}$, and let $\mathcal{L}=\emptyset$ otherwise.

Exercise 6

Exercise. Is the question " $\mathrm{P}=\mathrm{NP}$?" decidable?
Definition (Lecture 3, slide 10)
A TM decides a decision problem \mathcal{L} if it halts on all inputs and accepts exactly the words in \mathcal{L}.

Solution.

- Let \mathcal{L} be the decision problem for " $\mathrm{P}=\mathrm{NP}$?", i.e., let $\mathcal{L}=\Sigma^{*}$ if $\mathrm{P}=\mathrm{NP}$, and let $\mathcal{L}=\emptyset$ otherwise.
- Let \mathcal{M}_{A} and \mathcal{M}_{R} be two terminating TMs that accept and reject every input, respectively.

Exercise 6

Exercise. Is the question " $\mathrm{P}=\mathrm{NP}$?" decidable?
Definition (Lecture 3, slide 10)
A TM decides a decision problem \mathcal{L} if it halts on all inputs and accepts exactly the words in \mathcal{L}.

Solution.

- Let \mathcal{L} be the decision problem for " $\mathrm{P}=\mathrm{NP}$?", i.e., let $\mathcal{L}=\Sigma^{*}$ if $\mathrm{P}=\mathrm{NP}$, and let $\mathcal{L}=\emptyset$ otherwise.
- Let \mathcal{M}_{A} and \mathcal{M}_{R} be two terminating TMs that accept and reject every input, respectively.
- One of these two TMs decides \mathcal{L}.

Exercise 6

Exercise. Is the question " $\mathrm{P}=\mathrm{NP}$?" decidable?
Definition (Lecture 3, slide 10)
A TM decides a decision problem \mathcal{L} if it halts on all inputs and accepts exactly the words in \mathcal{L}.

Solution.

- Let \mathcal{L} be the decision problem for " $\mathrm{P}=\mathrm{NP}$?", i.e., let $\mathcal{L}=\Sigma^{*}$ if $\mathrm{P}=\mathrm{NP}$, and let $\mathcal{L}=\emptyset$ otherwise.
- Let \mathcal{M}_{A} and \mathcal{M}_{R} be two terminating TMs that accept and reject every input, respectively.
- One of these two TMs decides \mathcal{L}.
- Thus, \mathcal{L} is decidable, and hence, so is " $\mathrm{P}=\mathrm{NP}$?".

